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1 Introduction and main results

We consider the three-dimensional barotropic compressible Navier-Stokes equations which read as follows:{
ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇P = μΔu+ (μ+ λ)∇divu,
(1.1)

where t � 0, x = (x1, x2, x3) ∈ Ω ⊂ R
3, ρ = ρ(x, t), u = (u1(x, t), u2(x, t), u3(x, t)) and P = P (ρ)

represent, respectively, the density, the velocity and the pressure. The constant viscosity coefficients μ

and λ satisfy the physical hypothesis

μ > 0, 2μ+ 3λ � 0. (1.2)

Let Ω ⊂ R
3 be either a smooth bounded domain or the whole space R

3. We impose the following

initial and boundary conditions on (1.1):

ρ(x, 0) = ρ0(x), ρu(x, 0) = m0(x), x ∈ Ω (1.3)
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and {
u(x, t) = 0, x ∈ ∂Ω, if Ω ⊂⊂ R

3,

(ρ, u)(x, t) → (ρ∞, 0), as |x| → ∞, if Ω = R
3

(1.4)

with constant ρ∞ � 0.

It is important to investigate the well-posedness of strong solutions for compressible Navier-Stokes

equations.

As long as the initial density is away from vacuum, the local well-posedness theory of the problem (1.1)

is established in [22] and [19,21], respectively. In 1980s, Matsumura and Nishida [18] proved the existence

of global classical solutions when the initial data are close to some positive constants. Besides, it is shown

by Hoff [8, 9] that the system will admit at least one global weak solution with strictly positive initial

density and temperature for discontinuous initial data.

Things become more complicated when the density is allowed to vanish. In 1990s, the major break-

through is due to Lions [16,17] (then improved by Feireisl et al. [5,6]), where the global existence of weak

solutions with finite energy without any size restriction on the initial data can be proved under the condi-

tion that the exponent γ is suitably large. Later, Hoff [10], Hoff and Santos [11] and Hoff and Tsyganov [12]

obtained a new type of global weak solutions with small energy. Considering the strong or classical

solutions with vacuum, Cho et al. [2], Cho and Kim [3], Choe and Kim [4] and Salvi and Straškraba [20]

obtained the local existence and uniqueness of strong and classical solutions for three-dimensional bound-

ed or unbounded domains and for two-dimensional bounded ones. It should be noted that the results

in [2–4, 20] are derived under some additional compatibility conditions (see (1.9) in the below). More

precisely, they required that g ∈ L2(Ω) or g ∈ H1(Ω) in (1.9) for the strong or classical solutions, respec-

tively. In this direction, a natural question arises whether one can remove or relax the initial compatibility

conditions with nonnegative density in a suitable sense. Indeed, this is the aim of this paper, i.e., we

establish the local existence of strong solutions without the initial compatibility condition.

Before stating the main results, we first explain the notations and conventions used throughout this

paper. For 1 � r � ∞ and k � 1, the standard Lebesgue and Sobolev spaces are defined as follows:⎧⎪⎪⎨
⎪⎪⎩
Lr = Lr(Ω), W k,r = W k,r(Ω), Hk = W k,2,

D1
0 =

{
H1

0 (Ω) for bounded Ω ⊂ R
3,

{f ∈ L6 | ∇f ∈ L2} for Ω = R
3.

The first main result of this paper is the following Theorem 1.2 concerning the local existence of strong

solutions whose definition is as follows.

Definition 1.1. If all the derivatives involved in (1.1) for (ρ, u) are regular distributions, and the

equations (1.1) hold almost everywhere in Ω× (0, T ), then (ρ, u) is called a strong solution to (1.1).

Theorem 1.2. Assume that P = P (·) ∈ C1[0,∞). For some 3 < q < 6 and ρ∞ � 0, assume that the

initial data (ρ0,m0) satisfy

ρ0 � 0, ρ0 − ρ∞ ∈ Lp̃ ∩D1 ∩W 1,q, u0 ∈ D1
0 (1.5)

and

m0 = ρ0u0, (1.6)

where

p̃ �

⎧⎨
⎩

3

3
for Ω = R

3 and ρ∞ = 0,

2, otherwise.
(1.7)

Then there exists a positive time T0 > 0 such that the problems (1.1)–(1.4) have a unique strong solution

(ρ, u) on Ω× (0, T0] satisfying that⎧⎪⎪⎨
⎪⎪⎩
ρ− ρ∞ ∈ C([0, T0];L

p̃ ∩D1 ∩W 1,q),

∇u,
√
t∇2u,

√
t
√
ρut, t∇ut ∈ L∞(0, T0;L

2),

t∇u ∈ L∞(0, T0;W
1,q),

√
ρut,

√
t∇ut ∈ L2(Ω× (0, T0)).

(1.8)
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Furthermore, if in addition to (1.5) and (1.6), (ρ0, u0) satisfies the compatibility conditions

− μΔu0 − (μ+ λ)∇divu0 +∇P (ρ0) = ρ
1/2
0 g, (1.9)

for g ∈ L2, (ρ, u) also satisfies{
∇u ∈ L∞(0, T0;H

1),
√
t∇u ∈ L∞(0, T0;W

1,q),
√
ρut,

√
t∇ut ∈ L∞(0, T0;L

2), ∇ut ∈ L2(Ω× (0, T0)).
(1.10)

Next, the following Corollary 1.3 whose proof is similar to that of [4, Theorem 3] gives the continuous

dependence of the solution on the data provided (1.9) holds.

Corollary 1.3. For each i = 1, 2, let (ρi, ui) be the local strong solution to the problems (1.1)–(1.4)

with the initial data (ρ0i, u0i) satisfying (1.5), (1.6), and the compatibility condition (1.9) with g = gi.

Moreover, assume that (ρ0i, u0i) satisfies

‖ρ0i − ρ∞‖Lp̃∩D1∩W 1,q + ‖∇u0i‖H1 + ‖gi‖L2 � K. (1.11)

Then there exist a small time T0 and a positive constant C depending only on T0 and K such that

sup
0�t�T0

(‖ρ1/21 (u1 − u2)‖2L2 + ‖ρ1 − ρ2‖2Lp̃) +

∫ T0

0

‖∇(u1 − u2)‖2L2ds

� C‖ρ1/201 (u01 − u02)‖2L2 + C‖ρ01 − ρ02‖2Lp̃ . (1.12)

Finally, if the initial data (ρ0,m0) satisfy some additional regularity and compatibility conditions, the

local strong solution (ρ, u) obtained by Theorem 1.2 becomes a classical one.

