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1 Introduction

Hankel operator acting on Bergman spaces is an important area of research in the theory of operators

acting on spaces of analytic functions. Most of the theory of Hankel operators on standard Bergman spaces

is well understood, but not so much is known for large Bergman spaces. The function and operator theory

acting on large Bergman spaces on the unit disc D of the complex plane C is just developing, and it is

our purpose to study big Hankel operators acting on such spaces. For a strictly subharmonic function ϕ

on D and 0 < p � ∞, let Lp
ϕ consist of those Lebesgue measurable functions f : D → C such that

‖f‖Lp
ϕ
=

{∫
D

|f(z)e−ϕ(z)|pdA(z)

} 1
p

< ∞, 0 < p < ∞,

‖f‖L∞
ϕ

= sup
z∈D

|f(z)|e−ϕ(z) < ∞, p = ∞,

and consider the weighted Bergman space Ap
ϕ = Lp

ϕ∩H(D). Here, H(D) denotes the set of all holomorphic

functions in D and dA is the Lebesgue area measure on C. We also use Lp to stand for the usual Lebesgue

space Lp(D, dA).

In this paper we are interested in Ap
ϕ with the weight function ϕ ∈ W0 which was first introduced

in [10]. To describe W0 precisely, let C0 be the family of all continuous functions ρ on D satisfying

lim|z|→1 ρ(z) = 0. Set

L =

{
ρ : D → R : ρ ∈ C0, ‖ρ‖L = sup

z,w∈D,z �=w

|ρ(z)− ρ(w)|
|z − w| < ∞

}
,
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and let L0 consist of those ρ ∈ L with the property that for each ε > 0 there is a compact subset E ⊂ D

with

|ρ(z)− ρ(w)| � ε|z − w|
whenever z, w ∈ D \ E. The class W0 is defined as

W0 =

{
ϕ ∈ C2(D) : Δϕ > 0, and ∃ ρ ∈ L0 such that

1√
Δϕ


 ρ

}
.

Here and afterward, the expression A 
 B means that there exist two positive constants c1 and c2
independent of the functions being considered such that c1A � B � c2A.

It is easy to verify that Ap
ϕ is a Banach space when 1 � p � ∞, and A2

ϕ is a Hilbert space. These

spaces are also called large Bergman spaces because they usually contain all the standard Bergman

spaces. Examples of weighted Bergman spaces with ϕ ∈ W0 include exponential Bergman spaces, double

exponential weighted Bergman spaces, and also some non-radial weighted Bergman spaces (see [10, 14]).

With the Bergman reproducing kernel K(·, ·) on A2
ϕ one can define the Bergman projection P as

P (g)(z) =

∫
D

g(ξ)K(z, ξ)e−2ϕ(ξ)dA(ξ).

For 1 � p � ∞, P is bounded from Lp
ϕ to Ap

ϕ, and P |Ap
ϕ
, the restriction on Ap

ϕ, is just the identity

operator Id (see [10] for details).

Given some symbol function f , one defines the so-called Hankel operator Hf as

Hf (g) = (Id− P )(fg). (1.1)

From [10] we know that

Γ =

{ N∑
j=1

ajK(·, zj) : N ∈ N, aj ∈ C, zj ∈ D for 1 � j � N

}

is dense in Ap
ϕ. Therefore, to let Hf make sense on Γ we naturally consider those f in the symbol class S

defined as

S = {f measurable on D : fg ∈ L1
ϕ for g ∈ Γ}

(from [10, Theorem 3.3], ‖K(·, z)‖L∞
ϕ

< ∞ so that P (fg)(z) is well defined for f ∈ S, g ∈ Γ and z ∈ D).

The purpose of this work is, for 1 � p, q < ∞, to characterize those f ∈ S such that Hf is bounded (or

compact) as an operator acting from Ap
ϕ to Lq

ϕ. The descriptions obtained are presented in Section 4.

As in [10], we write BDK (Borichev-Dhuez-Kellay) to be the weight class introduced by Borichev et al.

[3]. We know BDK ⊂ W0 and W0 \ BDK �= ∅. The Bergman space Ap
ϕ with ϕ ∈ BDK has been studied

in [2, 3, 6, 7, 9, 14, 15].

Given Banach spaces X and Y , and some linear operator from X to Y , we use ‖ · ‖X and ‖T‖X→Y

respectively to stand for the norm on X, and the operator norm of T . Throughout this paper, we use C

to denote positive constants whose values may change from line to line, but do not depend on functions

being considered.

2 Some preliminaries

We are going to present some basic conclusions that will be used in the following sections. Let ϕ ∈ W0

with 1√
Δϕ


 ρ ∈ L0. We define a distance dρ(z, w) on D as

dρ(z, w) = inf
γ

∫ 1

0

|γ′(t)| dt

ρ(γ(t))
,
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where the infimum is taken over all piecewise C1 curves γ : [0, 1] → D with γ(0) = z and γ(1) = w. It is

mentioned in [5] that dρ(·, ·) is equivalent to the Bergman distance βϕ(·, ·) induced by the Bergman metric

1

2

∂2 logK(z, z)

∂z∂z
dz ⊗ dz.

The estimates on the Bergman kernel play an important role in our analysis. The following lemma

comes from [10].

Lemma 2.1. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0. There are positive constants C1, C2, σ and d such that

|K(z, w)| � C1
eϕ(z)+ϕ(w)

ρ(z)ρ(w)
e−σdρ(z,w) for z, w ∈ D

and

|K(z, w)| � C2
eϕ(z)eϕ(w)

ρ(z)ρ(w)
for dρ(z, w) � d.

For Kz(·) = K(·, z) ∈ H(D) and 0 < p � ∞, with Lemma 2.1 and an elementary calculation as that of

[10, Corollary 3.2] we obtain

‖Kz‖Lp
ϕ

 eϕ(z)ρ(z)

2
p−2. (2.1)

Write kz,p = Kz

‖Kz‖L
p
ϕ

to denote the normalized reproducing kernels in Ap
ϕ.

For z ∈ D and r > 0, set

D(z, r) = {w : |w − z| < r}
to be the Euclidean disc with the center z and the radius r. Write

Bρ(z, r) = {w ∈ D : dρ(w, z) < r} and Dr(z) = D(z, rρ(z)).

The following lemma is from [10].

Lemma 2.2. Let ρ ∈ L be positive. Then there exists α > 0 with the following properties:

(i) There exist constants C1 and C2 such that

C1ρ(w) � ρ(z) � C2ρ(w) (2.2)

for z ∈ D and w ∈ Dα(z).

(ii) There exists a constant B > 0 such that

Dr(z) ⊆ DBr(w), Dr(w) ⊆ DBr(z) (2.3)

for w ∈ Dr(z) and 0 < r � α.

(iii) There exist positive constants c1 and c2 such that

Bρ(z, c1r) ⊆ Dr(z) ⊆ Bρ(z, c2r) (2.4)

for z ∈ D and 0 < r � α.

Moreover, if α is small enough, we can take C1 = 1/2, C2 = 2 in (i) and B = 4 in (ii).

For our analysis we need a covering lemma which is almost identical to [8, Lemma 3.1].

Lemma 2.3. Let ρ ∈ L be positive. There are positive constants α and s, depending only on ‖ρ‖L,
such that for 0 < r � α there exists a sequence {zj}∞j=1 ⊂ D satisfying

(i) D =
⋃

j�1 D
r(zj);

(ii) Dsr(zj) ∩Dsr(zm) = ∅ for m �= j;

(iii) {D2α(zj)}∞j=1 is a covering of D of finite multiplicity.
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A sequence {zj}∞j=1 satisfying Lemmas 2.3(i)–2.3(iii) will be called a (ρ, r)-lattice. Given some (ρ, r)-

lattice {zj}∞j=1, by Lemma 2.3(iii) we have some integer N so that

1 �
∞∑
j=1

χDBr(zj)(z) � N for z ∈ D. (2.5)

Here and afterward, χE is the characteristic function of a subset E of D. In what follows we always

take α > 0 as that in Lemmas 2.2 and 2.3. The next lemma has already been obtained for ϕ ∈ BDK in

Arroussi’s dissertation [1].

