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Abstract We investigate the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy prob-

lem of a one-dimensional compressible Navier-Stokes type system for a viscous, compressible, radiative and

reactive gas, where the constitutive relations for the pressure p, the specific internal energy e, the specific vol-

ume v, the absolute temperature θ, and the specific entropy s are given by p = Rθ/v + aθ4/3, e = Cvθ + avθ4,

and s = Cv ln θ + 4avθ3/3 + R ln v with R > 0, Cv > 0 and a > 0 being the perfect gas constant, the specific

heat and the radiation constant, respectively. For such a specific gas motion, a somewhat surprising fact is

that, generally speaking, the pressure p̃(v, s) is not a convex function of the specific volume v and the specific

entropy s. Even so, we show in this paper that the rarefaction waves are time-asymptotically stable for large

initial perturbation provided that the radiation constant a and the strength of the rarefaction waves are suffi-

ciently small. The key point in our analysis is to deduce the positive lower and upper bounds on the specific

volume and the absolute temperature, which are uniform with respect to the space and the time variables, but

are independent of the radiation constant a.

Keywords viscous radiative and reactive gas, rarefaction waves, nonlinear stability, large initial perturbation

MSC(2020) 35D35, 35Q10, 35Q35, 76D03

Citation: Gong G Q, He L, Liao Y K. Nonlinear stability of rarefaction waves for a viscous radiative

and reactive gas with large initial perturbation. Sci China Math, 2021, 64: 2637–2666, https://

doi.org/10.1007/s11425-020-1686-6

1 Introduction

In this paper, we investigate the large-time behavior of global, strong, large-amplitude solutions to the

Cauchy problem of a one-dimensional compressible Navier-Stokes type system for a viscous radiative and

reactive gas. The model is described as follows (see [3, 31,32,47]):
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vt − ux = 0,

ut + p(v, θ)x =

(
μux

v

)
x

,(
e+

u2

2

)
t

+ (up(v, θ))x =

(
μuux

v

)
x

+

(
κ(v, θ)θx

v

)
x

+ λφz,

zt =

(
dzx
v2

)
x

− φz.

(1.1)

Here, x ∈ R is the Lagrangian space variable, and t ∈ R
+ is the time variable. The unknown quantities

are the specific volume v = v(t, x), the velocity u = u(t, x), the absolute temperature θ = θ(t, x), and the

mass fraction of the reactant z = z(t, x). The positive constants d and λ stand for the species diffusion

coefficient and the difference in the heat between the reactant and the product, respectively. According

to the Arrhenius law [4, 47], the reaction rate function φ = φ(θ) is given by

φ(θ) = Kθβ exp

(
− A

θ

)
, (1.2)

where positive constants K and A represent the coefficients of the rates of the reactant and the activation

energy, respectively. Besides, β is a non-negative number.

Due to the Stefan-Boltzmann radiative law [40, 47], the pressure p and the specific internal energy e

consist of a fourth-order term radiative part in the absolute temperature θ as well as the perfect polytropic

contribution

p(v, θ) =
Rθ

v
+

aθ4

3
, e(v, θ) = Cvθ + avθ4, (1.3)

where the positive constants R and Cv are the perfect gas constant and the specific heat capacity at

constant volume, respectively. Specifically, as shown in [26, 40], Cv = 3
2R for the radiative gas. a > 0 is

the radiation constant which measures the amount of heat that is emitted by a blackbody, which absorbs

all of the radiant energy that hits it, and will emit all the radiant energy. Moreover, we have (see [26,40])

a =
4σ

c
=

8π5k4B
15c3h3

, (1.4)

where σ is the Stefan-Boltzmann constant, c is the speed of light, kB is the Boltzmann constant, and h

is the Planck constant. Numerically,

a = 7.5657× 10−16Jm−3K−4.

In general, compared with the perfect gas constant R and the specific heat Cv, the radiation constant a

is much smaller.

On the other hand, one can conclude from (1.3) and the second law of thermodynamics that

s(v, θ) = Cv ln θ +
4

3
avθ3 +R ln v. (1.5)

If one takes a = 0, then the above constitutive relations for the five thermodynamic variables p, v, θ, s

and e given by (1.3) and (1.5) reduce to the equations of state for ideal polytropic gases. If a > 0,

and we choose (v, θ) or (v, s) as independent variables and write (p, e, s) = (p(v, θ), e(v, θ), s(v, θ)) or

(p, e, θ) = (p̃(v, s), ẽ(v, s), θ̃(v, s)), respectively, then after cumbersome calculations, we can deduce that

(see [26] for details)

∂2p̃(v, s)

∂v2
=

1

s3θ

[
CvR

3 + 3C2
vR

2 + 2C3
vR

v3θ2
+

(40aCvR
2 + 28aC2

vR− 8aR3)θ

v2

+
(496a2CvR+ 192a2R2)θ4

3v
+

(640a3Cv + 7488a3R)θ7

27
+

1792a4vθ10

27

]
, (1.6)

∂2p̃(v, s)

∂s2
=

(θ̃s)
2

sθ

[
CvR

vθ2
+

(
16aCv

3
− 8aR

)
θ +

16a2vθ4

3

]
(1.7)
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and

∂2p̃(v, s)

∂s2
∂2p̃(v, s)

∂v2
−
(
∂2p̃(v, s)

∂v∂s

)2

=
(θ̃s)

2

s2θ

[
CvR

3 + C2
vR

2

θ2v4
+

(32aC2
vR− 52aCvR

2 − 24aR3)θ

3v3

+
(448a2CvR− 1200a2R2)θ4

9v2
− 320a3Rθ7

9v
− 256a4θ10

9

]
. (1.8)

From (1.6)–(1.8), it is easy to see that p̃(v, s) is a convex function of v and s for the ideal polytropic

gas, while if a > 0, it is not clear whether p̃(v, s) is a convex function of v and s or not.

As in [32, 47, 48], we also assume that the bulk viscosity μ is a positive constant and the thermal

conductivity κ = κ(v, θ) takes the form

κ(v, θ) = κ1 + κ2vθ
b, (1.9)

where κ1, κ2 and b are both positive constants. Furthermore, the system (1.1) is supplemented with the

initial data

(v(0, x), u(0, x), θ(0, x), z(0, x)) = (v0(x), u0(x), θ0(x), z0(x)) (1.10)

for x ∈ R, which is assumed to satisfy the far-field condition

lim
|x|→∞

(v0(x), u0(x), θ0(x), z0(x)) = (v±, u±, θ±, 0). (1.11)

Here, v± > 0, u± and θ± > 0 are prescribed constants.

The problem on the global solvability and the precise description of the large-time behavior of the

global solutions constructed for the initial value problem and the initial-boundary value problems of the

systems (1.1)–(1.3), (1.9) and (1.10) is a hot topic in the field of nonlinear partial differential equations

and many results have been obtained recently. A complete literature in this direction is beyond the scope

of this paper and to go directly to the main points of the present paper, in what follows we only review

some former results which are closely related to our main results.

• For the multidimensional case, there have been some results concerning the global existence, the

uniqueness and the large time behavior of spherically (cylindrically) symmetric solutions to the systems

(1.1)–(1.3) and (1.9)–(1.11) (see [44,49,53] for the bounded concentric annular domain case and see [28] for

the exterior domain case). Here, the asymptotics of the global solutions constructed in [44,49,53] and [28],

as in [16,17] and [5,32], are constant equilibrium states (v∞, u∞, θ∞, 0) of (1.1) satisfying v∞ > 0, θ∞ > 0,

which are uniquely determined by the initial data for the corresponding initial-boundary value problem

in a bounded domain and by the far fields of the initial data for the case in an exterior domain.

• For the one-dimensional initial-boundary value problem in the interval [0, 1], the existence and the

uniqueness of global classical solutions was established in [3] for the following initial-boundary value

problem:

(v(0, x), u(0, x), θ(0, x), z(0, x)) = (v0(x), u0(x), θ0(x), z0(x)), x ∈ (0, 1),

u(t, x) = 0, x = 0, 1, t � 0, (1.12)

(θx(t, x), zx(t, x)) = (0, 0), x = 0, 1, t � 0,

while for the initial-boundary value problem

(v(0, x), u(0, x), θ(0, x), z(0, x)) = (v0(x), u0(x), θ0(x), z0(x)), x ∈ (0, 1),

σ(t, x) ≡ −p(v(t, x), θ(t, x)) +
μux(t, x)

v(t, x)
= −pe, x = 0, 1, t � 0, (1.13)

(θx(t, x), zx(t, x)) = (0, 0), x = 0, 1, t � 0
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for some positive constant pe > 0, similar global solvability results were obtained in [31, 43, 47, 48].

Moreover, it is shown in [16, 17] that the asymptotics of the global solutions constructed above can be

exactly described by (1, 0, θ∞, 0) with θ∞ being a positive constant uniquely determined by

Cvθ∞ + aθ4∞ =

∫ 1

0

(
1

2
|u0(x)|2 + Cvθ0(x) + av0(x)|θ0(x)|4 + λz0(x)

)
dx

for the initial-boundary value problems (1.1)–(1.3), (1.9), (1.10), (1.12) and (v∞, 0, θ∞, 0) with v∞ and θ∞
being positive constants uniquely determined by

Rθ∞
v∞

+
a

3
θ4∞ = pe,

Cvθ∞ + av∞θ4∞pev∞ =

∫ 1

0

(
1

2
|u0(x)|2 + Cvθ0(x) + av0(x)|θ0(x)|4 + λz0(x) + pev0(x)

)
dx

for the initial-boundary value problems (1.1)–(1.3), (1.9), (1.10) and (1.13), respectively. Note that since∫ 1

0
v(t, x)dx is conserved for the initial-boundary value problems (1.1)–(1.3), (1.9), (1.10) and (1.12), while∫ 1

0
u(t, x)dx is conserved for the initial-boundary value problems (1.1)–(1.3), (1.9), (1.10) and (1.13), one

can thus assume without loss of generality that
∫ 1

0
v0(x)dx = 1 for the initial-boundary value problems

(1.1)–(1.3), (1.9), (1.10), (1.12) and
∫ 1

0
u0(x)dx = 0 for the initial-boundary value problems (1.1)–(1.3),

(1.9), (1.10) and (1.13).

• For the Cauchy problems (1.1)–(1.3) and (1.9)–(1.11), the existence of a unique global solution

was established very recently in [27, 32] for the case when the far fields (v±, u±, θ±) of the initial

data (v0(x), u0(x), θ0(x)) are equal, i.e., (v−, u−, θ−) = (v+, u+, θ+) (see also [5] for the case with

temperature-dependent viscosity and [29] for the case with density-dependent viscosity). Here, since

(v−, u−, θ−) = (v+, u+, θ+), the asymptotics of the global solutions constructed in [5, 32] are exactly

the far fields (v±, u±, θ±, 0) of the initial data (v0(x), u0(x), θ0(x), z0(x)). The asymptotic stability of

1-rarefaction waves to the systems (1.1)1–(1.1)3 (z = 0), (1.2), (1.3), (1.10) and (1.11) without viscosity

(μ = 0) under the small perturbation was studied in [25]. Recently, Liao [26] has studied nonlinear

stability of rarefaction waves for the systems (1.1)–(1.3) and (1.9)–(1.11) when the viscosity μ takes the

following form:

μ = μ(v, θ) = h(v)θα, h(v) ∼
{
v−�1 , v → 0+,

v�2 , v → ∞,
v|h′(v)|2 � Ch3(v). (1.14)

Here, h(v) is a smooth function of v for v > 0 and α, �1, and �2 are positive constants. It should be

pointed out that (1.14) cannot cover the case when μ is a positive constant even when α goes to zero.

