
SCIENCE CHINA
Mathematics

November 2021 Vol. 64 No. 11: 2479–2494

https://doi.org/10.1007/s11425-020-1689-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 math.scichina.com link.springer.com

. ARTICLES .

Comparison theorems for GJMS operators

Fang Wang∗ & Huihuang Zhou

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

Email: fangwang1984@sjtu.edu.cn, zhouhuihuang@sjtu.edu.cn

Received January 19, 2020; accepted May 8, 2020; published online August 4, 2020

Abstract In this paper, we compare the first order fractional GJMS (see Graham et al. (1992)) operator P1

with the conformal Laplacian P2 on the conformal infinity of a Poincaré-Einstein manifold. We derive some

inequalities between the Yamabe constants and the first eigenvalues associated with P1 and P2, and prove some

rigidity theorems by characterizing the equalities. Similarly, some comparison theorems between P2 and the

Paneitz operator P4 or the 6th order GJMS operator P6 are also given.
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1 Introduction

In this paper, we consider the fractional powers of Laplacian on the conformal infinity of a Poincaré-

Einstein manifold introduced by Graham and Zworski [13]. Suppose that (Xn+1, g+) is a Cm,α confor-

mally compact Poincaré-Einstein manifold with the conformal infinity (∂X, [ĝ]), i.e., X is identified with

the interior of a compact manifold with boundary X, and ḡ = ρ2g+ can be Cm,α extended to X and

satisfies {
Ricg+ = −ng+,

ḡ |∂X ∈ [ĝ],

where ρ is a smooth boundary defining function. Here, we require that n � 3 and m � 3. If one fixes a

smooth representative ĝ on ∂X, and an identification of ∂X × [0, ε) with the collar neighborhood of ∂X,

then by the boundary regularity theorem in [7], there exists a geodesic normal defining function x such

that

g+ = x−2(dx2 +G(x)),

where G(x) is a family of metrics on ∂X with the expansion

G(x) =

{
g0 + x2g2 + · · ·+ xn−1gn−1 + xngn +O(xn+1), n is odd,

g0 + x2g2 + · · ·+ xn−2gn−2 + (xn log x)h+ xngn +O(xn+1 log x), n is even.

*Corresponding author
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Here, g0 = ĝ, gi (1 � i � n − 1) and h are symmetric 2-tensors determined by ĝ, and gn is the global

term which cannot be locally determined.

Consider a fractional power 0 < γ < n
2 and define s = n

2 +γ. Assume γ /∈ N and n2

4 −γ2 /∈ Spec(−Δ+).

Then given any f ∈ C∞(∂X), there is a unique solution satisfying the following equation:

−Δ+u− s(n− s)u = 0, xs−nu |∂X = f.

Moreover, u takes the form

u = xn−sF + xsG, F |M = f, F,G ∈ Cm,α(X).

We can define the scattering operator S(s) by

S(s)f = G |M .

In addition, the fractional GJMS operator is defined by the renormalized scattering operator

P ĝ
2γ = 22γ

Γ(γ)

Γ(−γ)
S

(
n

2
+ γ

)
, Qĝ

2γ =
2

n− 2γ
P2γ1.

Here, Qĝ
2γ is called the fractional Q-curvature.

This family of operators are intensively studied in [3,13,19,24]. The most important property includes

that P ĝ
2γ is a self-adjoint and conformal covariant pseudo-differential elliptic operator with the principal

symbol |ξ|2γĝ . The meromorphic extension of S(s) given in [19] implies that P ĝ
2γ is a continuous family of

operators in the real parameter γ as long as

n2

4
− γ2 /∈ Spec(−Δ+).

While γ = k � n
2 is a positive integer, it coincides with the classical GJMS operator of order 2k, which

is only determined by the boundary metric. For example, if γ = 1, then P ĝ
2 is the conformal Laplacian

P ĝ
2 = −Δĝ +

n− 2

2
Jĝ, Jĝ =

1

2(n− 1)
Rĝ.

If γ = 2, then P ĝ
4 is the Paneitz operator

P ĝ
4 = (−Δĝ)

2 + δĝ((n− 2)Jĝ − 4Aĝ)d+
n− 4

2
Qĝ

4.

Here, δĝ is the divergence operator with respect to ĝ, Aĝ is the Schouten tensor with respect to ĝ and

Qĝ
4 = −ΔĝJĝ +

n

2
J2
ĝ − 2|Aĝ|2

(see Section 3 for more details). In this paper, we mainly study the fractional Yamabe constants

Y2γ(∂X, [ĝ]) and the first eigenvalues associated with P ĝ
2γ , which are defined by the following:

Y2γ(∂X, [ĝ]) = inf
f∈C∞(∂X),f>0

∮
∂X

fP ĝ
2γfdSĝ

(
∮
∂X

f
2n

n−2γ dSĝ)
n−2γ

n

,

λ1(P
ĝ
2γ) = inf

f∈C∞(∂X)

∮
∂X

fP ĝ
2γfdSĝ∮

∂X
f2dSĝ

.