Lemma 2.4. Let ϕ ∈ W0, 0 < p � ∞, and let {zj}∞j=1 be some (ρ, r)-lattice with 0 < r � α. Then for

λ = {λj}∞j=1 ∈ p, we have
∑∞

j=1 λjkzj ,p ∈ Ap
ϕ with the norm estimate

∥∥∥∥
∞∑
j=1

λjkzj ,p

∥∥∥∥
Lp

ϕ

� C‖λ‖�p . (2.6)

Proof. We treat the case where 1 � p � ∞ first. Let q be the conjugate exponent of p. For f ∈ H(D),

by [10, Lemma 3.3] we have

|f(z)e−ϕ(z)|p � C

ρ(z)2

∫
Dr(z)

|f(w)e−ϕ(w)|pdA(w), z ∈ D. (2.7)

Hence,

∞∑
j=1

|Kz(zj)e
−ϕ(zj)|qρ(zj)2 � C

∞∑
j=1

∫
Dr(zj)

|Kz(ξ)e
−ϕ(ξ)|qdA(ξ)

� C‖Kz‖qLq
ϕ
.

Then, for each N , Hölder’s inequality implies

N∑
j=1

|λjkzj ,p(z)| �
( N∑

j=1

|λj |p
) 1

p
( N∑

j=1

|kzj ,p(z)|q
) 1

q

� C‖λ‖�p
( ∞∑

j=1

|Kz(zj)e
−ϕ(zj)|qρ(zj)2

) 1
q

� C‖λ‖�p‖Kz‖Lq
ϕ
< ∞.

This implies that
∑∞

j=1 λjkzj ,p converges uniformly on compact subsets of D. Furthermore, for any

g ∈ Aq
ϕ,

∞∑
j=1

|〈λjkzj ,p, g〉L2
ϕ
| =

∑
j=1

|λjg(zj)|
‖Kzj‖Lp

ϕ

� C

∞∑
j=1

|λj ||g(zj)e−ϕ(zj)|ρ(zj)2− 2
p

� C‖λ‖�p
( ∞∑

j=1

∫
Dr(zj)

|g(ξ)e−ϕ(ξ)|qdA(ξ)

) 1
q

� C‖λ‖�p‖g‖Lq
ϕ
.

Therefore, ∣∣∣∣
〈 ∞∑

j=1

λjkzj ,p, g

〉
L2

ϕ

∣∣∣∣ �
∞∑
j=1

|〈λjkzj ,p, g〉L2
ϕ
| � C‖λ‖�p‖g‖Lq

ϕ
.
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[10, Theorem 4.3] tells us that the dual of Ap
ϕ is Aq

ϕ for 1 � p < ∞ and the predual of A∞
ϕ is A1

ϕ. From

these we obtain (2.6) for 1 � p � ∞.

For 0 < p � 1, by (a+ b)p � ap + bp for a, b > 0 we have

∥∥∥∥
N∑
j=1

λjkzj ,p

∥∥∥∥
p

Lp
ϕ

�
∞∑
j=1

|λj |p‖kzj ,p‖pLp
ϕ
= ‖λ‖p�p .

This completes the proof.

In our analysis, we need to use the notion of Carleson measures. Here is the definition.

Definition 2.5. Suppose μ is a positive Borel measure on D and 0 < p, q < ∞. If the embedding

Id : Ap
ϕ → Lq(D, e−qϕdμ) is continuous (or compact) then μ is said to be a q-Carleson measure (or a

vanishing q-Carleson measure) for Ap
ϕ.

As on the classical Bergman spaces we are going to use μ̂r to characterize Carleson measures shown

in the following proposition. For ϕ ∈ BDK, the weight class introduced in [3], all conclusions in Propo-

sition 2.6 except the estimate (2.9) were represented as [14, Theorem 1] (although it is given there in

a different form). Fortunately, the proof of that in [14] works well in the present setting with only one

adjustment that the test function Fa,n,p(z) there should be replaced by

Fa(z) = ka,∞(z) 
 ρ(a)2Ka(z)e
−ϕ(a),

because Fa,n,p(z) is available only when ϕ ∈ BDK (particulary, ϕ must be radial) (see [3, 14]).

Given μ as above and 0 < r � α, set

μ̂r(z) =
μ(Dr(z))

|Dr(z)| ,

where |Dr(z)| denotes the area measure of Dr(z). Notice that |Dr(z)| 
 ρ(z)2.

Proposition 2.6. Let μ be a positive Borel measure on D.

(i) For 0 < p � q < ∞, μ is a q-Carleson measure for Ap
ϕ if and only if

sup
z∈D

μ̂r(z)ρ(z)
2(1− q

p ) < ∞

for some (or any) r ∈ (0, α]. In addition, μ is a vanishing q-Carleson measure for Ap
ϕ if and only if

lim
|z|→1

μ̂r(z)ρ(z)
2(1− q

p ) = 0

for some (or any) r ∈ (0, α].

(ii) For 0 < q < p < ∞, μ is a q-Carleson measure for Ap
ϕ if and only if μ is a vanishing q-Carleson

measure for Ap
ϕ if and only if

μ̂r ∈ L
p

p−q

for some (or any) r ∈ (0, α].

When μ is a q-Carleson measure for Ap
ϕ, it holds that

‖Id‖Ap
ϕ→Lq(D,e−qϕdμ) 
 ‖(μ̂r)

1
q ρ(z)2(

1
q− 1

p )‖L∞ if 0 < p � q < ∞ (2.8)

and

‖Id‖Ap
ϕ→Lq(D,e−qϕdμ) 
 ‖(μ̂r)

1
q ‖

L
pq

p−q
if 0 < q < p < ∞. (2.9)

Proof. We only present the proof of the estimate (2.9). For this purpose we first prove

‖(μ̂r)
1
q ‖

L
pq

p−q
� C‖Id‖Ap

ϕ→Lq(D,e−qϕdμ). (2.10)



426 Hu Z J et al. Sci China Math February 2022 Vol. 65 No. 2

As in [14] we use an argument of Luecking [13]. Let {zj}∞j=1 be some (ρ, r)-lattice, and take {φj}∞j=1 to be

a sequence of Rademacher functions on [0, 1]. For λ = {λj}∞j=1 ∈ p consider the function Gt defined as

Gt(z) =
∞∑
j=1

λjφj(t)kzj ,p(z).

From Lemma 2.4 we know ‖Gt‖Ap
ϕ
� C‖λ‖�p . If μ is a q-Carleson measure for Ap

ϕ, then

∫
D

|Gt(z)|qe−qϕ(z)dμ(z) � ‖Id‖q
Ap

ϕ→Lq(D,e−qϕdμ)
‖λ‖q�p .

Integrating with respect to t from 0 to 1, applying Fubini’s theorem, and invoking Khintchine’s inequality

we obtain ∫
D

( ∞∑
j=1

|λj |2|kzj ,p(z)|2
) q

2

e−qϕ(z)dμ(z) � C‖Id‖q
Ap

ϕ→Lq(D,e−qϕdμ)
‖λ‖q�p .

On the other hand, by Lemmas 2.1–2.3 and (2.7), one gets

∫
D

( ∞∑
j=1

|λj |2|kzj ,p(z)|2
) q

2

e−qϕ(z)dμ(z)

� C
∞∑
k=1

∫
Dr(zk)

( ∞∑
j=1

|λj |2|kzj ,p(z)|2
) q

2

e−qϕ(z)dμ(z)

� C

∞∑
k=1

∫
Dr(zk)

|λk|q|kzk,p(z)|qe−qϕ(z)dμ(z)

� C
∞∑
k=1

|λk|qρ(zk)2−
2q
p μ̂r(zk).