The main purpose of this manuscript is to study the nonlinear stability of rarefaction waves for the

systems (1.1)–(1.3) and (1.9)–(1.11) with constant viscosity (μ ≡ C) under the large initial perturbation.

For the Cauchy problems (1.1)–(1.3) and (1.9)–(1.11), if the far fields (v±, u±, θ±) of the initial data

(v0(x), u0(x), θ0(x)) are not equal, i.e.,

(v−, u−, θ−) �= (v+, u+, θ+),

the asymptotics of the global solutions should be nontrivial and is expected to be described by the

unique global entropy solution (V r(x/t), U r(x/t),Θr(x/t), 0) of the resulting Riemann problem of the

corresponding compressible Euler equations

vt − ux = 0,

ut + p(v, θ)x = 0,(
e+

u2

2

)
t

+ (up(v, θ))x = 0,

zt = 0

(1.15)
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with Riemann data

(v(0, x), u(0, x), θ(0, x), z(0, x)) = (vr0(x), u
r
0(x), θ

r
0(x), z

r
0(x)) =

{
(v−, u−, θ−, 0), x < 0,

(v+, u+, θ+, 0), x > 0.
(1.16)

In fact, it is expected (see [19, 20, 33–37, 45] and the references cited therein) that if the unique global

entropy solution

(V r(x/t), Ur(x/t),Θr(x/t), 0)

of the Riemann problem (1.15) and (1.16) consists of rarefaction waves

(V Ri(x/t), URi(x/t),ΘRi(x/t), 0)

of the i-th family (i = 1, 3), shock waves

(V Si(x/t), USi(x/t),ΘSi(x/t), 0)

of the i-th family (i = 1, 3), contact discontinuity

(V CD(x/t), UCD(x/t),ΘCD(x/t), 0)

of the second family, and/or their superpositions, then the large time behavior of the global solution

(v(t, x), u(t, x), θ(t, x), z(t, x))

of the Cauchy problems (1.1)–(1.3) and (1.9)–(1.11) is expected to be well-described by the rarefaction

wave

(V Ri(x/t), URi(x/t),ΘRi(x/t), 0)

of the i-th family (i = 1, 3), the viscous shock profile

(V V SWi(x− sit), U
V SWi(x− sit),Θ

V SWi(x− sit), 0)

of the i-th family (i = 1, 3) under the suitable shift, the viscous contact discontinuity wave

(V VCD(t, x), UVCD(t, x),ΘVCD(t, x), 0)

of the second family, and/or their superpositions.

As in [2,26], it will be convenient to consider the following equations for the entropy s and the absolute

temperature θ:

st =

(
κ(v, θ)θx

vθ

)
x

+
κ(v, θ)θ2x

vθ2
+

μu2
x

vθ
+

λφz

θ
(1.17)

and

θt +
θpθux

eθ
=

1

eθ

(
κ(v, θ)θx

v

)
x

+
μu2

x

veθ
+

λφz

eθ
, (1.18)

where pθ := ∂p(v,θ)
∂θ = R

v + 4
3aθ

3 and eθ := ∂e(v,θ)
∂θ = Cv + 4avθ3.

From now on, we will consider (1.1)1, (1.1)2, (1.17) and (1.1)4 with the initial data

(v(t, x), u(t, x), s(t, x), z(t, x)) |t=0 = (v0(x), u0(x), s0(x), z0(x)) → (v±, u±, s±, 0) as x → ±∞. (1.19)

Here, v± > 0, u±, s± := Cv ln θ± + 4
3av±θ

3
± +R ln v± are constants and

s0(x) := Cv ln θ0(x) +
4

3
av0(x)θ0(x)

3 +R ln v0(x).

Moreover, we assume that s+ = s− = s̄ for considering the expansion waves to (1.1).
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It is well known that (1.1) can be approximated by the Riemann problem of the following equations:

vt − ux = 0,

ut + (p̃(v, s))x = 0,

st =
λφz

θ
,

zt = −φz

(1.20)

with Riemann data

(v(0, x), u(0, x), s(0, x), z(0, x)) = (vR0 (x), u
R
0 (x), s

R
0 (x), z

R
0 (x)) =

{
(v−, u−, s−, 0), x < 0,

(v+, u+, s+, 0), x > 0.
(1.21)

The solutions of the Riemann problems (1.20)–(1.21) have two characteristics, which leads to two

families of expansion (rarefaction) waves: the 1-rarefaction wave (V R
1 (xt ), U

R
1 (xt ), s̄, 0) and the 3-rarefaction

wave (V R
3 (xt ), U

R
3 (xt ), s̄, 0). We define the regime

R1(v−, u−, s̄, 0) =
{
(v, u, s, z)

∣∣∣∣u = u− +

∫ v

v−

√
−p̃ξ(ξ, s̄)dξ, u � u−, s = s̄, z = 0

}
,

R3(vm, um, s̄, 0) =

{
(v, u, s, z)

∣∣∣∣u = um −
∫ v

vm

√
−p̃ξ(ξ, s̄)dξ, u � um, s = s̄, z = 0

}
,

and further assume that there exists a unique constant state (vm, um) ∈ R
2(vm > 0), which satisfies

(vm, um) ∈ R1(v−, u−) and (v+, u+) ∈ R3(vm, um). Then the unique weak solution (V R(xt ), U
R(xt ),

SR(xt ), 0) to the system (1.20)–(1.21) is characterized by(
V R

(
x

t

)
, UR

(
x

t

)
, SR

(
x

t

)
, 0

)
=

(
V R
1

(
x

t

)
+ V R

3

(
x

t

)
− vm, UR

1

(
x

t

)
+ UR

3

(
x

t

)
− um, s̄, 0

)
(1.22)

with (V R
i (xt ), U

R
i (xt ), S

R(xt ), 0) (i = 1, 3) satisfying the following equations:

SR

(
x

t

)
= s̄,

UR
1

(
x

t

)
−
∫ V R

1 ( x
t )

1

√
−p̃ξ(ξ, s̄)dξ = u− −

∫ v−

1

√
−p̃ξ(ξ, s̄)dξ,

λ1x

(
V R
1

(
x

t

)
, s̄

)
> 0,

λ1(v, s) = −
√

−p̃v(v, s), (1.23)

UR
3

(
x

t

)
+

∫ V R
3 ( x

t )

1

√
−p̃ξ(ξ, s̄)dξ = um +

∫ vm

1

√
−p̃ξ(ξ, s̄)dξ,

λ3x

(
V R
3

(
x

t

)
, s̄

)
> 0,

λ3(v, s) =
√

−p̃v(v, s).

To construct the approximate waves (V (t, x), U(t, x), S(t, x), 0), we begin with the following Burger’s

equation (see [37]). Let ωi(t, x) (i = 1, 3) be the unique global smooth solution to the Cauchy problem

ωit + ωiωix = 0,

ωi(t, x) |t=0 = ωi0(x) =
wi+ + wi−

2
+

wi+ − wi−
2

Kq

∫ εx

0

(1 + y2)−qdy,
(1.24)
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where q > 3
2 , Kq = (

∫ +∞
0

(1 + y2)−qdy)−1, ε > 0 is a positive constant to be determined later, and

ω1− = λ1(v−, s̄) = −
√
−p̃v(v−, s̄),

ω1+ = λ1(vm, s̄) = −
√

−p̃v(vm, s̄),

ω3− = λ3(vm, s̄) =
√
−p̃v(vm, s̄),

ω3+ = λ3(v+, s̄) =
√
−p̃v(v+, s̄).

Then, by setting

ε = δ = |v− − v+|+ |u− − u+|,
the approximate rarefaction waves (V (t, x), U(t, x), S(t, x), 0) are defined by

(V (t, x), U(t, x), S(t, x), 0)

= (V1(t+ 1, x) + V3(t+ 1, x)− vm, U1(t+ 1, x) + U3(t+ 1, x)− um, s̄, 0), (1.25)

where (Vi(t, x), Ui(t, x)) (i = 1, 3) satisfy

λi(Vi(t, x), s̄) = ωi(t, x), i = 1, 3,

λ1(v, s) = −
√

−p̃v(v, s),

λ3(v, s) =
√
−p̃v(v, s),

U1(t, x) = u− +

∫ V1(t,x)

v−

√
−p̃ξ(ξ, s̄)dξ,

U3(t, x) = um −
∫ V3(t,x)

vm

√
−p̃ξ(ξ, s̄)dξ,

(1.26)

and Θ(t, x) is given by

Θ(t, x) = θ̃(V (t, x), s̄).

Furthermore, if we denote the strength of the rarefaction waves by

δ = |v− − v+|+ |u− − u+|,

then our main result is the following stability theorem.

Theorem 1.1. Suppose that

• the parameters b and β are assumed to satisfy

b > 6, 0 � β < b+ 3;

• there exist positive constants 0 < V � 1, V > 1, 0 < Θ � 1, Θ > 1, which do not depend on the

strength of the rarefaction wave δ and the radiation constant a, such that

2V � v0(x) �
1

2
V ,

2V � V (t, x) � 1

2
V ,

2Θ � θ0(x) �
1

2
Θ,

2Θ � Θ(t, x) � 1

2
Θ

hold for all (t, x) ∈ R+ × R,

(v0(x)− V (0, x), u0(x)− U(0, x), θ0(x)−Θ(0, x), z0(x)) ∈ H1(R),
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∂2(u0(x)− U(0, x))

∂x2
∈ L2(R), z0(x) ∈ L1(R),

0 � z0(x) � 1, ∀x ∈ R

and

H0 := ‖(v0(x)− V (0, x), u0(x)− U(0, x), θ0(x)−Θ(0, x), z0(x))‖H1(R)

together with v±, u± and θ± being assumed to be independent of δ and a.

Then there exist positive constants δ0 and a0, which depend only on V , Θ and H0, such that when

0 < δ � δ0, 0 < a � a0, (1.27)

the systems (1.1)–(1.3) and (1.9)–(1.11) admit a unique global solution (v(t, x), u(t, x), θ(t, x), z(t, x))

which satisfies

C−1
1 � v(t, x) � C1,

C−1
2 � θ(t, x) � C2,

0 � z(t, x) � 1

for all (t, x) ∈ [0,∞)× R and

sup
0�t<∞

‖(v − V, u− U, θ −Θ, z)(t)‖2H1(R)

+

∫ ∞

0

(‖∂x(v − V )(τ)‖2L2(R) + ‖(∂x(u− U), ∂x(θ −Θ), ∂xz)(τ)‖2H1(R))dτ

� C. (1.28)

Here, C1, C2 and C are some positive constants depending only on V , Θ and H0.

Moreover, it holds that

lim
t→+∞ sup

x∈R

{|(v(t, x)− V R(t, x), u(t, x)− UR(t, x), s(t, x)− s, z(t, x))|} = 0. (1.29)

Remark 1.2. Here are some remarks concerning Theorem 1.1.

• Note that the result in [25] focuses on the case when μ ≡ 0 and κ(v, θ) ≡ constant. As pointed out

before, the initial perturbation between the initial data and the approximation solution in [25] needs to

be sufficiently small. Besides, an additional stability condition should also be imposed on the state of the

specific volume v(t, x) and the temperature θ(t, x) at the far field (see [25, (1.14)]). Compared with the

result obtained in [25], the result in this paper is the first one concerning the stability analysis of viscous

wave patterns of (1.1)–(1.3) and (1.9)–(1.11) with constant viscosity under the large initial perturbation.

Moreover, we do not need to impose the above additional stability condition in our study. Furthermore,

our method in this paper can also be applied to Navier-Stokes equations when thermodynamic variables

satisfy the equations of state for ideal polytropic gases (λ = 0, a = 0).

