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Abstract We develop a unified model, known as MgNet, that simultaneously recovers some convolutional

neural networks (CNN) for image classification and multigrid (MG) methods for solving discretized partial

differential equations (PDEs). This model is based on close connections that we have observed and uncovered

between the CNN and MG methodologies. For example, pooling operation and feature extraction in CNN

correspond directly to restriction operation and iterative smoothers in MG, respectively. As the solution space

is often the dual of the data space in PDEs, the analogous concept of feature space and data space (which are

dual to each other) is introduced in CNN. With such connections and new concept in the unified model, the

function of various convolution operations and pooling used in CNN can be better understood. As a result,

modified CNN models (with fewer weights and hyperparameters) are developed that exhibit competitive and

sometimes better performance in comparison with existing CNN models when applied to both CIFAR-10 and

CIFAR-100 data sets.
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1 Introduction

This paper is devoted to the study of convolutional neural networks (CNN) [12,27,29] in machine learn-

ing by exploring their relationship with multigrid methods for numerically solving partial differential

equation [15, 48, 50]. CNN has been successfully applied in many areas, especially computer vision [30].

Important examples of CNN include the LeNet-5 model of LeCun et al. [29] in 1998, the AlexNet of

Hinton et al. [27] in 2012, residual network (ResNet) of He et al. [18] in 2015 and other variants of CNN

in [22, 46, 47]. Given the great success of CNN models, it is of both theoretical and practical interest to

understand why and how CNN works.

In 1990s, the mathematical analysis of deep neural network (DNN) mainly focus on the approximation

properties for DNN and CNN models. The first approximation results for DNN are obtained for a

feedforward neural network with a single hidden layer separately in [20] and [5]. From 1989 to 1999, many
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results about the so-called expressive power of single hidden neural networks are derived [1,9,42]. Recently,

many new DNN structures with ReLU [40] activation functions have been studied in connection with:

wavelets [44], finite element [16], sparse grid [39] and polynomial expansion [8]. By using a connection of

CNN and DNN that a convolution with large enough kernel can recover any linear mapping, Zhou [55]

presented an approximate result with convergence rate by deep CNNs for functions in the Sobolev space

Hr(Ω) with r > 2 + d/2 (see also most recent result of [45]).

These function approximation theories for deep learning, are far from being adequate to explain why

deep neural network, especially for CNN, works and to understand the efficiency of some successful models

such as ResNet. One goal of this paper is to offer some mathematical insights into CNN by using ideas

from multigrid methods and by developing a theoretical framework for these two methodologies from

different fields. Furthermore, such insight is used to develop more efficient CNN models.

In the existing deep learning literature, ideas and techniques from multigrid methods have been used

for the development of efficient deep neural networks. As a prominent example, the ResNet and iResNet

developed in [18,19], are motivated in part by the hierarchical use of “residuals” in multigrid methods as

mentioned by the authors. As another example, in [38,43], a CNN model with almost the same structure

as the V-cycle multigrid is proposed to deal with volumetric medical image segmentation and biomedical

image segmentation. More recently, multi-resolution images have been used as the input into the neural

network in [13]. Ke et al. [25] used different networks to deal with multi-resolution images separately

with a CNN to glue them together.

A dynamic system viewpoint has also been explored in many papers such as [7, 13, 36] to understand

the iterative structure in ResNet type models such as the iResNet model in [19]:

xi = xi−1 + f i(xi−1). (1.1)

Such an idea is further explored by Li and Shi [31] to use some flow model to interpret the date flow in

ResNet as the solution of transport equation following the characteristic line. Chang et al. [3] proposed

a multi-level training algorithm for the ResNet model by training a shallow model first and then pro-

longating its parameters to train a deeper model. Lu et al. [36] used the idea of time discretization in

dynamic systems to interpret PloyNet [54], FractalNet [28] and RevNet [11] as different time discretization

schemes. Then they proposed the LM-ResNet based on the idea of linear multi-step schemes in numerical

ODEs with a stochastic learning strategy. Long et al. [34, 35] constructed the PDE-Net models to learn

the PDE model from data connecting discrete differential operators and convolutions.

In a different direction, new multigrid methods for numerical PDEs can be motivated by deep learning.

For example, in [24] a deep multigrid method is proposed where the restriction and prolongation matrices

with a given sparsity pattern are trained by minimizing the Frobenius norm of a large power of the

multigrid error propagation matrix with a sampling technique similar to what is used in machine learning.

In [21], a linear U-net structure is proposed as a solver for linear PDEs on the regular mesh.

In this paper, we explore the connection between multigrid and convolutional neural networks, in

several directions. First of all, we view the multi-scale of images used in CNN as piecewise (bi-)linear

functions as used in multigrid methods, and we relate the pooling operation in CNN with the restriction

operation in multigrid.

To examine further connections between CNN and multigrid, we introduce the so-called data and

feature space for CNN, which is analogous to the function space and its duality in the theory of multigrid

methods [51]. With this new concept for CNN, we propose the data-feature mapping model in every

grid as

A(u) = f, (1.2)

where f belongs to the data space and u belongs to the feature space. The feature extraction process

can then be obtained through an iterative procedure for solving the above system, namely,

ui = ui−1 +Bi(f −A(ui−1)), i = 1 : ν, (1.3)

with u ≈ uν . The above iterative scheme (1.3) can be interpreted as both the feature extraction step in

ResNet type models and the smoothing step in multigrid method.



He J et al. Sci China Math July 2019 Vol. 62 No. 7 1333

Using the above observations and new concepts, we develop a unified framework, called MgNet, that

simultaneously recovers some convolutional neural networks and multigrid methods. Furthermore, we

establish connections between several ResNet type models using the MgNet framework. We provide

improvements/generalizations of several ResNet type models that are as competitive as and sometimes

more efficient than existing models, as demonstrated by numerically experiments for both CIFAR-10 and

CIFAR-100 [26].

The remaining sections are organized as follows. In Section 2, we introduce some notation and pre-

liminary results in supervised learning especially for the image classification problem. In Section 3, we

present the idea that we need to distinguish the data and the feature space in CNN models and introduce

some related mappings. In Section 4, we explore the structures and operators when we consider images

as (bi-)linear functions in multilevel grids. In Section 5, we introduce multigrid by splitting it into two

phases. In Section 6, we give an abstract form of MgNet as a framework for multigrid and convolutional

neural network with details. In Section 7, we introduce some classical CNN structures with rigorous

mathematical definition. In Section 8, we construct some relations and connections between MgNet and

classic models. In Section 9, we present some numerical results to show the efficiency of MgNet. Finally

in Section 10 we give concluding remarks.

2 Supervised learning on image classification

We consider a basic machine learning problem for classifying a collection of images into κ distinctive

classes. As an example, we consider a two-dimensional image which is usually represented by a tensor

f ∈ D := Rm×n×c.

Here,

c =

{
1, for grayscale image,

3, for color image.
(2.1)

A typical supervised machine learning problem begins with a data set (training data)

D := {(fi, yi)}Ni=1,

with {fi}Ni=1 ⊂ D, and yi ∈ Rκ is the label for data fi, with [yi]j as the probability for fi in classes j.