Therefore,

∞∑
k=1

|λj |q(ρ(zk)2−
2q
p μ̂r(zk)) � C‖Id‖q

Ap
ϕ→Lq(D,e−qϕdμ)

‖λ‖q�p .

By the duality between p/q and p/(p−q) we have

( ∞∑
k=1

ρ(zk)
2μ̂r(zk)

p
p−q

) p−q
p

� C‖Id‖q
Ap

ϕ→Lq(D,e−qϕdμ)
. (2.11)

Meanwhile, it is easy to verify that for z ∈ Dr(zk),

ρ(zk)
2μ̂r(z)

p
p−q � C

∑
j:Dr(zj)∩Dr(zk)�=∅

ρ(zj)
2μ̂r(zj)

p
p−q .

Therefore,

‖μ̂r‖
p

p−q

L
p

p−q
�

∞∑
k=1

∫
Dr(zk)

μ̂r(z)
p

p−q dA(z) � C

∞∑
j=1

ρ(zj)
2μ̂r(zj)

p
p−q .

This and (2.11) imply (2.10).
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To prove the other direction, for f ∈ H(D), applying (2.7) and Hölder’s inequality, we obtain

∫
D

|f(z)|qe−qϕ(z)dμ(z) �
∞∑
j=1

∫
Dr(zj)

|f(z)|qe−qϕ(z)dμ(z)

� C
∞∑
j=1

μ̂r(zj)ρ(zj)
2 sup
ξ∈Dr(zj)

|f(ξ)|qe−qϕ(ξ)

� C

( ∞∑
j=1

μ̂r(zj)
p

p−q ρ(zj)
2

) p−q
p
( ∞∑

j=1

ρ(zj)
2 sup
ξ∈Dr(zj)

|f(ξ)|pe−pϕ(ξ)

) q
p

� C

( ∞∑
j=1

μ̂r(zj)
p

p−q ρ(zj)
2

) p−q
p
( ∞∑

j=1

∫
D2r(zj)

|f(ζ)|pe−pϕ(ζ)dA(ζ)

) q
p

� C‖μ̂r‖
L

p
p−q

‖f‖q
Lp

ϕ
.

This means

‖Id‖Ap
ϕ→Lq(D, e−qϕdμ) � C‖μ̂r‖

1
q

L
p

p−q
= C‖(μ̂r)

1
q ‖

L
pq

p−q
.

From this and (2.10) we obtain (2.9).

3 Some ∂-estimates

By Lemmas 2.1 and 2.2(iii), we have some α > 0 such that Kz(ξ) = K(ξ, z) does not vanish for ξ ∈ Dα(z).

Given any r ∈ (0, α/3] and a (ρ, r)-lattice {zj}∞j=1, let {ψj}∞j=1 be some partition of the unity subordinate

to the covering {Dr(zj)}∞j=1. Precisely,

ψj ∈ C∞(D), Suppψj ⊂ Dr(zj) and ψj � 0,

∞∑
j=1

ψj = 1.

Set

G(z, ξ) =
1

(ξ − z)ρ(ξ)

∞∑
j=1

Kzj (z)ψj(ξ)

Kzj (ξ)
.

Define an integral operator T as

T (f)(z) =

∫
D

G(z, ξ)f(ξ)dA(ξ).

Lemma 3.1. Let ϕ ∈ W0 and 1 � p � ∞. Then T is a bounded linear operator on Lp
ϕ.

Proof. We use interpolation to prove this lemma. By (2.7) and Lemmas 2.1 and 2.2 we have

∞∑
j=1

|Kzj (z)|ψj(ξ)

|Kzj (ξ)|

 ρ(ξ)2e−ϕ(zj)−ϕ(ξ)

∑
j∈{k:ξ∈Dr(zk)}

|Kz(zj)|ψj(ξ)

� Ce−ϕ(ξ)

∫
D2r(ξ)

|Kz(ζ)|e−ϕ(ζ)dA(ζ).

Write

Q(z, ξ) =
e−ϕ(ξ)

|ξ − z|ρ(ξ)
∫
D2r(ξ)

|Kζ(z)|e−ϕ(ζ)dA(ζ). (3.1)

We have

|G(z, ξ)| � C Q(z, ξ). (3.2)
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For f measurable on D, set

T1(f)(z) =

∫
Dr(z)

Q(z, ξ)f(ξ)dA(ξ)

and

T2(f)(z) =

∫
D\Dr(z)

Q(z, ξ)f(ξ)dA(ξ).

To prove the conclusion of the lemma, from (3.2) we need only to prove that both T1 and T2 are bounded

on Lp
ϕ. For T1, by Lemma 2.2, we have

‖T1(f)‖L1
ϕ
�

∫
D

(∫
D

χDr(z)(ξ)Q(z, ξ)|f(ξ)|dA(ξ)

)
e−ϕ(z)dA(z)

=

∫
D

|f(ξ)|
(∫

D

χDr(z)(ξ)Q(z, ξ)e−ϕ(z)dA(z)

)
dA(ξ)

�
∫
D

|f(ξ)|
(∫

D2r(ξ)

Q(z, ξ)e−ϕ(z)dA(z)

)
dA(ξ).

Putting the expression of Q(z, ξ) inside and using (2.1), we obtain

‖T1(f)‖L1
ϕ
�

∫
D

|f(ξ)|e−ϕ(ξ)

(∫
D2r(ξ)

e−ϕ(z)

|ξ − z|ρ(ξ)
∫
D2r(ξ)

|Kζ(z)|e−ϕ(ζ)dA(ζ)dA(z)

)
dA(ξ)

�
∫
D

|f(ξ)|e−ϕ(ξ)

(∫
D2r(ξ)

e−ϕ(z)

|ξ − z|ρ(ξ) ‖Kz‖L1
ϕ
dA(z)

)
dA(ξ)

� C

∫
D

|f(ξ)|e−ϕ(ξ)dA(ξ)

∫
D2r(ξ)

1

|ξ − z|ρ(ξ)dA(z).

By using polar coordinates, it is easy to see that∫
D2r(ξ)

1

|ξ − z|dA(z) � Cρ(ξ),

so that we finally obtain

‖T1(f)‖L1
ϕ
� C

∫
D

|f(ξ)|e−ϕ(ξ)dA(ξ) = C‖f‖L1
ϕ

proving that T1 is bounded on L1
ϕ. Similarly,

‖T1(f)‖L∞
ϕ

= sup
z∈D

e−ϕ(z)

∫
Dr(z)

Q(z, ξ)|f(ξ)|dA(ξ)

� C‖f‖L∞
ϕ
sup
z∈D

∫
Dr(z)

1

|ξ − z|ρ(ξ)
∫
D2r(ξ)

|Kζ(z)|e−ϕ(z)−ϕ(ζ)dA(ζ) dA(ξ)

� C‖f‖L∞
ϕ
sup
z∈D

∫
Dr(z)

1

|ξ − z|ρ(ξ)dA(ξ)

� C‖f‖L∞
ϕ
.

Set Meϕ to be the multiplier that Meϕ(f) = feϕ. It is easy to see that Meϕ is an isometry from Lp

to Lp
ϕ with the inverse Me−ϕ . Therefore, Me−ϕT1Meϕ is bounded both on L1 and L∞. By interpolation,

Me−ϕT1Meϕ is bounded on Lp which implies T1 is bounded on Lp
ϕ.

For T2, applying Lemma 2.1, we have

|T2f(z)| �
∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

|ξ − z|ρ(ξ)
(∫

D2r(ξ)

|K(ζ, z)|e−ϕ(ζ)dA(ζ)

)
dA(ξ)

� C
eϕ(z)

ρ(z)

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

|ξ − z|ρ(ξ)
(∫

D2r(ξ)

e−σdρ(ζ,z)dA(ζ)

ρ(ζ)

)
dA(ξ)
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� C
eϕ(z)

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)

ρ(ξ)2

(∫
D2r(ξ)

e−σdρ(ζ,z)dA(ζ)

)
dA(ξ).