• We emphasize that the result in [26] cannot include the case when μ ≡ C. Besides, the methods to

deduce the uniform lower and upper bounds on the specific volume v(t, x) and the absolute temperature

θ(t, x) in our paper are also different from those developed in [26].

• It is interesting to study the global nonlinear stability of viscous shock waves, viscous contact waves,

and some of their superpositions for (1.1)–(1.3) and (1.9)–(1.11) in the future and such problems are

under our current study.

As we can see in the analysis performed in [20, 37–39, 41] and from the estimate (2.10) obtained in

Lemma 2.6 of this paper, p̃(v, s) is a convex function of v and s plays an essential role in deducing the

nonlinear stability of rarefaction waves of the one-dimensional compressible Navier-Stokes type equations.

We note, however, that, from (1.6)–(1.8), it is not clear whether p̃(v, s) is a convex function of v and s or

not for the case when the radiation constant a > 0. To overcome such a difficulty, our main observation is
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that if both the specific volume v and the absolute temperature θ are bounded from the above and below

by some positive constants independent of the radiation constant a, then one can choose a sufficiently

small such that p̃(v, s) is a convex function of v and s in the regime for v and θ under consideration.

It is worth pointing out that in the proof of Theorem 1.1, the smallness assumption we imposed on the

radiation constant a is used only to ensure that p̃(v, s) is convex with respect to (v, s) in the regime for v

and θ under our consideration and we do not use such a smallness assumption elsewhere to control certain

nonlinear terms involved. The main purpose of such an analysis is that once we can impose some other

assumptions to guarantee that p̃(v, s) is convex with respect to (v, s) in the regime for v and θ under our

consideration, then we can deduce that a similar result holds accordingly.

Our next result shows that, if in addition to using the smallness of a to guarantee that p̃(v, s) is convex

with respect to (v, s) in the regime for v and θ under our consideration, we also use such an assumption to

control certain nonlinear terms involved, then we can get a similar stability result but with less restrictions

on the ranges of the parameters b and β, which includes the most physically interesting radiation case

b = 3 (see [17]).

Theorem 1.3. Under similar assumptions imposed on the initial data (v0(x), u0(x), θ0(x), z0(x)) and

the radiation constant a, a similar stability result still holds when b > 2, 0 � β < b+ 3.

In order to deduce the main results of this paper, the key points in our analysis are the following:

• The first is to deduce the uniform positive lower and upper bounds on the specific volume v(t, x)

and the absolute temperature θ(t, x).

• The second is to show that the above bounds on the specific volume v(t, x) and the absolute tem-

perature θ(t, x) are independent of the radiation constant, since only in this case, we can choose a > 0

sufficiently small such that p̃(v, s) is a convex function of v and s.

We are now in a position to state our main ideas to overcome the above difficulties, especially on the

way to yield the uniform upper bound on the absolute temperature θ(t, x). To this end, we first recall

that for the case when a = 0 and κ2 = 0 in (1.3), (1.5) and (1.9), which is the equations of a viscous

heat-conductive ideal polytropic gas with constant nondegenerate transport coefficients, the nonlinear

stability of some basic wave patterns with large initial perturbation is obtained in [13, 50, 51] for the

whole range of the adiabatic exponent γ > 1. The method used in [13,50,51] to deduce the upper bound

on the absolute temperature θ(t, x) is motivated by [24], which relies on the following Sobolev inequality:

‖θ(t)− 1‖2L∞(R) � C‖θ(t)− 1‖L2(R)‖θx(t)‖L2(R) � C(1 + ‖θ‖L∞([0,T ]×R)).

However, such a method loses its power for the case κ2 �= 0 since some nonlinear terms caused by the

thermal conductivity

κ(v, θ) = κ1 + κ2vθ
b

cannot be controlled properly when we deduce the estimate on ‖θx(t)‖L2(R) by employing the argument

developed in [24].

To overcome such a difficulty, for the case

(v−, u−, θ−) = (v+, u+, θ+) =: (v∞, u∞, θ∞),

i.e., for the case when the far fields of the initial data (v0(x), u0(x), θ0(x)) are equal, the argument

developed in [32] is to introduce the following auxiliary functions:

X̃(t) :=

∫ t

0

∫
R

(1 + θb+3(s, x))θ2t (s, x)dxds,

Ỹ (t) := max
s∈(0,t)

∫
R

(1 + θ2b(s, x))θ2x(s, x)dx,

Z̃(t) := max
s∈(0,t)

∫
R

u2
xx(s, x)dx,

W̃ (t) :=

∫ t

0

∫
R

u2
xt(s, x)dxds

(1.30)
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and then try to deduce certain estimates between them by employing the structure of (1.1)–(1.3) and (1.9)

under our consideration, from which one can deduce the desired upper bound on the absolute temper-

ature θ(t, x). A key point in the analysis there is that the basic energy estimates based on the entropy

η̃(v, u, θ, v∞, u∞, θ∞) normalized around the constant state (v, u, θ) = (v−, u−, θ−),

η̃(v, u, θ, v∞, u∞, θ∞)

= Cvθ∞Φ

(
θ

θ∞

)
+Rθ∞Φ

(
v

v∞

)
+

1

2
(u− u∞)2 +

av

3
(θ − θ∞)2(3θ2 + 2θ∞θ + θ2∞),

Φ(x) = x− lnx− 1

can yield an L4
loc(R)-estimate on θ(t, x). From such an estimate, one can get by employing the argument

developed in [23] that (see [32, (2.53)])

‖θ(t)‖L∞(R) � 1 + Ỹ (t)
1

2b+6 (1.31)

and the estimate (1.31) plays an essential role in [32] to deduce the upper bound of θ(t, x).

But for the case considered in this paper, (v−, u−, θ−) �= (v+, u+, θ+), since, as we pointed out before,

we need to use the smallness of the radiation constant a to ensure that p̃(v, s) is a convex function of v

and s, although we can still construct a convex entropy η(v, u, θ;V, U,Θ) normalized around the profile

(v, u, θ) = (V (t, x), U(t, x),Θ(t, x)),

η(v, u, θ;V, U,Θ) = CvΘΦ

(
θ

Θ

)
+RΘΦ

(
v

V

)
+

1

2
(u− U)2 +

av(θ −Θ)2

3
(3θ2 + 2θΘ+Θ2), (1.32)

to yield a similar estimate (see (2.10) obtained in Lemma 2.6) to guarantee that the estimate we ob-

tained on θ(t, x) does not depend on a, we can only use the boundedness of
∫
R
Φ( θ

Θ )dx. Moreover, the

construction of the auxiliary functions X(t), Y (t) and Z(t) should also be modified accordingly as follows:

X(t) :=

∫ t

0

∫
R

(1 + θb(s, x))χ2
t (s, x)dxds,

Y (t) := sup
s∈(0,t)

∫
R

(1 + θ2b(s, x))χ2
x(s, x)dx, (1.33)

Z(t) := sup
s∈(0,t)

∫
R

ψ2
xx(s, x)dx,

where ψ(t, x) = u(t, x)− U(t, x) and χ(t, x) = θ(t, x)−Θ(t, x).

A consequence of the above modifications is that instead of the estimate (1.31), one has (see the

estimate (4.1) in Lemma 4.1)

‖θ(t)‖L∞(R) � 1 + Y (t)
1

2b+3 . (1.34)

The above changes make it harder to deduce the upper bound of θ(t, x), especially to yield a nice bound

on the term I17 in (4.6) which cannot be controlled by exploiting the method used in [32] to estimate the

corresponding term, i.e., the term I8 in [32].

Our strategy to overcome the above difficulties can be summarized as follows:

• The smallness of the strength of the rarefaction waves is made full use of to control the nonlinear

terms originating from the nonlinearities of equations, the interactions of rarefaction waves from different

families and the interaction between the solutions and the rarefaction waves.

• The specific volume v(t, x) is shown to be uniformly bounded from below and above with respect

to space and time variables through delicate analysis based on the basic energy estimate and the cut-off

technique used by [18,32]. It is worth emphasizing that the positive lower and upper bounds we derived

are independent of δ and a.

• Motivated by [22,32], we introduce the auxiliary functions X(t), Y (t) and Z(t) defined by (1.33) to

derive the desired upper bound of θ(t, x), especially to yield a nice estimate on the term I17 given in (4.6).
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To this end, we first derive bounds on ‖ϕx(t)‖L2(R) and
∫ t

0

∫
R
χ2
xxdxdτ in terms of ‖θ‖L∞([0,T ]×R) as in

Lemmas 3.5 and 3.6. Then by using Sobolev’s inequality and Lemma 3.6, the term∫ t

0

∫
R

(1 + θb)ψ4
xdxdτ

can be estimated as follows:∫ t

0

∫
R

(1 + θb)ψ4
xdxdτ � C(1 + ‖θ‖bL∞([0,T ]×R))

∫ t

0

‖ψx‖2L∞(R)‖ψx‖2L2(R)dτ

� C(1 + ‖θ‖bL∞([0,T ]×R))

∫ t

0

‖ψx‖3L2(R)‖ψxx‖L2(R)dτ

� C(1 + ‖θ‖b+3
L∞([0,T ]×R))

(∫ t

0

‖ψx‖2L2(R)dτ

) 1
2
(∫ t

0

‖ψxx‖2L2(R)dτ

) 1
2

� C(1 + ‖θ‖b+5
L∞([0,T ]×R)). (1.35)

Note that we do not need to introduce the additional function W (t) as in [32] (see [32, (2.51) and (2.70)]).

Finally, we point out that there are a lot of results concerning the stability analysis of viscous wave

patterns of the 1D compressible Navier-Stokes equations. We refer to [6, 19, 33, 46] for the viscous shock

wave, [2, 9, 34, 37–39, 41] for the rarefaction wave, [7, 12, 14, 15, 35] for the viscous contact wave, and

[8,10,11,13] for the superpositions of the above three wave patterns. For more references in this direction,

please refer to [4, 21, 30,42, 45,50–52] and the references therein.

The rest of this paper is organized as follows. We first give some basic energy estimates and some

properties of the smooth approximation of the rarefaction wave solutions in Section 2. In Section 3,

we derive the uniform-in-time lower and upper bounds of the specific volume v(t, x) which are also

independent of δ and a. Then the uniform-in-time, δ and a independent upper bound of the absolute

temperature θ(t, x) will be obtained in Section 4. Furthermore, a local-in-time lower bound on the

absolute temperature will be deduced in Section 5. The proofs of our main results are given in Section 6.

Note that although the lower bound on the absolute temperature θ(t, x) obtained in Section 5 depends

on time t, it is sufficient to prove the main theorem in this paper by combining these a priori estimates

with the continuation argument introduced in [32].

Notations. In what follows, C represents a generic positive constant, which is independent of t, δ, a

and x but may depend on v±, u±, θ±, V , V , Θ, Θ and H0. Notice that the value of it may change from

line to line. Ci(·, ·) (i ∈ Z+) stands for some generic constants depending only on the quantities listed in

the parentheses and ε denotes some small positive constant.

For two quantities B and B′, if there is a generic positive constant C > 0 independent of t, δ, a and x

such that B � CB′, we take the note B � B′, while B ∼ B′ means that B � B′ and B′ � B. Moreover,

for two functions f(x) and g(x), f(x) ∼ g(x) as x → x0 means that there exists a generic positive constant

C > 0 which is independent of t, δ, a and x but may depend on v±, u±, θ±, V , V , Θ, Θ and H0 such

that

C−1f(x) � g(x) � Cf(x)

in a neighborhood of x0. H l(R) (l � 0) denotes the usual Sobolev space with the standard norm ‖ · ‖l,
and for brevity, we take ‖ · ‖ := ‖ · ‖0 to denote the usual L2-norm. For 1 � p � +∞, f(x) ∈ Lp(R),

‖f‖Lp = (
∫
R
|f(x)|pdx) 1

p . It is easy to see that ‖f‖L2 = ‖ · ‖. Finally, ‖ · ‖L∞ and ‖ · ‖∞ are used to

denote ‖ · ‖L∞(R) and ‖ · ‖L∞([0,t]×R), respectively.