A standard example is the ball model of the hyperbolic space H
n+1, which has the conformal infinity

(Sn, [gS]), where gS is the round metric on S
n. In this case,

Spec(−Δ+) =

[
n2

4
,+∞

)
.
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Hence for all γ ∈ (0, n
2 ), P

gS
2γ can be represented by

P gS
2γ =

Γ(B + 1
2 + γ)

Γ(B + 1
2 − γ)

, where B =

√
−ΔgS +

(
n− 1

2

)2

(1.1)

(see [2]). Then the fractional Q-curvature is

QgS
2γ =

2

n− 2γ
P gS
2γ(1) =

2

n− 2γ

Γ(n2 + γ)

Γ(n2 − γ)
,

the fractional Yamabe constant is

Y2γ(S
n, [gS]) = 2

2γ
n π

γ(n+1)
n

Γ(n2 + γ)

Γ(n2 − γ)

[
Γ

(
n+ 1

2

)]− 2γ
n

=
Γ(n2 + γ)

Γ(n2 − γ)
|Sn| 2γn ,

and the first eigenvalue is

λ1(P
gS
2γ) = P gS

2γ(1) =
Γ(n2 + γ)

Γ(n2 − γ)
.

We are aiming to understand the family property of those operators by comparing them with the

standard model. We first give the comparison theorems between P ĝ
1 and P ĝ

2 .

Theorem 1.1. Suppose that (Xn+1, g+) (n � 3) is a Poincaré-Einstein manifold, which is C3,α con-

formally compact with the conformal infinity (∂X, [ĝ]). Assume that n2−1
4 /∈ Spec(−Δ+) and Y1(∂X, [ĝ])

can be achieved by some smooth representative ĝ. Then

Y2(∂X, [ĝ])

Y2(Sn, [gS])
�

(
Y1(∂X, [ĝ])

Y1(Sn, [gS])

)2

, (1.2)

and the equality holds if and only if (X, g+) is isometric to the hyperbolic space H
n+1.

Here, we need a condition that Y1 can be achieved. This relies on the solvability of the fractional

Yamabe problem for γ = 1
2 , or equivalently the second type Escobar-Yamabe problem on the manifold

with the boundary [9]. Since a C3,α conformal compactification of the Poincaré-Einstein manifold always

has umbilical boundary, the condition is satisfied in the following cases:

(a) the dimension 2 � n � 6;

(b) the dimension n � 7 and X is spin;

(c) the dimension n � 7 and X is locally conformally flat.

Please refer to [1, 5, 8–10, 22] for more details. By a certain type compactification, we relate Q1 to the

boundary mean curvature of the compact metric and hence (1.2) can be transformed to the inequality

between the boundary Yamabe constant and the second type Yamabe constant for the manifolds with

the boundary given in [6] (see Section 2 for more details).

Theorem 1.2. Suppose that (Xn+1, g+) (n � 3) is a Poincaé-Einstein manifold with the conformal

infinity (∂X, [ĝ]). Assume that n2−1
4 /∈ Spec(Δ+) and ḡ is a C3,α conformal compactification such that

the interior scalar curvature Rḡ vanishes and the boundary mean curvature Hḡ is a constant. Define

ĝ = ḡ |∂X . Then

λ1(P
ĝ
2 )

λ1(P
gS
2 )

�
(

λ1(P
ĝ
1 )

λ1(P
gS
1 )

)2

, (1.3)

and the equality holds if and only if (X, g+) is isometric to the hyperbolic space H
n+1 and (X, ḡ) is the

flat ball.

By [1, 5, 9, 10, 22, 23], every (n + 1)-dimensional compact Riemannian manifold with the boundary

(n � 2) carries a conformal scalar flat metric with respect to which its boundary has constant mean

curvature. (This metric might not be the minimizer such that Y1 is achieved in Theorem 1.1.) While

taking this metric to be the conformal compactification of the Poincaré-Einstein manifold, we can find

a particular compactification, as well as a boundary representative, such that its Q1 is constant. By
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relating Q1 to the boundary mean curvature, (1.3) can be transformed to the inequality given by [25,

Theorem 3.1]. We provide a slightly different proof here. We want to point out that for P ĝ
1 being well

defined, the condition
n2 − 1

4
/∈ Spec(Δ+),

or an equivalent condition for the compactification, is necessary.

We also give some similar comparison theorems between the classical GJMS operators P2, P4 and P6.

However, in this case, we only need to work on a general closed Riemannian manifold (Mn, h) with

no requirement of Poincaré-Einstein filling-in. Under certain geometric conditions, we derive some

inequalities between the Yamabe constants and between the first eigenvalues associated with them. Some

characterisation of the equalities and applications in conformal geometry is also given.

Theorem 1.3. Suppose that (Mn, h) (n � 5) is a smooth closed compact Riemannian manifold. Then

Y4(M, [h])

Y4(Sn, [gS])
�

(
Y2(M, [h])

Y2(Sn, [gS])

)2

. (1.4)

Moreover, if the equality holds, then there exists an Einstein metric g ∈ [h] such that both Y2(M, [h]) and

Y4(M, [h]) can be achieved by g.

A question left is that when h is a positive Einstein whether the equality in (1.4) holds or not. This

leads to the validity of Obata’s theorem for the 4th order Yamabe problem, which is not completely clear

currently. Theorem 1.3 directly implies the following conclusion for the 4th order Yamabe problem.

Corollary 1.4. Suppose that (Mn, h) (n � 5) is a smooth closed compact Riemannian manifold such

that the Yamabe constant satisfies

−Y2(S
n, [gS]) < Y2(M, [h]) � Y2(S

n, [gS]).

Then

Y4(M, [h]) � Y4(S
n, [gS]) (1.5)

and the equality holds if and only if (M,h) is conformally equivalent to (Sn, gS).

See [16–18] for more results on the 4th order Yamabe problem. Similarly, we also have a comparison

theorem for the first eigenvalues of Ph
2 and Ph

4 .