On the other hand, dρ(·, ·) is a distance on D. From Lemma 2.2(iii), there is some constant C such that

for ζ ∈ D2r(ξ),

dρ(ξ, z) � dρ(ξ, ζ) + dρ(ζ, z) � C + dρ(ζ, z).

Thus, for ζ ∈ D2r(ξ), we have

e−σdρ(ζ,z) � C e−σdρ(ξ,z).

It follows that

|T2f(z)| � C
eϕ(z)

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z)dA(ξ).

With this estimate and [10, Corollary 3.1] we obtain

‖T2f‖L1
ϕ
� C

∫
D

(∫
D

|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z)dA(ξ)

)
dA(z)

ρ(z)2

= C

∫
D

|f(ξ)|e−ϕ(ξ)

(∫
D

e−σdρ(ξ,z)

ρ(z)2
dA(z)

)
dA(ξ)

� C‖f‖L1
ϕ
.

Similarly, for p = ∞ we have

‖T2f‖L∞
ϕ

� sup
z∈D

1

ρ(z)2

∫
D\Dr(z)

|f(ξ)|e−ϕ(ξ)e−σdρ(ξ,z)dA(ξ).

� C‖f‖L∞
ϕ
sup
z∈D

∫
D

e−σdρ(ξ,z)

ρ(z)2
dA(ξ)

� C‖f‖L∞
ϕ
.

With the same approach for T1, by interpolation we know that T2 is bounded on Lp
ϕ as well.

Set C∞
c to be the family of all C∞ functions with compact support in D. Given f Lebesgue measurable

on D, for z = x+ iy one can define the weak derivative ∂f
∂x and ∂f

∂y (see [4]). Set

∂f

∂z
=

1

2

{
∂f

∂x
− i

∂f

∂y

}

and
∂f

∂z
=

1

2

{
∂f

∂x
+ i

∂f

∂y

}
.

Since we deal with functions of one complex variable, we can use ∂f to stand for ∂f
∂z for short.

Theorem 3.2. Let ϕ ∈ W0. Given f measurable on D such that ρf ∈ L1
ϕ, set

u(z) =
∞∑
j=1

Kzj (z)

∫
D

ψj(ξ)

(ξ − z)Kzj (ξ)
f(ξ)dA(ξ). (3.3)

Then u solves the equation ∂u = f weakly in D. Furthermore, for 1 � p < ∞ there is some constant

C > 0 such that

‖u‖Lp
ϕ
� C‖ρf‖Lp

ϕ
. (3.4)
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Proof. For a function f with ρf ∈ Lp
ϕ, one has u(z) = T (fρ)(z). Then Lemma 3.1 implies ‖u‖Lp

ϕ

� C‖fρ‖Lp
ϕ
, which gives (3.4).

For f ∈ C1(D), the Cauchy-Pompeiu formula tells us that (see [4, Theorem 2.1.2])

∂

∂z

∫
D

f(ξ)

ξ − z
dA(ξ) = f(z) for z ∈ D. (3.5)

Then for φ ∈ C∞
c (D) and f ∈ L1

loc, (3.5) and the fact that Kzj ∈ H(D) imply〈
Kzj (·)

∫
D

ψj(ξ)

(ξ − ·)Kzj (ξ)
f(ξ)dA(ξ),

∂φ

∂z

〉
L2

= −〈fψj , φ〉L2 .

Set

U(z) =
∞∑
j=1

|Kzj (z)|
∫
D

ψj(ξ)

|(ξ − z)Kzj (ξ)|
|f(ξ)|dA(ξ).

We have

|u(z)| � U(z).

By the fact that Suppψj ⊂ Dr(zj), applying Lemma 2.1 and [10, Corollary 3.1], we get

U(z) � C
∞∑
j=1

eϕ(zj)+ϕ(z)

ρ(zj)ρ(z)

∫
Dr(zj)

ψj(ξ)

|ξ − z| |f(ξ)|
ρ(zj)ρ(ξ)

eϕ(zj)+ϕ(ξ)
dA(ξ)

� C
∞∑
j=1

eϕ(z)

ρ(z)

∫
Dr(zj)

ψj(ξ)

|ξ − z| |ρ(ξ)f(ξ)e
−ϕ(ξ)|dA(ξ)

= C

∞∑
j=1

eϕ(z)

ρ(z)

∫
D

ψj(ξ)

|ξ − z| |ρ(ξ)f(ξ)e
−ϕ(ξ)|dA(ξ).

Write Ω = Suppφ which is compact. Then,

∫
D

U(z)

∣∣∣∣∂φ∂z (z)
∣∣∣∣dA(z) � C

∫
Ω

∣∣∣∣∂φ∂z (z)
∣∣∣∣dA(z)

∞∑
j=1

eϕ(z)

ρ(z)

∫
D

ψj(ξ)

|ξ − z| |ρ(ξ)f(ξ)e
−ϕ(ξ)|dA(ξ)

� C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D

|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)
∞∑
j=1

ψj(ξ)

∫
Ω

1

|ξ − z|dA(z)

� C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D

|ρ(ξ)f(ξ)e−ϕ(ξ)|
∞∑
j=1

ψj(ξ)dA(ξ)

� C

∥∥∥∥eϕ(z)∂φ

ρ(z)

∥∥∥∥
L∞(Ω)

∫
D

|ρ(ξ)f(ξ)e−ϕ(ξ)|dA(ξ)

< ∞.

Hence, we can apply Fubini’s theorem to obtain

∫
D

u(z)
∂φ

∂z
(z)dA(z) =

∫
D

( ∞∑
j=1

Kzj (z)

∫
D

ψj(ξ)

(ξ − z)Kzj (ξ)
f(ξ)dA(ξ)

)
∂φ

∂z
(z)dA(z)

=

∞∑
j=1

∫
D

(
Kzj (z)

∫
D

ψj(ξ)

(ξ − z)Kzj (ξ)
f(ξ)dA(ξ)

)
∂φ

∂z
(z)dA(z).

Therefore, 〈
u,

∂φ

∂z

〉
L2

=

∞∑
j=1

〈
Kzj (·)

∫
D

ψj(ξ)

(ξ − ·)Kzj (ξ)
f(ξ)dA(ξ),

∂φ

∂z

〉
L2



Hu Z J et al. Sci China Math February 2022 Vol. 65 No. 2 431

= −
∞∑
j=1

〈fψj , φ〉L2

= −〈f, φ〉L2 .

With this we know ∂u
∂z = f weakly.

4 Hankel operators from Ap
ϕ to Lq

ϕ

Recall that

Γ =

{ N∑
j=1

ajKzj : N ∈ N, aj ∈ C, zj ∈ D for 1 � j � N

}

and

S = {f measurable on D : fg ∈ L1
ϕ for g ∈ Γ}.

[10, Corollary 4.2] tells us that Γ is dense in Ap
ϕ for all 0 < p < ∞. From [10, Theorem 3.3], ‖K(·, z)‖L∞

ϕ

< ∞. This implies that P (fg)(z) is well defined for f ∈ S, g ∈ Γ and z ∈ D. Hence, for f ∈ S the Hankel

operator Hf is densely defined on Ap
ϕ. Therefore, a function f ∈ S can be used as the symbol to define

a Hankel operator on Ap
ϕ.

The following lemma sets up a bridge between Hankel operators and the solution to the ∂-equation in

Theorem 3.2.

Lemma 4.1. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and suppose that f ∈ S with ρ∂f ∈ S, where the

derivative is in the weak sense. Then for g ∈ Γ, it holds that

Hf (g) = u− P (u), (4.1)

where

u(z) =
∞∑
j=1

Kzj (z)

∫
D

ψj(ξ)

(ξ − z)Kzj (ξ)
g(ξ) ∂f(ξ) dA(ξ). (4.2)

Proof. Since ρ∂f ∈ S, for g ∈ Γ we have gρ∂f ∈ L1
ϕ. For u defined as in (4.2), Theorem 3.2 implies

u ∈ Lp
ϕ with

‖u‖Lp
ϕ
� C‖g(ρ∂f)‖Lp

ϕ
. (4.3)

Meanwhile, fg ∈ L1
ϕ for g ∈ Γ. Then, fg − u ∈ L1

ϕ, and Theorem 3.2 tells us that

∂(fg − u) = g∂f − ∂u = 0

showing that fg − u ∈ A1
ϕ. Since P |A1

ϕ
= Id, we have

P (fg − u) = fg − u.