Roughly speaking, a supervised learning problem can be thought as a data fitting problem in a high

dimensional space D. Namely, we need to find a mapping H : Rm×n×c 7→ Rκ, such that, for a given

f ∈ D,
H(f) ≈ ei ∈ Rκ, (2.2)

if f is in class i, for 1 6 i 6 κ. For the general setting above, we use a probatilistic model for understanding

the output H(f) ∈ Rκ as a discrete distribution on {1, . . . , κ}, with [H(f)]i as the probability for f in

the class i, namely,

0 6 [H(f)]i 6 1,
κ∑

i=1

[H(f)]i = 1. (2.3)

At last, we finish our model with a simple strategy to choose

argmax
i
{[H(f)]i : i = 1 : κ}, (2.4)

as the label for a test data f , which ideally is close to (2.2). The remaining key issue is the construction

of the classification mapping H.

The main step in the construction of H is to construct a nonlinear mapping

H0 : D 7→ VJ , (2.5)
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with

VJ = RmJ×nJ×cJ . (2.6)

To be consistent with the notation for CNN which will be described below, here the subscript J refers

to the number of coarsening girds in CNN. Roughly speaking, the map H0 plays two roles. The first

role is to conduct a dimensionality reduction, namely mJnJcJ ≪ mnc. The second role is to map a

complicated set of data into a set of data that are linearly separable. As a result, the simple logistic

regression procedure can be applied.

The first step in a logistic regression is to introduce a linear mapping

Θ : D → Rκ,

as

Θ(x) = Wx+ b, (2.7)

where W = (wij) ∈ R(mJ×nJ×cJ )×κ, b ∈ Rκ.

We then use the soft-max function

[S(z)]i = [Solftmax(z)]i =
ezi∑
j e

zj
(2.8)

to obtain a logistic regression model

S ◦Θ : RmJ×nJ×cJ 7→ Rκ. (2.9)

By combining the nonlinear mappingH in (2.5) and the logistic regression (2.9), we obtain the following

classifier:

H = S ◦Θ ◦H0. (2.10)

Given the model (2.10), we finish the training phase with solving the next optimization problem

min
N∑
j=1

l(H(fj), yj), (2.11)

where l(H(fj), yj) is a loss function that measures the predicted result H(fj) and the real label yj . In

logistic regression, the following cross-entropy loss function is often used:

l(H(f), y) =
κ∑

i=1

−[y]i log[H(f)]i.

3 Data space, feature space and relevant mappings

We are given the data

f ∈ Rm×n×c, or [f ]i ∈ Rm×n, i = 1 : c, (3.1)

where m× n is called the spatial dimension and c is the channel dimension.

For the given data f in (3.1), we look for some feature vector, denoted by u, associated with f :

u ∈ Rm×n×h. (3.2)

We make an assumption that the data f and feature u are related by a mapping (which can be either

linear or nonlinear)

A : Rm×n×h 7→ Rm×n×c, (3.3)

so that

A(u) = f. (3.4)
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A mapping

B : Rm×n×c 7→ Rm×n×h,

is called a feature extractor if B ≈ A−1 and

v = B(f), (3.5)

is such that v ≈ u.

The data-feature relationship (3.4) or (3.5) is not unique. Different relationships give rise to different

features. We can view the data-feature relationship given in (3.4) as a model that we propose. Here, the

mapping A, which can be either linear or nonlinear, is unknown and needs to be trained.

We point out that the data space and feature space may have different numbers of channels.

3.1 A special linear mapping: Convolution

One important class of linear mapping is the so-called convolution

θ : Rm×n×c 7→ Rm×n×h,

that can be defined by

[θ(f)]t =
c∑
i

Ki,t ∗ [f ]i + bt1 ∈ Rm×n, t = 1 : h, (3.6)

where 1 ∈ Rm×n is an m× n matrix with all elements being 1, and for g ∈ Rm×n,

[K ∗ g]i,j =
k∑

p,q=−k

Kk+1+p,k+1+qgi+p,j+q, i = 1 : m, j = 1 : n. (3.7)

The coefficients in (3.7) constitute a kernel matrix

K ∈ R(2k+1)×(2k+1), (3.8)

where k is often taken as small integers. Here, padding means how to choose Xi+p,j+q when (i+ p, j+ q)

is out of 1 : m or 1 : n. Those next three choices are often used:

fi+p,j+q =


0, zero padding,

f(i+p) (mod m),(s+q) (mod n), periodic padding,

f|i−1+p|,|j−1+q|, reflected padding,

(3.9)

if

i+ p /∈ {1, 2, . . . ,m} or j + q /∈ {1, 2, . . . , n}. (3.10)

Here, d (mod m) ∈ {1, . . . ,m} means the remainder when d is divided by m.

If we formally write

f =


f1
...

fc

 , (3.11)

we can then write the operation (3.6) as

θ(f) = K ∗ f + b, (3.12)

where

K = (Kij) ∈ R[(2k+1)×(2k+1)]×h×c

and

b = 1m×n ⊗ b.
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The operation (3.12) is also called a convolution with stride 1. More generally, given an integer s > 1,

a convolution with stride s for f ∈ Rm×n is defined as

[K ∗s f ]i,j =
k∑

p,q=−k

Kp,qfs(i−1)+1+p,s(j−1)+1+q, i = 1 :

⌈
m

s

⌉
, j = 1 :

⌈
n

s

⌉
. (3.13)

Here, ⌈ms ⌉ denotes the smallest integer that is greater than m
s . In CNN, we often take s = 2.

3.2 Some linear and nonlinear mappings and extractors

A data-feature map A and feature extractor B can be either linear or nonlinear. The nonlinearity can

be obtained from appropriate application of an activation function

σ : R→ R. (3.14)

In this paper, we mainly consider a special activation function, known as the rectified linear unit (ReLU),

which is defined by

σ(x) = ReLU(x) := max(0, x), x ∈ R. (3.15)

By applying the function to each component, we can extend this as

σ : Rm×n×c 7→ Rm×n×c. (3.16)

A linear data-feature mapping can be simply given by a convolution as in (3.7):

A(u) = ξ ∗ u. (3.17)

A nonlinear mapping can be given by compositions of convolution and activation functions

A = ξ ◦ σ ◦ η (3.18)

and

B = σ ◦ γ ◦ σ. (3.19)

Here, ξ, η and γ are all appropriate convolution mappings.

3.3 Iterative feature extraction schemes

One key idea in this paper is that we consider different iterative processes to approximately solve (3.4)

and relate them to many existing popular CNN models. Here, let us assume that the feature-data

mapping (3.4) is given as a linear form (3.17). We next propose some iterative schemes to solve (3.4) for

an appropriately chosen u0.

• Residual correction method,

ui = ui−1 +Bi(f −A(ui−1)), i = 1 : ν. (3.20)

Here, Bi can be chosen as linear like Bi(f) = ηi ∗ f or nonlinear like (3.19). The reason why Bi is taken

the nonlinear form as in (3.19) will be discussed later based on our main discovery about the relationship

between MgNet and iResNet as discussed in Sections 7 and 8. We refer to [48] for more discussion on

iterative schemes in the form of (3.20).

• Semi-iterative method for accelerating the residual correction iterative scheme,

ui =

i−1∑
j=0

αi
j(u

j +Bi
j(f −A(uj))), i = 1 : ν, (3.21)
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where αi
j > 0 and

∑i−1
j=0 α

i
j = 1. Let the residual rj = f − A(uj) for j = 0 : i. The following iterative

scheme for rj is implied by (3.21),

ri =
i−1∑
j=0

αi
j(I −ABi

j)(r
j), (3.22)

because of the linearity of A. This scheme is analogous to the DenseNet [22] which will be discussed

more in Section 7 and below. More discussion on semi-iterative method for linear system can be found

in [10,14].