Theorem 1.5. Suppose that (Mn, h) (n � 5) is a smooth closed compact Riemannian manifold such

that the scalar curvature is constant. Then

λ1(P
h
4 )

λ1(P
gS
4 )

�
(
λ1(P

h
2 )

λ1(P
gS
2 )

)2

. (1.6)

Moreover,

(i) if (M,h) is a nonnegative Einstein manifold, then the equality holds;

(ii) if the equality holds, then (M,h) must be Einstein.

For Ph
2 and Ph

6 , we have the following comparison theorem. Let Wh be the Weyl tensor and Eh be the

trace free part of the Ricci tensor with respect to the metric h.

Theorem 1.6. Suppose that (Mn, h) (n � 7) is a smooth closed compact Riemannian manifold of

positive Yamabe type. If h is a Yamabe metric and satisfies

|Wh|+ 2|Eh|
(n− 2)2

√
n(n− 1)

< C(n)J, where C(n) =
n3 − 4n2 − 4n+ 48

8n(n− 2)2
, (1.7)

then
Y6(M, [h])

Y6(Sn, [gS])
�

(
Y2(M, [h])

Y2(Sn, [gS])

)3

and
λ1(P

h
6 )

λ1(P
gS
6 )

�
(
λ1(P

h
2 )

λ1(P
gS
2 )

)3

.

Moreover, if one of the equalities holds, then (M,h) is Einstein.
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Notice that the condition (1.7) is fulfilled if a Yamabe metric h is locally conformally flat and satisfies

either Qh
4 � 0 or its Schouten tensor Ah is semi-positive (see Section 4 for more details). In addition, a

direct conclusion for the 6th Yamabe problem is the following corollary.

Corollary 1.7. Suppose that (Mn, h) (n � 7) is a closed smooth compact manifold and satisfies the

assumption of Theorem 1.6. Then

Y6(M, [h]) � Y6(S
n, [gS])

and the equality holds if and only if (M,h) is conformally equivalent to (Sn, gS).

The rest of this paper is outlined as follows. In Section 2, we mainly study the relationship between P ĝ
1

and P ĝ
2 under the Poincaré-Einstein setting (X, g+; ∂X, [ĝ]), and prove Theorems 1.1 and 1.2. In Section 3,

we study the relationship between Ph
2 and Ph

4 on a general closed manifold (Mn, h) and prove Theorem 1.3,

Corollary 1.4 and Theorem 1.5. In Section 4, we study the relationship between Ph
2 and Ph

6 and prove

Theorem 1.6 and Corollary 1.7.

2 P ĝ
1 vs. P ĝ

2

Suppose that (Xn+1, g+) is a Poincaré-Einstein manifold and ḡ = ρ2g+ is a C3,α conformal compactifi-

cation. Define

ĝ = ḡ |∂X .

Let Rḡ and Rĝ be the scalar curvature of ḡ and ĝ, and Eḡ be the trace free part of the interior Ricci

curvature Ricḡ. Let Hḡ be the boundary mean curvature. Notice that as a C3,α compactification of the

Poincaré-Einstein manifold, (X, ḡ) always has umbilical boundary. Hence the second fundamental form

of the boundary is

Πḡ =
1

n
Hḡ ĝ.

We first derive some curvature identities for this system. In particular, the following integral formula

was first introduced in [15] under a slightly different assumption.

Lemma 2.1. If Rḡ = 0, then Hḡ = nQĝ
1 and

2

(n− 1)2

∫
X

ρ|Eḡ|2dV ḡ =

∮
∂X

(
1

n
H2

ḡ − 1

n− 1
Rĝ

)
dSĝ. (2.1)

Proof. Take x to be the geodesic normal defining function with respect to (g+, ĝ). Then by [7],

g+ = x−2(dx2 +G(x)), G(x) = ĝ + x2g2 + · · ·

in a collar neighborhood [0, ε)x × ∂X. In particular, g2 = −Aĝ is the Schouten tensor of ĝ. For ḡ = ρ2g+
satisfying Rḡ = 0, v = ρ

n−1
2 satisfies

Δ+v − n2 − 1

4
v = 0, x

1−n
2 v |∂X = 1.

It is equivalent to saying ρ is the adapted defining function in the sense of [3]. Therefore, v has asymp-

totical expansion

v = x
n−1
2 (1 + xv1 + x2v2 + · · · ),

v1 = −P ĝ
1 (1) = −n− 1

2
Qĝ

1, v2 =
1

8
Rĝ.

This implies that ρ has asymptotical expansion

ρ = x(1 + xρ1 + x2ρ2 + · · · ),
ρ1 = −Qĝ

1, ρ2 =
1

4(n− 1)
Rĝ − n− 3

4
(Qĝ

1)
2.
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Then

ḡ = ρ2g+ = [1 + xρ1 + x2ρ2 +O(x2+α)]2(dx2 + ĝ + x2g2 + · · · ).
This implies that Πḡ = −ρ1ĝ with respect to the outward unit normal on the boundary and hence

H = −nρ1 = nQĝ
1.

Next, the conformal transformation of the Ricci curvature under g+ = ρ−2ḡ gives

Eḡ = −(n− 1)ρ−1

(
∇̄2ρ− 1

n+ 1
(Δḡρ)ḡ

)
,

where ∇̄ and Δḡ are the covariant derivative and Beltrami-Laplacian with respect to ḡ. Therefore,

2

(n− 1)2

∫
X

ρ|Eḡ|2dV ḡ = − 2

n− 1

∫
X

Eijρ
ijdV ḡ

= − 2

n− 1

∫
X

E j
ij: ρ

idV ḡ +
2

n− 1

∮
∂X

Eḡ(ν, ν)dSĝ

=
2

n− 1

∮
∂X

Eḡ(ν, ν)dSĝ.

