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Abstract We investigate the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy prob-
lem of a one-dimensional compressible Navier-Stokes type system for a viscous, compressible, radiative and
reactive gas, where the constitutive relations for the pressure p, the specific internal energy e, the specific vol-
ume v, the absolute temperature 6, and the specific entropy s are given by p = RA/v + af*/3, e = C0 + avh?,
and s = Cy In 0 + 4av03/3 + RInv with R > 0, C,, > 0 and a > 0 being the perfect gas constant, the specific
heat and the radiation constant, respectively. For such a specific gas motion, a somewhat surprising fact is
that, generally speaking, the pressure p(v, s) is not a convex function of the specific volume v and the specific
entropy s. Even so, we show in this paper that the rarefaction waves are time-asymptotically stable for large
initial perturbation provided that the radiation constant a and the strength of the rarefaction waves are suffi-
ciently small. The key point in our analysis is to deduce the positive lower and upper bounds on the specific
volume and the absolute temperature, which are uniform with respect to the space and the time variables, but

are independent of the radiation constant a.
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1 Introduction

In this paper, we investigate the large-time behavior of global, strong, large-amplitude solutions to the
Cauchy problem of a one-dimensional compressible Navier-Stokes type system for a viscous radiative and
reactive gas. The model is described as follows (see [3,31,32,47]):

* Corresponding author

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 math.scichina.com  link.springer.com



2638 Gong G Q et al. Sci China Math  December 2021 Vol. 64 No.12

vy — Uy =0,

Ut +p(va9)z = (Muw> )

v

(e + “;)t + (up(v,0)), = (’““””)I + (W)I + Aoz,

v

Here, z € R is the Lagrangian space variable, and ¢ € R" is the time variable. The unknown quantities
are the specific volume v = v(t, x), the velocity u = u(t, ), the absolute temperature = 6(t, z), and the
mass fraction of the reactant z = z(¢,x). The positive constants d and A stand for the species diffusion
coefficient and the difference in the heat between the reactant and the product, respectively. According
to the Arrhenius law [4,47], the reaction rate function ¢ = ¢(0) is given by

$(0) = K0° exp < - ‘2) (1.2)
where positive constants K and A represent the coefficients of the rates of the reactant and the activation
energy, respectively. Besides, 8 is a non-negative number.

Due to the Stefan-Boltzmann radiative law [40,47], the pressure p and the specific internal energy e
consist of a fourth-order term radiative part in the absolute temperature 6 as well as the perfect polytropic
contribution o y

a
p(U, 0) = 7 + ?7
where the positive constants R and C, are the perfect gas constant and the specific heat capacity at
constant volume, respectively. Specifically, as shown in [26,40], C, = %R for the radiative gas. a > 0 is
the radiation constant which measures the amount of heat that is emitted by a blackbody, which absorbs
all of the radiant energy that hits it, and will emit all the radiant energy. Moreover, we have (see [26,40])

e(v,0) = C’q,¢9+av94, (1.3)

do 8ok}
¢ 15c¢3h3’
where o is the Stefan-Boltzmann constant, ¢ is the speed of light, kp is the Boltzmann constant, and h
is the Planck constant. Numerically,

(1.4)

a=T.5657 x 10710 m 3K 4.

In general, compared with the perfect gas constant R and the specific heat C,, the radiation constant a
is much smaller.
On the other hand, one can conclude from (1.3) and the second law of thermodynamics that

4
s(v,0) =C,In6 + gcw@?’ + Rlnw. (1.5)

If one takes a = 0, then the above constitutive relations for the five thermodynamic variables p, v, 0, s
and e given by (1.3) and (1.5) reduce to the equations of state for ideal polytropic gases. If a > 0,
and we choose (v,0) or (v,s) as independent variables and write (p,e,s) = (p(v,0),e(v,0), s(v,8)) or

(p,e,0) = (p(v,s),é(v,s),0(v,s)), respectively, then after cumbersome calculations, we can deduce that
(see [26] for details)

(40aC, R? + 28aC?R — 8aR?)

0%p(v,5) 1[CURS+30332+2C§R .

302

2

o2 s} v
N (496a2C, R + 19242 R2)0* N (640a3C,, 4 74884 R)0" N 1792av91° ’ (16)
3v 27 27
%p(v,s)  (0)2[CLR  [16aC, 16a2v0*
= = - —_ 1.
52 ” { =+ < 3 8aR>9+ 3 } (1.7)
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and

9*p(v, 5) *p(v,s) (32;3(1;, s)>2

0s2 ov? Ov0s
(6,)2 [C,R? + C2R?  (32aC2R — 52aC\, R? — 24aR3)0
-T2 2.4 + 3
55 02v 3v
(448a%C, R — 1200a2R2)0*  320a°RO7T 25644010
+ — — ) (1.8)
92 9v 9

From (1.6)—(1.8), it is easy to see that p(v, s) is a convex function of v and s for the ideal polytropic
gas, while if a > 0, it is not clear whether p(v, s) is a convex function of v and s or not.

As in [32,47, 48], we also assume that the bulk viscosity p is a positive constant and the thermal
conductivity kK = k(v, 8) takes the form

k(v,0) = K1 + Kovl°, (1.9)

where k1, k2 and b are both positive constants. Furthermore, the system (1.1) is supplemented with the
initial data

(v(0,z),u(0,z),0(0,x),2(0,2)) = (vo(x), ug(x), o (x), z0(x)) (1.10)

for z € R, which is assumed to satisfy the far-field condition

lim (vo(z),uo(x),00(2), 2z0(z)) = (vi,us,0+,0). (1.11)
|z]| =00
Here, v4+ > 0, uy and 04 > 0 are prescribed constants.

The problem on the global solvability and the precise description of the large-time behavior of the
global solutions constructed for the initial value problem and the initial-boundary value problems of the
systems (1.1)—(1.3), (1.9) and (1.10) is a hot topic in the field of nonlinear partial differential equations
and many results have been obtained recently. A complete literature in this direction is beyond the scope
of this paper and to go directly to the main points of the present paper, in what follows we only review
some former results which are closely related to our main results.

e For the multidimensional case, there have been some results concerning the global existence, the
uniqueness and the large time behavior of spherically (cylindrically) symmetric solutions to the systems
(1.1)—(1.3) and (1.9)—(1.11) (see [44,49,53] for the bounded concentric annular domain case and see [28] for
the exterior domain case). Here, the asymptotics of the global solutions constructed in [44,49,53] and [28],
as in [16,17] and [5,32], are constant equilibrium states (Voo , Uoco, #oo, 0) of (1.1) satisfying ve, > 0,04 > 0,
which are uniquely determined by the initial data for the corresponding initial-boundary value problem
in a bounded domain and by the far fields of the initial data for the case in an exterior domain.

e For the one-dimensional initial-boundary value problem in the interval [0, 1], the existence and the
uniqueness of global classical solutions was established in [3] for the following initial-boundary value
problem:

(v(O,:c),u(O,;z:),O(O,a:),z(O,z)) - (UO(I)aUO(I)voo(x)’zo(x))a T e (07 1)7
u(t,z) =0, x=0,1, ¢t>0, (1.12)
(0.(t,x), 2z (t,2)) = (0,0), x=0,1, t=>0,

while for the initial-boundary value problem

(v(0,2),u(0,x),0(0,z),2(0,z)) = (vo(z),uo(x), (), 20(x)), x€(0,1),

piti (L, @) _
v(t,x)

(0.(t,x), 2z5(t,x)) = (0,0), ==0,1, t=>0

o(t,z) = —pv(t,x),0(t,z)) + —pe, x=0,1, t>0, (1.13)
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for some positive constant p. > 0, similar global solvability results were obtained in [31, 43,47, 48].
Moreover, it is shown in [16,17] that the asymptotics of the global solutions constructed above can be
exactly described by (1,0, 0.,0) with 6., being a positive constant uniquely determined by

b
C,0s + aego = / (2|u0(ac)|2 + Cpbo(z) + avo(x)|00(x)|4 + )\Zo(l'))dl'
0

for the initial-boundary value problems (1.1)—(1.3), (1.9), (1.10), (1.12) and (v, 0, 80, 0) With vs, and O,
being positive constants uniquely determined by

RO

Voo

L1
Coloo + V02 peving = / (2|Uo(33)|2 + Cubo(x) + avo()]0o (x)|* + Azo(x) +pevo($)>d$
0

a
+ gego = Pe,

for the initial-boundary value problems (1.1)—(1.3), (1.9), (1.10) and (1.13), respectively. Note that since
fo v(t, x)dx is conserved for the initial-boundary value problems (1.1)-(1.3), (1.9), (1.10) and (1.12), while
fo u(t, z)dz is conserved for the initial-boundary value problems (1.1)-(1.3), (1.9), (1.10) and (1.13), one
can thus assume without loss of generality that fo vo(z)dx = 1 for the initial-boundary value problems
(1.1)—(1.3), (1.9), (1.10), (1.12) and fo uo(x)dxz = 0 for the initial-boundary value problems (1.1)—(1.3),
(1.9), (1.10) and (1.13).