Therefore,

Hf (g)− (u− P (u)) = fg − P (fg)− (u− P (u)) = (fg − u)− P (fg − u) = 0,

from which (4.1) follows.

To characterize the boundedness (or compactness) of Hankel operators Hf , we need an auxiliary

function Gq,r(f) which is an analogue of the one first introduced in [12], when Luecking studied Hankel

operators on the standard Bergman space Ap. Let q � 1 and 0 < r � α. For f ∈ Lq
loc we define Gq,r(f)

to be

Gq,r(f)(z) = inf

{(
1

|Dr(z)|
∫
Dr(z)

|f − h|qdA
) 1

q

: h ∈ H(Dr(z))

}
, z ∈ D.
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For f ∈ L1
loc(D), 1 � q < ∞ and 0 < r � α, write

Mq,r(f)(z) =

{
1

|Dr(z)|
∫
Dr(z)

|f |qdA
} 1

q

to be the q-th mean of |f | over Dr(z).

Our analysis on the Hankel operator going from Ap
ϕ to Lq

ϕ will be carried out in two cases where

1 � p � q < ∞ and 1 � q < p < ∞, respectively.

Theorem 4.2. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � p � q < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf : Ap
ϕ → Lq

ϕ is bounded;

(ii) for some (or any) 0 < r � α, ρ2sGq,r(f) ∈ L∞;

(iii) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

ρ2s+1|∂f1| ∈ L∞, (4.4)

and f2 has the property that for some (or any) 0 < r � α,

ρ2sMq,r(f2) ∈ L∞. (4.5)

Furthermore, for 0 < r � α,

‖Hf‖Ap
ϕ→Lq

ϕ

 ‖ρ2sGq,r(f)‖L∞ . (4.6)

Proof. (i) ⇒ (ii). For α as in Lemma 2.2, Lemma 2.1 tells us that there is some constant C > 0 such

that

inf
ξ∈Dα(z)

|kz,p(ξ)| � Cρ(z)−
2
p eϕ(ξ) > 0 for z ∈ D.

Then,
1

kz,p
P (fkz,p) ∈ H(Dr(z))

and

‖Hf (kz,p)‖qLq
ϕ
=

∫
D

|fkz,p(ξ)− P (fkz,p)(ξ)|qe−qϕ(ξ)dA(ξ)

�
∫
Dr(z)

|kz,p(ξ)|q
∣∣∣∣f(ξ)− 1

kz,p(ξ)
P (fkz,p)(ξ)

∣∣∣∣
q

e−qϕ(ξ)dA(ξ)

� Cρ(z)−
2q
p

∫
Dr(z)

∣∣∣∣f(ξ)− 1

kz,p(ξ)
P (fkz,p)(ξ)

∣∣∣∣
q

dA(ξ)

� C{ρ(z)2sGq,r(f)(z)}q. (4.7)

On the other hand,

‖Hf (kz,p)‖qLq
ϕ
� ‖Hf‖qAp

ϕ→Lq
ϕ
‖kz,p‖qLp

ϕ
= ‖Hf‖qAp

ϕ→Lq
ϕ
.

Therefore, we have

ρ(z)2sGq,r(f)(z) � C‖Hf‖Ap
ϕ→Lq

ϕ
for all z ∈ D. (4.8)

From this, the statement (ii) follows.

(ii) ⇒ (iii). Suppose ‖ρ2sGq,r(f)‖L∞ < ∞ for some r ∈ (0, α]. Fix a (ρ, r
2 )-lattice {zj}∞j=1, and

take {ψj}∞j=1 to be a partition of the unity subordinate to {D r
2 (zj)}∞j=1 satisfying ρ(zj)|∂ψj | � C for

j = 1, 2, . . . With a normal family argument we may find some function hj ∈ H(Dr(zj)) such that

1

|Dr(zj)|
∫
Dr(zj)

|f − hj |qdA = Gq
q,r(f)(zj), j = 1, 2, . . . (4.9)
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Set

f1(z) =

∞∑
j=1

hj(z)ψj(z) ∈ C∞(D)

and f2 = f − f1. Define Jz = {j : z ∈ Dr(zj)}. Then, ρ(zj) 
 ρ(z) for j ∈ Jz, and

|Jz| :=
∞∑
j=1

χDr(zj)(z) � C. (4.10)

As that on [13, pp. 254–255], for z ∈ D it holds that

ρ(z)|∂f1(z)| � C
∑
j∈Jz

Gq,r(f)(zj). (4.11)

This implies

ρ(z)2s+1|∂f1(z)| � C‖ρ2sGq,r(f)‖L∞ for z ∈ D. (4.12)

On the other hand,

f2(z) =

∞∑
j=1

(f(z)− hj(z))ψj(z),

and by (2.5) only at most N terms are not zero in this summation. Hölder’s inequality implies

|f2(z)|q � C
∞∑
j=1

|f(z)− hj(z)|qψj(z).

Then, by (4.9),

Mq,r(f2)(z) � C
∞∑
j=1

(
1

|Dr(z)|
∫
Dr(z)

|(f − hj)|qψjdA

) 1
q

� C

∞∑
j=1

(
1

|Dr(z)|
∫
Dr(z)∩Dr/2(zj)

|f − hj |qdA
) 1

q

� C
∞∑

j∈Jz

Gq,r(f)(zj). (4.13)

Hence,

ρ(z)2s Mq,r(f2)(z) � C‖ρ2sGq,r(f)‖L∞ for z ∈ D. (4.14)

Notice that the condition (4.5) is independent of r ∈ (0, α]. We reach the condition (iii) from (4.12)

and (4.14).

(iii) ⇒ (i). If we set dμ = |f2|qdA, then

μ̂r(z)
1
q = Mq,r(f2)(z). (4.15)

The assumption (4.5) and Proposition 2.6 imply that μ is a q-Carleson measure for Ap
ϕ with

‖Id‖Ap
ϕ→Lq(D,e−qϕdμ) 
 ‖ρ2sMq,r(f2)‖L∞ .

By the boundedness of the Bergman projection on Lq
ϕ,

‖Hf2g‖Lq
ϕ
� C‖f2g‖Lq

ϕ

= C

(∫
D

|g|q e−qϕdμ

) 1
q
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� C‖Id‖Ap
ϕ→Lq(D,e−qϕdμ)‖g‖Lp

ϕ

� C‖ρ2sMq,r(f2)‖L∞‖g‖Lp
ϕ
. (4.16)

Next, we suppose that f1 satisfies (4.4). With the fact that s � 0 and ρ2s+1∂f ∈ L∞, we know

ρ|∂f1| ∈ L∞. Now, for g ∈ Γ, take u as in (4.1) so that

u(z) =

∞∑
j=1

Kzj (z)

∫
D

ψj(ξ)

(ξ − z)Kzj (ξ)
g(ξ)∂f1(ξ)dA(ξ).

Theorem 3.2 and Lemma 4.1 tell us

Hf1(g) = u− P (u) and ‖u‖Lq
ϕ
� C‖g(ρ∂f1)‖Lq

ϕ
.

From the boundedness of P on Lq
ϕ we obtain

‖Hf1g‖Lq
ϕ
� (1 + ‖P‖Lq

ϕ→Lq
ϕ
)‖u‖Lq

ϕ
� C

∥∥g(ρ∂f1)∥∥Lq
ϕ
. (4.17)

Meanwhile, if we consider the measure dν = [ρ|∂f1|]qdA, it is easy to see that

ν̂r(z)
1
q � C sup

ξ∈Dr(z)

ρ(ξ)|∂f1(ξ)|. (4.18)

Hence,

ρ(z)2sν̂r(z)
1
q � C‖ρ2s+1|∂f1|‖L∞ .