Here, ν = −∂x is the outward unit normal vector field on the boundary. By the Gauss-Codazzi equation

and Rḡ = 0, we have

2Eḡ(ν, ν) =
n− 1

n
H2

ḡ −Rĝ.

Then the integral formula (2.1) follows. We finish the proof.

We also recall a rigidity theorem from [4], which is first proved in [6].

Lemma 2.2. Suppose that (X, ḡ) is a C3,α conformal compactification of the Poincaré-Einstein man-

ifold (X, g+). If the interior Ricci curvature Ricḡ vanishes and the boundary mean curvature Hḡ is a

constant, then (X, ḡ) is isometric to the flat ball (Bn, gR) and (X, g+) is isometric to the hyperbolic

space H
n.

Proof. Notice here Rĝ = n−1
n H2

ḡ by the Gauss-Codazzi equation and hence Rĝ is a constant. Consider

the transformation of scalar curvature and Ricci curvature under conformal change ḡ = ρ2g+, which gives

Δḡρ =
n+ 1

2
ρ−1(|∇̄ρ|2ḡ − 1), (2.2)

∇̄2ρ− 1

n+ 1
(Δḡρ)ḡ = − 1

n− 1
ρEḡ = 0. (2.3)

By identifying a collar neighborhood of ∂X with [0, ε)× ∂X, ḡ takes the normal form

ḡ = dr2 + g(r), (2.4)

where g(r) is a family of metrics on ∂X with g(0) = ĝ. Then according to [11], ρ has asymptotical

expansion

ρ = r + c2r
2 + c3r

3 +O(r3+α),

where

c2 = − 1

2n
Hḡ, c3 =

1

6(n− 1)
Rĝ − 1

6n
H2

ḡ = 0.

Direct computation shows that

Δḡρ |∂X = −n+ 1

n
Hḡ

and

∇̄i(Δḡρ) = (n+ 1)ρ−1ρijρ
j − n+ 1

2
ρ−2(|∇̄ρ|2ḡ − 1)ρi

= ρ−1

[
Δḡ − n+ 1

2
ρ−1(|∇̄ρ|2ḡ − 1)

]
ρ:i = 0.
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Hence all over X,

Δḡρ ≡ −n+ 1

n
Hḡ.

Since ρ > 0 in the interior, we have that Hḡ must be a positive constant. Then up to a scaling, we set

Hḡ = n and hence Δḡρ = −(n+ 1). Thus the equations (2.2) and (2.3) become

|∇̄ρ|2ḡ − 1 + 2ρ = 0, (2.5)

∇̄2ρ+ ḡ = 0. (2.6)

Moreover, Rĝ = n−1
n H2

ḡ = n(n − 1) implies that the boundary (∂X, ĝ) has a positive Yamabe constant.

By [26], ∂X is connected.

Take any normal geodesic γ(t) such that γ(0) = p ∈ ∂X. Then γ(t) = (t, p). By the equation (2.6),

the function f(t) = ρ(γ(t)) satisfies

f ′′(t) + 1 = 0, f(0) = 0, f ′(0) = ∂rρ |∂X = 1.

Hence in the small collar neighborhood,

f(t) = t− t2

2
⇒ ρ = r − r2

2
. (2.7)

On each hypersurface ∂Xr = {r = constant} for r small, ρ |∂Xr is a constant. Moreover, by (2.6), ρ |∂Xr

satisfies

∇̂2ρ− (∂rρ)Π(r) + g(r) = 0,

where Π(r) is the second fundamental form with respect to the outward unit normal −∂r. Here, ∇̂ is the

connection on ∂Xr with respect to the metric g(r). However, we know Π(r) = − 1
2g

′(r) while using the

normal form (2.4). This implies that

(1− r)g′(r) + 2g(r) = 0 ⇒ g(r) = (1− r)2ĝ. (2.8)

Those formulae (2.7) and (2.8) hold in the collar neighborhood such that the normal form (2.4) holds.

At any point 0 < r0 < 1, if (2.8) holds, then (2.4) extends in a neighborhood [r0, r0 + ε) and hence (2.7)

and (2.8) can also be extended. The extension will not stop until arriving at r = 1. Therefore,

ḡ = dr2 + (1− r)2ĝ, 0 � r < 1.

When r → 1, ∂X shrinks to one point since it is connected, which corresponds to the unique maximum

point of ρ. The maximum point is non-degenerate and smooth. Hence ĝ must be the standard sphere

metric on S
n. Therefore, by taking t = 1− r,

(X, ḡ) = ([0, 1]t × S
n, ḡ = dt2 + t2gS),

which is the flat ball of radius one in R
n+1. In addition, g+ = ρ−2ḡ with ρ = (1 − t2)/2 shows that

(X, g+) is the standard hyperbolic space H
n+1.

Next, we generalize some positivity results for P2γ with γ ∈ (0, 1) by Guillarmou and Qing [14,

Theorem 1.2] to the nonnegative case.

Lemma 2.3. Suppose Y2(∂X, [ĝ]) � 0. Then for all γ ∈ (0, 1),

(1) if ĝ is a representative such that R̂ � 0, then Qĝ
2γ � 0;

(2) the first eigenvalue of P ĝ
2γ is nonnegative.