2 Preliminaries

First of all, (1.1), (1.23) and (1.25) tell us that (V (t, x), U(t, x), S(t, x), 0) solves the following problem:

Vt − Ux = 0,
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Ut + p(V,Θ)x = g(V,Θ)x,(
e(V,Θ) +

U2

2

)
t

+ (Up(V,Θ))x = q(V,Θ),

Θt +
ΘpΘ(V,Θ)

eΘ(V,Θ)
Ux = r(V,Θ),

St = 0,

where

g(V,Θ) = p(V,Θ)− p(V1,Θ1)− p(V3,Θ3)− p(vm, θm),

q(V,Θ) = (e(V,Θ)− e(V1,Θ1)− e(V3,Θ3))t +

(
U2

2
− U2

1

2
− U2

3

2

)
t

+ (Up(V,Θ)− U1p(V1,Θ1)− U3p(V3,Θ3))x,

r(V,Θ) =
ΘpΘ(V,Θ)

eΘ(V,Θ)
Ux − Θ1pΘ(V1,Θ1)

eΘ(V1,Θ1)
U1x − Θ3pΘ(V3,Θ3)

eΘ(V3,Θ3)
U3x,

and θm = θ̃(vm, s̄).

Due to the fact that ω0(x) is strictly increasing, we can deduce the following lemma (see [2, 26]).

Lemma 2.1. For each i ∈ {1, 3}, the Cauchy problem (1.24) admits a unique global smooth solution

ωi(t, x) which satisfies the following properties:

(i) ω− < ωi(t, x) < ω+, ωix(t, x) > 0 for each (t, x) ∈ R+ × R.

(ii) For any p with 1 � p � ∞, there exists a constant Cp,q, depending only on p and q, such that

‖ωix(t)‖pLP � Cp,q min{εp−1ω̃p
i , ω̃it

−p+1},
‖ωixx(t)‖pLP � Cp,q min{ε2p−1ω̃p

i , ε
(p−1)(1− 1

2q )ω̃
− p−1

2q

i t−p− p−1
2q }.

(iii) If 0 < ωi−(< ωi+) and q is suitably large, then

|ωi(t, x)− ωi−| � Cω̃i(1 + (εx)2)−
q
3 (1 + (εωi−t)2)−

q
3 , x � 0,

|ωix(t, x)| � Cεω̃i(1 + (εx)2)−
1
2 (1 + (εωi+t)

2)−
q
2 , x � 0.

(iv) If (ωi−) < ωi+ � 0 and q is suitably large, then

|ωi(t, x)− ωi+| � Cω̃i(1 + (εx)2)−
q
3 (1 + (εωi−t)2)−

q
3 , x � 0,

|ωix(t, x)| � Cεω̃i(1 + (εx)2)−
1
2 (1 + (εωi+t)

2)−
q
2 , x � 0.

(v) limt→+∞ supx∈R
|ωi(t, x)− ωR

i (
x
t )| = 0.

Here, ω̃i = ωi+−ωi− > 0 and ωR
i (

x
t ) is the unique rarefaction wave solution of the corresponding Riemann

problem of (1.14)1, i.e.,

ωR
i (ξ) =

⎧⎪⎪⎨⎪⎪⎩
ωi−, ξ � ωi−,

ξ, ωi− � ξ � ωi+,

ωi+, ξ � ωi+.

Owing to Lemma 2.1, (1.25), and (1.26), we can conclude the following lemma (see [2, 26]).

Lemma 2.2. By letting ε = δ, q = 2, the smooth approximations (V (t, x), U(t, x),Θ(t, x), 0) construct-

ed in (1.25) and (1.26) have the following properties:

(i) Vt(t, x) = Ux(t, x) > 0 for each (t, x) ∈ R+ × R.

(ii) For any p with 1 � p � ∞ there exists a constant Cp, depending only on p, such that

‖(Vx, Ux,Θx)(t)‖pLp � Cp min{δ2p−1, δ(t+ 1)−p+1},
‖(Vxx, Uxx,Θxx)(t)‖pLp � Cp min{δ3p−1, δ

p−1
2 (t+ 1)−

5p−1
4 }.
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It is obvious that ‖Vx(t)‖2L2 is not integrable with respect to t. However, we can get for any r > 0 and

p > 1 that ∫ ∞

0

‖(Vx, Ux,Θx)(t)‖2+r
L2+rdt � C(r)δ,∫ ∞

0

‖(Vxx, Uxx,Θxx)(t)‖Lpdt � C(p)

(
1

δ

)− 1
4 (1− 1

p )

.

(iii) For each p � 1,

‖(g(V,Θ)x, r(V,Θ), q(V,Θ))(t)‖Lp � C(p)δ
2
3 (t+ 1)−

4
3 .

Especially, ∫ ∞

0

‖(g(V,Θ)x, r(V,Θ), q(V,Θ))(t)‖Lpdt � C(p)

(
1

δ

)− 1
3

.

(iv) limt→+∞ supx∈R
|(V (t, x), U(t, x),Θ(t, x))− (V R(xt ), U

R(xt ),Θ
R(xt ))| = 0.

(v) |(Vt(t, x), Ut(t, x),Θt(t, x))| � O(1)|(Vx(t, x), Ux(t, x),Θx(t, x))|.
Setting

(ϕ(t, x), ψ(t, x), χ(t, x), ξ(t, x))

= (v(t, x)− V (t, x), u(t, x)− U(t, x), θ(t, x)−Θ(t, x), s(t, x)− s̄), (2.1)

we can deduce that (ϕ(t, x), ψ(t, x), χ(t, x), ξ(t, x), z(t, x)) satisfies

ϕt − ψx = 0,

ψt + [p(v, θ)− p(V,Θ)]x = μ

(
ux

v

)
x

− g(V,Θ)x,

χt +
θpθ(v, θ)

eθ(v, θ)
ψx =

1

eθ(v, θ)

(
μu2

x

v
+

(
κ(v, θ)θx

v

)
x

+ λφz

)
−

(
θpθ(v, θ)

eθ(v, θ)
− ΘpΘ(V,Θ)

eΘ(V,Θ)

)
Ux − r(V,Θ),

ξt =
μu2

x

vθ
+

(
κ(v, θ)θx

vθ

)
x

+
κ(v, θ)θ2x

vθ2
+

λφz

θ
,

zt =

(
dzx
v2

)
x

− φz

(2.2)

with the initial data

(ϕ(t, x), ψ(t, x), χ(t, x), ξ(t, x), z(t, x)) |t=0

= (ϕ0(x), ψ0(x), χ0(x), ξ0(x), z0(x))

:= (v0(x)− V (0, x), u0(x)− U(0, x), θ0(x)−Θ(0, x), s0(x)− S̄, z0(x)). (2.3)

On the other hand, it is easy to see that η(v, u, θ;V, U,Θ) defined by (1.32) is a convex entropy of the

system (1.1) around the smooth rarefaction wave profile (V (t, x), U(t, x),Θ(t, x), 0) which solves

ηt(v, u, θ, V, U,Θ) + ((p(v, θ)− p(V,Θ))ψ)x +

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
+ (p̃(v, s)− p̃(V, s̄)− p̃v(V, s̄)ϕ− p̃s(V, s̄)ξ)Ux +

λφzΘ

θ

=

(
μψψx

v
+

κ(v, θ)χχx

vθ

)
x

+

{
2μUxχψx

vθ
− μUxψϕx

v2
− κ(v, θ)Θxχϕx

v2θ
+

κ(v, θ)Θxχχx

vθ2

}
+

(
μψUxx

v
+

κ(v, θ)χΘxx

vθ

)
+

(
μU2

xχ

vθ
− μUxVxψ

v2
− κ(v, θ)VxΘxχ

v2θ

)
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− q(V,Θ)− g(V,Θ)xψ + g(V,Θ)xU − r(V,Θ)ξ + λφz +
κx(v, θ)χΘx

vθ
. (2.4)

We first give the set of functions X(0, T ;M1,M2) for which we seek the solutions of (2.2)–(2.3) as

follows:

X(0, T ;M1,M2)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ,ψ, χ, z)(t, x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ϕ,ψ, χ)(t, x) ∈ C(0, T ;H1(R)),

(ψx, χx, zx)(t, x) ∈ L2(0, T ;H1(R)),

ψxx(t, x) ∈ L2(R),

ϕx(t, x) ∈ L2(0, T ;L2(R)),

M−1
1 � V (t, x) + ϕ(t, x) � M1, ∀ (t, x) ∈ [0, T ]× R,

M−1
2 � Θ(t, x) + χ(t, x) � M2, ∀ (t, x) ∈ [0, T ]× R,

z(t, x) ∈ C(0, T ;H1(R) ∩ L1(R)),

0 � z(t, x) � 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Here, 0 < T � +∞, M1 and M2 are some positive constants.

For the local solvability of the Cauchy problems (2.2) and (2.3) in the above set of functions, one has

the following lemma.

Lemma 2.3 (Local existence). Under the assumptions listed in Theorem 1.1, there exists a sufficiently

small positive constant t1, which depends only on ‖(ϕ0, ψ0, χ0, z0)‖1, V , V , Θ and Θ, such that the

Cauchy problems (2.2) and (2.3) admit a unique smooth solution

(ϕ(t, x), ψ(t, x), χ(t, x), z(t, x)) ∈ X(0, t1;M
′
1,M

′
2)

which satisfies ⎧⎪⎪⎨⎪⎪⎩
0 < (M ′

1)
−1 � ϕ(t, x) + V (t, x) � M ′

1,

0 < (M ′
2)

−1 � φ(t, x) + Θ(t, x) � M ′
2,

0 � z(t, x) � 1

for all (t, x) ∈ [0, t1]× R and

sup
t∈[0,t1]

{‖(ϕ, ψ, χ, z)(t)‖1} � 2‖(ϕ0, ψ0, χ0, z0)‖1.

Suppose that such a local solution

(ϕ(t, x), ψ(t, x), χ(t, x), z(t, x))

constructed in Lemma 2.3 has been extended to the time step t = T > t1 and satisfies the a priori

assumption

0 < M−1
1 � v(t, x) � M1, 0 < M−1

2 � θ(t, x) � M2 (2.5)

for all x ∈ R, 0 � t � T and some generic positive constants M1 and M2 (without loss of generality,

we assume in the rest of this manuscript that M1 � 1 and M2 � 1). What we want to do next is to

deduce some energy type estimates in terms of ‖(ϕ0, ψ0, χ0, z0)‖1, V , V , Θ and Θ, but independent of M1

and M2. Throughout this paper, we assume δ (the strength of the rarefaction waves) and the radiation

constant a are small enough such that

δM100
1 M100+100b

2 � 1, (2.6)

aM100
1 M100+100b

2 � 1. (2.7)

The following lemma guarantees that p̃(v, s) is a convex function with respect to (v, s). In fact, from

(1.6)–(1.8), the a priori assumption (2.5), and the assumption (2.7) imposed on the radiation constant a,

we can get the following lemma.
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Lemma 2.4. Suppose that

(ϕ(t, x), ψ(t, x), χ(t, x), z(t, x)) ∈ X(0, T ;M1,M2)

is a solution to the Cauchy problems (2.2) and (2.3) defined on the strip ΠT := [0, T ]×R and satisfying

the a priori assumption (2.5). Then p̃(v, s) is convex with respect to v and s provided that a > 0 is

sufficiently small such that (2.7) holds. Consequently, we have

p̃(v, s)− p̃(V, s̄)− p̃v(V, s̄)ϕ− p̃s(V, s̄)ξ � 0.