Theorem 1.4. Assume that P (ρ) satisfies either

P (·) ∈ C2[0,∞) (1.13)

or

P (ρ) = Aργ (A > 0, γ > 1). (1.14)

In addition to (1.5), (1.6) and (1.9), assume further that

∇2ρ0, ∇2P (ρ0) ∈ L2 ∩ Lq. (1.15)

Then, in addition to (1.8) and (1.10), the strong solution (ρ, u) obtained by Theorem 1.2 satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇2ρ, ∇2P (ρ) ∈ C([0, T0];L
2 ∩ Lq),

∇u ∈ L2(0, T0;H
2),

√
t∇u ∈ L∞(0, T0;H

2),

t∇u ∈ L∞(0, T0;W
2,q),

√
t∇ut ∈ L2(0, T0;H

1),

t∇ut ∈ L∞(0, T0;H
1), tutt ∈ L2(0, T0;D

1
0),

t
√
ρutt ∈ L∞(0, T0;L

2),
√
t
√
ρutt ∈ L2(0, T0;L

2).

(1.16)

A few remarks are in order.

Remark 1.5. To obtain the local existence and uniqueness of strong solutions, in Theorem 1.2, we

need the compatibility condition (1.6) which is much weaker than those of [2–4,20] where not only (1.6)

but also (1.9) is needed. Moreover, the strong solutions obtained in Theorem 1.2 are somewhat more

regular than those in [2–4] when t > 0. In this sense, we successfully remove the compatibility condition

required in [2–4, 20]. Indeed, as indicated by Li and Liang [14], after they are motivated by our results

which appeared as [11] there, they continue to consider the 2D Cauchy problem of the density-dependent

compressible Navier-Stokes equations. Moreover, some of the results of Li and Xin [15] were also partially

based on ours which appeared as [18] there.
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Remark 1.6. After obtaining the existence result in Theorem 1.2, we show the continuous dependence

of the solution on the data in Corollary 1.3, provided that the initial data satisfy the compatibility

condition (1.9). Indeed, Theorem 1.2 and Corollary 1.3 tell us how the compatibility condition (1.9)

plays its role when we discuss the local well-posedness of strong solutions to the problems (1.1)–(1.4)

with vacuum.

Remark 1.7. For the local existence of classical solutions obtained in Theorem 1.4, we only need the

initial data satisfying the compatibility condition (1.9) for some g ∈ L2 which is in sharp contrast to

Cho and Kim [3], where the compatibility condition (1.9) is needed for g ∈ H1. This means that our

Theorem 1.4 essentially weakens those assumptions on the compatibility condition in [3].

We now comment on the analysis of this paper. First, we will consider the approximating system for

the initial density strictly away from vacuum, whose local existence theory has been shown in Lemma 2.1.

By employing some basic ideas due to Hoff [8,9] and careful analysis, we succeed in deriving the uniform

a priori estimates on the density and velocity which are independent of the lower bound of the density.

To do this, the key issue is to get the uniform upper bound of the density without requiring the addi-

tional compatibility condition (1.9). Indeed, this is achieved by deriving the time weighted estimates on

‖√ρut‖L2 and ‖∇ut‖L2 (see Lemma 3.3), which are crucial for bounding the L1L∞-norm of ∇u and thus

getting the uniform upper bound of the density. Then with the desired estimates on solutions at hand,

we will apply the standard compact arguments which show that the limit is exactly the strong solutions

of the original one. Finally, for the initial data satisfying some additional regularity and compatibility

conditions, the standard arguments will be used to obtain the higher order estimates of the solutions

which are needed to guarantee the local strong solution to be a classical one.

We shall briefly describe the structure of this article. Some fundamental lemmas will be exhibited in

Section 2. To get the local existence and uniqueness of strong and classical solutions, we establish some

a priori estimates in Sections 3 and 4. Consequently, we arrive at the results of Theorems 1.2 and 1.4 in

Section 5.

2 Preliminaries

First, in this section and the following two, we define

ΩR =

{
Ω for bounded Ω ⊂ R

3,

BR � {x ∈ R
3 | |x| < R} for Ω = R

3
(2.1)

and

Lp = Lp(ΩR), W k,p = W k,p(ΩR), Hk = W k,2

for p � 1 and positive integer k.

Then for the initial density strictly away from vacuum, the following local existence theory can be

shown by similar arguments to that in [2–4,22].

Lemma 2.1. Assume that P (·) ∈ C3[0,∞) and that the initial data (ρ0,m0) satisfy

0 < δ � ρ0, ρ0 ∈ H3, u0 ∈ H1
0 ∩H3, m0 = ρ0u0.

Then there exists a small time T∗ > 0 such that the problems (1.1)–(1.4) admit a unique classical solution
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(ρ, u) on ΩR × (0, T∗] satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∈ C([0, T∗];H3), u ∈ C([0, T∗];H1
0 ∩H3) ∩ L2(0, T∗;H4),

ut ∈ L∞(0, T∗;H1
0 ) ∩ L2(0, T∗;H2),

√
ρutt ∈ L2(0, T∗;L2),√

tu ∈ L∞(0, T∗;H4),
√
tut ∈ L∞(0, T∗;H2),

√
tutt ∈ L2(0, T∗;H1),√

t
√
ρutt ∈ L∞(0, T∗;L2), tut ∈ L∞(0, T∗;H3),

tutt ∈ L∞(0, T∗;H1) ∩ L2(0, T∗;H2), t
√
ρuttt ∈ L2(0, T∗;L2),

t3/2utt ∈ L∞(0, T∗;H2), t3/2uttt ∈ L2(0, T∗;H1),

t3/2
√
ρuttt ∈ L∞(0, T∗;L2).

Next, the following well-known Gagliardo-Nirenberg inequality will be used later frequently (see [13]).

Lemma 2.2 (Gagliardo-Nirenberg inequality [13]). For p ∈ [2, 6], q ∈ (1,∞) and r ∈ (3,∞), there

exists some generic constant C > 0 independent of R such that for f ∈ H1
0 (ΩR) and g ∈ Lq(ΩR) ∩

W 1,r(ΩR),

‖f‖pLp � C‖f‖(6−p)/2
L2 ‖∇f‖(3p−6)/2

L2 , (2.2)

‖g‖L∞ � C‖g‖Lq + C‖g‖q(r−3)/(3r+q(r−3))
Lq ‖∇g‖3r/(3r+q(r−3))

Lr . (2.3)

Finally, we state the following Lp-bounds for the weak solutions to the Lamé system with the Dirichlet

boundary conditions: {
−μΔv − (μ+ λ)∇divv = F, x ∈ ΩR,

v = 0, x ∈ ∂ΩR.
(2.4)

Lemma 2.3 (See [1, 2]). For p > 1 and k � 0, there exists a positive constant C independent of R

such that

‖∇k+2v‖Lp(ΩR) � C‖F‖Wk,p(ΩR) (2.5)

for every solution v ∈ W 1,p
0 (ΩR) of (2.4).