• Chebyshev semi-iterative method,

ui = ωi(ui−1 +Bi(f −A(ui−1))) + (1− ωi)ui−2, i = 1 : ν. (3.23)

The above scheme can be obtained from the above semi-iterative form by applying the Chebyshev poly-

nomial theory [10, 14]. Similar to the previous case, by considering the iterative form of the residual

rj = f −A(uj), (3.23) implies that

ri = ωiri−1 + (1− ωi)ri−2 −ABiri−1. (3.24)

This scheme corresponds to the LM-ResNet in [36] which was obtained as a linear multi-step scheme for

some underlying ODEs.

4 Piecewise (bi-)linear functions on multilevel grids

An image can be viewed as a function on a grid. Images with different resolutions can then be viewed

as functions on grids of different sizes. The use of such multiple-grids is a main technique used in the

standard multigrid method for solving discretized partial differential equations [48, 50], and it can also

be interpreted as a main ingredient used in convolutional neural networks (CNN).

Without loss of generality, for simplicity, we assume that the initial grid, T , is of size

m = 2s + 1, n = 2t + 1,

for some integers s, t > 1. Starting from T1 = T , we consider a sequence of coarse grids (as depicted in

Figure 1 with J = 4):

T1, T2, . . . , TJ , (4.1)

such that Tℓ (ℓ = 1, . . . , J) consist of mℓ × nℓ grid points, with

mℓ = 2s−ℓ+1 + 1, nℓ = 2t−ℓ+1 + 1. (4.2)

The grid points of these grids can be given by

xℓ
i = ih1,ℓ, yℓj = jh2,ℓ, i = 1, . . . ,mℓ, j = 1, . . . , nℓ.

T1 T2 T3 T4

Figure 1 Multilevel grids for piecewise linear functions
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Here, h1,ℓ = 2−s+ℓ−1a and h2,ℓ = 2−t+ℓ−1b, for some a, b > 0. The above geometric coordinates (xℓ
i , y

ℓ
i )

are usually not used in image precess literatures, but they are relevant in the context of multigrid

method for the numerical solution of PDEs. We now consider piecewise linear functions on the sequence

of grids (4.1) and we obtain a nested sequence of linear vector spaces

V1 ⊃ V2 ⊃ · · · ⊃ VJ . (4.3)

Here, each Vℓ consists of all piecewise bilinear (or linear) functions with respect to the grid (4.1) and (4.2).

Each Vℓ has a set of basis functions: ϕℓ
ij ∈ Vℓ satisfying

ϕℓ
ij(xp, yq) = δ(i,j),(p,q) =

{
1, if (p, q) = (i, j),

0, if (p, q) ̸= (i, j).

Thus, for each v ∈ Vℓ, we have

v(x, y) =
∑
i,j

vℓijϕ
ℓ
ij(x, y). (4.4)

4.1 Prolongation

Given a piecewise (bi-)linear function v ∈ Vℓ+1, the nodal values of v onmℓ+1×nℓ+1 grids point constitute

a tensor

vℓ+1 ∈ Rmℓ+1×nℓ+1 .

We note that v ∈ Vℓ thanks to (4.3) and the nodal values of v on Tℓ constitute a tensor

vℓ ∈ Rmℓ×nℓ .

By using the property of piecewise (bi-)linear functions, it is easy to see that

vℓ = P̄ ℓ
ℓ+1v

ℓ+1, (4.5)

where

P̄ ℓ
ℓ+1 : Rmℓ+1×nℓ+1 7→ Rmℓ×nℓ , (4.6)

which is called a prolongation in multigrid terminology. More specifically,

vℓ2i−1,2j−1 = vℓ+1
i,j (4.7)

with

vℓ2i−1,2j =
1

2
(vℓ+1

i,j + vℓ+1
i,j+1), vℓ2i,2j−1 =

1

2
(vℓ+1

i,j + vℓ+1
i+1,j) (4.8)

and

vℓ2i,2j =


1

4
(vℓ+1

i,j + vℓ+1
i+1,j + vℓ+1

i,j+1 + vℓ+1
i+1,j+1), if vℓ is piecewise bilinear,

1

2
(vℓ+1

i+1,j + vℓ+1
i,j+1), if vℓ is piecewise linear.

(4.9)

4.2 Pooling, restriction and interpolation

The prolongation given by (4.6) can be used to transfer feature from a coarse grid to a fine grid. On the

other hand, we also need a mapping, known as restriction, that transfer data from fine grid to corse grid

R̄ℓ+1
ℓ : Rmℓ×nℓ 7→ Rmℓ+1×nℓ+1 . (4.10)

In multigrid for solving the discretized partial differential equation, the restriction is often taken to be

transpose of the prolongation given by (4.6):

R̄ℓ+1
ℓ = (P̄ ℓ

ℓ+1)
T. (4.11)
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Lemma 4.1. If P̃ ℓ
ℓ+1 takes the form of prolongation in multigrid methods for linear finite element

functions on the above grids, then R̃ℓ+1
ℓ is a convolution with stride 2 and a 3× 3 kernel as

Rℓ+1
ℓ f = KR ∗2 f, (4.12)

where, if Vℓ is piecewise bilinear,

KR =


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 , (4.13)

or, if Vℓ is piecewise linear,

KR =


0 1

2
1
2

1
2 1 1

2
1
2

1
2 0

 . (4.14)

In addition, all these convolutions are applied with zero padding as in (3.9), which is consistent with

the Neumann boundary condition for applying finite element method (FEM) to numerical PDEs. More

details will be discussed in Subsection 4.2.

In the deep learning literature, the restriction such as (4.10) is often known as pooling operation. One

popular pooling is a convolution with stride s, with some small integer s > 1.

Some other fixed (or untrained) poolings are also often used. One popular pooling is the so-called

average pooling Ravr which can be a convolution with stride 2 or bigger using the kernel K in the form of

K =
1

9


1 1 1

1 1 1

1 1 1

 . (4.15)

Nonlinear pooling operator is also used, for the example the (2k + 1) × (2k + 1) max-pooling operator

with stride s as follows:

[Rmax(f)]i,j = max
−k6p,q6k

{fs(i−1)+1+p,s(j−1)+1+q}. (4.16)

Another approach to the construction of restriction of pooling can be obtained by using interpolation.

Given

vℓ ∈ Rmℓ×nℓ ,

let v ∈ Vℓ be the function whose nodal values are precisely given by vℓ as in (4.4). Any reasonable linear

operator

Π : Vℓ 7→ Vℓ+1, (4.17)

such as nodal value interpolation, Scott-Zhang interpolation and L2 projection [49], would give rise to a

mapping

Πℓ+1
ℓ : Rmℓ×nℓ 7→ Rmℓ+1×nℓ+1 (4.18)

such that

vℓ+1 = Πℓ+1
ℓ vℓ.

As situations permit, we can use these a priori given restrictions to replace unknown pooling operators

to reduce the number of parameters.
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5 Multigrid methods for numerical PDEs

Let us first briefly describe a geometric multigrid method used to solve the following boundary value

problem:

−∆u = f, in Ω,
∂u

∂n
= 0 on ∂Ω, Ω = (0, 1)2. (5.1)

We consider a continuous linear finite element discretization of (5.1) on a nested sequence of grids of

sizes nℓ × nℓ with nℓ = 2J−ℓ+1 + 1, as shown in the left part of Figure 1 and the corresponding sequence

of finite element spaces (4.3).