e For the Cauchy problems (1.1)—(1.3) and (1.9)—(1.11), the existence of a unique global solution
was established very recently in [27,32] for the case when the far fields (vi,ug,01) of the initial
data (vo(z),up(x),0p(x)) are equal, ie., (v_,u_,0_) = (vy,us,0y) (see also [5] for the case with
temperature-dependent viscosity and [29] for the case with density-dependent viscosity). Here, since
(v_,u_,0_) = (vy,uq,04), the asymptotics of the global solutions constructed in [5,32] are exactly
the far fields (v, us,604,0) of the initial data (vo(x),uo(x),00(x),20(x)). The asymptotic stability of
I-rarefaction waves to the systems (1.1),—(1.1); (z = 0), (1.2), (1.3), (1.10) and (1.11) without viscosity
(u = 0) under the small perturbation was studied in [25]. Recently, Liao [26] has studied nonlinear
stability of rarefaction waves for the systems (1.1)—(1.3) and (1.9)—(1.11) when the viscosity u takes the
following form:

v, v 0t

022, vV — 00,

p=p(v,0) = h(v)0*, h(v)~ { vl (v)* < CR*(v). (1.14)

Here, h(v) is a smooth function of v for v > 0 and «, ¢1, and ¢y are positive constants. It should be
pointed out that (1.14) cannot cover the case when p is a positive constant even when « goes to zero.

The main purpose of this manuscript is to study the nonlinear stability of rarefaction waves for the
systems (1.1)—(1.3) and (1.9)—(1.11) with constant viscosity (u = C') under the large initial perturbation.
For the Cauchy problems (1.1)—(1.3) and (1.9)—(1.11), if the far fields (vy,u4,601) of the initial data
(vo(x),uo(x),0p(x)) are not equal, i.e.,

(v,,u,, 9*) 7é (’U+’u+a 9+)7

the asymptotics of the global solutions should be nontrivial and is expected to be described by the
unique global entropy solution (V" (z/t),U"(xz/t),©"(x/t),0) of the resulting Riemann problem of the
corresponding compressible Euler equations

v — Uy =0,

Ut —I—p(’l), 9)&0 —

(c+ ”2) £ (up(,6))2 =0,

Zt:()

(1.15)
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with Riemann data

(v_,u_,0_,0), x<0,
(U+au+79+70)7 x> 0.

(U(Ql‘),u(o,m),9(0,$)72(0,$)) = (U(T)(x)Ju(TJ('T)79(7)(x)7Zé(m)) = {

2641

(1.16)

In fact, it is expected (see [19,20,33-37,45] and the references cited therein) that if the unique global

entropy solution

(V" (x/1),U"(x/t), 0" (2/t),0)

of the Riemann problem (1.15) and (1.16) consists of rarefaction waves
(V7 (a/t), U (x/t), 07 (2/1),0)
of the i-th family (i = 1, 3), shock waves
(VS (2/t), U™ (2/t), 0% (2/1),0)
of the i-th family (i = 1, 3), contact discontinuity

(VEP(@/t), U (x/t), 0P (x/t),0)

of the second family, and/or their superpositions, then the large time behavior of the global solution

(v(t,x),u(t,x),0(t,x), z(t, z))

of the Cauchy problems (1.1)—(1.3) and (1.9)—(1.11) is expected to be well-described by the rarefaction

(VE (x/t), U (2 /1), 0 (2/1),0)

of the 4-th family (¢ = 1, 3), the viscous shock profile
(VVSW’" (x — sit), yvswi (z — s4t), QVsWi (z — s4t),0)
of the 4-th family (¢ = 1, 3) under the suitable shift, the viscous contact discontinuity wave
(VVEP(t,2),UVCP(t,2), 0VOP(t, 2),0)

of the second family, and/or their superpositions.

As in [2,26], it will be convenient to consider the following equations for the entropy s and the absolute

temperature 6:

[ K(v,0)0, Jrn(v,@)ﬂg Lufc Aoz
T\ ), e w0

and

0, + Opyu, _ 1('%(’0’0)030) n LU?; &
€p €p v - vVey €p

where py := % = % + %a03 and eg = 66(8”9"0) = C, + 4avd>.

From now on, we will consider (1.1)1, (1.1)2, (1.17) and (1.1), with the initial data

(v(t, z), u(t,x), s(t,z), z(t, z)) |t=0 = (vo(x), up(x), so(x), 2z0(x)) = (v, ut,s+,0) asx — +oo.

Here, v4+ >0, ug, s+ :=C,Inf4 + %aviﬂi + RInwv4 are constants and
4 3
so(x) := Cy Inbg(x) + gavo(az)%(a@) + Rlnwg(x).

Moreover, we assume that s; = s_ = 5 for considering the expansion waves to (1.1).

(1.17)

(1.18)

(1.19)
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It is well known that (1.1) can be approximated by the Riemann problem of the following equations:

vy — Uy =0,

Ut + (ﬁ(’l}, S))x =0,

Mgz (1.20)
St = 6 )
Zt = —@z

with Riemann data

<v<o,x>7u<o,x>,s<o,x>,z(07w>>=<v£“<x>,u§<m>,s§<x>,z§<w>>={(“’“’S70)’ 0
(v, uq,84,0), x>0.

The solutions of the Riemann problems (1.20)—(1.21) have two characteristics, which leads to two
families of expansion (rarefaction) waves: the 1-rarefaction wave (Vi(%), U{*(%),5,0) and the 3-rarefaction
wave (V{¥(%£),U§(%),5,0). We define the regime

u:u_+/v \/ —Pe(&,5)dE u = u, s = }
w= i [ € 0> s = 5.2 =0,

and further assume that there exists a unique constant state (v, u,,) € R?(v,, > 0), which satisfies
(Um, tum) € Ri(v—,u_) and (v4,uy) € R3(vm,um). Then the unique weak solution (VF(Z) UR(%),
SE(Z),0) to the system (1.20)—(1.21) is characterized by

(v (&) o (7)) )
<le (f) VR (f) — v, U (f) +UR <f) U, 5, 0> (1.22)

with (V(2),UF(2),S%(%),0) (i = 1,3) satisfying the following equations:

Rl(v—au—agao) = {(U,U,S,Z)

Rs (v, Um, §,0) = {(’U u, 8, 2)

Vit (§) v_
/ el =~ [ y[=eles)as

A(v,8) = =/ —pu(v, ) (1.23)

1

o () + /V3 ; \/*P&Tdﬁfum+/vmy/*pg (€, 5)ie.
(03]

A3(v, 8) = /—pu(v, ).

To construct the approximate waves (V(t,z),U(t, z), S(t,x),0), we begin with the following Burger’s
equation (see [37]). Let w;(t,z) (i = 1, 3) be the unique global smooth solution to the Cauchy problem

wit + wiwiz = 0,
Wit + Wi— Wiy — W (124)

2 2

wi(t,x) |t=0 = wio(x) = ’Kq/ (1+ )" %dy,
0
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where q > %, K, = (f;oo(l +9?)"%y)~1, e > 0 is a positive constant to be determined later, and

wi- =M (v_,5) = —/—Pu(v_, 5),
wit = A (Vm, 8) = =/ —Du(Um, §),
w3— = A3(Vpm, 5) —Po(Vm, 5),
w3t = A3(vy,5) = v/ —Pu(vy, 5)

Then, by setting
e=0=[o_ —vy|+Ju_ —usl,

the approximate rarefaction waves (V (¢, x),U(t,x), S(t,x),0) are defined by

(V(t,z),U(t, x),S(t,x),0)
=WVit+1L,z)+ Va(t+ 1,2) — v, U1t + 1, 2) + Us(t + 1,2) — um, 8,0), (1.25)

where (V;(t,x),U;(t,z)) (i = 1,3) satisfy

Vi (t2) (1.26)
Luuwzu_+/’ pel&, 5)de,

Vs (t,x)
Ustta) =wn — [ [=aele 9

and O(t,x) is given by
O(t,z) = (V(t, ), 5).
Furthermore, if we denote the strength of the rarefaction waves by
6= o — vyl + Ju_ —uyl,

then our main result is the following stability theorem.