It follows from (4.4) and Proposition 2.6 that ν is a q-Carleson measure for Ap
ϕ with

‖Id‖Ap
ϕ→Lq(D,e−qϕdν) 
 ‖ρ2s+1|∂f1|‖L∞ .

Then

‖g(ρ∂f1)‖Lq
ϕ
� C‖ρ2s+1|∂f1|‖L∞ · ‖g‖Lp

ϕ
.

Hence,

‖Hf1g‖Lq
ϕ
� C‖ρ2s+1|∂f1|‖L∞ · ‖g‖Lp

ϕ
.

With this and (4.16), we obtain

‖Hf‖Ap
ϕ→Lq

ϕ
� C{‖ρ2s+1|∂f1|‖L∞ + ‖ρ2sMq,r(f2)‖L∞}. (4.19)

This gives the implication (iii) ⇒ (i), finishing the proof of the equivalence among (i)–(iii). The norm

estimates (4.6) come from (4.8), (4.12), (4.14) and (4.19).

The next result describes the compactness of Hf when p � q. For q � 1, we understand that Hf :

Ap
ϕ → Lq

ϕ is compact if and only if whenever {gm}∞m=1 is a bounded sequence in Ap
ϕ converging to zero

on compact subsets of D, it follows that ‖Hfgm‖Lq
ϕ
tends to zero.

Theorem 4.3. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � p � q < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf : Ap
ϕ → Lq

ϕ is compact;

(ii) for some (or any) 0 < r � α, lim|z|→1 ρ
2sGq,r(f)(z) = 0;

(iii) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

lim
|z|→1

ρ(z)2s+1|∂f1(z)| = 0 (4.20)

and

lim
|z|→1

ρ(z)2sMq,r(f2)(z) = 0 (4.21)

for some (or any) 0 < r � α.
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Proof. Let Hf be compact from Ap
ϕ to Lq

ϕ. It is easy to see that {kz,p : z ∈ D} tends to 0 weakly in Ap
ϕ

as |z| → 1. Then, for 0 < r � α fixed, from (4.7) we have

ρ(z)2sGq,r(f)(z) � C‖Hf (kz,p)‖Lq
ϕ
→ 0

as |z| → 1. So, (i) implies (ii).

Suppose now that (ii) holds for some r ∈ (0, α]. From (4.11) and (4.13) we know

ρ(z)2s+1|∂f1(z)| � C
∑
j∈Jz

ρ(zj)
2sGq,r(f)(zj)

and

ρ(z)2sMq,r(f2)(z) � C
∑
j∈Jz

ρ(zj)
2sGq,r(f)(zj).

From these estimates, the statement (iii) follows easily.

Finally, we prove the implication (iii) ⇒ (i). As in the proof of Theorem 4.2, we know that both

dμ = |f2|qdA and dν = [ρ|∂f1|]qdA are vanishing q-Carleson measures for Ap
ϕ. With (2.7) we know that

the unit ball of Ap
ϕ is a normal family. Then, for any bounded sequence {gm} in Ap

ϕ converging to zero

uniformly on compact subsets of D, we have

‖Hf2(gm)‖Lq
ϕ
� C

(∫
D

|f2|q|gm|qe−qϕdA

) 1
q

→ 0,

and by (4.17),

‖Hf1(gm)‖Lq
ϕ
� C‖(ρ|∂f1|)gm‖Lq

ϕ
→ 0.

Then, limm→∞ ‖Hf (gm)‖Lq
ϕ
= 0, and this tells us that Hf is compact from Ap

ϕ to Lq
ϕ.

Next, we proceed to characterize the boundedness and compactness in the case where 1 � q < p < ∞.

Theorem 4.4. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � q < p < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf : Ap
ϕ → Lq

ϕ is bounded;

(ii) Hf : Ap
ϕ → Lq

ϕ is compact;

(iii) for some (or any) 0 < r � α
2 , Gq,r(f)(z) ∈ L

1
s ;

(iv) f admits a decomposition f = f1 + f2, where

f1 ∈ C1(D), ρ|∂f1| ∈ L
1
s and Mq,r(f2) ∈ L

1
s (4.22)

for some (or any) 0 < r � α.

Furthermore, for 0 < r � α
2 fixed,

‖Hf‖Ap
ϕ→Lq

ϕ

 ‖Gq,r(f)‖

L
1
s
. (4.23)

Proof. (ii) ⇒ (i) is trivial. We need only to prove the implications (i) ⇒ (iii), (iii) ⇒ (iv) and

(iv) ⇒ (ii).

(i) ⇒ (iii). For r ∈ (0, α] fixed, take {zj}∞j=1 to be some (r/4, ρ)-lattice. By Lemma 2.4, for λ = {λj}
∈ p, we have ∥∥∥∥

∞∑
j=1

λjkzj ,p

∥∥∥∥
Lp

ϕ

� C ‖λ‖�p .

As in [13] again, take {φj}∞j=1 to be a sequence of Rademacher functions in [0, 1]. From the boundedness

of Hf , we have

∥∥∥∥Hf

( ∞∑
j=1

λjφj(t)kzj ,p

)∥∥∥∥
Lq

ϕ

� ‖Hf‖Ap
ϕ→Lq

ϕ
·
∥∥∥∥

∞∑
j=1

λjφj(t)kzj ,p

∥∥∥∥
Lp

ϕ

� C‖Hf‖Ap
ϕ→Lq

ϕ
‖λ‖�p .
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Meanwhile, by Khintchine’s inequality,

∫ 1

0

∥∥∥∥Hf

( ∞∑
j=1

λjφj(t)kzj ,p

)∥∥∥∥
q

Lq
ϕ

dt

=

∫
D

e−qϕ(z)dA(z)

∫ 1

0

∣∣∣∣
∞∑
j=1

λjφj(t)Hf (kzj ,p)(z)

∣∣∣∣
q

dt



∫
D

( ∞∑
j=1

|λj |2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z).

This, together with the previous estimate, gives

∫
D

( ∞∑
j=1

|λj |2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z) � C‖Hf‖qAp
ϕ→Lq

ϕ
‖λ‖q�p .

On the other hand,

∫
D

( ∞∑
j=1

|λj |2|Hf (kzj ,p)(z)|2
) q

2

e−qϕ(z)dA(z)

� C
∞∑
k=1

∫
Dr(zk)

(|λk||Hf (kzk,p)(z)|)qe−qϕ(z)dA(z)

= C

∞∑
k=1

|λk|q
∫
Dr(zk)

|f(z)kzk,p(z)− P (fkzk,p)(z)|qe−qϕ(z)dA(z).

As in (4.7), ∫
Dr(zk)

|f(z)kzk,p(z)− P (fkzk,p)(z)|qe−qϕ(z)dA(z) � C{ρ(zk)2sGq,r(f)(zk)}q.

Therefore, joining the previous estimates, we obtain

∞∑
k=1

|λk|q{ρ(zk)2sGq,r(f)(zk)}q � C‖Hf‖qAp
ϕ→Lq

ϕ
‖{|λj |q}‖�p/q .

By the duality between p/q and p/(p−q), we have

∞∑
k=1

[Gq,r(f)(zk)]
pq

p−q ρ(zk)
2 =

∞∑
k=1

[ρ(zk)
2sGq,r(f)(zk)]

pq
p−q � C‖Hf‖

pq
p−q

Ap
ϕ→Lq

ϕ
.