Remark 2.5. To ensure that we can find sufficiently small positive constants δ0 and a0 such that the

assumptions (2.6) and (2.7) hold for all 0 < δ � δ0, 0 < a � a0, a sufficient condition is to show that the

positive lower and upper bounds on v(t, x) and θ(t, x) depend only on ‖(ϕ0, ψ0, χ0, z0)‖1, V , V , Θ and Θ,

but are independent of M1, M2, δ and a.

Now we give the following lemma concerning the basic energy estimates about the solution

(ϕ(t, x), ψ(t, x), χ(t, x), z(t, x)),

which will be frequently used later on.

Lemma 2.6 (Basic energy estimates). In addition to the conditions stated in Lemma 2.4, we assume

further that (2.6) holds. Then we have for all 0 � t � T that∫
R

z(t, x)dx+

∫ t

0

∫
R

φ(τ, x)z(τ, x)dxdτ � 1, (2.8)∫
R

z2(t, x)dx+

∫ t

0

∫
R

(
d

v2
z2x + φz2

)
(τ, x)dxdτ � 1, (2.9)∫

R

η(t, x)dx+

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
(τ, x)dxdτ +

∫ t

0

∫
R

(
λΘφz

θ

)
(τ, x)dxdτ

+

∫ t

0

∫
R

[(p̃(v, s)− p̃(V, s̄)− p̃v(V, s̄)ϕ− p̃s(V, s̄)ξ)Ux](τ, x)dxdτ � 1. (2.10)

Proof. The estimates (2.8) and (2.9) follow directly from (1.1)4 and integrations by parts. As for (2.10),

we have by integrating (2.4) with respect to t and x over (0, t)× R that∫
R

η(t, x)dx+

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
+

∫ t

0

∫
R

λΘφz

θ

+

∫ t

0

∫
R

(p̃(v, s)− p̃(V, s̄)− p̃v(V, s̄)ϕ− p̃s(V, s̄)ξ)Ux

=:

∫
R

η0dx+
5∑

j=1

Ij . (2.11)

By virtue of Lemma 2.2, the a priori assumption (2.5), (2.6), (2.8), and Cauchy-Schwarz inequality,

Ij (j = 1, 2, 3, 4, 5) can be bounded as follows:

I1 =

∫ t

0

∫
R

(
2μUxχψx

vθ
− μUxψϕx

v2
− κ(v, θ)Θxχϕx

v2θ
+

κ(v, θ)Θxχχx

vθ2

)
� δ

1
4

(∫ t

0

∥∥∥∥ϕx

v
(τ)

∥∥∥∥2dτ +

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

))
+ δ−

1
4C

(∫ t

0

‖Ux‖
1
2

L∞‖Ux‖
3
2

L∞

∫
R

(
ψ

v

)2

dxdτ +

∫ t

0

∫
R

(
μU2

xχ
2

vΘθ
+

κ(v, θ)χ2Θ2
x

vθ2Θ

)
+

∫ t

0

‖Θx‖2L∞

∫
R

(
κ(v, θ)χ

vθ

)2

dxdτ

)
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� δ
1
4

(∫ t

0

∥∥∥∥ϕx

v

∥∥∥∥2dτ +

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

))
+ δ

3
4C(M2

1 +M1M2 +M2
1M

2
2 (1 +M1M

b
2)

2

+M1M
2
2 (1 +M1M

b
2))

∫ t

0

(1 + τ)−
3
2 ‖(ψ, χ)(τ)‖2dτ, (2.12)

I2 =

∫ t

0

∫
R

(
μUxxψ

v
+

κ(v, θ)Θxxχ

vθ

)
�

∫ t

0

(
‖Uxx‖+ ‖Θxx‖+ ‖Uxx‖

∥∥∥∥ψv
∥∥∥∥2 + ‖Θxx‖

∥∥∥∥κ(v, θ)χvθ

∥∥∥∥2)dτ
� δ

1
8 + δ

1
4 (M2

1 +M2
1M

2
2 (1 +M2

1M
2b
2 ))

∫ t

0

(1 + τ)−
9
8 ‖(ψ, χ)(τ)‖2dτ, (2.13)

I3 =

∫ t

0

∫
R

(
μU2

xχ

vθ
− μUxψVx

v2
− κ(v, θ)ΘxχVx

v2θ

)
�

∫ t

0

∫
R

(
|Ux| 52 + |Vx| 52 +

∣∣∣∣Vxχ

v2

∣∣∣∣ 5
3

+

∣∣∣∣Uxχ

vθ

∣∣∣∣ 5
3

+

∣∣∣∣κ(v, θ)Θxχ

v2θ

∣∣∣∣ 5
3
)

�
∫ t

0

‖(Ux, Vx,Θx)‖
5
2

L
5
2
dτ +

∫ t

0

∫
R

(
|Vx| 32

∣∣∣∣ ψv2
∣∣∣∣2 + |Ux| 32

∣∣∣∣ χvθ
∣∣∣∣2 + |Θx| 32

∣∣∣∣κ(v, θ)χv2θ

∣∣∣∣2)
� δ + δ

1
2 (M4

1 +M2
1M

2
2 +M4

1M
2
2 (1 +M2

1M
2b
2 ))

∫ t

0

(1 + τ)−
5
4 ‖(ψ, χ)(τ)‖2dτ, (2.14)

I4 =

∫ t

0

∫
R

(−q(V,Θ)− g(V,Θ)xψ + g(V,Θ)xU − r(V,Θ)ξ)

�
∫ t

0

(‖q(V,Θ)‖L1 + ‖g(V,Θ)x‖L1 + ‖g(V,Θ)x‖+ ‖r(V,Θ)‖+ ‖g(V,Θ)x‖‖ψ‖2 + ‖r(V,Θ)‖‖ξ‖2)dτ

� δ
1
3 + δ

2
3

∫ t

0

(1 + τ)−
4
3 ‖(ψ, ξ)(τ)‖2dτ (2.15)

and

I5 =

∫ t

0

∫
R

(
λφz +

κx(v, θ)χΘx

vθ

)
� 1 +

∫ t

0

∫
R

(
θb|ϕxΘxχ|

vθ
+

θb|VxΘxχ|
vθ

+ θb−2|Θxχxχ|+ θb−2|Θ2
xχ|

)
� 1 + δ

1
4

∫ t

0

∫
R

(∣∣∣∣ϕx

v

∣∣∣∣2 + κ(v, θ)Θχ2
x

vθ2

)
+

∫ t

0

∫
R

(
|Vx| 52 + |Θx| 52 +

∣∣∣∣θb−1χΘx

v

∣∣∣∣ 5
3

+ |θb−2χΘx| 53
)

+ δ−
1
4

∫ t

0

∫
R

(
θ2b−2|Θxχ|2 + vθ2b−2χ2|Θx|2

Θκ(v, θ)

)
� 1 + δ

1
4

(
1 +

∫ t

0

∥∥∥∥ϕx

v
(τ)

∥∥∥∥2dτ +

∫ t

0

∫
R

κ(v, θ)Θχ2
x

vθ2

)
+ (δ

3
4M2b−2

2 + δ
1
2M2

1M
2b−2
2 + δ

3
4M b−2

2 + δ
1
2M2b−4

2 )

∫ t

0

[(1 + τ)−
3
2 + (1 + τ)−

5
4 ]‖χ(τ)‖2dτ. (2.16)

Combining (2.6), (2.11)–(2.16) and using Gronwall’s inequality, we can deduce that∫
R

η(t, x)dx+

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
+

∫ t

0

∫
R

φz

θ

+

∫ t

0

∫
R

(p̃(v, s)− p̃(V, s̄)− p̃v(V, s̄)ϕ− p̃s(V, s̄)ξ)Ux

� 1 + δ
1
4M1M2

∫ t

0

∫
R

θϕ2
x

v3
. (2.17)
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Now we turn to estimate the term
∫ t

0

∫
R

θϕ2
x

v3 . For this purpose, we multiply (2.2)2 by ϕx

v to deduce that[
μ

2

(
ϕx

v

)2

− ϕxψ

v

]
t

+
Rθϕ2

x

v3
+

(
ψψx

v

)
x

=

[
ψ2
x

v
+

pθ(v, θ)ϕxχx

v

]
+

{
(pv(v, θ)− pV (V,Θ))Vxϕx

v
+

(pθ(v, θ)− pΘ(V,Θ))Θxϕx

v

}
+

[
Uxψϕx

v2
− Vxψψx

v2
+

μVxψxϕx

v3

]
+

[
μVxUxϕx

v3
− μUxxϕx

v2

]
+

g(V,Θ)xϕx

v
. (2.18)

Then we integrate (2.18) over (0, t)× R to derive∥∥∥∥ϕx

v
(t)

∥∥∥∥2 + ∫ t

0

∫
R

Rθϕ2
x

v3

� 1 + ‖ψ(t)‖2 +
∫ t

0

∫
R

[
ψ2
x

v
+

pθ(v, θ)ϕxχx

v

]
︸ ︷︷ ︸

I6

+

∫ t

0

∫
R

{
(pv(v, θ)− pV (V,Θ))Vxϕx

v
+

(pθ(v, θ)− pΘ(V,Θ))Θxϕx

v

}
︸ ︷︷ ︸

I7

+

∫ t

0

∫
R

[
Uxψϕx

v2
− vxψψx

v2
+

μVxψxϕx

v3

]
︸ ︷︷ ︸

I8

+

∫ t

0

∫
R

[
μVxUxϕx

v3
− μUxxϕx

v2

]
︸ ︷︷ ︸

I9

+

∫ t

0

∫
R

g(V,Θ)xϕx

v︸ ︷︷ ︸
I10

. (2.19)

Now we turn to estimate Ij (j = 6, . . . , 10) term by term. In fact, we have from Lemma 2.2, a priori

assumption (2.5) and Cauchy-Schwarz inequality that

I6 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

(
‖θ‖∞

∫ t

0

∫
R

μΘψ2
x

vθ
+

∥∥∥∥ θ2p2θ(v, θ)

κ(v, θ)pv(v, θ)

∥∥∥∥
∞

∫ t

0

∫
R

κ(v, θ)Θχ2
x

vθ2

)
(2.20a)

� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

(
M2

∫ t

0

∫
R

μΘψ2
x

vθ
+ (M2 +M2

1M
7
2 )

∫ t

0

∫
R

κ(v, θ)Θχ2
x

vθ2

)
, (2.20b)

I7 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

∫ t

0

∫
R

(
(pv(v, θ)− pV (V,Θ))2V 2

x

v(−pv(v, θ))
+

(pθ(v, θ)− pΘ(V,Θ))2Θ2
x

v(−pv(v, θ))

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

∫ t

0

∫
R

((
χ2

v3θ
+

ϕ2

v3θ
+

ϕ2

vθ

)
V 2
x

+

(
ϕ2

vV 2θ
+ vχ2θ3 + vθΘ2χ2 +

vΘ4χ2

θ

)
Θ2

x

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ δC(M3

1M +M1M
3
2 )

∫ t

0

(1 + τ)−
3
2 ‖(ϕ, χ)(τ)‖2dτ, (2.21)

I8 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

∫ t

0

∫
R

(
U2
xψ

2

v3(−pv(v, θ))
+

V 2
x ψ

2

v3(−pv(v, θ))
+

V 2
x ψ

2
x

v5(−pv(v, θ))

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ δ4CM3

1

∫ t

0

∫
R

μΘψ2
x

vθ
+ δCM1M2

∫ t

0

(1 + τ)−
3
2 ‖ψ(τ)‖2dτ, (2.22)

I9 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

∫ t

0

∫
R

(
U2
xV

2
x

v5(−pv(v, θ))
+

U2
xx

v3(−pv(v, θ))

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

(
M3

1M2

∫ t

0

∫
R

(|Ux| 52 + |Vx|10) +M1M2

∫ t

0

∫
R

U2
xx

)
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� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C(M1M2δ

1
2 +M3

1M2δ) (2.23)

and

I10 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

∫ t

0

∫
R

(g(V,Θ)x)
2

v(−pv(v, θ))

� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ CM1M2δ

4
3 . (2.24)

Plugging (2.20b)–(2.24) into (2.19), we have∥∥∥∥(ϕx

v

)
(t)

∥∥∥∥2 + ∫ t

0

∫
R

Rθϕ2
x

v3

� 1 + ‖ψ(t)‖2 + (M2
1M

7
2 + δ4M3

1M2)

∫ t

0

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
+ δ(M3

1M2 +M1M
3
2 )

∫ t

0

(1 + τ)−
3
2 ‖(ϕ,ψ, χ)(τ)‖2dτ. (2.25)

Having obtained (2.17) and (2.25), we can deduce (2.10) immediately by the assumption (2.6) and

Gronwall’s inequality.