Theorem 1.1.  Suppose that
e the parameters b and B are assumed to satisfy

b>6, 0<B<b+3;

e there exist positive constants 0 <V <1,V > 1,0< 0O < 1, © > 1, which do not depend on the
strength of the rarefaction wave 0 and the radiation constant a, such that

hold for all (t,z) € Ry x R,

(vo(2) = V(0,2),uo(x) — U(0,z),00(z) — ©(0,2), 20(2)) € H'(R),
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62(“0(”529;2[](0’”3)) € I2(R), z(z) € L'(R),

0<z(x) <1, VxeR

and
Hy = [|(vo(z) = V(0,2),uo(z) — U(0,2),00(x) — ©(0, ), 20(x)) 2 (r)

together with vy, us and 0+ being assumed to be independent of § and a.
Then there exist positive constants dg and ag, which depend only on' V., © and Hy, such that when

0<d<dy, 0<ac<ag, (1.27)

the systems (1.1)—(1.3) and (1.9)—(1.11) admit a unique global solution (v(t,x),u(t,z),0(t,x), z(t,z))
which satisfies

Cy" <w(t,x) <O,
Cy ' <O(t,2) < Oy,
0<2(t,z) <1
for all (t,z) € [0,00) x R and
sup [|(v = V,u—U.0 - 0,2) ()3 )
0<t<oo
+/0 (102 (v = VY()IZ2 gy + 12 (u = U), 0:(0 = ©), 002)(7) 71 ) )T
<C. (1.28)

Here, C1, Cs and C' are some positive constants depending only on V., © and Hy.
Moreover, it holds that

lim sup{|(v(t,z) — VE(t, ), u(t,z) — UR(t, ), s(t,x) — 5, 2(t,z))|} = 0. (1.29)
t=+4o0 pecRr
Remark 1.2. Here are some remarks concerning Theorem 1.1.

e Note that the result in [25] focuses on the case when p = 0 and (v, 6) = constant. As pointed out
before, the initial perturbation between the initial data and the approximation solution in [25] needs to
be sufficiently small. Besides, an additional stability condition should also be imposed on the state of the
specific volume v(t, z) and the temperature 0(¢, x) at the far field (see [25, (1.14)]). Compared with the
result obtained in [25], the result in this paper is the first one concerning the stability analysis of viscous
wave patterns of (1.1)-(1.3) and (1.9)—(1.11) with constant viscosity under the large initial perturbation.
Moreover, we do not need to impose the above additional stability condition in our study. Furthermore,
our method in this paper can also be applied to Navier-Stokes equations when thermodynamic variables
satisfy the equations of state for ideal polytropic gases (A =0, a = 0).

e We emphasize that the result in [26] cannot include the case when p = C. Besides, the methods to
deduce the uniform lower and upper bounds on the specific volume v(¢, z) and the absolute temperature
0(t,z) in our paper are also different from those developed in [26].

e It is interesting to study the global nonlinear stability of viscous shock waves, viscous contact waves,
and some of their superpositions for (1.1)—(1.3) and (1.9)—(1.11) in the future and such problems are
under our current study.

As we can see in the analysis performed in [20,37-39,41] and from the estimate (2.10) obtained in
Lemma 2.6 of this paper, p(v, s) is a convex function of v and s plays an essential role in deducing the
nonlinear stability of rarefaction waves of the one-dimensional compressible Navier-Stokes type equations.
We note, however, that, from (1.6)—(1.8), it is not clear whether p(v, s) is a convex function of v and s or
not for the case when the radiation constant a > 0. To overcome such a difficulty, our main observation is



Gong G Q et al. Sci China Math  December 2021 Vol. 64 No.12 2645

that if both the specific volume v and the absolute temperature 6 are bounded from the above and below
by some positive constants independent of the radiation constant a, then one can choose a sufficiently
small such that p(v,s) is a convex function of v and s in the regime for v and 6 under consideration.
It is worth pointing out that in the proof of Theorem 1.1, the smallness assumption we imposed on the
radiation constant a is used only to ensure that p(v, s) is convex with respect to (v, s) in the regime for v
and @ under our consideration and we do not use such a smallness assumption elsewhere to control certain
nonlinear terms involved. The main purpose of such an analysis is that once we can impose some other
assumptions to guarantee that p(v, s) is convex with respect to (v, s) in the regime for v and 6 under our
consideration, then we can deduce that a similar result holds accordingly.

Our next result shows that, if in addition to using the smallness of a to guarantee that p(v, s) is convex
with respect to (v, s) in the regime for v and 6 under our consideration, we also use such an assumption to
control certain nonlinear terms involved, then we can get a similar stability result but with less restrictions
on the ranges of the parameters b and [, which includes the most physically interesting radiation case
b =3 (see [17]).

Theorem 1.3.  Under similar assumptions imposed on the initial data (vo(z),uo(x),00(x), 2z0(x)) and
the radiation constant a, a similar stability result still holds when b > 2,0 < 8 < b+ 3.

In order to deduce the main results of this paper, the key points in our analysis are the following:

e The first is to deduce the uniform positive lower and upper bounds on the specific volume v(¢, )
and the absolute temperature 0(¢, x).

e The second is to show that the above bounds on the specific volume v(t,2) and the absolute tem-
perature 6(t,z) are independent of the radiation constant, since only in this case, we can choose a > 0
sufficiently small such that p(v, s) is a convex function of v and s.

We are now in a position to state our main ideas to overcome the above difficulties, especially on the
way to yield the uniform upper bound on the absolute temperature 6(¢,z). To this end, we first recall
that for the case when @ = 0 and k2 = 0 in (1.3), (1.5) and (1.9), which is the equations of a viscous
heat-conductive ideal polytropic gas with constant nondegenerate transport coefficients, the nonlinear
stability of some basic wave patterns with large initial perturbation is obtained in [13, 50, 51] for the
whole range of the adiabatic exponent v > 1. The method used in [13,50,51] to deduce the upper bound
on the absolute temperature (¢, z) is motivated by [24], which relies on the following Sobolev inequality:

10(t) = 17 ) < CIOE) = Ul L2162 ()l L2y < CQA A+ 10| e (r0,71xR))-

However, such a method loses its power for the case ko # 0 since some nonlinear terms caused by the
thermal conductivity
k(v,0) = Ky + Kovd°
cannot be controlled properly when we deduce the estimate on |0, (t)|| 2z, by employing the argument
developed in [24].
To overcome such a difficulty, for the case

(v_yu_,0_) = (v, us,04) =t (Voo, Uoos Oo0)s

i.e., for the case when the far fields of the initial data (vo(x),uo(z),00(x)) are equal, the argument
developed in [32] is to introduce the following auxiliary functions:

X(t) := /Ot/R(l +6°F3(s,2))0% (s, x)dxds,

Y (t) := max /(14—92()(8,1'))93,(8,1‘)(11',
s€(0,t) Jr
(1.30)

Z(t) := 2 (s,x)dx,
(0) = max [ 1 (s,0)da

R
W(t) = /Ot/Ruit(s,x)dxds
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and then try to deduce certain estimates between them by employing the structure of (1.1)—(1.3) and (1.9)
under our consideration, from which one can deduce the desired upper bound on the absolute temper-
ature 0(t,x). A key point in the analysis there is that the basic energy estimates based on the entropy
(v, u, 0, Voo, Uno, O ) normalized around the constant state (v,u,0) = (v_,u_,0_),

ﬁ(vau707UOO)UOO7QOO)
1
- cveoocp<99) + RHQo@(v) + 50— us)? + %(9 — 000)2(30% + 20,00 + 02),
00 Voo

O(z)=z—Ilnzx—1

can yield an L (R)-estimate on 6(¢, ). From such an estimate, one can get by employing the argument

developed in [23] that (see [32, (2.53)])

”9(t)”L°°(]R) <1+ ?(t) 5576 (1.31)

and the estimate (1.31) plays an essential role in [32] to deduce the upper bound of 0(¢, x).

But for the case considered in this paper, (v_,u_,0_) # (vy,u,0y), since, as we pointed out before,
we need to use the smallness of the radiation constant a to ensure that p(v, s) is a convex function of v
and s, although we can still construct a convex entropy n(v,u, 6; V,U, ©) normalized around the profile
(v,u,0) = (V(t,x),U(t,x),O(t, x)),

v

v

av(f — ©)?

3 (30> + 200 + ©%), (1.32)

n(v,u,0;V,U,0) = Cv@fﬁ(g) + R@@(

1
) +-(u—-U)?+
2
to yield a similar estimate (see (2.10) obtained in Lemma 2.6) to guarantee that the estimate we ob-
tained on (¢, ) does not depend on a, we can only use the boundedness of fR @(%)dw. Moreover, the

construction of the auxiliary functions X (¢), Y (¢) and Z(t) should also be modified accordingly as follows:

X(t) ::/0 /R(l—kﬁb(s,x))xf(s,x)dxds,

Y (t) := sup /(1+92b(s,x))xi(s,x)dx, (1.33)
s€(0,t) JR

2= sw [ 2, (si0)da,
s€(0,t) JR
where (¢, z) = u(t,x) — U(t,z) and x(¢t,z) = 0(t,x) — O(¢t, x).
A consequence of the above modifications is that instead of the estimate (1.31), one has (see the
estimate (4.1) in Lemma 4.1)
160)]| ey S 1+Y (1) (1.34)

The above changes make it harder to deduce the upper bound of 6(¢, ), especially to yield a nice bound
on the term I17 in (4.6) which cannot be controlled by exploiting the method used in [32] to estimate the
corresponding term, i.e., the term I in [32].