Proof. Fix ĝ to be a boundary representative such that Rĝ is nonnegative and let x be the geodesic

normal defining function with respect to (g+, ĝ). We first construct a test function φ. Consider the

following equation:

Δ+v + (n+ 1)v = 0, xv |∂X = 1.
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Then the solution v is unique and positive, and has asymptotical expansion

v = x−1(1 + x2v2 + · · · ), v2 =
1

4n(n− 1)
Rĝ.

Take φ = v−(n−s). By the computation of [21], for all s ∈ (0, n),

Δ+φ

φ
− s(n− s) = (n− s)(n− s+ 1)

(
1− |dv|2g+

v2

)
> 0 in X.

This shows that spec(Δ+) = [n
2

4 ,+∞). Here, s = n
2 +γ with γ ∈ (0, 1). So φ has asymptotical expansion

φ = r
n
2 −γ(1 + r2φ2 + · · · ), φ2 = − (n− 2γ)

8n(n− 1)
Rĝ � 0.

To prove (1), let u be the unique solution of the following equation:

Δ+u− n2 − γ2

4
u = 0, x−n−γ

2 u |∂X = 1.

Then u has asymptotical expansion

u = x
n−γ

2

(
1 + x2γS

(
n

2
+ γ

)
1 + x2u2 + · · ·

)
, u2 =

n− 2γ

16(1− γ)(n− 1)
Rĝ � 0.

Moreover, u/φ satisfies

Δ+

(
u

φ

)
=

(
s(n− s)− Δ+φ

φ

)(
u

φ

)
+ 2∇

(
u

φ

)
∇(lnφ),

u

φ

∣∣∣∣
∂X

= 1.

Applying the maximum principle to the above equation, we conclude that u � φ in X. Hence

S

(
n

2
+ γ

)
1 � 0 ⇒ Qĝ

2γ � 0.

To prove (2), let λ1 be the first eigenvalue of P ĝ
2γ and f be the first eigenfunction, i.e., P ĝ

2γf = λ1f .

Without loss of generality, we can assume

max
∂X

f = f(p) > 0.

Let w be the unique solution of the following equation:

Δ+w − n2 − γ2

4
w = 0, r−

n−γ
2 w |∂X = f.

Then w has the asymptotical expansion

w = x
n−γ

2

(
f + x2γS

(
n

2
+ γ

)
f + x2w2 + · · ·

)
, w2 =

1

4(1− γ)

(
Δĝf +

n− 2γ

4(n− 1)
Rĝf

)
.

Obviously, w2(p) � 0. Similarly, w/φ satisfies

Δ+

(
w

φ

)
=

(
s(n− s)− Δ+φ

φ

)(
w

φ

)
+ 2∇

(
w

φ

)
∇(lnφ),

w

φ

∣∣∣∣
∂X

= f.

Applying the maximum principle again, we have u � φf(p) in X. Hence

S

(
n

2
+ γ

)
f

∣∣∣∣
p

= 2−2γ Γ(γ)

Γ(−γ)
λ1f(p) � 0 ⇒ λ1 � 0.

If ĥ = e2ϕĝ and f̃ = e(
n
2 −γ)ϕf , then∮

∂X

fP ĥ
2γfdSĥ =

∮
∂X

f̃P ĝ
2γ f̃dSĝ.

The sign of the bottom spectrum does not depend on the choice of the boundary representative.
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Actually, in the nonnegative case, by [3,8], we know that the first eigenvalue vanishes if and only if the

curvature vanishes (see [3, Theorem 7.3]).

Lemma 2.4. Suppose that Spec(Δ+) >
n2

4 −γ2 for some γ ∈ (0, 1) and ĝ is a boundary representative

such that Qĝ
2γ � 0. Then P ĝ

2γ � 0. In addition, Ker(P ĝ
2γ) �= {0} if and only if Qĝ

2γ ≡ 0.

2.1 Proof of Theorem 1.1

If Y2(∂X, [ĝ]) < 0, then the strict inequality in (1.2) holds automatically. So we only need to consider the

case Y2(∂X, [ĝ]) � 0. In this case, Spec(Δ+) � n2

4 by [21]. Let ĝ be the boundary representative such

that Y1(∂X, [ĝ]) is achieved. Then

Qĝ
1 =

2

n− 1
Y1(∂X, [ĝ])Vol(∂X, ĝ)−

1
n

is a constant. Let ρ be the adapted defining function in the sense of [3]. Then ḡ = ρ2g+ satisfies Rḡ = 0.

Here, ρ is uniquely determined by ĝ. Hence by Lemma 2.1, Hḡ = nQĝ
1 is also a constant and

Y2(∂X, [ĝ]) � n− 2

4(n− 1)

(∮
∂X

RĝdSĝ

)
Vol(∂X, ĝ)

2
n−1

=
n(n− 2)

4

(∮
∂X

(Qĝ
1)

2dSĝ − 2

n(n− 1)2

∫
X

ρ|Eḡ|2dV ḡ

)
Vol(∂X, ĝ)

2
n−1

� n(n− 2)

(n− 1)2
(Y1(∂X, [ĝ]))2.

This proves the inequality (1.2). If the equality holds, then Eḡ = 0 and Y2(∂X, [ĝ]) is attained by ĝ.

Hence Rĝ is also a constant. By Lemma 2.2, (X, g+) must be the hyperbolic space and (X, ḡ) is the flat

ball in R
n+1.