By repeating the argument developed in [1], we can deduce the pointwise bounds of z(t, x). Here we

omit the proof for brevity.

Lemma 2.7. Under the conditions listed in Lemma 2.6, we have for all (t, x) ∈ [0, T ]× R that

0 � z(t, x) � 1. (2.26)

3 Uniform bounds for the specific volume

The main purpose of this section is to deduce the uniform-in-time pointwise bounds for the specific

volume v(t, x) for the Cauchy problems (2.2) and (2.3), which do not depend on δ and a. To this end,

we first give the following lemma, which is a consequence of (2.10) and Jensen’s inequality.

Lemma 3.1. Under the conditions listed in Lemma 2.6, we have that for all k ∈ Z and t ∈ [0, T ] there

exist ak(t), bk(t) ∈ Ωk := [−k − 1, k + 1] such that∫
Ωk

v(t, x)dx ∼ 1,

∫
Ωk

θ(t, x)dx ∼ 1, v(t, ak(t)) ∼ 1, θ(t, bk(t)) ∼ 1. (3.1)

The next lemma is concerned with a rough estimate on θ(t, x) in terms of the entropy dissipation rate

functional

V (t) =

∫
R

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
(t, x)dx.

Lemma 3.2. Under the conditions listed in Lemma 2.6, we have that for 0 � m � b+1
2 and each x ∈ R

(without loss of generality, we can assume that x ∈ Ωk for some k ∈ Z),

|θm(t, x)− θm(t, bk(t))| � V
1
2 (t) + 1 (3.2)

holds for 0 � t � T and consequently,

|θ(t, x)|2m � 1 + V (t), x ∈ Ωk, 0 � t � T. (3.3)

Proof. From (1.9), we have

|θm(t, x)− θm(t, bk(t))|



Gong G Q et al. Sci China Math December 2021 Vol. 64 No. 12 2655

�
∫
Ωk

|θm−1(Θx + χx)|dx

�
(∫

Ωk

vθ2m

1 + vθb
dx

) 1
2
(∫

Ωk

(
μΘψ2

x

vθ
+

κ(v, θ)Θχ2
x

vθ2

)
dx

) 1
2

+

∫
Ωk

θm−1|Θx|dx

� V
1
2 (t) +M

b−1
2

2 δ2

� V
1
2 (t) + 1. (3.4)

It is worth pointing out that we have used the assumption 0 � m � b+1
2 , boundedness of Ωk, (2.5), (2.6),

and (3.1) in deriving the above inequality.

The next lemma will give a local representation of v(t, x) by using the following cut-off function

ϕ(x) ∈ W 1,∞(R):

ϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x � k + 1,

k + 2− x, k + 1 � x � k + 2,

0, x � k + 2.

(3.5)

Lemma 3.3. Under the assumptions stated in Theorem 1.1, we have that for each 0 � t � T ,

v(t, x) = B(t, x)Q(t) +
1

μ

∫ t

0

B(t, x)Q(t)v(τ, x)p(τ, x)

B(τ, x)Q(τ)
dτ, x ∈ Ωk. (3.6)

Here

B(t, x) := v0(x) exp

{
1

μ

∫ ∞

x

(u0(y)− u(t, y))ϕ(y)dy

}
,

Q(t) := exp

{
1

μ

∫ t

0

∫ k+2

k+1

σ(τ, y)

}
, (3.7)

σ := −p(v, θ) +
μux

v
.

With the above presentation in hand, we can deduce uniform-in-time pointwise bounds of v(t, x) by

repeating the argument used in [32], and we omit the proof for brevity.

Lemma 3.4. Assume that the conditions listed in Lemma 2.6 hold. Then there exists a positive con-

stant C1 which depends only on V , V , Θ, Θ and H0, but is independent of δ and a, such that

C−1
1 � v(t, x) � C1, ∀ (t, x) ∈ [0, T ]× R. (3.8)

The following lemma concerns the estimate on the term ‖ϕx(t)‖2, which will be frequently used later

on.

Lemma 3.5. Under the assumptions listed in Lemma 2.6, we have that for any 0 � t � T ,

‖ϕx(t)‖2 +
∫ t

0

∫
R

θ(τ, x)ϕ2
x(τ, x)dxdτ � 1 + ‖θ‖∞. (3.9)

Proof. In light of (2.10), (2.20a) and (3.8), we can conclude that

I6 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

(
‖θ‖∞ +

∥∥∥∥ θ2p2θ(v, θ)

κ(v, θ)pv(v, θ)

∥∥∥∥
∞

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C(1 + ‖θ‖∞ + ‖θ‖(7−b)+∞ ). (3.10)

Here, (7− b)+ := max{0, 7− b}.
Then inserting (3.10), (2.21)–(2.24) into (2.19), we can get (3.9) by employing (2.6) and the assumption

b > 6.
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The next lemma pays attention to the estimate on the term∫ t

0

‖ψxx(τ)‖2dτ,

which will be useful in deducing the upper bound of θ(t, x).

Lemma 3.6. Under the conditions listed in Lemma 2.6, we have that for any 0 � t � T ,

‖ψx(t)‖2 +
∫ t

0

‖ψxx(τ)‖2dτ � 1 + ‖θ‖3∞. (3.11)

Proof. We multiply (2.2)2 by −ψxx to get

∂t

(
ψ2
x

2

)
+

μψ2
xx

v
− (ψtψx)x

= (p(v, θ)− p(V,Θ))xψxx − μψxxUxx

v
+ g(V,Θ)xψxx

+
μ(ψxϕxψxx + ψxVxψxx + Uxϕxψxx + VxUxψxx)

v2
. (3.12)

Integrating (3.12) with respect to t and x over (0, t) × R, we utilize Cauchy’s inequality, Sobolev’s

inequality, Lemma 2.2, (3.8) and (3.9) to find that∫
R

ψ2
x

2
dx+

∫ t

0

∫
R

μψ2
xx

v

� ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)

∫ t

0

∫
R

[(1 + a2θ6)|χx|2 + |(Vx,Θx)|2|ϕ|2 + |θϕx|2 + χ2|Vx|2

+ a2(1 + θ4)|Θx|2|χ|2 + U2
xx + |g(V,Θ)x|2 + ψ2

xϕ
2
x + ψ2

xV
2
x + U2

xϕ
2
x + V 2

x U
2
x ]

� ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)

(
1 + ‖θ‖(8−b)+∞ + ‖θ‖2∞ +

∫ t

0

‖ψx‖‖ψxx‖‖ϕx‖2dτ
)

� 2ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)

(
1 + ‖θ‖(8−b)+∞ + ‖θ‖2∞ + (1 + ‖θ‖2∞)

∫ t

0

∫
R

ψ2
x

θ
· θ
)

� 2ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)(1 + ‖θ‖(8−b)+∞ + ‖θ‖3∞). (3.13)

If we choose ε > 0 small enough and use the assumption b > 6, we can obtain (3.11) immediately.

4 A uniform upper bound of the absolute temperature

Now we are in a position to derive an estimate on the upper bound of θ(t, x). To this end, we recall

the definitions of the auxiliary functions X(t), Y (t) and Z(t) defined by (1.33), and then try to deduce

certain estimates among them by employing the special structure of the system (2.2).

Our first result is to show that ‖θ(t)‖L∞ , ‖ψ(t)‖ and ‖ψx(t)‖L∞ can be controlled by Y (t) and Z(t),

respectively.

Lemma 4.1. Under the conditions listed in Lemma 2.6, we have that for all 0 � t � T ,

‖θ(t)‖L∞ � 1 + Y (t)
1

2b+3 , (4.1)

sup
τ∈(0,t)

‖ψx(τ)‖2 � 1 + Z(t)
1
2 , ‖ψx(t)‖L∞ � 1 + Z(t)

3
8 . (4.2)

Proof. We assume that x ∈ [−k − 1, k + 1] for some k ∈ Z and x � bk(t) and observe that

(θ(t, x)−Θ(t, x))2b+3
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= (θ(t, bk(t))−Θ(t, bk(t)))
2b+3 +

∫ x

bk(t)

(2b+ 3)(θ(t, y)−Θ(t, y))2b+2χx(t, y)dy

� 1 + ‖(θ −Θ)(t)‖
2b+3

2

L∞

[ ∫ k+1

−k−1

(
1 + Φ

(
θ

Θ

))
dx

] 1
2
[ ∫

R

(θ −Θ)2bχ2
xdx

] 1
2

� 1 + ‖(θ −Θ)(t)‖
2b+3

2

L∞ Y
1
2 (t).

Then applying Cauchy’s inequality, we can obtain (4.1).

The estimate (4.2) is a consequence of Gagliardo-Nirenberg and Sobolev inequalities. This completes

the proof of Lemma 4.1.

Our next result shows that X(t) and Y (t) can be bounded by Z(t).

Lemma 4.2. Under the conditions listed in Lemma 2.6, we have that for 0 � t � T ,

X(t) + Y (t) � 1 + Z(t)
6b+9
12b+4 . (4.3)

Proof. In the same manner as [22,32], we set

K(v, θ) =

∫ θ

0

κ(v, ξ)

v
dξ =

κ1θ

v
+

κ2θ
b+1

b+ 1
. (4.4)

Then we can deduce that

Kt(v, θ) = Kv(v, θ)ψx +Kθ(v, θ)χt +Kv(v, θ)Ux +Kθ(v, θ)Θt,

Kx(v, θ) = Kv(v, θ)ϕx +Kθ(v, θ)χx +Kv(v, θ)Vx +Kθ(v, θ)Θx,

Kxt(v, θ) = (Kθ(v, θ)χx)t + [Kvv(v, θ)(ψx + Ux) +Kvθ(v, θ)(χt +Θt)]ϕx +Kv(v, θ)ψxx

+ [Kvv(v, θ)(ψx + Ux) +Kvθ(v, θ)(χt +Θt)]Vx +Kv(v, θ)Uxx

+ [Kvθ(v, θ)(ψx + Ux) +Kθθ(v, θ)(χt +Θt)]Θx +Kθ(v, θ)Θxt,

|Kv(v, θ)|+ |Kvv(v, θ)| � θ, |Kθ(v, θ)| � 1 + θb, |Kvθ(v, θ)| � 1, |Kθθ(v, θ)| � θb−1.