Based on the grid T = Tℓ, the discretized system is

Au = f. (5.2)

Here, A : Rn×n 7→ Rn×n is a tensor satisfying

(Au)i,j = 4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1, (5.3)

which holds for 1 6 i, j 6 n with zero padding. Here we notice that, there exists a 3× 3 kernel as

KA =


0 −1 0

−1 4 −1
0 −1 0

 (5.4)

with

Au = KA ∗ u, (5.5)

where ∗ is the standard convolution operation with zero padding like (3.7). We now briefly describe

a simple multigrid method by a mixed use of the terminologies from deep learning [12] and multigrid

methods.

The first main ingredient in geometric multigrid (GMG) method is a smoother. A commonly used

smoother is a damped Jacobi with damped coefficient ω with ω ∈ (0, 2), which can be written as S0 :

Rn×n 7→ Rn×n satisfying

(S0f)i,j =
ω

4
fi,j , (5.6)

for (5.2) with initial guess zero. If we apply the Jacobian iteration twice, then

S1(f) = S0f + S(f −A(S0f))

with element-wise form

[S1(f)]i,j =
1

4
ω(2− ω)fi,j +

ω2

16
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1). (5.7)

Then we have

KS0 =
ω

4
(5.8)

and

KS1 =


0 ω2

16 0
ω2

16
ω(2−ω)

4
ω2

16

0 ω2

16 0

 , (5.9)

such that

S0f = KS0 ∗ f, S1f = KS1 ∗ f. (5.10)

Similarly, we can define

Sℓ : Rnℓ×nℓ 7→ Rnℓ×nℓ .
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We use prolongation

P ℓ
ℓ+1 : Rnℓ+1×nℓ+1 7→ Rnℓ×nℓ

as defined in (4.6) and the restriction Rℓ+1
ℓ = (P ℓ

ℓ+1)
T. Furthermore, we use the following relationship to

define coarse operation:

Aℓ+1 = Rℓ+1
ℓ AℓP ℓ

ℓ+1, ℓ = 1 : J − 1 (5.11)

with A1 = A.

Using the smoother Sℓ, prolongation P ℓ
ℓ+1, restriction Rℓ+1

ℓ and mapping Aℓ as given in (5.11), we can

formulate the following algorithm as a major component of a multigrid algorithm:

Algorithm 1 (uℓ,νℓ : ℓ = 1 : J) = MG0(f ; J, ν1, . . . , νJ )

1: Set up

f1 = f, u1,0 = 0.

2: Smoothing and restriction from fine to coarse level (nested)

3: for ℓ = 1 : J do

4: Pre-smoothing:

5: for i = 1 : νℓ do

6:

uℓ,i = uℓ,i−1 + Sℓ(fℓ −Aℓuℓ,i−1). (5.12)

7: end for

8: Form restricted residual and set initial guess:

uℓ+1,0 = 0, fℓ+1 = Rℓ+1
ℓ (fℓ −Aℓuℓ,νℓ ).

9: end for

Using Algorithm 1, there are different multigrid algorithms such as: \-cycle, V-cycle and W-cycle. Let

us now only give one special form of multigrid algorithm as follows (see Algorithm 2):

Algorithm 2 u = \-MG(f ; J, ν1, . . . , νJ )

1: Call Algorithm 1,

(uℓ,νℓ : ℓ = 1 : J) = MG0(f ; J, ν1, . . . , νJ ).

2: Prolongation and restriction from coarse to fine level

3: for ℓ = J − 1 : 1 do

4: Coarse grid correction (residual)

uℓ,νℓ ← uℓ,νℓ + P ℓ
ℓ+1u

ℓ+1,νℓ+1 . (5.13)

5: end for

6: Output

u = u1,ν1 .

6 MgNet: A new network structure

In this section, we introduce a new neural network structure, named as MgNet, motivated by the multigrid

algorithm, Algorithm 1, as discussed in the previous section.

First, given the data-feature equation (3.4), we consider its restrictions to grid ℓ as follows:

Aℓ(uℓ) = f ℓ, ℓ = 1 : J, (6.1)

where

f ℓ ∈ Rmℓ×nℓ×cf,ℓ (6.2)

and

uℓ ∈ Rmℓ×nℓ×cu,ℓ . (6.3)
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Figure 2 (Color online) Structure of MgNet

We are now in a position to state the main algorithm, namely MgNet as follows:

Algorithm 3 uJ = MgNet(f ; J, ν1, . . . , νJ )

1: Initialization: f1 = fin(f), u
1,0 = 0

2: for ℓ = 1 : J do

3: for i = 1 : νℓ do

4: Feature extraction (smoothing):

uℓ,i = uℓ,i−1 +Bℓ,i(fℓ −Aℓ(uℓ,i−1)). (6.4)

5: end for

6: Note: uℓ = uℓ,νℓ

7: Interpolation and restriction:

uℓ+1,0 = Πℓ+1
ℓ uℓ, (6.5)

fℓ+1 = Rℓ+1
ℓ (fℓ −Aℓ(uℓ)) +Aℓ+1(uℓ+1,0). (6.6)

8: end for

Here, fin(·) is the data initialization process as a usual step in many classical CNNs [18, 19, 22, 27]. It

may depend on different data sets and problems. We will discuss it later in Subsection 6.1 and Section 7.

For the main structure, the next diagram (see Figure 2) gives a brief illustration for the schema of MgNet

as shown in Algorithm 3 with (3.17) and (3.19).

Here, we may have some more general MgNet structures by replacing the feature extraction (smoothing)

step (6.4) with some other iterative schemes such as:

(Single step) MgNet.

uℓ,i = uℓ,i−1 +Bℓ,i(f ℓ −Aℓ(uℓ,i−1)), i = 1 : νℓ. (6.7)

Multi-step MgNet.

uℓ,i =

i−1∑
j=0

αℓ,i
j (uℓ,j +Bℓ,i

j (f ℓ −Aℓ(uℓ,j))), i = 1 : νℓ. (6.8)
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Chebyshev-semi MgNet.

uℓ,i = ωℓ,i(uℓ,i−1 +Bℓ,i(f ℓ −Aℓ(uℓ,i−1))) + (1− ωℓ,i)uℓ,i−2, i = 1 : νℓ, (6.9)

where Bℓ,i and Bℓ,i
j can be some appropriate nonlinear forms such as (3.19) in the basic MgNet in

Algorithm 3 which can relate to iResNet model naturally. Roughly speaking, multi-step MgNet structure

and Chebyshev-semi MgNet may be related to DenseNet [22] and LM-ResNet [36] with a special choice

of the nonlinear form of Bℓ,i
j and Bℓ,i.

Let us focus on the basic MgNet form in Algorithms 3. The first important property of MgNet is that

it recovers the fine to coarse process of multigrid methods as in Algorithm 1.

Theorem 6.1. If Aℓ, Rℓ+1
ℓ and Bℓ,i = Sℓ are all linear operations as described in multigrid method

in Section 5, then Algorithm 1 is equivalent to Algorithm 3 with any choice of Πℓ+1
ℓ .