Our strategy to overcome the above difficulties can be summarized as follows:

e The smallness of the strength of the rarefaction waves is made full use of to control the nonlinear
terms originating from the nonlinearities of equations, the interactions of rarefaction waves from different
families and the interaction between the solutions and the rarefaction waves.

e The specific volume v(t,z) is shown to be uniformly bounded from below and above with respect
to space and time variables through delicate analysis based on the basic energy estimate and the cut-off
technique used by [18,32]. It is worth emphasizing that the positive lower and upper bounds we derived
are independent of § and a.

e Motivated by [22,32], we introduce the auxiliary functions X (¢), Y (¢) and Z(t) defined by (1.33) to
derive the desired upper bound of 6(¢t, z), especially to yield a nice estimate on the term I;7 given in (4.6).
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To this end, we first derive bounds on ||, (t)||z2(r) and fot Jg X2pdxdr in terms of [|0] L= (jo,r)xr) as in
Lemmas 3.5 and 3.6. Then by using Sobolev’s inequality and Lemma 3.6, the term

/Ot /R(1 + 0Vt dxdr

t t
/0 / (1+ 67)gkdadr < C(L+ 0] (071 m) / 2 i 460 2 o

can be estimated as follows:

t
<CO(1+ HGH%OO([O,T]X]R))/O 192122 @) 1¥22 | L2 ryd

t 1 t 1
< O+ 108 i) ([ Wsliogutr) ([ Wnelisgur
<C(1+ \|9||%§’([O,T]XR))- (1.35)

Note that we do not need to introduce the additional function W (t) as in [32] (see [32, (2.51) and (2.70)]).

Finally, we point out that there are a lot of results concerning the stability analysis of viscous wave
patterns of the 1D compressible Navier-Stokes equations. We refer to [6,19,33,46] for the viscous shock
wave, [2,9,34,37-39,41] for the rarefaction wave, [7,12, 14,15, 35] for the viscous contact wave, and
[8,10,11,13] for the superpositions of the above three wave patterns. For more references in this direction,
please refer to [4,21,30,42,45,50-52] and the references therein.

The rest of this paper is organized as follows. We first give some basic energy estimates and some
properties of the smooth approximation of the rarefaction wave solutions in Section 2. In Section 3,
we derive the uniform-in-time lower and upper bounds of the specific volume v(¢,x) which are also
independent of § and a. Then the uniform-in-time, § and a independent upper bound of the absolute
temperature 0(¢,x) will be obtained in Section 4. Furthermore, a local-in-time lower bound on the
absolute temperature will be deduced in Section 5. The proofs of our main results are given in Section 6.
Note that although the lower bound on the absolute temperature 6(¢,x) obtained in Section 5 depends
on time ¢, it is sufficient to prove the main theorem in this paper by combining these a priori estimates
with the continuation argument introduced in [32].

Notations. In what follows, C represents a generic positive constant, which is independent of ¢, §, a
and = but may depend on v, ut, 0+, V, V, ©, © and Hy. Notice that the value of it may change from
line to line. C;(+,-) (i € Z,) stands for some generic constants depending only on the quantities listed in
the parentheses and € denotes some small positive constant.

For two quantities B and B’, if there is a generic positive constant C' > 0 independent of ¢, §, a and x
such that B < CB’, we take the note B < B’, while B ~ B’ means that B < B’ and B’ < B. Moreover,
for two functions f(z) and g(z), f(x) ~ g(z) as * — ¢ means that there exists a generic positive constant
C > 0 which is independent of ¢, §, @ and = but may depend on vy, u+, 6+, V, V, ©, © and Hy such
that

Clf(x) <g(z) < Cf(x)

in a neighborhood of zg. H'(R) (I > 0) denotes the usual Sobolev space with the standard norm || - ||;,

and for brevity, we take || - || := || - [|o to denote the usual L?-norm. For 1 < p < +oo, f(x) € LP(R),
1

I fllze = (Jg |f(2)|Pdz)>. Tt is easy to see that ||f||,> = || - ||. Finally, || - ||z~ and || - || are used to

denote || - || oo (r) and || - || oo (jo,4x ), Tespectively.

2 Preliminaries
First of all, (1.1), (1.23) and (1.25) tell us that (V(¢,2),U(t,x), S(t, z),0) solves the following problem:

Vvt_Um:Ov
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Ui+ p(V,0)z = g(V,0)a,
2

(e(V, o)+ U) T (Up(V.0)), = 4(V, ),

2
Ope(V,0) =
@t + e@(‘/’ @) UZ' - T(‘/? 6)7
St - 0,

where
g(V, @) = p(V7 6) - p(Vlv @1) - p(Vg, 63) - p(vmv em)a
a(V,0) = (e(V,0) — e(Vi,01) — e(Va, ), + ( fffff

+ (Up(V,0) = Uip(V1,01) — Usp(V3,03)),
Ope(V.0),; _ @117@(‘/1,@1)U1 _ O3pe(V3,03)
eo(V,0) °F eo(V1,01) 7 eo(V3,03)

(V 6) U3:E7

and 6,, = (v, 5).

Due to the fact that wo(z) is strictly increasing, we can deduce the following lemma (see [2,26]).
Lemma 2.1.  For each i € {1,3}, the Cauchy problem (1.24) admits a unique global smooth solution
w;(t,x) which satisfies the following properties:

(1) wo <w;i(t,z) < wi, wig(t,x) >0 for each (t,z) € Ry x R.

(i) For any p with 1 < p < oo, there exists a constant C) 4, depending only on p and q, such that

[wiz ()7 » < Cp g min{e?~'@F, @it P+,

— 71 —_
ina ()] 5 < g min{ e 1?0030 750 0=ty
(iii) If 0 < w;— (< wiy) and q is suitably large, then

|wi(t, ) —wi—| < C@;(1 + (ex)?)™3 (1 + (ew;_1)?)"3, 2 <0,
lwiz (t, 2)] < Ce@i(1+ (€x)?) 72 (1 4 (ew;it)?) %,

(iv) If (wim) < wi+ <0 and q is suitably large, then

wilt, 2) — wiy| < C@i(1+ (ex)?) 75 (1 + (ews—t)?) 75, 2 <0,
wig(t, 2)] < Cedi(1+ (e2)?) 72 (1 4 (ewit)?) ™2,
(v) limy 4 oo SUP, e Jwi(t, ) — wfH(%)] = 0.

0

Here, ©; = wiy —w;— > 0 and wf( ) is the unique rarefaction wave solution of the corresponding Riemann
problem of (1.14)1, i.e.,

Wi, § 2= wiy.
Owing to Lemma 2.1, (1.25), and (1.26), we can conclude the following lemma (see [2,26]).
Lemma 2.2. By letting e = 6, ¢ = 2, the smooth approximations (V(t,x),U(t,x), O(t, z),0) construct-
ed in (1.25) and (1.26) have the following properties:
(i) Vi(t,z) = Up(t, ) > 0 for each (t,x) € Ry x R.
(ii) For any p with 1 < p < oo there exists a constant C,, depending only on p, such that
[(Va, Uz, ©2) ()70 < Cp min{(52p_1 6(t+ 1)_p+1}
| (Vaws Uses ©0) ()17, < Cp min{ %P1 0T (t+1)
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It is obvious that ||V, (t)||2. is not integrable with respect to t. However, we can get for any r > 0 and
p > 1 that

| Ivv el < cos

[

_1(1_L)
1\ s
(iii) For each p > 1,

1(9(V,©)z,7(V,0),a(V,0))(t) || » < C(p)85 (¢ +1)75.
Especially,

/ (V. ©)2,r(V. 0), (V. 0)) (1) [ odt < c<p><
(1) Lt s e $UPcse [(VI(E ), Ut 2), Ot 2)) — (VA(2

2), UR(2),0%(%))| = 0.
() 1(Vilt, ), Ua(1,2), ©(t,2))] € O] (Va(t, ), Ua(t,2), €1, 2))].