3 A priori estimates (I)

Let ΩR and (ρ0,m0) be as in Lemma 2.1 and (ρ, u) the solution to the problems (1.1)–(1.4) on ΩR×(0, T∗]
obtained by Lemma 2.1. For q ∈ (3, 6), we define

ψ(t) � 1 + ‖∇u‖L2 + ‖ρ− ρ∞‖Lp̃∩D1∩W 1,q . (3.1)

Then the main aim of this section is to derive the following key a priori estimate on ψ.

Proposition 3.1. For q ∈ (3, 6), there exist positive constants T0 and M both depending only on μ,

λ, P, q, ρ∞, ψ(0) and Ω but independent of R such that

sup
0�t�T0

(ψ(t) + t(‖∇2u‖2L2 + ‖√ρut‖2L2) + t2(‖∇ut‖2L2 + ‖∇2u‖2Lq )) +

∫ T0

0

t‖∇ut‖2L2dt � M. (3.2)

To prove Proposition 3.1, we begin with the following L2-bound for ∇u.

Lemma 3.2. There exist positive constants α = α(q) > 1 such that

sup
0�s�t

(‖∇u‖2L2 + ‖P − P (ρ∞)‖2L2) +

∫ t

0

‖√ρut‖2L2ds

� C + C

∫ t

0

MP (ψ)ψ
αds, (3.3)
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where and in this section,

MP (ψ) � 1 + max
0�s�ψ

(|P (s)|+ |P ′(s)|), (3.4)

and C denotes a generic positive constant depending only on μ, λ, P, q, ρ∞, ψ(0) and Ω but independent

of R.

Proof. First, multiplying the equation (1.1)2 by ut and integrating the resulting equations by parts,

we have

d

dt

∫
((μ+ λ)(divu)2 + μ|∇u|2)dx+

∫
ρ|ut|2dx

� C

∫
ρ|u|2|∇u|2dx+ 2

∫
(P − P (ρ∞))divutdx, (3.5)

where, in this section and the next, we define∫
·dx =

∫
ΩR

·dx.

Then on the one hand, the Gagliardo-Nirenberg inequality implies that∫
ρ|u|2|∇u|2dx � ‖ρ‖L∞‖u‖2L6‖∇u‖2L3

� C‖ρ‖L∞‖∇u‖3L2‖∇u‖H1

� Cψα‖∇2u‖L2 + Cψα, (3.6)

where (and in what follows) α = α(q) > 1. Note that u is a solution of the following elliptic system:{
−μΔu− (μ+ λ)∇divu = −ρ(ut + u · ∇u)−∇P, x ∈ ΩR,

u = 0, x ∈ ∂ΩR.
(3.7)

Applying Lemma 2.3 to (3.7) yields

‖∇2u‖L2 � C(‖ρ(ut + u · ∇u)‖L2 + ‖∇P‖L2)

� Cψ1/2‖√ρut‖L2 + CMP (ψ)ψ
α +

1

2
‖∇2u‖L2 ,

where in the second inequality we have used (3.6). This implies

‖∇2u‖L2 + ‖ρ(ut + u · ∇u)‖L2 � Cψ1/2‖√ρut‖L2 + CMP (ψ)ψ
α. (3.8)

On the other hand, we deduce from the Sobolev inequality that

2

∫
(P − P (ρ∞))divutdx

= 2
d

dt

∫
(P − P (ρ∞))divudx− 2

∫
P ′(ρ)ρtdivudx

� 2
d

dt

∫
(P − P (ρ∞))divudx+ CMP (ψ)ψ

2, (3.9)

where we have used

‖ρt‖L2 � C‖u‖L6‖∇ρ‖L3 + C‖ρ‖L∞‖∇u‖L2 � Cψ2, (3.10)

due to (1.1)1.

Substituting (3.6), (3.8) and (3.9) into (3.5) and using Cauchy’s inequality lead to

d

dt

∫
((μ+ λ)(divu)2 + μ|∇u|2 − 2(P − P (ρ∞))divu)dx+

∫
ρ|ut|2dx
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� Cψα‖ρ1/2ut‖L2 + CMP (ψ)ψ
α

� 1

2
‖ρ1/2ut‖2L2 + CMP (ψ)ψ

α. (3.11)

Finally, it follows from (3.10) that

d

dt
‖P − P (ρ∞)‖2L2 � C

∫
|P − P (ρ∞)||P ′(ρ)||ρt|dx

� CMP (ψ)ψ
α, (3.12)

which together with (3.11) gives (3.3) and finishes the proof of Lemma 3.2.

Lemma 3.3. It holds that

sup
0�s�t

s

∫
ρ|ut|2dx+

∫ t

0

s‖∇ut‖2L2ds � C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}
. (3.13)

Proof. Differentiating (1.1)2 with respect to t gives

− μΔut − (μ+ λ)∇divut

= −ρutt − ρu · ∇ut − ρt(ut + u · ∇u)− ρut · ∇u−∇Pt. (3.14)

Multiplying (3.14) by ut, we obtain after using integration by parts and (1.1)1 that

1

2

d

dt

∫
ρ|ut|2dx+

∫
((μ+ λ)(divut)

2 + μ|∇ut|2)dx

= −2

∫
ρu · ∇ut · utdx−

∫
ρu · ∇(u · ∇u · ut)dx

−
∫

ρut · ∇u · utdx+

∫
Ptdivutdx

� C

∫
ρ|u||ut|(|∇ut|+ |∇u|2 + |u||∇2u|)dx+ C

∫
ρ|u|2|∇u||∇ut|dx

+ C

∫
ρ|ut|2|∇u|dx+ C

∫
|Pt||divut|dx �

4∑
i

Ji. (3.15)

We estimate each term on the right-hand side of (3.15) as follows.