(4.5)

Hereafter, for simplicity of presentation, we use K, p, e, P and E to denote K(v, θ), p(v, θ), e(v, θ), p(V,Θ)

and e(V,Θ), respectively.

We multiply (2.2)3 by Kt and integrate the resulting identity with respect to t and x over (0, t)×R to

find that∫ t

0

∫
R

eθKθχ
2
t +

∫ t

0

∫
R

(Kθχx)(Kθχx)t −
∫ t

0

∫
R

KθKvθUxχ
2
x

=

∫ t

0

∫
R

(KθKθθχtΘ
2
x +K

2
θχtΘxx +KθKvθχtΘxVx)︸ ︷︷ ︸
I11

+

∫ t

0

∫
R

{
KθKθθχ

2
xΘt +KθKvθχtϕxΘx −KθKvθχxχtVx −

(
θpθ − eθΘPΘ

EΘ

)
UxKθχt

}
︸ ︷︷ ︸

I12

+

∫ t

0

∫
R

KθKvθχ
2
xψx︸ ︷︷ ︸

I13

−
∫ t

0

∫
R

KθKvθχtϕxχx︸ ︷︷ ︸
I14

+

∫ t

0

∫
R

(λφz − eθr(v, θ))Kθχt︸ ︷︷ ︸
I15

−
∫ t

0

∫
R

θpθKθψxχt︸ ︷︷ ︸
I16

+

∫ t

0

∫
R

μu2
xKθχt

v︸ ︷︷ ︸
I17

. (4.6)

Firstly, we find that ∫ t

0

∫
R

eθKθχ
2
t �

∫ t

0

∫
R

(1 + aθ3)(1 + θb)χ2
t � X(t) (4.7)
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and ∫ t

0

∫
R

(Kθχx)(Kθχx)t =
1

2

∫
R

(Kθχx)
2(t, x)dx− 1

2

∫
R

(Kθχx)
2(0, x)dx

� Y (t)− C. (4.8)

We now estimate Ik (k = 11, 12, . . . , 17) term by term. For the term I11, it follows from Lemma 2.2, (2.6)

and (4.5) that

I11 � εX(t) + C(ε)

∫ t

0

∫
R

[(1 + θ3b−2)|Θx|4 + (1 + θ3b)|Θxx|2 + (1 + θb)|Θx|2|Vx|2]

� εX(t) + C(ε)[(1 +M3b−2
2 )δ + (1 +M3b

2 )δ
1
2 + (1 +M b

2)δ]

� εX(t) + C(ε). (4.9)

After a simple calculation, we can deduce from Lemma 3.4 that∣∣∣∣θpθeθ
− ΘPΘ

EΘ

∣∣∣∣ � |ϕ|+ |χ|. (4.10)

On the other hand, by using Taylor’s formula, we can deduce for 0 < ω < 1 that∫
R

χ2dx = 2

∫
R

Φ

(
θ

Θ

)
(ωΘ+ (1− ω)θ)2dx � 1 +M2

2 . (4.11)

Thus we can obtain from Lemma 2.2, (2.6), (2.10), (3.9), (4.5), (4.10) and (4.11) that

I12 � εX(t) + C(ε)

∫ t

0

∫
R

[
(1 + θb)|ϕx|2|Θx|2 + (1 + θb)Θ|χx|2

vθ2 · θ2|Vx|2

+ (1 + θb+6)(ϕ2 + χ2)|Ux|2
]

+ C‖Θt‖L∞

∫ t

0

∫
R

(1 + θb)Θ|χx|2
vθ2 · (1 + θb+1)

� εX(t) + C(ε)[(1 +M b+1
2 )δ +M2

2 δ
4 + (1 +M b+8

2 )δ + δ2(1 +M b+1
2 )]

� εX(t) + C(ε). (4.12)

Moreover, we get by combining the estimates (2.10), (4.1), (4.2) and (4.5) that

I13 �
∫ t

0

∫
R

(1 + θb)Θ|χx|2
vθ2 · |ψx|θ2 � (1 + Y (t)

2
2b+3 )(1 + Z(t)

3
8 )

� εY (t) + C(ε)(1 + Z(t)
6b+9
16b+8 ). (4.13)

By employing Sobolev’s inequality, (3.9), and (2.10), we find that

I14 � εX(t) + C(ε)

∫ t

0

∥∥∥∥κ(v, θ)χx

v

∥∥∥∥2
L∞

‖ϕx‖2dτ

� εX(t) + C(ε)(1 + ‖θ‖∞)

∫ t

0

∫
R

∣∣∣∣κ(v, θ)χx

v

∣∣∣∣∣∣∣∣(κ(v, θ)χx

v

)
x

∣∣∣∣
� εX(t) + C(ε)(1 + ‖θ‖∞)

(∫ t

0

∫
R

θ2κ

∣∣∣∣(κ(v, θ)χx

v

)
x

∣∣∣∣2) 1
2
(∫ t

0

∫
R

κ(v, θ)Θχ2
x

vθ2

) 1
2

� εX(t) + C(ε)(1 + Y (t)
1

2b+3 )

(∫ t

0

∫
R

(1 + θb+2)

∣∣∣∣(κ(v, θ)θx
v

)
x

−
(
κ(v, θ)Θx

v

)
x

∣∣∣∣2) 1
2

︸ ︷︷ ︸
J

1
2

. (4.14)
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In view of (2.2)3, Lemma 2.2, (2.6), (2.8), (2.10), (4.2) and (4.10), one has

J �
∫ t

0

∫
R

[
(1 + θb+2)e2θχ

2
t + (1 + θb+2)θ2p2θψ

2
x + (1 + θb+2)e2θ

(
θpθ
eθ

− ΘPΘ

EΘ

)2

U2
x

+ (1 + θb+2)ψ4
x + (1 + θb+2)U4

x + (1 + θb+2)φ2z2 + (1 + θb+2)e2θr
2(V,Θ)

]
+

∫ t

0

∫
R

(1 + θb+2)

∣∣∣∣(κ(v, θ)Θx

v

)
x

∣∣∣∣2︸ ︷︷ ︸
Ja

� Ja +

∫ t

0

∫
R

[
(1 + θb+8)χ2

t +
μΘψ2

x

vθ
· (1 + θb+11) + (1 + θb+8)(χ2 + ϕ2)U2

x

]
+ (1 + ‖θ‖b+3

∞ )‖ψx‖2L∞

∫ t

0

∫
R

μΘψ2
x

vθ
+ (1 +M b+8

2 )δ
4
3

+ (1 +M b+2
2 )δ + (1 + ‖θ‖b+β+2

∞ )

∫ t

0

∫
R

φz2

� 1 +X(t)(1 + Y (t)
8

2b+3
) + Y (t)

b+11
2b+3

+ (1 + Y (t)
b+3
2b+3 )(1 + Z(t)

3
4 ) + Y (t)

b+β+2
2b+3 + Ja (4.15)

and

Ja �
∫ t

0

∫
R

(1 + θb+2)[θ2bϕ2
xΘ

2
x + θ2bV 2

x Θ
2
x + θ2b−2χ2

xΘ
2
x + θ2b−2Θ4

x +Θ2
xx + θ2bΘ2

xx

+ (1 + θ2b)Θ2
x(ϕ

2
x + V 2

x )]

� (1 + ‖θ‖3b+2
∞ )

∫ t

0

‖Θx‖2L∞‖ϕx‖2dτ + (1 + ‖θ‖3b+2
∞ )

∫ t

0

∫
R

V 2
x Θ

2
x

+

∫ t

0

∫
R

(1 + θb)Θ|χx|2
vθ2 · (1 + θ2b+2)Θ2

x

+ (1 + ‖θ‖3b∞)

∫ t

0

∫
R

Θ4
x + (1 + ‖θ‖3b+2

∞ )

∫ t

0

∫
R

Θ2
xx

� (1 +M3b+3
2 )(δ

1
2 + δ4) � 1. (4.16)

Thus we can conclude from (4.15)–(4.16) that

J � 1 +X(t)(1 + Y (t)
8

2b+3
) + Y (t)

b+11
2b+3

+ Z(t)
3
4 + Y (t)

b+3
2b+3Z(t)

3
4 + Y (t)

b+β+2
2b+3 . (4.17)

Plugging (4.17) into (4.14), we have

I14 � ε(X(t) + Y (t)) + C(ε)(1 + Z(t)
6b+9
12b+4 ). (4.18)

Here, we have used the facts that

b >
19

4
and 0 � β < min{3b+ 2, 5b− 10}.

As for the term I15, from Lemma 2.2, (2.9) and the assumption 0 � β < b+ 3 we have

I15 �
∫ t

0

∫
R

[(1 + θb)φz + (1 + θb)(1 + aθ3)|r(V,Θ)|]|χt|

� εX(t) + C(ε)

∫ t

0

∫
R

[(1 + θb)φ2z2 + (1 + θb+6)|r(V,Θ)|2]

� εX(t) + C(ε)(1 + ‖θ‖b+β
∞ + δ

4
3 (1 +M b+6

2 ))

� ε(X(t) + Y (t)) + C(ε). (4.19)
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For the term I16, we employ (4.5) and the assumption b > 6 to find that

I16 �
∫ t

0

∫
R

(1 + θb)θ(1 + aθ3)|ψxχt|

� εX(t) + C(ε)

∫ t

0

∫
R

(1 + θb+9)
ψ2
x

θ

� εX(t) + C(ε)(1 + Y (t)
b+9
2b+3 )

� ε(X(t) + Y (t)) + C(ε). (4.20)

It suffices to bound the term I17. To this end, we conclude from Lemma 2.2 and (4.5) that

I17 � εX(t) + C(ε)

∫ t

0

∫
R

(1 + θb)(ψ4
x + U4

x) � εX(t) + C(ε)

(
1 +

∫ t

0

∫
R

(1 + θb)ψ4
x

)
. (4.21)

Then by virtue of Sobolev’s inequality, Lemma 3.6 and (2.10), we can get∫ t

0

∫
R

(1 + θb)ψ4
x � (1 + ‖θ‖b∞)

∫ t

0

‖ψx‖2L∞‖ψx‖2dτ

� (1 + ‖θ‖b∞)

∫ t

0

‖ψx‖3‖ψxx‖dτ

� (1 + ‖θ‖b+3
∞ )

(∫ t

0

‖ψx‖2dτ
) 1

2
(∫ t

0

‖ψxx‖2dτ
) 1

2

� 1 + ‖θ‖b+5
∞ . (4.22)

Thus the combination of (4.21), (4.22) and the assumption b > 2 gives

I17 � ε(X(t) + Y (t)) + C(ε). (4.23)

By substituting (4.7)–(4.23) into (4.6) and by choosing ε > 0 small enough, it yields (4.3).

The next lemma tells us that Z(t) can be controlled by X(t) and Y (t).