Setting
(), 9(t,2), x(0,2), (4, )
= (v(t,z) = V(t,x),u(t,z) — U(t,x),0(t,x) — O(t, z), s(t,z) — 3), (2.1)
we can deduce that (o(t, ), b(t, ), (&, ), £(t,2), 2(t, ) satisfies
ot — Pp =0,
it o0) = plV.0) = (%) g0

Opg(v,0) 1 pu? K(v,6)0,
= aa (e  (), )

Opg(v,0)  Ope(V,0) (2.2)
(T ey e
_pul K(v,0)0, k(v,0)0%2  \pz
“= +(w)x+1)02+9’
z = (CZZ;) — ¢z
with the initial data
(@(tvl.)vql}(ta x),x(t,x),{(t,x), Z(t,.’E ) |t:0
= (wo(z),Yo(x), X0 (), &o(2), 20(T))
= (vo(z) —

V(0,2),up(x) — U(0,z),00(x) — O(0,z),s0(x) — S, 20(x)). (2.3)
On the other hand, it is easy to see that n(v,u, 8;V,U, ©) defined by (1.32) is a convex entropy of the
system (1.1) around the smooth rarefaction wave profile (V (¢, z),U(¢,z), ©(t,z),0) which solves

2 k(w 2
(v, u,0,V,U,0) + ((p(v,0) — p(V,0)))s + (uG% LA ,0)9X1>

v0 00?2

- e ~ _ - B \pzO

+(30,) — (V.5) = 5ulVi9)e = BV, 9, + 2022

_ IR i R(Uaa)Xch 4 20U XYy _ nUz 0, . ’i(%e)@xXSﬁx i K(Ua0>@mXXm
v 0 . v v?2 v20 062
/“pUxx K:(/Ua H)X(")rr qu2X /LUchzi/} H(Uv G)Vx@rx

+ + + - -
v v0 vl v2 v20
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ke (0, 0)XOy
v0 '

We first give the set of functions X (0,T; My, M3) for which we seek the solutions of (2.2)-(2.3) as
follows:

—q(V,0) —g(V,0)9 + g(V,0).U = r(V,0)§ + Apz +

X (0,T; My, M>)

(o, ¥, x)(t,2) € C(0,T5 H' (R)),

(Yas Xa» 22) (8, ) € L2(0, T; H'(R)),

Yaa(t, ) € L*(R),

o (t,z) € L*(0,T; L*(R)),

M7 < V(tz) +ot,z) < My, V(tz) €[0,T] xR,

My ' < O(t,z) + x(t,z) < My, Y (t,z) € [0,7] x R,

z(t,x) € C(0,T; H'(R) N L'(R)),
<z(t,x) <1

= (@7¢7X7Z)(t7$>

)

Here, 0 < T < 400, M; and M, are some positive constants.
For the local solvability of the Cauchy problems (2.2) and (2.3) in the above set of functions, one has
the following lemma.

Lemma 2.3 (Local existence).  Under the assumptions listed in Theorem 1.1, there exists a sufficiently
small positive constant ti, which depends only on ||(o,%0, X0, 20)|l1, V., V, © and ©, such that the
Cauchy problems (2.2) and (2.3) admit a unique smooth solution

(et ), (¢, ), x(t, 2), 2(t, ) € X (0, t1; My, M)

which satisfies

0< (M)t <ot )+ V(t,x) < M,
0 < (M3)~' < o(t,z) +O(t,x) < My,
0<2(t,x) <1

for all (t,z) € [0,t1] x R and

sup {[|(, ¥, x, 2) (D)1} < 2[l(0, %o, X0, 20) -

te[0,t1]

Suppose that such a local solution

(o(t,2),¥(t, z), x (¢, 2), 2(t, 2))

constructed in Lemma 2.3 has been extended to the time step t = T > t; and satisfies the a priori

assumption
0< Mt <o(t,x) <My, 0<M;y'<0(t,z) <M (2.5)

for all z € R,0 < t < T and some generic positive constants M; and Ms (without loss of generality,
we assume in the rest of this manuscript that M7 > 1 and My > 1). What we want to do next is to
deduce some energy type estimates in terms of ||(o, Y0, X0, 20)|/1, V., V, © and ©, but independent of M
and Ms. Throughout this paper, we assume § (the strength of the rarefaction waves) and the radiation
constant a are small enough such that

SML00 100+1006 g (2.6)
aM{POMHO0TI0% « 1. (2.7)
The following lemma guarantees that p(v, s) is a convex function with respect to (v, s). In fact, from

(1.6)—(1.8), the a priori assumption (2.5), and the assumption (2.7) imposed on the radiation constant a,
we can get the following lemma.
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Lemma 2.4.  Suppose that
(p(t, ), ¥(t,x), x(t,2), 2(t, 7)) € X(0,T5 My, My)

is a solution to the Cauchy problems (2.2) and (2.3) defined on the strip IIp := [0,T] x R and satisfying
the a priori assumption (2.5). Then p(v,s) is convex with respect to v and s provided that a > 0 is
sufficiently small such that (2.7) holds. Consequently, we have

[3(1},8) _ﬁ(‘/a §) —va(‘/, 5)90 _ﬁs(u §)£ 2 0

Remark 2.5. To ensure that we can find sufficiently small positive constants dg and ag such that the
assumptions (2.6) and (2.7) hold for all 0 < 6 < dp,0 < a < ap, a sufficient condition is to show that the
positive lower and upper bounds on v(t, z) and (¢, ) depend only on ||(xo, Yo, X0, 20)|/1, V., V, © and O,
but are independent of My, M, § and a.

Now we give the following lemma concerning the basic energy estimates about the solution

(p(t,2), 9t 2), x(t, x), 2(t, ),

which will be frequently used later on.

Lemma 2.6 (Basic energy estimates).  In addition to the conditions stated in Lemma 2.4, we assume
further that (2.6) holds. Then we have for all0 <t < T that

/Rz(t,x)dx—i—/t/ o(1,2)z(T, x)dzdr < 1, (2.8)
/ 2(t,x)dx +/ / (z + ¢z )(7’ x)dxdr <1, (2.9)
/ (t,a d:c—i—/ / <“@w2 ”;99)2@’(’”)(7 x)dmd7+/ / (A@‘bz)(r z)dadr

+ / / (50, 8) — H(V,5) — 5oV, 8)p — (V. 5)E) U] (7. 2)drdr < 1. (2.10)
0 R

Proof.  The estimates (2.8) and (2.9) follow directly from (1.1), and integrations by parts. As for (2.10),
we have by integrating (2.4) with respect to t and z over (0,¢) x R that

/ de//(u@w? veexz> //A%z

+/0 /R(ﬁ(v,s)fﬁ( §) = Pu(V,8)¢ = 5s(V,5))Us
5
z:/nod$+zlj- (2.11)
R j=1

By virtue of Lemma 2.2, the a priori assumption (2.5), (2.6), (2.8), and Cauchy-Schwarz inequality,
I; (j =1,2,3,4,5) can be bounded as follows:

I — //(%szz/zz 1Usq Wmi r(v,0)Oux s (v,9)®m><xz>

20 62
< o7 (

v
nov; | K(v,0)0x;

s / / ( >

- 3 1k pUY?  K(0, 00702
4 c(/ ||Uw||Lm||Uw||Lm/( )d:cd7-+//( ro o M)

t

2 K’(vae)x

Jr/o ||®x||Loo/R<U6 > dl‘dT)
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o [l [ (52

+ 54C(M1 + My My + MEMZ(1 + M, M3)?

P

M ME(L 4 M, M) / (14 7)) (1) 2, (2.12)

t
12:/ / (Nwaw+K(v79)@sz)
o Jr v v

t
< (||Um|+||®m||+||Um||
0

K(v,0)x

2
S+ 0wl | =2

2
)dT

t
S ot + 017 + A0+ M) [ (17 R (w0 ()P, (213)
0

//(/LU2 pUppVy m(v,@)@wd@)
Iy = 2 o 2
v v20

5 5 5

5 5 VJ;X 3 UwX 3 H(Uao)@wx 3
< 2 2
N//(|U$| + V|2 + . +‘ v 20

¥ |? s |m(v, 0)x |
< [weveonnyars [ [ (w4 AL
<64 0 (ME + MEMZ + MAME(L+ MEMEY)) / 1+ 7)) (PP, (2.14)
0

L= /0 /R (—a(V,0) — g(V,0),46 + g(V.0),U — r(V,0)c)
< / (a(V, )11 + 9V ©)allzr + 9(VaO)all + [F(V, )] + g(V- O)allllo]? + [V, ©) [ [1€]2)dr

<5t 1ot / (1474, &) (1) |Pdr (2.15)

and

B ¢ ke (v, 0)xO,
[ -5

t b b
514‘/ / (0 “pw xX' ¢ |V @zX‘ +9b 2|®ancX|+0b 2|@ |)
0

[

bl
SDx

ID

§
+ |eb2x@xi>

+ ”fo) //<|V|2+|@|2+
/ / 020210, x|? + g~ 2X2|@ 2
aX © Ok(v,0)
) 2
§1+54<1+/ dT+//'”’92®X1>
0 0 JR vt

t
+(5%M§b—2+5%M12M§b—2+5%M§—2+5%M§b—4)/ [(147)72 + (1+7)"3]||x(n)|?dr. (2.16)
0

Combining (2.6), (2.11)—(2.16) and using Gronwall’s inequality, we can deduce that