First, it follows from Holder’s and the Gagliardo-Nirenberg inequalities that

J1 � C‖ρ‖1/2L∞‖u‖L6‖ρ1/2ut‖1/2L2 ‖ρ1/2ut‖1/2L6 ‖∇ut‖L2

+ C‖ρ‖L∞‖u‖L6‖ut‖L6‖∇u‖2L3 + C‖ρ‖L∞‖u‖2L6‖ut‖L6‖∇2u‖L2

� Cψα‖ρ1/2ut‖1/2L2 ‖∇ut‖3/2L2 + Cψα‖∇ut‖L2‖∇u‖H1

� ε‖∇ut‖2L2 + C(ε)ψα(1 + ‖∇2u‖2L2 + ‖ρ1/2ut‖2L2) (3.16)

and

J2 + J3 � C‖ρ‖L∞‖u‖2L6‖∇u‖L6‖∇ut‖L2 + C‖∇u‖L2‖√ρut‖3/2L6 ‖√ρut‖1/2L2

� ε‖∇ut‖2L2 + C(ε)ψα‖∇2u‖2L2 + C(ε)ψα‖ρ1/2ut‖2L2 . (3.17)

Next, it follows from (3.10) that

J4 � C‖P ′(ρ)‖L∞‖ρt‖L2‖∇ut‖L2

� ε‖∇ut‖2L2 + C(ε)M2
P (ψ)ψ

α. (3.18)

Substituting (3.16)–(3.18) into (3.15) and choosing ε suitably small lead to

d

dt

∫
ρ|ut|2dx+

∫
((μ+ λ)(divut)

2 + μ|∇ut|2)dx
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� Cψα(1 + ‖ρ1/2ut‖2L2 + ‖∇2u‖2L2)

� Cψα‖ρ1/2ut‖2L2 + CM2
P (ψ)ψ

α, (3.19)

where in the last inequality one has used (3.8).

Finally, multiplying (3.19) by t, we obtain (3.13) after using Gronwall’s inequality and (3.3). The proof

of Lemma 3.3 is completed.

Lemma 3.4. It holds that

sup
0�s�t

‖ρ− ρ∞‖Lp̃∩D1∩W 1,q � C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}
. (3.20)

Proof. First, using (1.1)1, we have

d

dt
‖ρ− ρ∞‖Lp̃ � Cψα. (3.21)

Next, differentiating (1.1)1 with respect to xi and multiplying the resulting equation by r|∂iρ|r−2∇ρ

with r ∈ [2, q], we obtain after integration by parts that

d

dt
‖∇ρ‖Lr � C(‖∇u‖L∞‖∇ρ‖Lr + ‖ρ‖L∞‖∇2u‖Lr )

� Cψ(‖∇u‖L∞ + ‖∇2u‖Lr ). (3.22)

Taking r = 2, q in (3.22) and using the Gagliardo-Nirenberg inequality, we have

d

dt
‖∇ρ‖L2∩Lq � C(1 + ‖∇2u‖L2∩Lq )ψα,

which together with (3.21) yields (3.20) provided we show that∫ t

0

‖∇2u‖p0

L2∩Lqds � C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}
(3.23)

for

p0 � 9q − 6

10q − 12
∈
(
1,

7

6

)
.

Indeed, applying Lemma 2.3 to (3.7) yields that

‖∇2u‖Lq � C‖ρut‖Lq + C‖ρu · ∇u‖Lq + C‖∇P‖Lq

� C‖ρut‖
6−q
2q

L2 ‖ρut‖
3q−6
2q

L6 + C‖ρ‖L∞‖u‖L∞‖∇u‖Lq + CMP (ψ)ψ
α

� Cψα‖√ρut‖
6−q
2q

L2 ‖∇ut‖
3q−6
2q

L2 + Cψα‖∇u‖ 3
2

H1 + CMP (ψ)ψ
α

� Cψα‖√ρut‖
6−q
2q

L2 ‖∇ut‖
3q−6
2q

L2 + Cψα‖√ρut‖
3
2

L2 + CM
3
2

P (ψ)ψα, (3.24)

where in the last inequality one has used (3.8). Combining this with (3.8), (3.3) and (3.13) shows that∫ t

0

‖∇2u‖p0

L2∩Lqds � C

∫ t

0

ψαs−p0/2(s‖ρ1/2ut‖2L2)
6−q
4q p0(s‖∇ut‖2L2)

3q−6
4q p0ds

+ C

∫ t

0

‖ρ1/2ut‖2L2ds+ C

∫ t

0

M
3/2
P (ψ)ψαds

� C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}∫ t

0

(ψα + s
− 31q2+12q−36

26q2+48q−72 + s‖∇ut‖2L2)ds

+ C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}
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� C exp

{
C

∫ t

0

M2
P (ψ)ψ

αds

}
,

which proves (3.23) and finishes the proof of Lemma 3.4.

Now, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. It follows from (3.3) and (3.20) that

ψ(t) � C1 exp

{
C2

∫ t

0

M2
P (ψ)ψ

αds

}
.

Since ψ(0) < M̃ � C1, standard arguments yield that for T0 � min{1, [C2M
2
P (M̃)M̃α]−1},

sup
0�t�T0

ψ(t) � M̃, (3.25)

which together with (3.8) and (3.13) gives

sup
0�t�T0

t(‖∇2u‖2L2 + ‖√ρut‖2L2) +

∫ T0

0

(t‖∇ut‖2L2 + ‖∇2u‖2L2)dt � C. (3.26)

Next, multiplying (3.14) by utt + u · ∇ut and integrating the resulting equation by parts lead to

1

2

d

dt

∫
(μ|∇ut|2 + (λ+ μ)(divut)

2)dx+

∫
ρ|utt + u · ∇ut|2dx

=
d

dt

(
−
∫

ρtu · ∇u · utdx− 1

2

∫
ρt|ut|2dx+

∫
Ptdivutdx

)

+

∫
ρttu · ∇u · utdx+

∫
ρt(u · ∇u)t · utdx

+
1

2

∫
(ρtt + div(uρt))|ut|2dx−

∫
ρtu · ∇u · (u · ∇ut)dx

−
∫

ρut · ∇u · (utt + u · ∇ut)dx− μ

∫
∂iut∂iu · ∇utdx

+
μ

2

∫
divu|∇ut|2dx− (μ+ λ)

∫
divut∇u · ∇utdx

+
μ+ λ

2

∫
divu(divut)

2dx−
∫

Pttdivutdx

+

∫
Ptdiv(u · ∇ut)dx � d

dt
I0 +

11∑
i=1

Ii. (3.27)

We estimate each Ii (i = 0, . . . , 11) as follows.