2.2 Proof of Theorem 1.2

Notice that the bottom spectrum of P ĝ
2 has the same sign with Y2(∂X, [ĝ]). If Y2(∂X, [ĝ]) < 0, then

λ1(P2) < 0 and the strict inequality in (1.3) holds automatically. So we only need to deal with the case

Y2(∂X, [ĝ]) � 0. In this case, Spec(Δ+) � n2

4 by [21] again. Let ḡ be a conformally compactification such

that Rḡ = 0 and Hḡ is a constant. By Lemma 2.1, Qĝ
1 = Hḡ/n is also a constant.

First, consider Y2(∂X, [ĝ]) > 0. Then by [14, Theorem 1.2], P ĝ
1 has the positive spectrum and the pos-

itive Green function. Here, Qĝ
1 is a positive constant and f ≡ 1 is a positive eigenfunction corresponding

to the eigenvalue (n−1)
2 Qĝ

1. Hence λ1(P
ĝ
1 ) =

(n−1)
2 Qĝ

1. Therefore,

λ1(P
ĝ
2 ) �

n− 2

4(n− 1)

(∮
∂X

RĝdSĝ

)
Vol(∂X, ĝ)−1

=
n(n− 2)

4

(∮
∂X

(Qĝ
1)

2dSĝ − 2

n(n− 1)2

∫
X

ρ|Eḡ|2dV ḡ

)
Vol(∂X, ĝ)−1

� n(n− 2)

(n− 1)2
(λ1(P

ĝ
1 ))

2.

This proves the inequality (1.3). If the equality holds, then Eḡ = 0. By Lemma 2.2, (X, ḡ) is the flat ball

in R
n+1 and (X, g+) must be the hyperbolic space.

Second, consider Y2(∂X, [ĝ]) = 0. Then λ1(P2) = 0. Let f be the first eigenfunction of P ĝ
2 . Then by

the maximum principle of P ĝ
2 , we have f > 0. Take ĥ = f

4
n−2 ĝ. Then the scalar curvature Rĥ vanishes.

By Lemma 2.3, Qĥ
1 � 0 and λ1(P

ĥ
1 ) � 0. If λ1(P

ĥ
1 ) = 0, then by [3, Theorem 7.3], Qĥ

1 ≡ 0. Take h̄ to be

the adapted compactification of g+ such that ĥ = h̄ |∂X . Then (X, h̄; ∂X, ĥ) satisfies

Rh̄ = Rĥ = 0, Hh̄ = 0.
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By Lemma 2.1, this implies that Eh̄ = 0. Then by Lemma 2.2, (X, h̄) is a flat ball. However, this

contradicts the vanishing mean curvature. So λ1(P
ĥ
1 ) must be positive. Take F = f−n−1

n−2 > 0. Then

P ĥ
1 (F ) =

n− 1

2
Qĝ

1F
n+1
n−1 ,

which implies

Qĝ
1 =

2

n− 1

∮
∂X

FP ĥ
1 FdSĥ∮

∂X
F

2n
n−1 dSĥ

> 0.

By [3, Theorem 7.3] again, this implies that λ1(P
ĝ
1 ) > 0. Hence the strict inequality of (1.3) holds. We

finish the proof.

3 P2 vs. P4 on a closed compact Riemannian manifold (M,h)

In this section, we prove some comparison theorems between the 2nd and 4th order GJMS operators on

a general smooth closed compact Riemannian manifold (Mn, h) (n � 5). For simplicity, while there is no

confusion about the background metric, we will omit the metric notation in the subscript or superscript.

Recall that

P2 = −Δ+
n− 2

2
J,

P4 = (−Δ)2 + δ((n− 2)J − 4A)d+
n− 4

2
Q4,

where δ = δh is the divergence operator: while it acts on 1-form ω,

δhω = −ω i
i; ,

where ; denotes the covariant derivatives with respect to the metric h. Here, the curvature terms are

J =
1

2(n− 1)
R,

E = Ric− 1

n
Rh,

A =
1

n− 2
(Ric− Jh) =

1

(n− 2)
E + Jh,

Q4 = −ΔJ +
n

2
J2 − 2|A|2 = −ΔJ +

(n+ 2)(n− 2)

2n
J2 − 2

(n− 2)2
|E|2.

3.1 Proof of Theorem 1.3

Without loss of generality, we assume that h is the representative such that Y2(M, [h]) is achieved. Then J

is constant and

Y2(M, [h]) =
n− 2

2
JVol(M,h)

2
n ,

where Vol(M,h) denotes the volume of (M,h). Then

Q4 =
(n+ 2)(n− 2)

2n
J2 − 2

(n− 2)2
|E|2.

By the definition of Y4(M, [h]),

Y4(M, [h]) � n− 4

2

(∫
M

Q4dVh

)
Vol(M,h)

−(n−4)
n

=
(n− 4)(n+ 2)

n(n− 2)
(Y2(M, [h]))2 − n− 4

(n− 2)2

(∫
M

|Eh|2dVh

)
Vol(M,h)

−(n−4)
n

� (n− 4)(n+ 2)

n(n− 2)
(Y2(M, [h]))2.
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So we have proved the inequality (1.4).

If the equality in (1.4) holds, then the two inequalities in the above formula become equalities. Hence

E = 0, i.e., (M,h) is Einstein and h achieves Y4(M, [h]) and Y2(M, [h]) together.

3.2 Proof of Corollary 1.4

While −Y2(S
n, [gS]) < Y2(M, [h]) � Y2(S

n, [gS]), Theorem 1.3 directly implies that

Y4(M, [h]) � Y4(S
n, [gS]).

If the equality holds, then

Y4(S
n, [gS]) = Y4(M, [h]) � (n− 4)(n+ 2)

n(n− 2)
(Y2(M, [h]))2 � (n− 4)(n+ 2)

n(n− 2)
(Y2(S

n, [gS]))
2.