[ [ (25 ce0) [ [

+/ /(ﬁ(us)_ﬁ( 8) = pu(V,8)p — ps(V, $)§)Us

<1+54M1M2/ /9%’. (2.17)
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Now we turn to estimate the term fo Je gf’

For this purpose, we multiply (2.2), by £= to deduce that

2
[M(%) _%ﬂ +R9;oi+<wwm>
2\ v v, v vo),

_ {?ere(v,i)%xm} +{(pu(v,9) pv (V,0)) Voo, N (pe(v,e)—p@(‘/,@))e)x%}

v v
+[w2s0_ 1/)21# ut@@}Jr[u Jops 1 280}4-9( Jopa (2.18)
v v v v v v
Then we integrate (2.18) over (0,¢) x R to derive
2 + 2
2w+ [ [
R U
Yo, Po(0,0)¢axa
St [ [ [ pedene
+/ / (po(v, 0) —pv(V, @)) 2pa  (Po(v,0) — po(V.0))Owpy
0 R v v
v2 v2
Ig 9
t
+/ / 9V, 0)spa (2.19)
0 JR v
Now we turn to estimate I; (j = 6,...,10) term by term. In fact, we have from Lemma 2.2, a priori

assumption (2.5) and Cauchy-Schwarz inequality that

i[5l [ 25 ) [ 5P o
1 //RR9<pw+C(M2//M@¢2 M2+M3M5)/A%)’ (2.200)
e | Mo | [ (Hetntian ity ontare

//\

S [((% e s

<P 293 2.2 UGX 2
—I—( V20+vx9 + 000" x* + 7 )®I>

//\

/ [ o+ ) | (1) g0 (P (2:21)
R 0

Iy < — / RW”C/ / ( [sze)HB(—VZ?f;e))+v5<—vﬁie>>>

< b [ R oy [ [ 105 sonan, [t (2:22)
b [ (i)
(o [ oo [ 12
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/ / RH‘PI + O (My Mab? + M3M,5) (2.23)
and
Img% 39% / /Rv pvv9
/ /RRG% + CM, My63. (2.24)

Plugging (2.20b)—(2.24) into (2.19), we have

el £ 22

2 0 2
S+l + (MM + 5 MM / / <u@¢ R >@xm>

00?2

+ 5(M5M2+M1M§’)/0 (L+7)72 (¢, ) (7) | %dr. (2.25)

Having obtained (2.17) and (2.25), we can deduce (2.10) immediately by the assumption (2.6) and
Gronwall’s inequality. O

By repeating the argument developed in [1], we can deduce the pointwise bounds of z(¢,z). Here we
omit the proof for brevity.

Lemma 2.7.  Under the conditions listed in Lemma 2.6, we have for all (t,z) € [0,T] x R that

0<z(tx) <1 (2.26)

3 Uniform bounds for the specific volume

The main purpose of this section is to deduce the uniform-in-time pointwise bounds for the specific
volume v(t, z) for the Cauchy problems (2.2) and (2.3), which do not depend on § and a. To this end,
we first give the following lemma, which is a consequence of (2.10) and Jensen’s inequality.

Lemma 3.1.  Under the conditions listed in Lemma 2.6, we have that for all k € 7 and t € [0,T] there
exist ap(t),bi(t) € Q. := [k — 1,k + 1] such that

/ u(t, z)dx ~ 1, / O(t,x)dx ~ 1, wv(t,ar(t)) ~1, 6(t bg(t)) ~ 1. (3.1)
Qk Qk
The next lemma is concerned with a rough estimate on (¢, x) in terms of the entropy dissipation rate

[ (1OY: | K(v,0)0x3
V(t)/R( o0 + 02 >(t,x)dx.

Lemma 3.2. Under the conditions listed in Lemma 2.6, we have that for 0 < m <
(without loss of generality, we can assume that x € Qy, for some k € Z),

functional

b+1

and each x € R

107 (¢, ) — 0™ (¢, b())| S VE(H) + 1 (3.2)
holds for 0 <t < T and consequently,
0(t,2)]P" <14+V(t), z€Qp 0<t<T. (3.3)
Proof.  From (1.9), we have

|67 (t,2) — 0™ (¢, bx(1))]
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< / 16™1(0, + xo)ldr

vg?m \* POV K(v,0)0x2\  \? _—
( e )(/Q< Ve H0 )m) + [ o iends
1%
Vv

SV + M2 752

SVED) + (34)
It is worth pointing out that we have used the assumption 0 < m < b"%, boundedness of 4, (2.5), (2.6),
and (3.1) in deriving the above inequality. O

The next lemma will give a local representation of v(t,x) by using the following cut-off function
p(x) € WHe(R):

1, r<k+1,
o) =Ck+2—2, k+1<2<k+2, (3.5)
0, z>k+2.

Lemma 3.3. Under the assumptions stated in Theorem 1.1, we have that for each 0 <t < T,

u(t,z) = B(t,2)Q(t) + 1/0 B(t’x)é?((:);f;g(i))p(ﬂ ?) g

x € Q. 3.6
. K (3.6)

Here

B(t,z) = vola >exp{ L[ ) - ute y))w(y)dy}

!

P
v

o:=—p(v,0)+

With the above presentation in hand, we can deduce uniform-in-time pointwise bounds of v(¢,z) by
repeating the argument used in [32], and we omit the proof for brevity.

Lemma 3.4. Assume that the conditions listed in Lemma 2.6 hold. Then there exists a positive con-
stant C which depends only on V., V, ©, © and Hy, but is independent of 6 and a, such that

Crl<o(t,z) <Gy, Y(tx)€[0,T] xR, (3.8)

The following lemma concerns the estimate on the term ||¢,(¢)||?, which will be frequently used later

on.

Lemma 3.5.  Under the assumptions listed in Lemma 2.6, we have that for any 0 <t < T,

t
loa ()] + / / 0(r.2)2 (r,2)drdr <1+ 0] (3.9)

Proof.  In light of (2.10), (2.20a) and (3.8), we can conclude that

ven) J5F el )

RH(px B
[ o 10+ 101, (310)

Here, (7 — b)4 := max{0,7 — b}.
Then inserting (3.10), (2.21)—(2.24) into (2.19), we can get (3.9) by employing (2.6) and the assumption
b>6. O
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The next lemma pays attention to the estimate on the term

t
/ las ()] 2dr,
0

which will be useful in deducing the upper bound of (¢, x).
Lemma 3.6. Under the conditions listed in Lemma 2.6, we have that for any 0 <t < T,

¢
@+ [ o (r)Pdr S 14 0] (3.11)
0
Proof. ~ We multiply (2.2), by =tz to get
2

QZ'IfUQZ'QZ‘
= (0(0,0) ~ LV, @»wwm - Menlar 4oV, 0),

02

+ (3.12)

Integrating (3.12) with respect to t and z over (0,t) x R, we utilize Cauchy’s inequality, Sobolev’s
inequality, Lemma 2.2, (3.8) and (3.9) to find that

t 2
[Gass [ [ 1
//‘“"mo // [0+ a269) o + (Vi ©2) Pl + [fipal? + x2IVa?
+ a® (L4040, P x|* + U2, +19(V, ©)4|* + 9292 + p2V72 + UZp2 + VU2

1y - '
<[ [ o1+ 10180 + 101+ [ Tl nalllon P
t 2
<o f [ ’“"”+C<e><1+ o1+ 1ol + 0+ el [ [ %2 -0)
0 JR

<o [ [ M o1+ 1018 + ) (3.13

If we choose € > 0 small enough and use the assumption b > 6, we can obtain (3.11) immediately. O

4 A uniform upper bound of the absolute temperature

Now we are in a position to derive an estimate on the upper bound of 6(¢,z). To this end, we recall
the definitions of the auxiliary functions X (¢),Y (t) and Z(t) defined by (1.33), and then try to deduce
certain estimates among them by employing the special structure of the system (2.2).

Our first result is to show that ||0(¢)|| L, || (¢)]| and |[14(t)|/ L can be controlled by Y (t) and Z(¢),
respectively.

Lemma 4.1. Under the conditions listed in Lemma 2.6, we have that for all0 <t < T,

10(t) || = S 1+ Y (1)75,
sup Yo (TP S 1+ 2%,  |[tu(®)|ie S 1+ Z(1)5.