Proof. Here, we replace uℓ,i and f ℓ by ũℓ,i and f̃ ℓ in MgNet. What we want to prove are

f̃ ℓ = f ℓ +Aℓũ
ℓ,0 and uℓ,i = ũℓ,i − ũℓ,0, (6.10)

with uℓ,i, f ℓ in Algorithm 1 and ũℓ,i, f̃ ℓ in Algorithm 3 for any choice of Πℓ+1
ℓ . We prove this result by

induction.

• It is easy to check that ℓ = 1 is right by taking θ = id.

• Once the above equation (6.10) is right for ℓ, let us prove the corresponding result for ℓ+ 1.

• For f̃ ℓ+1, as the definition in Algorithm 3, we have

f̃ ℓ+1 = Rℓ+1
ℓ (f̃ ℓ −Aℓũℓ,νℓ) +Aℓ+1ũℓ+1,0

= Rℓ+1
ℓ (f ℓ +Aℓũℓ,0 −Aℓũℓ,νℓ) +Aℓ+1ũℓ+1,0

= Rℓ+1
ℓ (f ℓ −Aℓ(ũℓ,νℓ − uℓ,0)) +Aℓ+1ũℓ+1,0

= Rℓ+1
ℓ (f ℓ −Aℓuℓ,νℓ) +Aℓ+1ũℓ+1,0

= f ℓ+1 +Aℓ+1ũℓ+1,0. (6.11)

• For uℓ+1,i, first we have

uℓ+1,0 = 0 = ũℓ+1,0 − ũℓ+1,0, (6.12)

and then we prove

uℓ+1,i = ũℓ+1,i − ũℓ+1,0 (6.13)

by induction for i.

We assume (6.13) holds for 0, 1, . . . , i − 1. Let us miner ũℓ+1,0 on both sides of the smoothing

process (6.4) in Algorithm 3. Then we have

ũℓ+1,i − ũℓ+1,0 = ũℓ+1,i−1 − ũℓ+1,0 +Bℓ+1,i(f̃ ℓ+1 −Aℓ+1ũℓ+1,i−1)

= ũℓ+1,i−1 − ũℓ+1,0 +Bℓ+1,i(f ℓ+1 +Aℓ+1ũℓ+1,0 −Aℓ+1ũℓ+1,i−1)

= uℓ+1,i−1 +Bℓ+1,i(f ℓ+1 −Aℓ+1uℓ+1,i−1). (6.14)

This is exactly the smoothing process in Algorithm 1 as we take Bℓ+1,i = Sℓ+1.

Similar to Algorithm 2 in \-MG or the corresponding version in V-cycle multigrid, there exists a related

V-MgNet (see Algorithm 4) that includes a process from coarse to fine grids. This type of V-MgNet makes

use of prolongation operators that correspond directly to the co-called deconvolution operations in CNN

models [41]. In addition, the correction steps such as (6.15) correspond directly to the symmetric skip

connection in many autoencoder type models such as U-net [43] and others [32,33,37]. Furthermore, we

can actually recover these U-net type CNN models from V-MgNet with similar situation to that as in

MgNet and iResNet which we will discuss later in Section 8.

Despite of the simplicity look of Algorithm 3, there are rich mathematical structures and variants

which we briefly discuss below.



1344 He J et al. Sci China Math July 2019 Vol. 62 No. 7

Algorithm 4 u1 = V-MgNet(f ; J, ν1, . . . , νJ ; ν
′
1, . . . , ν

′
J )

1: Call Algorithm 3,

(ū1,0, ū1, f1, ū2,0, ū2, f2, . . . , ūJ,0, ūJ , fJ ) = MgNet(f ; J, ν1, . . . , νJ ).

2: for ℓ = J − 1 : 1 do

3: Prolongation (deconvolution) and correction (shortcut connection)

uℓ,0 ← ūℓ + P ℓ
ℓ+1(u

ℓ+1 − ūℓ+1,0). (6.15)

4: for i = 1 : ν′ℓ do

5: Feature extraction (post-smoothing)

uℓ,i ← uℓ,i−1 +B′
ℓ,i(f

ℓ −Aℓ(uℓ,i−1)). (6.16)

6: end for

7:

uℓ ← uℓ,ν′
ℓ .

8: end for

6.1 Initialization: Feature space channels

Initially for ℓ = 1, we take m1 = m and n1 = n and we may define the linear mapping

θ : Rm×n×c 7→ Rm1×n1×c1 (6.17)

to obtain f1 = fin(f) = θ(f) with c given in (2.1) changed to the channel of the initial data space to c1.

Usually,

c1 > c. (6.18)

One possibility is that we choose c1 = c. In this case, we choose θ = identity. But in general, we may

need to choose c1 ≫ c. One possible advantage of preprocessing the red, green and blue colors (c = 3) to

different color spaces is that we can better choose what kind of features the CNN can detect, and under

what conditions those detections will be invariant.

One possibility of understanding and modifying this step is to decompose the data f into a number of

more specialized data

f =

c1∑
k=1

ξkf
1
k = ξT f1. (6.19)

We may use some knowledge from image processing or physics to design a procedure to obtain the right

decomposition of (6.19), or we can just train it. Conceivably, we may view f1 = θ(f) as a special

approximation solution of (6.19) with the same sparsity pattern to ξ.

6.2 Extracted units: uℓ and channels

The first new feature and the main new ingredient in the proposed neural network is the introduction of

feature variables uℓ in (6.3), which will be known as the extracted units.

One main ingredient in our MgNet in addition to the data variables is the introduction of feature

variables uℓ in (6.3), known as the extracted-units. The so-called dual path networks (DPN) model in [4]

also makes use of additional variables. DPN is a special CNN obtained by combining two different CNN

models such as ResNet and DenseNet. If we view uℓ,i and f ℓ as two different paths, MgNet can be related

to DPN model. We note that, uℓ,i and f ℓ communicate to each other with a special version as in (6.4)

with a special restriction form as in (6.6). We can recover DPN from MgNet by using two different

smoothing processes and combining them.

We emphasize that the extracted-units uℓ,i and the data f ℓ can have different numbers of channels:

uℓ,i ∈ Rmℓ×nℓ×cu,ℓ , f ℓ ∈ Rmℓ×nℓ×cf,ℓ . (6.20)
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One possibility is that the number of channels for both u and f remains unchanged in different grids:

cf,ℓ = cf , ℓ = 1 : J (6.21)

and

cu,ℓ = cu, ℓ = 1 : J. (6.22)

Both cf and cu are two super-parameters that need to be tuned, and we may even take cu = cf .

6.3 Poolings: Πℓ+1
ℓ and Rℓ+1

ℓ

The pooling Πℓ+1
ℓ in (4.12) and Rℓ+1

ℓ in (6.6) are in general different. They can be trained in general,

but they may be a priori chosen.

There are many different possibilities to choose Πℓ+1
ℓ . The simplest choice of Πℓ+1

ℓ is

Πℓ+1
ℓ = 0. (6.23)

A more sophisticated choice can be obtained by considering an interpolation from fine grid to coarse

(that, for example preserves linear function locally). Namely,

Πℓ+1
ℓ = Π̄ℓ+1

ℓ ⊗ Icℓ×cℓ (6.24)

with Π̄ℓ+1
ℓ given by (4.18). It can be implemented by group convolution [53] with channels as groups

number.