This forces all the middle inequalities to be equalities. Hence Y2(M, [h]) = Y2(S
n, [gS]) and (M,h) is

conformally equivalent to (Sn, gS).

3.3 Proof of Theorem 1.5

Here, h has constant scalar curvature. Hence the first eigenvalue of P2 is given by

λ1(P2) =
n− 2

2
J.

Then

λ2(P4) �
n− 4

2

(∫
M

Q4dVh

)
Vol(M,h)−1

=
(n− 4)(n+ 2)

n(n− 2)
(λ1(P2))

2 − n− 4

(n− 2)2

(∫
M

|E|2dVh

)
Vol(M,h)−1

� (n− 4)(n+ 2)

n(n− 2)
(λ1(P2))

2.

So we have proved the inequality (1.5).

If the equality in (1.5) holds, then the two inequalities in the above formulae become equalities. Hence

E = 0, i.e., (M,h) is Einstein.

Conversely, if (M,h) is Einstein, then

P4 =

(
−Δ+

n− 2

2
J

)(
−Δ+

(n− 4)(n+ 2)

2n
J

)
.

If further J � 0, then

λ1(P4) =
(n− 4)(n− 2)(n+ 2)

4n
J2 =

(n− 4)(n+ 2)

n(n− 2)
(λ1(P2))

2.

4 P2 vs. P6 on a closed compact Riemannian manifold (M,h)

In this section, we prove some comparison theorems between the 2nd and 6th order GJMS operators on a

general smooth closed compact Riemannian manifold (Mn, h) (n � 7). Similar to Section 3, while there

is no confusion about the background metric, we omit the metric notation in the subscript or superscript.

Recall the formulae for P6 from [20, Theorem 10.2]:

P6 = (−Δ)3 −ΔδT2d− δT2dΔ− n− 2

2
Δ(JΔ)− δT4d+

n− 6

2
Q6.
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Here,
T2 = (n− 2)J − 8A,

T4 = −
(
3

4
(n− 2)2 − 4

)
J2 + 4(n− 4)|A|2 + 8(n− 2)JA

+ (n− 6)ΔJ − 48A2 − 16

n− 4
B,

Q6 = −
(
n

2
+ 1

)
Δ(J2) + 4Δ(|A|2)− 8δ(AdJ) + Δ2J

− n− 6

2
JΔJ − 4(n− 6)J |A|2 + (n− 6)(n+ 6)

4
J3 − 3!2!25v6,

where

v6 = − 1

48
[J3 − 3J |A|2 + 2tr(A3)]− 1

24(n− 4)
〈B,A〉,

Bij = ΔAij −A k
ik;j +WikjlA

kl,

Wijkl = Rijkl + (Ajkhil +Ailhjk −Aikhjl −Ajlhik).

Notice that “tr” denotes the trace of a symmetric 2-tensor with respect to the metric h and 〈·, ·〉 denotes
the inner product with respect to metric h. By direct computations, we can also write Q6 as

Q6 = −
(
n

2
+ 1

)
Δ(J2) + 4Δ(|A|2)− 8δ(AdJ) + Δ2J

− n− 6

2
JΔJ +

n2 − 4

4
J3 − 4nJ |A|2 + 16tr(A3) +

16

n− 4
〈B,A〉.

Lemma 4.1. On (M,h), we have∫
M

〈B,A〉dVh =

∫
M

(−|∇A|2 + |δA|2 + 2WikjlA
ijAkl − ntr(A3) + J |A|2)dVh, (4.1)

and hence ∫
M

Q6dVh =

∫
M

[(
n− 6

2
+

16(n− 1)

(n− 4)n

)
|∇J |2 − 16

(n− 4)(n− 2)2
|∇E|2

+
32

n− 4
WikjlE

ijElk +
(n2 − 16)(n2 − 4)

4n2
J3

− 4n2(n− 4)− 16n+ 192

n(n− 4)(n− 2)2
J |E|2 − 64

(n− 4)(n− 2)3
tr(E3)

]
dVh. (4.2)

Proof. First, notice that

Aik;jl = Aik;lj −RimjlA
m
k −RkmjlA

m
i

⇒ A k
ik;j = A k

ik; j −RimjlA
ml +RmjA

m
i .

So we have

A k
ik;j Aij = A k

ik; jAij −WimjlA
mlAij + (Amjhil +Ailhmj −Aijhml −Amlhij)A

mlAij +RmjA
m
i Aij

= A k
ik; jAij −WimjlA

mlAij + 2tr(A3)− 2J |A|2 + (n− 2)AmjA
m
i Aij + JhmjA

m
i Aij

= A k
ik; jAij −WimjlA

mlAij + ntr(A3)− J |A|2.
Thus ∫

M

〈B,A〉dVh =

∫
M

(−|∇A|2 + |δA|2 + 2WikjlA
ijAlk − ntr(A3) + J |A|2)dVh,∫

M

Q6dVh =

∫
M

(
− n− 6

2
JΔJ +

n2 − 4

4
J3 − 4nJ |A|2 + 16tr(A3) +

16

n− 4
〈B,A〉

)
dVh

=

∫
M

[
n− 6

2
|∇J |2 − 16

n− 4
|∇A|2 + 16

n− 4
|δA|2 + 32

n− 4
WikjlA

ijAlk

+
n2 − 4

4
J3 −

(
4n− 16

n− 4

)
J |A|2 − 64

n− 4
tr(A3)

]
dVh.
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Direct computation shows that

tr(A3) =
1

n2
J3 +

3

n(n− 2)2
J |E|2 + 1

(n− 2)3
tr(E3),

|A|2 =
1

n
J2 +

1

(n− 2)2
|E|2,

|∇A|2 =
1

n
|∇J |2 + 1

(n− 2)2
|∇E|2,

|δA|2 = |∇J |2.