T€(0,t)

~—~
N =
~— ~—

Proof. ~ We assume that x € [k — 1,k + 1] for some k € Z and x > by(t) and observe that

(O(t,x) — ©(t,2))**?
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x

= (0(t, (1)) — O(t, b (1))*"*° + /b (t)(Qb +3)(0(t,y) — O(t,y)*" X (t, y)dy

SLERe- O U_l: (1+2(8) ) % [o-eoal :
S0 -0)D),2 Vi),

Then applying Cauchy’s inequality, we can obtain (4.1).
The estimate (4.2) is a consequence of Gagliardo-Nirenberg and Sobolev inequalities. This completes
the proof of Lemma 4.1. O

Our next result shows that X (¢) and Y (¢) can be bounded by Z(t).
Lemma 4.2.  Under the conditions listed in Lemma 2.6, we have that for 0 <t < T,

X(t)+Y(t) S 1+ Z(t)a, (4.3)
Proof.  In the same manner as [22,32], we set

0 b+1
K(v, K10 = Kof
K(v,@):/o %df: %+ ;H . (4.4)

Then we can deduce that
K¢ (v,0) =Ky (v,0), + Kg(v,0)x: + Ky (v, 0)Uy + Ko (v, 60)0y,
Kz (v,0) = Ko (v,0)0z + Ko (v, 0)xa + Ko (v,0) Ve + Ko (0,0)0,,
Kot (v,0) = (Ko(v, 0) Xz )t + (Koo (v,0) (¥ + Uz) + Kug(v,0) (xt + O1)]a + Ky(v, 0)thze
+ Koo (v, 0) (¥ + Uz) + Kop(v,0)(xe + ©0)][Va + Ko (v, 0) Uz
+ [Kypo (v, 0) (¢ + Uz) + Koo (v,0)(xt + 04)]Os + Ko (v, 0)O s,
Ko (0, 0)] + Koo (0,0 S 0, [Ko(v,0)] S1+6°  [Kug(v,0)] S 1, [Kao(v,0)] S 6"

(4.5)

Hereafter, for simplicity of presentation, we use K, p, e, P and E to denote K(v,0),p(v, 8),e(v,8),p(V,0)
and e(V, ©), respectively.

We multiply (2.2), by K; and integrate the resulting identity with respect to ¢ and x over (0,%) x R to
find that

t t t
/ /eaKGXer/ /(KGX;t)(KGXw)t —/ /KeKuerXi
0 R 0 R 0 R

t
= / /(KGKG(’Xtei + KgXt@m + KHKUOXt@xVx)
0 JR

Ill
t
eg© P
+/ /{KeKaexi@t+K9Kv9Xt%@z — KoKyoxaxtVe — (92?9 - 9E09>UxK9Xt}
0o Jr o
12
t t
+/ /KeKvexiwm—/ /KOKUGXﬂOa:Xx
0 Jr 0o Jr
113 114
t t t 2
us K
i / / (A — eqr(v, 0)Koxs — / / 0poKotbaxs + / / iz Koxe. (4.6)
0o JR 0 JR 0 JR v
Iis Iis Iz

Firstly, we find that

/Ot/ReeKexf 2 /Ot/R(l +ab®)(1+6°)%%2 > X(t) (4.7)
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and

[ [ s, =5 [ Enea -5 [ w20
>Y(t) - C.

(4.8)

We now estimate I, (k= 11,12,...,17) term by term. For the term I;1, it follows from Lemma 2.2, (2.6)

and (4.5) that

t
I < eX(1) +C(e)/ /[(1+93b—2)|@m|4+ (14 630000 + (1 + 6%)|0. 2V4[?]
0 R

X(t) + C([(1 + MP2)5 + (1+ MP)52 + (1 + Mb)d]

™

After a simple calculation, we can deduce from Lemma 3.4 that

9])9 @P@

< .
o0 Bo |° ol + [x]

On the other hand, by using Taylor’s formula, we can deduce for 0 < w < 1 that

/Xde:2/@(9)(W@+(1—w)9)2dx§1+M22.
R r \©O

Thus we can obtain from Lemma 2.2, (2.6), (2.10), (3.9), (4.5), (4.10) and (4.11) that
' b 210 120 LH0)OG? 5 o
ne<ex®+c@ [ [ |as oo o+ SR ey,

o Jr

40 (2 4 x2>|Um|ﬂ

¢ 14 60%)0]v, |2
+C||@tHLoo/ /4( ;2 |X | ,(1+9b+1)
0o JR v

eX(t) + C(e)[(1 + METHYS + M26* + (1 + M2 + 62(1 + M)

<
< eX(t) + Cle).

Moreover, we get by combining the estimates (2.10), (4.1), (4.2) and (4.5) that

(1 eb(-) 22
Ilgw// AOPGl 1y 02 < (11 v ()=

)+ Cle )(1 + Z(t)e).

) (1+ Z(8)*)

By employing Sobolev’s inequality, (3.9), and (2.10), we find that

K(v,0)x. ||

Iy < ()+C() v

II%II dr

K(v,0)x
X(t)+Ce)(1+0]|)

() + CO1+ 0]1) (//9 (
(] o

( K(v,0) Xz >1m |
) [ [ty
(eae) (0

<eX(t) +C(e)(1+Y(t

V.

[N

J

(4.11)

(4.12)

(4.13)

(4.14)
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In view of (2.2),, Lemma 2.2, (2.6), (2.8), (2.10), (4.2) and (4.10), one has
t P2
15[ [(1+9b+2)egxf+(1+9b+2)92p U2+ (14072l (91"’ 9% @) o
0 JR €eg FEo

+ (140" + (14 6")US + (1+0"72)9%2" + (14 6"72)ejr?(V, @)}
//1+9*’+2 ( G 9)@>

s {”9(’*8 IO )+ (0 0+ 2

2

Oy 4
Sl [ [ o + (14 M8
o Jr v0
t
1 MR (o) [ ] o

8 b411

SI+XWA+YO)")+Y®)™™ + 1+ Y()2r

bt+B+2

B+ Z(0)3) + V(1) 4 e (4.15)

and
Ja < / / 1 4 9b+2 921)@262 + 92bv2(_)2 + 921) 2 @2 + 921)—2@4 4 @2 + 921)@2
(1+67)03 (2 + V)]

t
<1012 [ 10l oular + 0+ 102 [ [ vier

(1+6")0]x.|?
/ / ’092 | | (1 +92b+2)@?ﬂ

t
+(1+||0H22)/ /®i+(1+||9ugg+2>/ /@gr
0 R 0 R

< (1+ M7 + 64 < 1. (4.16)

Thus we can conclude from (4.15)—(4.16) that

J<1I+XO0+Y0)™ )+ Y™ + Z(0)T + YY) Z(0)F + Y (t) 75 . (4.17)
Plugging (4.17) into (4.14), we have
Ly < e(X(8) + Y (1) + Ce)(1 + Z(t)1279). (4.18)

Here, we have used the facts that
19
b> T and 0 < S8 < min{3b+ 2,50 — 10}.

As for the term I5, from Lemma 2.2, (2.9) and the assumption 0 < 8 < b+ 3 we have
t
hs S [ [10+6M00+ (1461 + a0V Ol
o Jr

X(t) + C(6) / t / (14676222 + (1+6")r(V, 0) ]

eX(t)+C(e)(1+ 10]%F7 + 65 (1 + ML0Y)

<
<e(X(H) +Y ) +Oe). (4.19)
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For the term I;6, we employ (4.5) and the assumption b > 6 to find that
t
he / / (1469001 + at®) o

t)+ Cfe //1+9b+9

< eX(t) + Cle) =)
<X+ Y1)+ C(e). (4.20)

It suffices to bound the term I;7. To this end, we conclude from Lemma 2.2 and (4.5) that

hr < eX(0)+0(0) | t Jasewieud <exa oo+ [ t Jaset).

Then by virtue of Sobolev’s inequality, Lemma 3.6 and (2.10), we can get

t t
01) 4 < 917 IQOO sz
/0/R<1+ WA < (4 Hoo>/0 el 522

t
S+ 161E) [ e i
t 3 t 3
s 01z ( [ onlPar) ([ pondiar)
S 1+ e)%. (4.22)
Thus the combination of (4.21), (4.22) and the assumption b > 2 gives
I <e(X(t)+Y(t) + Cle). (4.23)

By substituting (4.7)—(4.23) into (4.6) and by choosing € > 0 small enough, it yields (4.3). O

The next lemma tells us that Z(t) can be controlled by X (t) and Y (¢).
Lemma 4.3.  Under the conditions listed in Lemma 2.6, we have that for all0 <t < T,

Z(t) S1+ X(t) + Y(t) + Z(t) 555, (4.24)

Proof. ~ We differentiate (2.2), with respect to ¢t and multiply the resulting identity by v to derive

(3) 5 (oo (2] )o].