6.4 Data-feature mapping: Aℓ

The second new feature of MgNet is that this data-feature mapping only depends on the grid Tℓ, and it

does not depend on layers within the same grid. This amounts to a significant saving of the number of

parameters especially for deep ResNet models. In comparison, the existing CNN, such as iResNet, can

be interpreted as a network related to the case that Aℓ is replaced by Aℓ,i, namely,

uℓ,i = uℓ,i−1 +Bℓ,i(f ℓ −Aℓ,i(uℓ,i−1)), (6.25)

which will be discussed later in Section 8.

The data-feature mapping: Aℓ can be either linear (3.17), or nonlinear (3.18). The underlying convo-

lution kernels can be different on different grids and they can all be trained.

6.5 Feature extractors: Bℓ,i

There are some freedoms in choosing these feature extrators. One common choice of extractors is given

by (3.19), namely,

Bℓ,i = σ ◦ ηℓ,i ◦ σ. (6.26)

Other than the level dependent extractors, the following different strategies can be used:

Constant extractors. Bℓ,i = Bℓ for i = 1 : νℓ.

Scaled extractors. Bℓ,i = αiB
ℓ for i = 1 : νℓ.

Variable extractors. Bℓ,i.

This brief framework gives us the basic principle on designing a CNN models for classification. All

models are seen as the special choice of data-feature mapping Aℓ, feature extractors Bℓ,i and the pooling

operators Πℓ+1
ℓ with Rℓ+1

ℓ .

7 Some classic CNN models

In this section, we will use the notation introduced above to give a brief description of some classic CNN

models.
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7.1 LeNet-5, AlexNet and VGG

The LeNet-5 [29], AlexNet [27] and VGG [46] can be written as:

f1,0 = θ0(f),

for ℓ = 1 : J

for i = 1 : νℓ

f ℓ,i = θℓ,i ◦ σ(f ℓ,j−1),

end for

f ℓ+1,0 = Rℓ+1
ℓ (f ℓ,m+ℓ),

end for,

(7.1)

where Rℓ+1
ℓ can be general pooling operators and θℓ,i can be convolution with stride 1, or fully connected

operators. Then the CNN model will be defined by

H0(f) = fJ,νJ . (7.2)

In these three classic CNN models, they still need some extra fully connected layers after H0(f) but

before the logistic regression (2.9). These fully connected layers are removed in ResNet to be described

below.

7.2 ResNet

The ResNet [18] can be written as

f1,0 = fin(f),

for ℓ = 1 : J

for i = 1 : νℓ

f ℓ,i = σ(f ℓ,i−1 + Fℓ,i(f ℓ,i−1)),

end for

f ℓ+1,0 = σ(Rℓ+1
ℓ (f ℓ,νℓ) + Fℓ,0(f ℓ,νℓ)),

end for

H0(f) = Rave(f
L,νℓ).

(7.3)

Here, fin(·) may depend on different data set and problems such as fin(f) = σ ◦θ0(f) for CIFAR [26] and

fin(f) = Rmax ◦ σ ◦ θ0(f)

for ImageNet [6] as in [18]. In addition,

σ(f ℓ,i−1 + Fℓ,i(f ℓ,i−1))

is often called the basic ResNet block with

Fℓ,i(f i−1) = ξi ◦ σ ◦ ηi(f i−1).

Generally, ξℓ,i and ηℓ,i take the form of with zero padding and stride 1, except, ηℓ,0 is taken as convolution

with stride 2 with the same output dimension of Rℓ+1
ℓ .
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7.3 iResNet

The iResNet [19] can be written as:

f1,0 = fin(f),

for ℓ = 1 : J

for i = 1 : νℓ

f ℓ,i = f ℓ,i−1 + Fℓ,i(f ℓ,i−1),

end for

f ℓ+1,0 = Rℓ+1
ℓ (f ℓ,νℓ) + Fℓ,0(f ℓ,νℓ),

end for

H0(f) = Rave(f
L,νℓ),

(7.4)

where fin(·) shares the same setup with ResNet but Fℓ,i(f ℓ,i−1) = ξℓ,i ◦ σ ◦ ηℓ,iσ(f ℓ,i−1). The only

difference between ResNet and iResNet can be viewed as putting a σ in different places.

7.4 DenseNet

The DenseNet [22] model can be written as:

f1,0 = fin(f),

for ℓ = 1 : J

for i = 1 : νℓ

f ℓ,i = σ

( i−1∑
j=0

[θℓ,i]j ∗ f ℓ,j

)
,

end for

f ℓ+1,0 = Rℓ+1
ℓ ([f ℓ,0,, . . . , f ℓ,νℓ ]),

end for

H0(f) = Rave(f
L,νℓ).

(7.5)

Here, [f ℓ,0, . . . , f ℓ,i] represents the collection of all the previous output in ℓ-th grids after i-th smoother

in the channel dimension, and

θℓ,i = ([θℓ,i]0, . . . , [θ
ℓ,i]i−1) : Rmℓ×nℓ×(

∑i−1
j=0 kj) 7→ Rmℓ×nℓ×ki , (7.6)

where [θℓ,i]j : Rmℓ×nℓ×kj 7→ Rmℓ×nℓ×ki for j = 0 : i − 1. Roughly speaking, the main iterative step

in DenseNet is almost the same as the semi-iterative iterative process (3.21) if we ignore the nonlinear

activation function σ and fix the channel dimension kj .

In our paper, we mainly consider the connection between MgNet and ResNet type models from the

viewpoint of single step (residual correction) iterative scheme. In addition, we also make some discussion

about the relationship between Multi-step MgNet and DenseNet using the idea of multi-iterative method.

The development of the first three models is often shown with the following diagrams (see Figure 3):

Figure 3 (Color online) Comparison of CNN Structures
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Without loss of generality, we extract the key feedforward steps on the same grid in different CNN

models as follows.

Classic CNN.

f ℓ,i = ξi ◦ σ(f ℓ,i−1) or f ℓ,i = σ ◦ ξi(f ℓ,i−1). (7.7)

ResNet.

f ℓ,i = σ(f ℓ,i−1 + ξℓ,i ◦ σ ◦ ηℓ,i(f ℓ,i−1)). (7.8)

iResNet.

f ℓ,i = f ℓ,i−1 + ξℓ,i ◦ σ ◦ ηℓ,i ◦ σ(f ℓ,i−1). (7.9)

DenseNet.

f ℓ,i = σ

( i−1∑
j=0

[θℓ,i]j ∗ f ℓ,j

)
. (7.10)

8 Variants and generalizations of MgNet

The MgNet model algorithm is one very basic algorithm and it can be generalized in many different ways.

It can also be used as a guidance to modify and extend many existing CNN models.

The following result show how MgNet is related to the iResNet [19].

Theorem 8.1. The MgNet model Algorithm 3, with A = ξℓ and Bℓ,i = σ◦ηℓ,i ◦σ, admits the following

identities:

f ℓ,i = f ℓ,i−1 − ξℓ ◦ σ ◦ ηℓ,i ◦ σ(f ℓ,i−1), i = 1 : νℓ, (8.1)

where

f ℓ,i = f ℓ − ξℓ(uℓ,i). (8.2)

Furthermore, (8.1) represents iResNet [19] as shown in (7.9).

Proof. Because of the linearity of ξℓ and invariant within the same grid ℓ, we can apply ξℓ on both

sides of (6.4) and minus with f ℓ. Thus we have

f ℓ − ξℓ(uℓ,i) = f ℓ − ξℓ(uℓ,i−1)− ξℓ ◦ σ ◦ ηℓ,i ◦ σ(f ℓ − ξℓ(uℓ,i−1)).