First, it follows from (1.1)1, (3.25) and (3.8) that

|I0| =
∣∣∣∣− 1

2

∫
ρt|ut|2dx−

∫
ρtu · ∇u · utdx+

∫
Ptdivutdx

∣∣∣∣
� C

∣∣∣∣
∫

div(ρu)|ut|2dx
∣∣∣∣+ C‖ρt‖L2‖u‖L6‖∇u‖L6‖ut‖L6

+ C‖Pt‖L2‖∇ut‖L2

� C

∫
ρ|u||ut||∇ut|dx+ C(1 + ‖∇u‖2H1)‖∇ut‖L2

� C‖u‖L6‖ρ1/2ut‖1/2L2 ‖∇ut‖3/2L2 + C(1 + ‖∇u‖H1)‖∇ut‖L2

� ε‖∇ut‖2L2 + C(ε)‖ρ1/2ut‖2L2 + C, (3.28)

where in the third inequality we have used

‖ρt‖L2 + ‖Pt‖L2 � C‖u‖L6(‖∇ρ‖L3 + ‖∇P‖L3) + C‖∇u‖L2 � C. (3.29)
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Next, using (1.1)1 and (3.25), we have

‖ρt‖L2∩Lq + ‖Pt‖L2∩Lq � C‖∇u‖H1 , (3.30)

which together with (1.1)1 and (3.25) yields that

|I1| =
∣∣∣∣
∫

ρttu · ∇u · utdx

∣∣∣∣
=

∣∣∣∣
∫
(ρtu+ ρut) · ∇(u · ∇u · ut)dx

∣∣∣∣
� C‖ρtu+ ρut‖L3(‖∇(u · ∇u)‖L2‖ut‖L6 + ‖u · ∇u‖L6‖∇ut‖L2)

� C(‖∇u‖2H1 + ‖ρ1/2ut‖1/2L2 ‖∇ut‖1/2L2 )‖∇u‖2H1‖∇ut‖L2

� C‖∇u‖2H1‖∇ut‖2L2 + C‖∇u‖6H1 + C‖ρ1/2ut‖2L2‖∇u‖2H1 (3.31)

and that

|I2| =
∣∣∣∣
∫

ρt(u · ∇u)t · utdx

∣∣∣∣
� C‖ρt‖L3‖(u · ∇u)t‖L2‖ut‖L6

� C‖∇u‖2H1‖∇ut‖2L2 . (3.32)

Since (1.1)1 implies ρtt + div(uρt) = −div(ρut), we have

|I3| = 1

2

∣∣∣∣
∫

ρut · ∇|ut|2dx
∣∣∣∣

� C‖ρ1/2ut‖1/2L2 ‖ut‖1/2L6 ‖ut‖L6‖∇ut‖L2

� C‖ρ1/2ut‖1/2L2 ‖∇ut‖5/2L2

� C‖∇ut‖2L2(t‖∇ut‖2L2 + ‖ρ1/2ut‖2L2 + t−1/2). (3.33)

Next, Hölder’s inequality gives

|I4| =
∣∣∣∣
∫

ρtu · ∇u · (u · ∇ut)dx

∣∣∣∣
� C‖ρt‖L3‖|u|2|∇u|‖L6‖∇ut‖L2

� C‖∇u‖2H1‖∇ut‖2L2 + C‖∇u‖6H1 , (3.34)

|I5| =
∣∣∣∣
∫

ρut · ∇u · (utt + u · ∇ut)dx

∣∣∣∣
� C‖ρ1/2(utt + u · ∇ut)‖L2‖ρ1/2ut‖L3‖∇u‖L6

� 1

2
‖ρ1/2(utt + u · ∇ut)‖2L2 + C‖ρ1/2ut‖L2‖∇ut‖L2‖∇u‖2H1 (3.35)

and
9∑

i=6

|Ii| � C‖∇ut‖2L2‖∇u‖L∞ . (3.36)

Finally, direct calculations together with (3.30) lead to

|I10 + I11|

=

∣∣∣∣
∫

Pttdivutdx−
∫

Ptdiv(u · ∇ut)dx

∣∣∣∣
=

∣∣∣∣
∫

Pttdivutdx−
∫

Ptu · ∇divutdx−
∫

Pt∇u · ∇utdx

∣∣∣∣
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=

∣∣∣∣
∫
(Ptt + u · ∇Pt)divutdx+

∫
Ptdivudivutdx−

∫
Pt∇u · ∇utdx

∣∣∣∣
� C

∫
(|Pt||∇u||∇ut|+ |∇ut|2 + |ut||∇P ||∇ut|)dx

� C(‖Pt‖L3‖∇u‖H1 + ‖∇P‖L3‖ut‖L6)‖∇ut‖L2 + C‖∇ut‖2L2

� C‖∇u‖2H1‖∇ut‖L2 + C‖∇ut‖2L2 , (3.37)

where in the last inequality, we have used

Ptt + u · ∇Pt = −(γPtdivu+ γPdivut + ut · ∇P ), (3.38)

due to (1.1)1.

Putting all the estimates (3.31)–(3.37) into (3.27) and choosing ε suitably small, we have

Ψ′(t) +
∫

ρ|utt + u · ∇ut|2dx

� C‖∇ut‖2L2(t‖∇ut‖2L2 + ‖√ρut‖2L2 + ‖∇u‖L∞ + ‖∇u‖2H1 + t−1/2)

+ C‖∇u‖6H1 + C‖√ρut‖2L2‖∇u‖2H1 + C, (3.39)

where

Ψ(t) � μ‖∇ut‖2L2 + (μ+ λ)‖divut‖2L2 − 2I0

satisfies
μ

2
‖∇ut‖2L2 − C‖√ρut‖2L2 − C � Ψ(t) � C‖∇ut‖2L2 + C‖√ρut‖2L2 + C, (3.40)

owing to (3.28). Hence, multiplying (3.39) by t2, we obtain after using Gronwall’s inequality, (3.40),

(3.25) and (3.26) that

sup
0�t�T0

t2‖∇ut‖2L2 +

∫ T0

0

t2‖ρ1/2utt‖2L2dt � C, (3.41)

where we have used the following simple fact that∫
ρ|u|2|∇ut|2dx � C‖∇u‖2H1‖∇ut‖2L2 . (3.42)

Combining (3.41) and (3.24)–(3.26) gives (3.2) and completes the proof of Proposition 3.1.

Corollary 3.5. Assume that (ρ0, u0) satisfies (1.9) with some g ∈ L2. Then there exists some positive

constant C̃ depending only on μ, λ, P , q, ρ∞, ψ(0), ‖∇u0‖H1 , ‖g‖L2 and Ω if ΩR = Ω such that

sup
0�t�T0

(‖∇u‖H1 + ‖√ρut‖L2 + t(‖∇ut‖2L2 + ‖∇2u‖2Lq )) +

∫ T0

0

‖∇ut‖2L2dt � C̃. (3.43)

Proof. Taking into account on the compatibility condition (1.9), we can define

ρ1/2ut(x, t = 0) = −g − ρ
1/2
0 u0 · ∇u0,

which together with (3.19), (3.2) and Gronwall’s inequality yields

sup
0�t�T0

∫
ρ|ut|2dx+

∫ T0

0

‖∇ut‖2L2dt � C̃. (3.44)

It thus follows from this, (3.8) and (3.2) that

sup
0�t�T0

‖∇u‖H1 � C̃, (3.45)

which combined with (3.39), (3.40), (3.44) and (3.42) gives

sup
0�t�T0

t‖∇ut‖2L2 +

∫ T0

0

t‖ρ1/2utt‖2L2dt � C̃. (3.46)

Combining this, (3.44), (3.45) and (3.24) gives (3.43) and completes the proof of Corollary 3.5.
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4 A priori estimates (II)

This section will show some higher order estimates of the solutions with the initial data satisfying the

additional compatibility condition (1.9) and further regularity assumptions (1.15). In this section, the

generic positive constant C depends only on μ, λ, P , q, ρ∞, ‖∇u0‖H1 , ‖ρ0−ρ∞‖Lp̃∩D1∩W 1,q , ‖∇2ρ0‖L2∩Lq ,

‖∇2P (ρ0)‖L2∩Lq and ‖g‖L2 .