This can be viewed as the discrete version of the statement (iii). Since

Gq, r2
(f)(w) � CGq,r(f)(z) for w ∈ D

r
2 (z), (4.24)

we have ∫
D

Gq, r2
(f)

pq
p−q dA �

∞∑
k=1

∫
D

r
2 (zk)

Gq, r2
(f)

pq
p−q (u)dA(u)

� C
∞∑
k=1

|D r
2 (zk)|Gq,r(f)

pq
p−q (zk)

� C‖Hf‖
pq

p−q

Ap
ϕ→Lq

ϕ
. (4.25)

This gives the statement (iii).
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(iii) ⇒ (iv). As in the proof of Theorem 4.2, set f1 =
∑∞

j=1 hj ψj ∈ C∞(D) and f2 = f −f1. By (4.24),

Gq, r2
(f)

pq
p−q (zj) � C

1

|D r
2 (zj)|

∫
D

r
2 (zj)

Gq,r(f)
pq

p−q (u)dA(u).

From (4.11) we have

[ρ(z)|∂f1(z)|]
pq

p−q � C
∑
j∈Jz

Gq, r2
(f)

pq
p−q (zj)

� C

|Dr(z)|
∑
j∈Jz

∫
Dr(zj)

Gq,r(f)
pq

p−q (u)dA(u)

� C

|Dr(z)|
∫
D2r(z)

Gq,r(f)
pq

p−q (u)dA(u).

Integrating both sides on D against the measure dA, and applying Fubini’s theorem, one gets∫
D

[ρ(z)|∂f1(z)|]
pq

p−q dA(z)

� C

∫
D

1

|Dr(z)|dA(z)
∫
D

χD2r(z)(u)Gq,r(f)
pq

p−q (u)dA(u)

� C

∫
D

Gq,r(f)
pq

p−q (u)dA(u). (4.26)

Notice that 1
s > 1. By (4.13) and (4.24) we obtain

Mq,r(f2)(z) � C
∞∑
j=1

(
1

|Dr(z)|
∫
Dr(z)∩Dr/2(zj)

|(f − hj)|qdA
) 1

q

� C
1

|Dr(z)|
∫
D2r(z)

Gq,2r(f)(ξ)dA(ξ)

� C

{
1

|Dr(z)|
∫
D2r(z)

G
1
s
q,2r(f)(ξ)dA(ξ)

}s

.

This and Fubini’s theorem turn out

‖Mq,r(f2)‖
L

1
s
� C‖Gq,2r(f)‖

L
1
s
. (4.27)

In addition, it is trivial that the condition Mq,r(f2) ∈ L
1
s is independent of r. We see that (4.26)

and (4.27) give the statement (iv).

Now we prove (iv) ⇒ (ii). First, we claim that both f1 and ρ|∂f1| are in S. In fact, apply [10,

Lemma 3.3] to get ∫
D

|f2(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ)

� C

∫
D

|f2(ξ)|
(

1

ρ(ξ)2

∫
Dr/2(ξ)

|Kz(ζ)|e−ϕ(ζ)dA(ζ)

)
dA(ξ)

= C

∫
D

|Kz(ζ)|e−ϕ(ζ)

∫
D

χDr/2(ξ)(ζ)|f2(ξ)|
1

ρ(ξ)2
dA(ξ) dA(ζ)

� C

∫
D

M1,r(|f2|)(ζ)|Kz(ζ)|e−ϕ(ζ)dA(ζ)

� C

∫
D

Mq,r(|f2|)(ζ)|Kz(ζ)|e−ϕ(ζ)dA(ζ).

By Hölder’s inequality with the exponent 1
s = pq

p−q and its conjugate exponent denoted by t, notice also

that ‖Kz‖Lt
ϕ
< ∞ and∫

D

|f2(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ) � C‖Mq,r(f2)‖
L

1
s
· ‖Kz‖Lt

ϕ
< ∞.
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This implies f2 ∈ S, and f1 = f − f2 ∈ S. For ρ|∂f1|, notice that ρ|∂f1| ∈ L
1
s with 1

s = pq
p−q > 1. Then

∫
D

ρ(ξ)|∂f1(ξ)Kz(ξ)|e−ϕ(ξ)dA(ξ) �
{∫

D

|ρ(ξ)∂f1(ξ)| 1s dA(ξ)

}s

‖Kz‖Lt
ϕ
< ∞.

It follows that ρ|∂f1| ∈ S.
As before, write dν = [ρ|∂f1|]qdA. Applying Hölder’s inequality with the exponent p

p−q and its

conjugate p/q, we get

‖ν̂r‖
p

p−q

L
p

p−q
=

∫
D

{∫
Dr(ξ)

[ρ|∂f1(ζ)|]qdA(ζ)

|Dr(ξ)|
} p

p−q

dA(ξ)

� C

∫
D

{∫
Dr(ξ)

[ρ(ζ)|∂f1(ζ)|]
pq

p−q dA(ζ)

}
1

ρ(ξ)2
dA(ξ)


 C

∫
D

[ρ(ζ)|∂f1(ζ)|] 1s dA(ζ) < ∞.

Lemma 2.6 tells us that ν is a q-Carleson measure for Ap
ϕ. Equivalently, the embedding

Id : Ap
ϕ ↪→ Lq(D, e−qϕdν)

is compact with

‖Id‖q
Ap

ϕ↪→Lq(D,e−qϕdν)
� C ‖ν̂r‖

L
p

p−q
� C‖ρ|∂f1|‖q

L
1
s
< ∞.

Meanwhile, since both f1 and ρ|∂f1| are in S, for g ∈ Γ, as in (4.17), we have

‖Hf1g‖Lq
ϕ
� C‖g(ρ∂f1)‖Lq

ϕ
= C‖Id(g)‖Lq(D,e−qϕdν).

Hence Hf1 is bounded from Ap
ϕ to Lq

ϕ with the norm estimate

‖Hf1‖Ap
ϕ→Lq

ϕ
� C‖ρ|∂f1|‖

L
1
s
. (4.28)

We claim that Hf1 is compact as well. To see this, let {gm}∞m=1 be any bounded sequence in Ap
ϕ with

the property that limm→∞ supz∈K |gm(z)| = 0 on any compact subset K ⊂ D. We are going to prove

Hf1(gm) → 0 in Lq
ϕ as m → ∞. For this purpose, for each m pick some hm ∈ Γ so that

‖gm − hm‖Lp
ϕ
<

1

m
.

Set

um(z) =

∞∑
j=1

Kzj (z)

∫
D

φj(ξ)

(ξ − z)Kzj (ξ)
hm(ξ)∂f1(ξ)dA(ξ).

Then, ∂um = hm∂f1 and

‖um‖Lq
ϕ
� C‖hm(ρ∂f1)‖Lq

ϕ
= C‖hm‖Lq(D, e−qϕdν).

Notice that Id : Ap
ϕ ↪→ Lq(D, e−qϕdν) is compact, so limm→∞ ‖hm‖Lq(D, e−qϕdν) = 0, showing that

lim
m→∞ ‖um‖Lq

ϕ
= 0.

Then, as Hf1(hm) = um − P (um), we get

lim
m→∞ ‖Hf1(hm)‖Lq

ϕ
� (1 + ‖P‖Lq

ϕ→Lq
ϕ
) lim
m→∞ ‖um‖Lq

ϕ
= 0. (4.29)

On the other hand, by (4.28),

lim
m→∞ ‖Hf1(gm − hm)‖Lq

ϕ
� ‖Hf1‖Ap

ϕ→Lq
ϕ

lim
m→∞ ‖gm − hm‖Lp

ϕ
= 0.
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This, together with (4.29), implies

lim
m→∞ ‖Hf1(gm)‖Lq

ϕ
� lim

m→∞{‖Hf1(gm − hm)‖Lq
ϕ
+ ‖Hf1(hm)‖Lq

ϕ
} = 0,

which gives the compactness of Hf1 from Ap
ϕ to Lq

ϕ.

Finally, we consider the compactness of Hf2 . Similarly, dμ = |f2|qdA is a vanishing q-Carleson measure

for Ap
ϕ. Equivalently, Id : Ap

ϕ → Lq(D, e−qϕdμ) is compact. By

‖Hf2(g)‖Lq
ϕ
� C‖f2g‖Lq

ϕ
= C‖Id(g)‖Lq(D, e−qϕdμ) (4.30)

with the similar approach for Hf1 above we know Hf2 is compact from Ap
ϕ to Lq

ϕ as well. This finishes

the proof of the implication (iv) ⇒ (ii).