Lemma 4.3. Under the conditions listed in Lemma 2.6, we have that for all 0 � t � T ,

Z(t) � 1 +X(t) + Y (t) + Z(t)
6b+9
8b+8 . (4.24)

Proof. We differentiate (2.2)2 with respect to t and multiply the resulting identity by ψt to derive(
ψ2
t

2

)
t

+
μψ2

xt

v
+

[(
(p− P )t + g(V,Θ)t − μ

(
ux

v

)
t

)
ψt

]
x

=

[
μ(ψx + Ux)

2

v2
− μUxt

v
+ (p− P )t + g(V,Θ)t

]
ψxt. (4.25)

Integrating the above identity with respect to t and x over (0, t)× R, one has∫
R

ψ2
t

2
dx+

∫ t

0

∫
R

μψ2
tx

v

=

∫ t

0

∫
R

(
μψtxψ

2
x + μψtxU

2
x + 2μψtxψxUx

v2
− μψtxUtx

v
+ g(V,Θ)tψtx

)
︸ ︷︷ ︸

I18

+

∫
R

ψ2
0t

2
dx+

∫ t

0

∫
R

(p− P )tψtx︸ ︷︷ ︸
I19

. (4.26)
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It suffices to estimate the terms Ik (k = 18, 19). For this purpose, we compute from (2.6), (2.10) and (3.8)

that

I18 � ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)

∫ t

0

∫
R

(
ψ2
x

θ
· (θψ2

x + θU2
x) + U4

x + U2
xt + |g(V,Θ)t|2

)
� ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)((1 + Y (t)

1
2b+3 )(1 + Z(t)

3
4 ) + δ + δ4M2)

� ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)(1 + Y (t) + Z(t)

6b+9
8b+8 ). (4.27)

Moreover, it is easy to see that

|(p− P )t|2 � (1 + a2θ6)χ2
t + |Θt|2(ϕ2 + χ2(1 + θ4)) + χ2ψ2

x + χ2U2
x + ψ2

x + U2
xϕ

2. (4.28)

Then it follows from Lemma 2.2 and (2.10) that

I19 � ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)

∫ t

0

∫
R

|(p− P )t|2

� ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)

(
X(t) +

∫ t

0

‖Θt‖2L∞(‖ϕ‖2 + (1 + ‖θ‖4L∞)‖χ‖2)dτ

+

∫ t

0

∫
R

ψ2
x

θ
· (1 + θ3) +

∫ t

0

‖Ux‖2L∞dτ

)
� ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)(1 +X(t) + Y (t) + δ(1 +M6

2 ))

� ε

∫ t

0

∫
R

μψ2
tx

v
+ C(ε)(1 +X(t) + Y (t)). (4.29)

By choosing ε > 0 small enough, the combination of (4.26)–(4.29) and (3.8) shows

‖ψt‖2 +
∫ t

0

‖ψtx(τ)‖2dτ � 1 +X(t) + Y (t) + Z(t)
6b+9
8b+8 . (4.30)

Now we are in a position to yield an estimate on ‖ψxx(t)‖. Firstly, (2.2)2 tells us that

ψxx =
ϕxψx + ϕxUx + Vxψx + VxUx

v
− Uxx +

v

μ
[ψt + (p(v, θ)− P (V,Θ))x + g(V,Θ)x]. (4.31)

On the other hand, Lemma 2.2, (2.6), (3.9), (4.1) and (4.11) show that

‖(p− P )x‖2 �
∫
R

[(1 + a2θ6)|χx|2 + |(Vx,Θx)|2|ϕ|2 + (1 + θ4)|(Vx,Θx)|2|χ|2 + |θϕx|2]dx

� Y (t) + (1 + ‖θ‖2L∞)(1 + ‖θ‖L∞) + δ4(1 +M6
2 )

� 1 + Y (t). (4.32)

Thus one can conclude from Lemma 3.6, (3.9), (4.2), (4.30)–(4.32) and Young’s inequality that∫
R

ψ2
xxdx �

∫
R

(ϕ2
xψ

2
x + ϕ2

xU
2
x + ψ2

xV
2
x + V 2

x U
2
x + U2

xx + ψ2
t + |(p(v, θ)− P (V,Θ))x|2 + |(g(V,Θ))x|2)dx

� 1 +X(t) + Y (t) + Z(t)
6b+9
8b+8 + ‖ψx‖2L∞‖ϕx‖2 + ‖Ux‖2L∞‖ϕx‖2 + ‖Vx‖2L∞‖ψx‖2

+ ‖Vx‖2L∞‖Ux‖2 + ‖Uxx‖2 + ‖(g(V,Θ))x‖2

� 1 +X(t) + Y (t) + Z(t)
6b+9
8b+8 + δ4(1 +M3

2 ) + (1 + Y (t)
1

2b+3 )(1 + Z(t)
3
4 )

� 1 +X(t) + Y (t) + Z(t)
6b+9
8b+8 . (4.33)

We thus get the estimate (4.24) by using the definition of Z(t).
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We can deduce that Y (t) � 1 by combining Lemmas 4.1–4.3. Then the desired upper bound on the

absolute temperature θ(t, x) follows from (4.1) immediately. Moreover, we can infer from Lemma 2.1 to

Lemma 4.3 as follows.

Lemma 4.4. Under the conditions listed in Lemma 2.6, there exists a positive constant C2 which

depends only on V , V , Θ, Θ and H0, such that

θ(t, x) � C2, ∀ (t, x) ∈ [0, T ]× R. (4.34)

Moreover, we have that for 0 � t � T ,

sup
0�t<∞

‖(ϕ, ψ, χ, z, ϕx, ψx, ψt, χx, ψxx)(t)‖2 +
∫ t

0

‖(
√
θϕx, ψx, χt, χx, ψxx, ψxt, zx)(τ)‖2dτ � 1 (4.35)

and ∫ t

0

‖ψx(τ)‖4L4(R)dτ � 1, ‖ψx‖L∞([0,T ]×R) � 1. (4.36)

The next lemma gives nice bounds on the terms
∫ t

0
‖χxx(τ)‖2dτ and ‖zx(t)‖2, whose proof is similar

to Lemma 4.5 developed in [26]. Thus we omit the proof for brevity.

Lemma 4.5. Under the conditions listed in Lemma 2.6, we can get that for 0 � t � T ,

‖χx(t)‖2 +
∫ t

0

‖χxx(τ)‖2dτ � 1 (4.37)

and

‖zx(t)‖2 +
∫ t

0

‖zxx(τ)‖2dτ � 1. (4.38)

5 A local-in-time lower bound on the absolute temperature

The following lemma will give a local-in-time lower bound on θ(t, x). In fact, we can deduce the lemma

by repeating the argument developed in [32].

Lemma 5.1. Under the conditions stated in Lemma 2.6, for each 0 � s � t � T and x ∈ R we have

the following estimate:

θ(t, x) � Cminx∈R{θ(s, x)}
1 + (t− s)minx∈R{θ(s, x)} (5.1)

holds for some positive constant C which depends only on V , V , Θ, Θ and H0.

6 The proof of main results

With the above preparations in hand, we now turn to prove our main results.

We first prove Theorem 1.1. To this end, suppose that

(ϕ(t, x), ψ(t, x), χ(t, x), z(t, x)) ∈ X(0, T ;M1,M2)

is a solution to the Cauchy problems (2.2) and (2.3) defined on the strip ΠT := [0, T ]×R and satisfying

the a priori assumption (2.5). Then if the assumptions listed in Theorem 1.1 hold true and δ > 0 and

a > 0 are chosen sufficiently small such that (2.6) and (2.7) hold, we can get from Lemmas 2.6, 3.4, 4.4

and 5.1 that

0 � z(t, x) � 1, ∀ (t, x) ∈ [0, T ]× R,

C−1
1 � v(t, x) � C1, ∀ (t, x) ∈ [0, T ]× R,

θ(t, x) � C2, ∀ (t, x) ∈ [0, T ]× R,

θ(t, x) � C3 minx∈R{θ(s, x)}
1 + (t− s)minx∈R{θ(s, x)} , ∀ (t, x) ∈ [s, t]× R

(6.1)
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hold for some positive constants Ci (i = 1, 2, 3) which depend only on V , V , Θ, Θ and H0.

By having obtained (6.1), Theorem 1.1 can be proved by combining the local solvability result Lem-

ma 2.3 with the continuation argument introduced in [32, 52] and we omit the details for brevity.

Recall that in the proof of Theorem 1.1, the assumption on the smallness of the radiation constant a

is only used in Lemma 2.4 to guarantee that p̃(v, s) is convex with respect to v and s, and we do not

use such a smallness assumption elsewhere to control certain nonlinear terms involved. As explained in

Section 1, the very reason for such an analysis is that once we can impose some other assumptions to

guarantee the convexity of p̃(v, s) with respect to (v, s) in the regime for v and s under our consideration,

then one can deduce that a similar stability result holds accordingly.

The main purpose of Theorem 1.3 is to show that if we use the smallness of a to control the involved

nonlinear terms, then we can relax the assumptions we imposed on the parameters b and β while the

similar stability result still holds. For this purpose, we only need to re-estimate those terms related to the

radiation constant a, since the terms can be estimated in the same way as in the proof of Theorem 1.1.

First of all, we treat the term ‖ϕx(t)‖2. By using (2.7), (2.10), (2.20a) and (3.8), I6 can be re-estimated

as

I6 � 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C

(
‖θ‖∞ +

∥∥∥∥θ2(Rv + 4aθ3

3 )2

κ(v, θ)pv(v, θ)

∥∥∥∥
∞

)
� 1

10

∫ t

0

∫
R

Rθϕ2
x

v3
+ C(1 + ‖θ‖∞). (6.2)

Inserting (6.2), (2.21)–(2.24) into (2.19) and employing (3.8), we can infer

‖ϕx(t)‖2 +
∫ t

0

∫
R

θϕ2
x � 1 + ‖θ‖∞. (6.3)

Now we deal with the term
∫ t

0
‖ψxx(τ)‖2dτ . By virtue of (2.7) and (2.10), we have∫ t

0

∫
R

(1 + a2θ6)|χx|2 �
∫ t

0

∫
R

κ(v, θ)Θχ2
x

vθ2
· θ2

1 + θb
� 1 + ‖θ‖(2−b)+∞ . (6.4)

Plugging (6.4) into (3.13) and utilizing (6.3), we deduce

‖ψx(t)‖2 +
∫ t

0

∫
R

μψ2
xx

v
� 2ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)(1 + ‖θ‖(2−b)+∞ + ‖θ‖3∞)

� 2ε

∫ t

0

∫
R

μψ2
xx

v
+ C(ε)(1 + ‖θ‖3∞). (6.5)

By choosing ε > 0 small enough, we can see (3.11) still holds true without imposing any condition on the

parameter b.

On the other hand, (2.7) tells us that∫ t

0

∫
R

(1 + θb+2)e2θχ
2
t �

∫ t

0

∫
R

(1 + θb+2)χ2
t � X(t)(1 + Y (t)

2
2b+3

) (6.6)

and ∫ t

0

∫
R

(1 + θb+2)θ2p2θψ
2
x �

∫ t

0

∫
R

μΘψ2
x

vθ
· (1 + θb+5) � 1 + Y (t)

b+5
2b+3

. (6.7)

Then (4.15), (4.16), (6.6) and (6.7) imply that

J � 1 +X(t)(1 + Y (t)
2

2b+3
) + Y (t)

b+5
2b+3 + Z(t)

3
4 + Y (t)

b+3
2b+3Z(t)

3
4 + Y (t)

b+β+2
2b+3 . (6.8)

We utilize (4.14), (6.8), the assumption b > 5
6 and 0 � β < 3b+ 2 to derive (4.18).
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Meanwhile, it follows from (2.7), (4.5) and the fact b > 0 that

I16 �
∫ t

0

∫
R

(1 + θb+1)|ψxχt|

� εX(t) + C(ε)

∫ t

0

∫
R

(1 + θb+3)
ψ2
x

θ

� εX(t) + C(ε)(1 + Y (t)
b+3
2b+3 )

� ε(X(t) + Y (t)) + C(ε). (6.9)

We can exploit the same method developed in Section 4 to estimate the other terms. Here, we need

the condition 0 � β < b + 3 to bound the term I15 and b > 2 to bound the term I17. By repeating the

argument used to prove Theorem 1.1, we can complete the proof of Theorem 1.2.
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