Lemma 4.1. It holds that

sup
0�t�T0

(‖∇ρ‖H1 + ‖∇P‖H1 + ‖ρt‖H1 + ‖Pt‖H1 + t‖∇u‖2H2) � C. (4.1)

Proof. It follows from (1.1)1 and (3.2) that

d

dt
(‖∇2P‖L2 + ‖∇2ρ‖L2)

� C(1 + ‖∇u‖L∞)(‖∇2P‖L2 + ‖∇2ρ‖L2) + C‖∇2u‖H1 . (4.2)

Applying Lemma 2.3 to (3.7) shows

‖∇2u‖H1 � C(‖ρ(ut + u · ∇u)‖H1 + ‖∇P‖H1)

� C + C‖∇ut‖L2 + C‖∇2P‖L2 , (4.3)

where in the second inequality we have used (3.2), (3.8) and the following simple fact:

‖∇(ρ(ut + u · ∇u))‖L2 � ‖|∇ρ||ut|‖L2 + ‖ρ∇ut‖L2 + ‖ρ|∇u|2‖L2

+ ‖|∇ρ||u||∇u|‖L2 + ‖ρ|u||∇2u|‖L2

� C‖∇ρ‖L3‖ut‖L6 + C‖∇ut‖L2 + C‖∇u‖2H1

+ C‖u‖L∞(‖∇ρ‖L3‖∇u‖L6 + C‖∇2u‖L2)

� C + C‖∇ut‖L2 (4.4)

due to (3.2) and (3.43). Using (4.2), (4.3), (3.43) and Gronwall’s inequality, one obtains

sup
0�t�T0

(‖∇2ρ‖L2 + ‖∇2P‖L2 + t‖∇2u‖2H1) � C. (4.5)

Finally, applying ∇ to (1.1)1, we have

∇Pt + u · ∇∇P +∇u · ∇P + γ∇Pdivu+ γP∇divu = 0,

which together with (4.5), (3.2) and (3.43) yields

‖∇Pt‖L2 � C‖u‖L∞‖∇2P‖L2 + C‖∇u‖L6‖∇P‖L3 + C‖∇2u‖L2 � C. (4.6)

Similarly, one has

‖∇ρt‖L2 � C.

Combining this with (3.2), (3.29), (4.6) and (4.5) gives (4.1) and completes the proof of Lemma 4.1.

Lemma 4.2. It holds that
sup

0�t�T0

(‖∇2ρ‖Lq + ‖∇2P‖Lq ) � C. (4.7)

Proof. First, similar to (4.2), one has

(‖∇2ρ‖Lq + ‖∇2P‖Lq )t

� C(1 + ‖∇u‖L∞)(‖∇2ρ‖Lq + ‖∇2P‖Lq ) + C‖∇2u‖W 1,q . (4.8)
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Applying Lemma 2.3 to (3.7) gives

‖∇2u‖W 1,q � C‖ρ(ut + u · ∇u)‖W 1,q + C‖∇P‖W 1,q

� C‖ρ(ut + u · ∇u)‖L2 + C‖∇(ρ(ut + u · ∇u))‖Lq

+ C‖∇P‖L2 + C‖∇2P‖Lq

� C + C‖∇2P‖Lq + C‖∇(ρ(ut + u · ∇u))‖Lq , (4.9)

due to (3.8), (3.2) and (3.43). For the last term of (4.9), it follows from the Gagliardo-Nirenberg inequality,

(3.2), (3.43), (3.24), (4.1) and (4.3) that

‖∇(ρ(ut + u · ∇u))‖Lq

� C‖∇ρ‖L6q/(6−q)(‖ut‖L6 + ‖u‖L∞‖∇u‖L6) + C‖∇(ut + u · ∇u)‖Lq

� C(1 + ‖∇2ρ‖Lq )(1 + ‖∇ut‖L2) + C‖∇ut‖Lq

+ C‖∇u‖H1‖∇u‖H2 + C‖u‖L∞‖∇2u‖Lq

� C(1 + ‖∇2ρ‖Lq )(1 + ‖∇ut‖L2) + C‖∇ut‖Lq . (4.10)

Then, applying Lemma 2.3 to (3.14), we have

‖∇2ut‖L2 � C‖ρutt + ρtut + ρtu · ∇u+ ρut · ∇u+ ρu · ∇ut +∇Pt‖L2

� C(‖ρutt‖L2 + ‖ρt‖L3‖ut‖L6 + ‖ρt‖L3‖u‖L∞‖∇u‖L6)

+ C(‖ut‖L6‖∇u‖L3 + ‖u‖L∞‖∇ut‖L2 + ‖∇Pt‖L2)

� C‖ρ1/2utt‖L2 + C‖∇ut‖L2 + C, (4.11)

where in the last inequality we have used (3.43), (3.2), (3.30) and (4.1). Combining this with (3.43)

and (3.46) shows

∫ T0

0

‖∇ut‖Lqdt � C

∫ T0

0

‖∇ut‖(6−q)/(2q)
L2 ‖∇ut‖3(q−2)/(2q)

H1 dt

� C + C

∫ T0

0

t−1/2(t‖ρ1/2utt‖2L2)3(q−2)/(4q)dt

� C + C

∫ T0

0

(t−2q/(q+6) + t‖ρ1/2utt‖2L2)dt � C. (4.12)

Finally, putting (4.9) and (4.10) into (4.8) and using Gronwall’s inequality, (3.43) and (4.12), we

obtain (4.7) and complete the proof of Lemma 4.2.

Lemma 4.3. It holds that

sup
0�t�T0

t(‖∇3u‖Lq + ‖∇ut‖H1 + ‖√ρutt‖L2) +

∫ T0

0

t2‖∇utt‖2L2dt � C. (4.13)

Proof. We claim that

sup
0�t�T0

t2‖√ρutt‖2L2 +

∫ T0

0

t2‖∇utt‖2L2dt � C, (4.14)

which together with (3.43) and (4.11) yields that

sup
0�t�T0

t‖∇ut‖H1 � C. (4.15)

It thus follows from this, (4.9), (4.10) and (4.7) that

sup
0�t�T0

t‖∇3u‖Lq � C. (4.16)
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Combining (4.14)–(4.16) yields (4.13).