This finishes the proof with definition in (8.2).

The above result is very simple but critically important. In view of Theorem 8.1, it shows how multigrid

and CNN are intimately related. Furthermore, it provides a different version of iResNet, which can be

viewed as the dual version of the original iResNet. This relation is quit similar to the dual relation of u

and f in multigrid method [51].

Lemma 8.2. The ResNet [18] step as in (7.8) admits the following relation:

f̃ ℓ,i = σ(f̃ ℓ,i−1)− ξℓ,i ◦ σ ◦ ηℓ,i ◦ σ(f̃ ℓ,i−1), (8.3)

where

f̃ ℓ,i = f ℓ,i−1 − ξℓ,i ◦ σ ◦ ηℓ,i(f ℓ,i−1). (8.4)

Proof. First, we apply ξℓ,i+1 ◦ σ ◦ ηℓ,i+1 on both sides of (7.8) and get

ξℓ,i+1 ◦ σ ◦ ηℓ,i+1(f ℓ,i) = ξℓ,i+1 ◦ σ ◦ ηℓ,i+1 ◦ σ(f̃ ℓ,i). (8.5)

Subtract f ℓ,i from both sides of the above equation and recall the definition in (8.4). We have

f̃ ℓ,i+1 = f ℓ,i − ξℓ,i+1 ◦ σ ◦ ηℓ,i+1 ◦ σ(f̃ ℓ,i).

By the definition of f ℓ,i = σ(f̃ ℓ,i), we finish this proof.
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We call the above form (8.3) as σ-ResNet. Similar to the MgNet we replace ξℓ,i by ξℓ and get the next

Mg-ResNet form as:

f ℓ,i = σ(f ℓ,i−1)− ξℓ ◦ σ ◦ ηℓ,i ◦ σ(f ℓ,i−1). (8.6)

If we take these pooling and prolongation operators as discussed in the previous sections and focus on

the iterative forms on a certain grid ℓ, we may compare them as below (see Table 1).

We can have these connections for all iterative scheme in data space:

ResNet
(8.4)←−→ σ-ResNet

ξℓ,i↔ξℓ←−−−→ Mg-ResNet
σ(fℓ,i−1)↔fℓ,i−1

←−−−−−−−−−−→ Mg-iResNet
ξℓ↔ξℓ,i←−−−→ iResNet. (8.7)

In this sense, these MgNet related models can be understood as models between iResNet and ResNet.

In addition, all these models can be understood as iteration in the data space as a dual relationship with

feature space as MgNet.

The rationality of replacing ξℓ,i by layer independent ξℓ may be justified by the following theorem.

Theorem 8.3. On each grid Tℓ, the following hold:

(1) Any CNN model with

f ℓ,i = χℓ,i ◦ σ(f ℓ,i−1) (8.8)

can be written as

f ℓ,i = σ(f ℓ,i−1)− ξℓ ◦ σ ◦ ηℓ,i ◦ σ(f ℓ,i−1). (8.9)

(2) Any CNN model with

f ℓ,i = σ ◦ χℓ,i(f ℓ,i−1) (8.10)

can be written as

f ℓ,i = σ(f ℓ,i−1 − ξℓ ◦ σ ◦ ηℓ,i(f ℓ,i−1)). (8.11)

Proof. Let us prove the first case as an example. The second case can be proven with the same process.

With the similar structure in MgNet, we can take

ξℓ = δ̂ℓ := [δ̂1, . . . , δ̂cℓ ] (8.12)

and

ηℓ,i = [idcℓ ,−idcℓ ] ◦ (χℓ,i − idcℓ). (8.13)

Here,

idcℓ : Rnℓ×nℓ×cℓ 7→ Rnℓ×nℓ×cℓ (8.14)

is the identity map and

δ̂k : Rnℓ×nℓ×2cℓ 7→ Rnℓ×nℓ (8.15)

Table 1 Comparison for MgNet and ResNet type iterative forms

Primal-Dual Model Iterative forms

Feature space

Abstract-MgNet Solving Aℓ(uℓ) = fℓ

Single step MgNet uℓ,i = uℓ,i−1 +Bℓ,i(fℓ −Aℓ(uℓ,i−1))

Multi-step MgNet uℓ,i =
∑i−1

j=0 α
ℓ,i
j (uℓ,j +Bℓ,i

j (fℓ −Aℓ(uℓ,j)))

Chebyshev-semi MgNet uℓ,i = ωℓ,i(uℓ,i−1 +Bℓ,i(fℓ −Aℓ(uℓ,i−1))) + (1− ωℓ,i)uℓ,i−2

MgNet uℓ,i = uℓ,i−1 + σ ◦ ηℓ,i ◦ σ(fℓ − ξℓ(uℓ,i−1))

Data space

iResNet fℓ,i = fℓ,i−1 − ξℓ,i ◦ σ ◦ ηℓ,i ◦ σ(fℓ,i−1)

Mg-iResNet fℓ,i = fℓ,i−1 − ξℓ ◦ σ ◦ ηℓ,i ◦ σ(fℓ,i−1)

Mg-ResNet fℓ,i = σ(fℓ,i−1)− ξℓ ◦ σ ◦ ηℓ,i ◦ σ(fℓ,i−1)

σ-ResNet fℓ,i = σ(fℓ,i−1)− ξℓ,i ◦ σ ◦ ηℓ,i ◦ σ(fℓ,i−1)

ResNet fℓ,i = σ(fℓ,i−1 − ξℓ,i ◦ σ ◦ ηℓ,i(fℓ,i−1))
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with

δ̂k([X,Y ]) = −([X]k + [Y ]k), (8.16)

for any X,Y ∈ Rnℓ×nℓ×cℓ and [X,Y ] ∈ Rnℓ×nℓ×2cℓ .

First, we see that ηℓ,i with the above form is a convolution from Rnℓ×nℓ×cℓ to Rnℓ×nℓ×2cℓ . Then we

have a special MgNet model because of the identity

ReLU(x) + ReLU(−x) = x, (8.17)

and the definition of ξℓ, i.e.,

ξℓ = δ̂ℓ. (8.18)

For more details, we can give an exact form of δ̂k as in (8.16) with

δ̂k = [0, . . . , 0,−δ, . . . , 0; 0, . . . , 0,−δ, . . . , 0], k = 1 : cℓ, (8.19)

where δ is the identity kernel in one channel.

Furthermore, we have

[ξℓ ◦ σ ◦ [idcℓ ,−idcℓ ](x)]k = [ξℓ ◦ σ ◦ [x,−x]]k
= δ̂k([σ(x), σ(−x)])
= −δ([σ(x)]k)− δ([σ(−x)]k)
= −(σ([x]k) + σ(−[x]k))
= −[x]k. (8.20)

That is to say,

ξℓ ◦ σ ◦ [idcℓ ,−idcℓ ] = −idcℓ . (8.21)

Then the modified dual form of MgNet in (8.3) becomes

f ℓ,i = σ(f ℓ,i−1)− ξℓ,i ◦ σ ◦ ηℓ,i ◦ σ(f ℓ,i−1)

= σ(f ℓ,i−1)− (ξℓ ◦ σ ◦ [idcℓ ,−idcℓ ]) ◦ (χℓ,i − idcℓ) ◦ σ(f ℓ,i−1)

= σ(f ℓ,i−1) + (χℓ,i − idcℓ) ◦ σ(f ℓ,i−1)

= χℓ,i ◦ σ(f ℓ,i−1). (8.22)

This covers (8.9).