Furthermore, from (4.28), (4.30) and (4.26), (4.27), we have

‖Hf‖Ap
ϕ→Lq

ϕ
� C inf{‖Hf1‖Ap

ϕ→Lq
ϕ
+ ‖Hf2‖Ap

ϕ→Lq
ϕ
} � C‖Gq,r(f)‖

L
1
s
,

where the “inf” is taken over all the decomposition f = f1 + f2 as (4.22). This and (4.25) imply (4.23).

The proof is completed.

5 Simultaneous boundedness of Hf and Hf

For f ∈ Lq
loc(D) with 1 � q < ∞ and 0 < r < α, set

fDr(z) =
1

|Dr(z)|
∫
Dr(z)

fdA,

MOq,r(f)(z) =

{
1

|Dr(z)|
∫
Dr(z)

|f − fDr(z)|qdA
} 1

q

and

Oscr(f)(z) = sup
ξ∈B(z,r)

|f(ξ)− f(z)|.

Lemma 5.1. Let 1 � q < ∞, 0 < s � ∞, −∞ < γ < ∞, and let f ∈ Lq
loc(D). Then the following

statements are equivalent:

(i) for some (or any) 0 < r � α, both ργGq,r(f) and ργGq,r(f) are in Ls;

(ii) for some (or any) 0 < r � α, one has ργMOq,r(f) ∈ Ls;

(iii) f = f1 + f2 with f1 ∈ C(D), and for some (or any) 0 < r � α,

ργOscr(f1) ∈ Ls and ργMq,r(f2) ∈ Ls. (5.1)

Furthermore,

‖ργGq,r(f)‖Ls + ‖ργGq,r(f)‖Ls 
 ‖ργMOq,r(f)‖Ls . (5.2)

Proof. By definition, we know

Gq,r(f)(z) � MOq,r(f)(z) and Gq,r(f)(z) � MOq,r(f)(z), (5.3)

which give the implication (ii) ⇒ (i).

Similar to [11, the estimate (2.7)], for fixed r > 0, we have some constant C independent of z such that

‖u− u(z)‖Lq(Dr(z),dA) � C‖v‖Lq(Dr(z),dA)

for all real-valued functions u and v so that u+iv ∈ H(Dr(z)). From this, as done in [11, Proposition 2.5],

we know

MOq,r(f)(z) � C{Gq,r(f)(z) +Gq,r(f)(z)}. (5.4)
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This means that (i) implies (ii).

Suppose f = f1 + f2 is as in the statement (iii). From

MOq,r(f1)(z) =

{
1

|Dr(z)|
∫
Dr(z)

∣∣∣∣ 1

|Dr(z)|
∫
Dr(z)

(f1(ξ)− f1(ζ))dA(ζ)

∣∣∣∣
q

dA(ξ)

} 1
q

� 2Oscr(f1)(z)

and MOq,r(f2)(z) � 2Mq,r(f2)(z), we know that f satisfies (ii).

To prove the implication (ii) ⇒ (iii) we set f1(z) = fDr(z) and f2 = f − f1. As in the proof of [16,

Lemma 8.3] we have

Oscr/2(f1)(z) � CMOq,r(f)(z) and Mq,r/2(f2)(z) � CMOq,r(f)(z).

In addition, it is easy to see that the condition (5.1) is independent of r ∈ (0, α]. Then (iii) follows

from (ii). The equivalence (5.2) comes from (5.3) and (5.4).

Lemma 5.2. Let 1 � q < ∞, 0 < s � ∞, −∞ < γ < ∞, and let f ∈ Lq
loc(D). Then the following

statements are equivalent:

(i) for some (or any) 0 < r � α, lim|z|→1{ρ(z)γGq,r(f)(z) + ρ(z)γGq,r(f)(z)} = 0;

(ii) for some (or any) 0 < r � α, lim|z|→1 ρ(z)
γMOq,r(f)(z) = 0;

(iii) f = f1 + f2 with f1 ∈ C(D), and for some (or any) 0 < r � α,

lim
|z|→1

{ρ(z)γOscr(f1)(z) + ρ(z)γMq,r(f2)(z)} = 0.

The proof of this lemma can be carried out with the same approach as that of Lemma 5.1 and will be

omitted here.

Here are three theorems for simultaneous boundedness (or compactness) of Hankel operatorsHf andHf

from Ap
ϕ to Lq

ϕ.

Theorem 5.3. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � p � q < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf , Hf : Ap
ϕ → Lq

ϕ are simultaneously bounded;

(ii) for some (or any) 0 < r � α, ρ2sMOq,r(f) ∈ L∞;

(iii) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

ρ2sOscr(f1) ∈ L∞ and ρ2sMq,r(f2) ∈ L∞

for some (or any) 0 < r � α.

Furthermore,

‖Hf‖Ap
ϕ→Lq

ϕ
+ ‖Hf‖Ap

ϕ→Lq
ϕ

 ‖ρ2sMOq,r(f)‖L∞ . (5.5)

Theorem 5.4. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � p � q < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf , Hf : Ap
ϕ → Lq

ϕ are simultaneously compact;

(ii) for some (or any) 0 < r � α, lim|z|→1 ρ
2s(z)MOq,r(f)(z) = 0;

(iii) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfying

lim
|z|→1

ρ2s(z)Oscr(f1)(z) = 0 and lim
|z|→1

ρ2s(z)Mq,r(f2)(z) = 0

for some (or any) 0 < r � α.

Theorem 5.5. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and let 1 � q < p < ∞. Set s = 1
q − 1

p . Then for

f ∈ S, the following statements are equivalent:

(i) Hf , Hf : Ap
ϕ → Lq

ϕ are bounded;
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(ii) Hf , Hf : Ap
ϕ → Lq

ϕ are compact;

(iii) for some (or any) 0 < r � α, MOq,r(f) ∈ L
1
s ;

(iv) f = f1 + f2 with f1 ∈ C(D),

Oscr(f1) ∈ L
1
s and Mq,r(f2) ∈ L

1
s

for some (or any) 0 < r < α.

Furthermore, ‖Hf‖Ap
ϕ→Lq

ϕ

 ‖MOq,r(f)‖

L
1
s
.

Proof. The proof of Theorem 5.3–5.5 are in the same approach, so we only write out the one for

Theorem 5.3 here.

Theorem 4.2 tells us that the statement (i) is equivalent to

ρ2sGq,r(f) + ρ2sGq,r(f) ∈ L∞.

This by Lemma 5.2 is equivalent to the statement (ii). The equivalence between (ii) and (iii) comes from

Lemma 5.2 as well.

When f is holomorphic, it is trivial that Hf = 0. Furthermore, for fixed 0 < r � α there are two

positive constants C1 and C2 such that

C1ρ(z)|f ′(z)| � MOq,r(f)(z) � C2 sup
ξ∈Dr(z)

ρ(ξ)|f ′(ξ)|.

Therefore we have the following theorem on Hankel operators with conjugate holomorphic symbols. The

case where ϕ ∈ BDK and p = q = 2, was previously obtained in [9].

Theorem 5.6. Let ϕ ∈ W0 with 1√
Δϕ


 ρ ∈ L0, and set s = 1
q − 1

p for 1 � p, q < ∞. Then for

f ∈ S ∩H(D), the following statements are true:

(i) For p � q, Hf is bounded from Ap
ϕ to Lq

ϕ if and only if ρ2s+1f ′ ∈ L∞; Hf is compact from Ap
ϕ

to Lq
ϕ if and only if lim|z|→1 ρ

2s+1f ′(z) = 0.

(ii) For p > q, Hf is bounded from Ap
ϕ to Lq

ϕ if and only if Hf is compact from Ap
ϕ to Lq

ϕ if and only

if ρf ′ ∈ L
1
s .
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