Now, it remains to prove (4.14). In fact, differentiating (3.14) with respect to t leads to

ρuttt + ρu · ∇utt − μΔutt − (μ+ λ)∇divutt

= 2div(ρu)utt + div(ρu)tut − 2(ρu)t · ∇ut − (ρttu+ 2ρtut) · ∇u

− ρutt · ∇u−∇Ptt. (4.17)

Multiplying (4.17) by utt and integrating the resulting equation by parts yield

1

2

d

dt

∫
ρ|utt|2dx+

∫
(μ|∇utt|2 + (μ+ λ)(divutt)

2)dx

= −4

∫
ρu · ∇utt · uttdx−

∫
(ρu)t · [∇(ut · utt) + 2∇ut · utt]dx

−
∫
(ρttu+ 2ρtut) · ∇u · uttdx−

∫
ρutt · ∇u · uttdx

+

∫
Pttdivuttdx �

5∑
i=1

Ki. (4.18)

Using (3.2), (3.43) and (4.1), we can estimate each Ki (i = 1, . . . , 5) as follows:

|K1| � C‖ρ1/2utt‖L2‖∇utt‖L2‖u‖L∞

� ε‖∇utt‖2L2 + C(ε)‖ρ1/2utt‖2L2 , (4.19)

|K2| � C(‖ρut‖L3 + ‖ρtu‖L3)(‖utt‖L6‖∇ut‖L2 + ‖∇utt‖L2‖ut‖L6)

� C(‖ρ1/2ut‖1/2L2 ‖ut‖1/2L6 + ‖ρt‖L6‖u‖L6)‖∇utt‖L2‖∇ut‖L2

� C(‖∇ut‖L2 + 1)‖∇utt‖L2‖∇ut‖L2

� ε‖∇utt‖2L2 + C(ε)‖∇ut‖4L2 + C(ε), (4.20)

|K3| � C(‖ρtt‖L2‖u‖L∞‖∇u‖L3 + ‖ρt‖L6‖ut‖L6‖∇u‖L2)‖utt‖L6

� ε‖∇utt‖2L2 + C(ε)‖ρtt‖2L2 + C(ε)‖∇ut‖2L2 (4.21)

and

|K4|+ |K5| � C‖ρutt‖L2‖∇u‖L3‖utt‖L6 + C‖Ptt‖L2‖∇utt‖L2

� ε‖∇utt‖2L2 + C(ε)‖ρ1/2utt‖2L2 + C(ε)‖Ptt‖2L2 . (4.22)

Substituting (4.19)–(4.22) into (4.18) and choosing ε suitably small, we have

d

dt
‖ρ1/2utt‖2L2 + μ‖∇utt‖2L2

� C‖ρ1/2utt‖2L2 + C‖∇ut‖4L2 + C + C‖ρtt‖2L2 + C‖Ptt‖2L2 . (4.23)

Finally, it follows from (3.38), (4.1) and (3.44) that∫ T0

0

‖Ptt‖2L2ds � C

∫ T0

0

(‖u‖L∞‖∇Pt‖L2 + ‖Pt‖L6‖∇u‖L3)2dx

+ C

∫ T0

0

(‖∇ut‖L2 + ‖ut‖L6‖∇P‖L3)2dt � C. (4.24)

Similarly, one has ∫ T0

0

‖ρtt‖2L2dt � C. (4.25)

Multiplying (4.23) by t2 and using (3.43), (3.46), (4.24) and (4.25), we obtain (4.14) and finish the proof

of Lemma 4.3.
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5 Proofs of Theorems 1.2 and 1.4

To prove Theorems 1.2 and 1.4, we will only deal with the case where Ω is bounded. Since for the Cauchy

problem, all the a priori estimates obtained in Sections 3 and 4 are independent of the radius R, one can

use the standard domain expansion technique to treat the whole space case; please refer to [17] and the

references therein.

Proof of Theorem 1.2. Let (ρ0, u0) be as in Theorem 1.2. For δ > 0, we choose 0 � ρ̂δ0 ∈ C∞(Ω) and

uδ
0 ∈ C∞

0 (Ω) satisfying

lim
δ→0

(‖ρ̂δ0 − ρ0‖W 1,q + ‖uδ
0 − u0‖H1) = 0. (5.1)

Then in terms of Lemma 2.1, the problems (1.1)–(1.4) with the initial data (ρ̂δ0 + δ, (ρ̂δ0 + δ)uδ
0) have a

unique smooth solution (ρδ, uδ) on Ω × [0, Tδ] for some Tδ > 0. Moreover, Proposition 3.1 shows that

there exist two positive constants T0 and M independent of δ such that (3.2) holds for (ρδ, uδ). More

precisely, it holds that

sup
0�t�T0

(‖∇u‖L2 + ‖ρ‖H1∩W 1,q + ‖P (ρ)‖H1∩W 1,q + t(‖∇2u‖2L2 + ‖√ρut‖2L2))

+ sup
0�t�T0

(t2(‖∇ut‖2L2 + ‖∇2u‖2Lq )) +

∫ T0

0

t‖∇ut‖2L2dt � M, (5.2)

sup
0�t�T0

(‖ρδ‖W 1,q + ‖ρδt‖L2 + ‖uδ‖H1 + t1/2‖∇2uδ‖L2 + ‖ρδuδ‖H1)

+

∫ T0

0

(‖∇2uδ‖p0

Lq + t‖∇uδ
t‖2L2 + t‖∇2uδ‖2Lq + ‖∇2u‖2L2 + ‖(ρδuδ)t‖2L2)dt � C̄, (5.3)

where C̄ is independent of δ. With all the estimate (5.2) at hand, we find that the sequence (ρδ, uδ)

converges, up to the extraction of subsequences, to some limit (ρ, u) in the obvious weak sense, i.e., as

δ → 0, we have

ρδ → ρ in L∞(0, T0;L
∞), (5.4)

ρδ ⇀ ρ weakly ∗ in L∞(0, T0;W
1,q), (5.5)

uδ ⇀ u weakly ∗ in L∞(0, T0;H
1), (5.6)

∇2uδ ⇀ ∇2u weakly in Lp0(0, T0;L
q) ∩ L2(Ω× (0, T0)), (5.7)

t1/2∇2uδ ⇀ t1/2∇2u weakly in L2(0, T0;L
q), (5.8)

t1/2∇uδ
t ⇀ t1/2∇ut weakly in L2(Ω× (0, T0)), (5.9)

ρδuδ → ρu in L∞(0, T0;L
2). (5.10)

Then by letting δ → 0, it follows from (5.4)–(5.10) that (ρ, u) is a strong solution of (1.1)–(1.4) on

Ω× (0, T0] satisfying (1.8). The proof of the existence part of Theorem 1.2 is finished.