Remark 8.4. Theorem 8.3 shows that general CNN in the forms of either (8.8) or (8.10) can be written

recast as (8.9) or (8.11) with the data-feature mapping Aℓ = ξℓ that is not only independent of the layers,

but is actually given a priori as in (8.12). In view of Theorems 8.1 and 8.3, the classic CNN models can

be essentially recovered from MgNet by choosing ξℓ a priori as in (8.12). We believe that general and

well-defined mathematical structure of MgNet would provide mathematical insights for understanding

and developing these CNN models.

9 Numerical experiments

In this section, we present some numerical results to illustrate the efficiency and potential of MgNet as

described in Algorithm 3.

9.1 Data sets and model structure

We choose CIFAR-10 and CIFAR-100 [26] as two data sets for numerical tests. Here, the CIFAR-10

dataset consists of 60,000 32×32 color images in 10 classes, with 6,000 images per class. The CIFAR-100

dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. We split these

two data sets with 50,000 training images and 10,000 test images.
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We will mainly carry out a comparison with study between MgNet and ResNet [18] on these two data

sets, so we choose some similar process techniques in ResNet such as there will be an average pooling

before linear regression layers

Rave : RmJ−1×nJ−1×cJ−1 7→ RcJ−1 . (9.1)

Here, we can recover this average operator by taking νJ = 0 in MgNet and

uJ = uJ,0 = ΠJ
J−1u

J−1,νJ−1 ∈ RcJ−1

with ΠJ
J−1 = Rave. This can be true also thanks to our structure that

cu,ℓ = cu, 1 6 ℓ 6 J. (9.2)

Given an image f , similar to ResNet, we apply our MgNet as follows:

y = S ◦ θ ◦ uJ(f), (9.3)

where uJ (f) is the output from our MgNet as described in Algorithm 3, S is the soft-max mapping

in (2.8) and

θ : Rcu 7→ Rκ, (9.4)

represents a fully linear layer with κ = 10 for CIFAR-10 and κ = 100 for CIFAR-100.

We will make the following choice of hyperparameters for the MgNet:

• fin: data initialization process. Similar to ResNet, we take fin(f) = σ ◦ θ0(f) as discussed in

Subsection 6.1 and Section 7.

• J : the number of grids. As all images in CIFAR-10 or CIFAR-100 are 32× 32× 3, we choose J = 5

to be consistent with ResNet.

• νℓ: the number of smoothings in each grids. To be consistent with ResNet-18 or ResNet-34 we

choose νℓ = 2 or νℓ = 4.

• cu and cf : the number of feature and data channels.

• Aℓ: the data-feature mapping. We choose the linear case in (3.17).

• Bℓ,i: the feature extractor. We choose the constant extractors as in Subsection 6.5.

• Rℓ+1
ℓ : the restriction operator in (6.6). Here, we choose it as a convolution with stride 2 which needs

to be trained.

• Πℓ+1
ℓ : the interpolation operator in (6.5). Here, we compare these next three different choices:

1. Π0: zero interpolation, i.e., Πℓ+1
ℓ = 0;

2. Π1: convolution with stride 2 which needs to be trained;

3. Π2: channel-wise interpolation as in (6.24) with Π̄ℓ+1
ℓ as a convolution with one channel and stride 2

which also needs to be trained.

9.2 Training algorithm

While there are many different choices of training algorithms [2], in our test, we adopt the popular

stochastic gradient descent (SGD) with mini-batch and momentum for cross-entropy loss function (see

Algorithm 5).

Here, we have

hi(wt) = l(H(fi;wt), yi)

as defined in (2.11), where wt denotes all free parameters in MgNet and θ in (9.4). We use the SGD with

momentum of 0.9. The mini-batch size is chosen as m = 128. The learning rate starts from 0.1 and is

divided by 10 for every 30 epochs, and the models are trained for up to K = 120 epochs. We adopt batch

normalization (BN) after each convolution and before activation, following [23]. Initialization strategy is

the same with ResNet as in [17]. We do not use weight decay and dropout. The final Top-1 test accuracy

is shown in Table 2.
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Algorithm 5 SGD with mini-batch and momentum

1: Input: learning rate ηt, batch size m, parameter Initialization w0, number of epochs K.

2: for Epoch k = 1 : K do

3: Shuffle data and get mini-batch B1, . . . , BN
m
, choose mini-batch as: Bit with

it ≡ t mod

(
N

m

)
.

4: Compute the gradient on Bit :

gt = ∇w
1

m

∑
i∈Bit

hi(wt).

5: Compute the momentum:

vt = αvt−1 − ηtgt, v0 = 0. (9.5)

6: Update w:

wt+1 = wt + vt. (9.6)

7: end for

Table 2 ResNet and MgNet on CIFAR-10 and CIFAR-100. Our methods are named with νℓ, (cu, cf ) and Πℓ+1
ℓ by

definition above

Models CIFAR-10 CIFAR-100 Params

ResNet-18 92.24 71.96 11.2M

ResNet-34 92.80 71.93 21.3M

2, (256, 256), Π0 92.02 68.29 7.1M

2, (256, 256), Π1 93.04 72.32 8.9M

2, (256, 512), Π1 93.20 72.42 19.5M

2, (256, 512), Π2 93.53 74.26 17.7M

From the above numerical results, we find that the modified CNN models based on MgNet structure

have competitive and sometimes better performance in comparison with standard ResNet models when

applied to both CIFAR-10 and CIFAR-100 data sets. Generally speaking, the more channels the better

performance we can achieve (see WideResNet [52] for similar observation). Furthermore, Π1 and Π2

work better than Π0, and Π2 can even work better than Π1 with fewer parameters for big enough channel

numbers.

10 Concluding remarks

By carefully studying the connections between the traditional multigrid method and the convolutional

neural network (especially the ResNet type) models, the MgNet established in this paper provides a

unified framework that connects both multigrid and CNN in a technical level. Comparing with other

existing works that discuss the connection between multigrid and CNN, MgNet goes beyond formal or

qualitative comparisons and identifies key model components that play the same corresponding roles, from

an abstract viewpoint, for these two different methodologies. As a result, how and why CNN models

work can be mathematically understood in a similar fashion as for multigrid method which has a much

more mature and better developed theory. Motivated from various known techniques from multigrid

method, many variants and improvements of CNN can then be naturally obtained. For example, as

demonstrated from our preliminary numerical experiments, the resulting modified CNN models equipped

with fewer weights and hyperparameters actually exhibit competitive and sometimes better performance

than standard ResNet models.

The MgNet framework opens a new door to the mathematical understanding, analysis and improve-

ments of deep learning models. The very preliminary results presented in this paper have demonstrated

the great potential of MgNet from both theoretical and practical viewpoints. Obviously many aspects of
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MgNet should be further explored and expect to be much improved. In fact, only very few techniques

from multigrid method have been tried in this paper and many more in-depth techniques from multigrid

require further study for deep neural networks, especially CNN. In particular, we believe that the MgNet

framework will lead to improved CNN that only has a small fraction of the number of weights that are

required by the current CNN. On the other hand, the techniques in CNN can also be used to develop

new generation of multigrid and especially algebraic multigrid methods [51] for solving partial differential

equations. Our ongoing works have demonstrated great potentials for research in these directions and

many more results will be reported in future papers.
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