2
_ l:U(¢xq;|; U:c) _ /L[’lj}xt + (p_ P)t —|—g(V, @)t:| ¢;ct- (425)

Integrating the above identity with respect to ¢ and x over (0,¢) x R, one has

2 t 2
/ﬁda:—t—/ /mec
R 2 o Jr U

t 2 2

I1s
+ /Rl/f”dx—l—/ot/R(p—P)twtm. (4.26)




Gong G Q et al. Sci China Math  December 2021 Vol. 64 No.12 2661

It suffices to estimate the terms Ij, (k = 18,19). For this purpose, we compute from (2.6), (2.10) and (3.8)

that
t
Ilgge//”w“c //( 91/)2+0U2)+U4+U§t+|g(ve)|)

/ //“/)tx (1+Y( )2513)(1+Z(t)%)—|—5+54M2)

/ / Mis L o+ + 20 %3). (4.27)
Moreover, it is easy to see that
(0= P)il? S (1+a?6°)x¢ + [0:(0® + XP(1+6") + x*07 + XUz + 7 + Uzg® (4.28)

Then it follows from Lemma 2.2 and (2.10) that

t
I19<6//RM?$ //\p P);
0
t
<€AL4A%”*‘“@<X“>*Z;W»MWGWW+<1+nmﬁmmumr
' 11)7925 3 ¢ 2 >
+/O/RG (1+9)+/0||Ux||Lde

6/t/WthaJFC(G)(1+X(1§)+Y(t)+6(1+1\426))
///“/’tw )L+ X(t)+Y(t)). (4:29)

By choosing € > 0 small enough, the combination of (4.26)—(4.29) and (3.8) shows

t
HMW+AH%AﬂWM§1+X®+Y®+Z®%%- (4.30)

Now we are in a position to yield an estimate on [|1),,(t)||. Firstly, (2.2), tells us that

PCatVe + PaUs + Vatha + Vol
(%

Vg = —Uso + — [wt (p(v,0) = P(V,0))s +9(V,0).].  (4.31)

On the other hand, Lemma 2.2, (2.6), (3.9), (4.1) and (4.11) show that

I = Pall* < /R[(l + a0 xal® + (Vi ©0) Pl]* + (1 + 04| (Ve, ©2) PIxI? + |02 ]| d

SY @)+ L+ 100 ) (1 + [10llz=) + 6% (1 + M3)
S1+Y(0). (4.32)

Thus one can conclude from Lemma 3.6, (3.9), (4.2), (4.30)—(4.32) and Young’s inequality that

/ Y2pdr S /(wiwi + QU+ 02V + VUL 4+ UZ, + 97 + |(p(v,0) = P(V,0)). > + [(9(V, 0)),|*)da
R R
6b+9
ST+ X)) +Y )+ 2055 4 92 [00ll? + 1Tl 2oo ll@all + Vil oo 1102 |2
Va2 Ul + Ul + [[(9(V, ©))o ||
51+X@+Ym+zoww+&0+M®+u+ymﬁﬂu+zm%
§ 1+ X(t) + Y(t) + Z(t) Bb+8

(4.33)

We thus get the estimate (4.24) by using the definition of Z(t). O
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We can deduce that Y(¢) < 1 by combining Lemmas 4.1-4.3. Then the desired upper bound on the
absolute temperature 0(t, z) follows from (4.1) immediately. Moreover, we can infer from Lemma 2.1 to
Lemma 4.3 as follows.

Lemma 4.4. Under the conditions listed in Lemma 2.6, there ezists a positive constant Cy which
depends only on V., V, ©, © and Hy, such that
O(t,z) < Cay V(t,x) €[0,T] x R. (4.34)

Moreover, we have that for 0 <t < T,
t
0<Sllp H(<)07w7XaZ7@£a¢w7¢t7X;€7L/)x£)(i)H2+/ ||(\/§<Pzﬂ/)xaXtaXwimﬂ/)xnzx)(T)HZdT5 1 (435)
St<oo 0

and

t
/O le (M [ adr S 1, el =qorixey S 1 (4.36)

The next lemma gives nice bounds on the terms fot X2z (T)||?dT and ||z, (t)||?, whose proof is similar

to Lemma 4.5 developed in [26]. Thus we omit the proof for brevity.
Lemma 4.5.  Under the conditions listed in Lemma 2.6, we can get that for 0 <t < T,

t
Ixa (O + / xae ()27 < 1 (4.37)
and

122 ()17 +/O 200 (T)||?d7 < 1. (4.38)

5 A local-in-time lower bound on the absolute temperature

The following lemma will give a local-in-time lower bound on é(t,z). In fact, we can deduce the lemma
by repeating the argument developed in [32].

Lemma 5.1. Under the conditions stated in Lemma 2.6, for each 0 < s <t < T and x € R we have

the following estimate:
0t 2) > C’mlnxe]%g{ﬁ(s, x)}
1+ (t— s) minger{0(s,2)}

holds for some positive constant C which depends only on V., V, ©, © and Hy.

(5.1)

6 The proof of main results

With the above preparations in hand, we now turn to prove our main results.
We first prove Theorem 1.1. To this end, suppose that

(@(t’x%w(t?m)v)((t?x)v Z(t,I)) € X(OaT; M17 M2)

is a solution to the Cauchy problems (2.2) and (2.3) defined on the strip II := [0, 7] x R and satisfying
the a priori assumption (2.5). Then if the assumptions listed in Theorem 1.1 hold true and 6 > 0 and
a > 0 are chosen sufficiently small such that (2.6) and (2.7) hold, we can get from Lemmas 2.6, 3.4, 4.4
and 5.1 that

RN

0<z(t,2) <1, V(tz)e€[0,T] xR,

Cil <w(t,z) <Cy, VY(t,x)€[0,T] xR,

0(t,x) < Cay, Y (t,z) €[0,T] xR, (6.1)
Csmin,cr{0(s, )}

1+ (t — s) minger{0(s,z)}’ V(t,z) € [s,t] xR
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hold for some positive constants C; (i = 1,2, 3) which depend only on V., V, ©, © and Hy.

By having obtained (6.1), Theorem 1.1 can be proved by combining the local solvability result Lem-
ma 2.3 with the continuation argument introduced in [32,52] and we omit the details for brevity.

Recall that in the proof of Theorem 1.1, the assumption on the smallness of the radiation constant a
is only used in Lemma 2.4 to guarantee that p(v,s) is convex with respect to v and s, and we do not
use such a smallness assumption elsewhere to control certain nonlinear terms involved. As explained in
Section 1, the very reason for such an analysis is that once we can impose some other assumptions to
guarantee the convexity of p(v, s) with respect to (v, ) in the regime for v and s under our consideration,
then one can deduce that a similar stability result holds accordingly.

The main purpose of Theorem 1.3 is to show that if we use the smallness of a to control the involved
nonlinear terms, then we can relax the assumptions we imposed on the parameters b and 8 while the
similar stability result still holds. For this purpose, we only need to re-estimate those terms related to the
radiation constant a, since the terms can be estimated in the same way as in the proof of Theorem 1.1.

First of all, we treat the term ||, (¢)||?. By using (2.7), (2.10), (2.20a) and (3.8), Is can be re-estimated

3

16\— /Re@uc(Hew ’WM )
OAA%%+QHWR) ©2)

Inserting (6.2), (2.21)—(2.24) into (2.19) and employing (3.8), we can infer

92( 4a6® )2

lpa(t) WL//w%n+Mu (6.3)

Now we deal with the term fot |1¥2e (7)||?dT. By virtue of (2.7) and (2.10), we have

¢ t 0)0x>2 62
1 206 I2<//“(Uv z <1 (2-b)+ 4
| faseips [ [ B2 s 1o (6.4

Plugging (6.4) into (3.13) and utilizing (6.3), we deduce

m|ﬁ//WMQ//W O+ 8120 + ol
//“¢ ()1 + [1612,). (6.5)

By choosing € > 0 small enough, we can see (3.11) still holds true without imposing any condition on the

parameter b.
On the other hand, (2.7) tells us that

//1+9b+2 62X§<// FORNE < X()(14+ Y (T (6.6)

and

b+5
/ / 1+0b+2 92 2 2 </ /,U/@'(/} 1+9b+5) < 1+Y( )2b+3 (67)

Then (4.15), (4.16), (6.6) and (6.7) imply that

b+B+2

TSI+ XOA+Y O™ ) + YRS + 2001 + YO 55 20001 + Y (1) 555 (6.8)

We utilize (4.14), (6.8), the assumption b > 2 and 0 < 8 < 3b+ 2 to derive (4.18).
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Meanwhile, it follows from (2.7), (4.5) and the fact b > 0 that

t
e < / / (146" o x|
t)+C(e //1+9b+3f

eX(t) + C(e)( 5)
((X(H) + Y1)+ C(e). (6.9)

<
<

We can exploit the same method developed in Section 4 to estimate the other terms. Here, we need
the condition 0 < 8 < b+ 3 to bound the term I;5 and b > 2 to bound the term I 7. By repeating the
argument used to prove Theorem 1.1, we can complete the proof of Theorem 1.2.
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