It only remains to prove the uniqueness of the strong solutions satisfying (1.8). Indeed, we will use the

method which is due to Germain [7]. Let (ρ, u) and (ρ̄, ū) be two strong solutions satisfying (1.8) with

the same initial data. Subtracting the mass equation for (ρ, u) and (ρ̄, ū), we have

Ht + ū · ∇H +Hdivū+ ρdivU + U · ∇ρ = 0 (5.11)

with

H � ρ− ρ̄, U � u− ū.

For 3/2 � r � 2, multiplying (5.11) by rH|H|r−2 and integrating the resulting equation by parts lead to

d

dt
‖H‖rLr � C

∫
divū|H|rdx+ C

∫
ρ|∇U ||H|r−1dx+ C

∫
|U ||∇ρ||H|r−1dx

� C‖∇ū‖L∞‖H‖rLr + C(‖ρ‖
L

2r
2−r

+ ‖∇ρ‖
L

6r
6−r

)‖∇U‖L2‖H‖r−1
Lr
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� C‖∇ū‖L∞‖H‖rLr + C‖∇U‖L2‖H‖r−1
Lr , (5.12)

where one has used ρ ∈ H1 ∩W 1,q. This together with Gronwall’s inequality and (3.2) gives

‖H‖Lr � C

∫ t

0

‖∇U‖L2ds for
3

2
� r � 2. (5.13)

Next, subtracting the momentum equations for (ρ, u) and (ρ̄, ū), we have

ρUt + ρu · ∇U − μΔU − (μ+ λ)∇(divU)

= −ρU · ∇ū−H(ūt + ū · ∇ū)−∇(P (ρ)− P (ρ̄)). (5.14)

Multiplying (5.14) by U and integrating the resulting equations by parts lead to

d

dt

∫
ρ|U |2dx+ 2μ

∫
|∇U |2dx

� C‖∇ū‖L∞

∫
ρ|U |2dx+ C

∫
|H||U |(|ūt|+ |ū||∇ū|)dx

+ C‖P (ρ)− P (ρ̄)‖L2‖divU‖L2

� C‖∇ū‖L∞

∫
ρ|U |2dx+ C‖H‖L3/2‖U‖L6‖ūt‖L6

+ C‖H‖L2‖U‖L6‖ū‖L6‖∇ū‖L6 + C‖H‖L2‖∇U‖L2

� C‖∇ū‖L∞

∫
ρ|U |2dx+ C(1 + ‖∇ūt‖L2 + ‖∇2ū‖L2)‖∇U‖L2

∫ t

0

‖∇U‖L2ds

� C‖∇ū‖L∞

∫
ρ|U |2dx+ C(1 + t‖∇ūt‖L2 + t‖∇2ū‖L2)

∫ t

0

‖∇U‖2L2ds+ μ‖∇U‖2L2

� C(1 + t‖∇ūt‖2L2 + ‖∇ū‖L∞)

(∫
ρ|U |2dx+

∫ t

0

‖∇U‖2L2dt

)
+ μ‖∇U‖2L2 (5.15)

owing to (3.2) and (5.13). This together with Gronwall’s inequality and (3.2) gives U(x, t) = 0 for

almost everywhere (x, t) ∈ Ω × (0, T0). Then (5.13) implies that H(x, t) = 0 for almost everywhere

(x, t) ∈ Ω× (0, T0). The proof of Theorem 1.2 is completed.

Proof of Theorem 1.4. Let (ρ0, u0) be as in Theorem 1.4. We construct ρδ0 = ρ̂δ0 + δ, where 0 � ρ̂δ0
∈ C∞

0 (Ω) satisfies (5.1) and

∇2ρ̂δ0 → ∇2ρ0, ∇2P (ρ̂δ0) → ∇2P (ρ0) in L2 ∩ Lq, as δ → 0.

Thus, we have ⎧⎪⎪⎨
⎪⎪⎩
ρδ0 → ρ0 in W 1,q(Ω),

∇2ρδ0 → ∇2ρ0 in L2 ∩ Lq,

∇2P (ρδ0) → ∇2P (ρ0) in L2 ∩ Lq,

as δ → 0. (5.16)

Then we consider the unique smooth solution uδ
0 of the following elliptic problem:

{
−μΔuδ

0 − (μ+ λ)∇divuδ
0 +∇P (ρδ0) =

√
ρδ0g

δ in Ω,

uδ
0 = 0 on ∂Ω,

(5.17)

where gδ = g ∗ jδ with jδ being the standard mollifying kernel of width δ.

Subtracting the equations (1.9) and (5.17) gives

{
−μΔ(uδ

0 − u0)− (μ+ λ)∇div(uδ
0 − u0) = F in Ω,

uδ
0 − u0 = 0 on ∂Ω

(5.18)
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with

F � −∇(P (ρδ0)− P (ρ0)) +
√

ρδ0g
δ −√

ρg.

Multiplying (5.18) by uδ
0 − u0, we obtain after integration by parts that

‖∇(uδ
0 − u0)‖L2 � C‖P (ρδ0)− P (ρ0)‖L2 + C‖

√
ρδ0 −

√
ρ0‖L3 + C‖gδ − g‖L2

→ 0, as δ → 0, (5.19)

due to (5.1) and (5.16). Moreover, Lemma 2.3 combined with (5.18) yields that

‖∇2(uδ
0 − u0)‖L2

� C‖∇P (ρδ0)−∇P (ρ0)‖L2 + C‖
√

ρδ0 −
√
ρ0‖L∞ + C‖gδ − g‖L2

→ 0, as δ → 0, (5.20)

owing to (5.1) and (5.16).

For the problems (1.1)–(1.4) with the initial data (ρδ0, u
δ
0) satisfying (5.1) and (5.16)–(5.17), Lemma 2.1

shows that there exists a classical solution (ρδ, uδ) on Ω × [0, T0]. Moreover, we deduce from (3.2) and

Lemmas 4.1–4.3 that the sequence (ρδ, uδ) converges weakly, up to the extraction of subsequences, to

some limit (ρ, u) satisfying (1.8), (1.12) and (1.16). Moreover, standard arguments yield that (ρ, u) in

fact is a classical solution to the problems (1.1)–(1.4). The proof of Theorem 1.4 is completed.
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20 Salvi R, Straškraba I. Global existence for viscous compressible fluids and their behavior as t → ∞. J Fac Sci Univ

Tokyo Sect IA Math, 1993, 40: 17–51

21 Serrin J. On the uniqueness of compressible fluid motion. Arch Ration Mech Anal, 1959, 3: 271–288

22 Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Sc

Norm Super Pisa Cl Sci (5), 1983, 10: 607–647