Hence we have (4.2).

Proposition 4.2. Suppose that (Mn, h) (n � 7) is a smooth closed compact Riemannian manifold,

locally conformally flat and of positive Yamabe type. If h is a Yamabe metric and satisfies

tr(E3) + CJ |E|2 � 0, where C < C1(n) =
(n− 2)(n3 − 4n2 − 4n+ 48)

16n
, (4.3)

then

Y6(M, [h]) � (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3,

λ1(P6) �
(n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
λ1(P2)

3.

If any equality holds, then (M,h) is Einstein.

Proof. Since h is the Yamabe metric, we have J is a positive constant and

Y2(M, [h]) =
n− 2

2
JVol(M,h)

2
n , λ1(P2) =

n− 2

2
J.

In addition, h is locally conformally flat, and by (4.2),∫
M

Q6dVh =

∫
M

[
− 16

(n− 4)(n− 2)2
|∇E|2 + (n2 − 16)(n2 − 4)

4n2
J3

− 4n2(n− 4)− 16n+ 192

n(n− 4)(n− 2)2
J |E|2 − 64

(n− 4)(n− 2)3
tr(E3)

]
dVh. (4.4)

While C < C1(n), we have some ε > 0 such that

Y6(M, [h]) � n− 6

2

(∫
M

Q6dVh

)
Vol(M,h)

6−n
n

� (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3

− 8(n− 6)

(n− 4)(n− 2)2

(∫
M

(|∇E|2dVh + εJ |E|2)dVh

)
Vol(M,h)

6−n
n

� (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3.

If the equalities hold, then E = 0 and hence (M,h) is Einstein. Moreover, h achieves the minimizers of

both Y6(M, [h]) and Y2(M, [h]).

A similar proof leads to the inequality

λ1(P6) �
n− 6

2

(∫
M

Q6dVh

)
Vol(M,h)−1 � (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
λ1(P2)

3.

In addition, the characterisation of the equality case follows as above.
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Proposition 4.3. Suppose that (Mn, h) (n � 7) is a smooth closed compact Riemannian manifold,

locally conformally flat and of positive Yamabe type. If h is a Yamabe metric satisfying one of the

following:

(a) Q4 � 0;

(b) A is semi-positive,

then the condition (4.3) holds.

Proof. Here, J is a positive constant. Notice that since E is trace free, we have

|tr(E3)| � n− 2√
n(n− 1)

|E|3.

(a) If Q4 � 0 holds, then
(n+ 2)(n− 2)

2n
J2 − 2

(n− 2)2
|E|2 � 0.

Therefore,

|tr(E3)| � n− 2√
n(n− 1)

|E|3 � (n− 2)2
√
(n+ 2)(n− 2)

2n
√
n− 1

J |E|2 < C1(n)J |E|2.

(b) If A is semi-positive, then all the eigenvalues of A satisfy μi � 0. Hence,

|A|2 =
n∑

i=1

μ2
i �

( n∑
i=1

μi

)2

= J2.

Since |A|2 = 1
nJ

2 + 1
(n−2)2 |E|2, we have

|E| � (n− 2)

√
n− 1

n
J.

Therefore,

|tr(E3)| � n− 2√
n(n− 1)

|E|3 � (n− 2)2

n
J |E|2 < C1(n)J |E|2.

This completes the proof.

The above conclusions are based on the assumption that (M,h) is locally conformally flat. If (M,h)

is not locally conformally flat, we have the following proposition.

Proposition 4.4. Suppose that (Mn, h) (n � 7) is a smooth compact closed manifold of positive

Yamabe type. If h is a Yamabe metric satisfying

|W |+ 2|E|
(n− 2)2

√
n(n− 1)

< C2(n)J, where C2(n) =
n3 − 4n2 − 4n+ 48

8n(n− 2)2
, (4.5)

then

Y6(M, [h]) � (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3,

λ1(P6) �
(n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
λ1(P2)

3.

If any equality holds, then (M,h) is Einstein.

Proof. Since h is a Yamabe metric, we have that J is a positive constant and

Y2(M, [h]) =
n− 2

2
JVol(M,h)

2
n .
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By (4.2) and (4.5), there is some ε > 0 such that

Y6(M, [h]) � n− 6

2

(∫
M

Q6dVh

)
Vol(M,h)

6−n
n

� (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3

− 8(n− 6)

(n− 4)(n− 2)2

(∫
M

(|∇E|2dVh + εJ |E|2)dVh

)
Vol(M,h)

6−n
n

� (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
(Y2(M, [h]))3.

If the equalities hold, then E = 0 and hence (M,h) is Einstein. Moreover, h achieves the minimizers of

both Y6(M, [h]) and Y2(M, [h]).

A similar proof leads to the inequality

λ1(P6) �
n− 6

2

(∫
M

Q6dVh

)
Vol(M,h)−1 � (n2 − 16)(n− 6)(n+ 2)

n2(n− 2)2
λ1(P2)

3.

In addition, the characterisation of the equality case follows as above.

Proof of Theorem 1.6. This is directly from Proposition 4.4.

Proof of Corollary 1.7. This is similar to the proof of Corollary 1.4.
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