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Abstract This paper investigates superconvergence properties of the local discontinuous Galerkin methods

with generalized alternating fluxes for one-dimensional linear convection-diffusion equations. By the technique

of constructing some special correction functions, we prove the (2k + 1)-th-order superconvergence for the cell

averages, and the numerical traces in the discrete L2 norm. In addition, superconvergence of orders k + 2 and

k + 1 is obtained for the error and its derivative at generalized Radau points. All the theoretical findings are

confirmed by numerical experiments.
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1 Introduction

In this paper, we consider the local discontinuous Galerkin (LDG) methods for one-dimensional linear

convection-diffusion equations

ut + ux − uxx = 0, (x, t) ∈ [0, 2π]× (0, T ], (1.1a)

u(x, 0) = u0(x), x ∈ R, (1.1b)

where u0 is sufficiently smooth. We consider the periodic boundary condition u(0, t) = u(2π, t), the mixed

boundary condition u(0, t) = g1(t), ux(2π, t) = g2(t), and the Dirichlet boundary condition u(0, t) = g3(t),

u(2π, t) = g4(t). We study the superconvergence property concerning Radau points, cell averages, and

supercloseness of the LDG method with generalized alternating numerical fluxes, including the case for

which the parameters involved in the numerical fluxes for the prime variable regarding the convection

part and the diffusion part are independently chosen for solving (1.1).
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As an extension of the discontinuous Galerkin (DG) method for solving first-order hyperbolic equations,

the LDG method was proposed by Cockburn and Shu [16] in the framework of solving second-order

convection-diffusion equations. The idea of the LDG methods is to rewrite the original equation with

high spatial derivatives as a first-order system so that the DG method can be applied. Note that,

in addition to the stability issue, the local solvability of auxiliary variables introduced should also be

guaranteed when choosing numerical fluxes.

Being a deeper insight of DG methods, superconvergence has been investigated basically measured in

the discrete L2 norm for Radau points as well as cell averages, in the L2 norm for the error between

the numerical solution and a particular projection of the exact solution (supercloseness), and in the

weak negative-order norm for enhancing accuracy. For example, by virtue of the duality argument in

combination with the standard optimal a priori error estimates, Cockburn et al. [15] proved that the

post-processed error is of order 2k + 1 superconvergent in the L2 norm for linear hyperbolic systems

and Ji et al. [21] demonstrated that the smoothness-increasing accuracy-conserving (SIAC) filter can be

extended to the multi-dimensional linear convection-diffusion equation in order to obtain a (2k +m)-th-

order superconvergence, wherem = 0, m = 1
2 orm = 1. Here and below, k denotes the polynomial degree

of the discontinuous finite element space. Later, to efficiently compute multi-dimensional problems, the

line filter and the one-dimensional kernel are designed via rotation in [17], and a rigorous proof of the post-

processed errors is also given. For arbitrary non-uniform regular meshes, by establishing the relationship

of the numerical solution and the auxiliary variable as well as its time derivative, superconvergence of

order k+3/2 is proved for linear convection-diffusion equations [14]. For supercloseness results concerning

high order equations, see, for example, [20, 23]. Note that aforementioned supercloseness results are not

sharp. In view of this, Yang and Shu [25] adopted the dual argument to study the sharp superconvergence

of the LDG method for one-dimensional linear parabolic equations, and the improved superconvergence

results of order k + 2 were obtained in terms of supercloseness and Radau points.

Recently, motivated by the successful applications of correction function techniques to finite element

methods and finite volume methods for elliptic equations [11], Cao et al. [5–8] studied superconvergence

properties of DG and LDG methods for linear hyperbolic and parabolic equations. Specifically, they

offered a novel proof to derive the (2k + 1)-th- or (2k + 1/2)-th-order superconvergence rate for the

cell average and numerical fluxes, which will lead to the sharp (k + 2)-th-order superconvergence for

supercloseness as well as the function errors at downwind-biased points. Note that these superconvergent

results are based on a supercloseness property of the DG solution to an interpolation function consisting of

the difference between a standard Gauss-Radau projection of the exact solution and a carefully designed

correction function. It is worth pointing out that a suitable correction is introduced to balance the

difference between the projection errors for the inner product term and the DG spatial operator term, and

for standard optimal error estimates when a Gauss-Radau projection is used, the projection error involved

in the DG operator term is exactly zero. This indicates that the standard Gauss-Radau projection is not

the best choice for superconvergence analysis. The superconvergence of the direct DG (DDG) method

for the one-dimensional linear convection-diffusion equation was studied in [4]. We would like to remark

that all the works mentioned above are focused on purely upwind and alternating numerical fluxes.

In order to obtain flexible numerical dissipation with potential applications to nonlinear systems, the

upwind-biased flux was proposed in [24], which is a linear combination of the numerical solution from both

sides of interfaces. Stability and optimal error estimates were obtained by constructing and analyzing

some suitable global projections with emphasis on the analysis to some circulant matrices. Note that

the design of global projections is similar to those in the work for the Burgers-Poisson equation [22].

Moreover, Cheng et al. [13] studied the LDG methods for the linear convection-diffusion equations when

the generalized alternating fluxes were used, and they obtained the optimal L2 norm error estimate in

a unified setting, especially when numerical fluxes with different weights are considered. In [3], Cao et

al. investigated the superconvergence of DG methods based on upwind-biased fluxes for one-dimensional

linear hyperbolic equations. More recently, Frean and Ryan [18] proved that the use of SIAC filters was

still able to extract the superconvergence information and obtained a globally smooth and superconvergent

solution of order 2k + 1 for linear hyperbolic equations based on upwind-biased fluxes. Moreover, the
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αβ-fluxes, which were introduced as linear combinations of the average and jumps of the solution as well

as the auxiliary variables at cell interfaces, have been a hot research topic in recent years [1, 12,19].

In the current paper, we aim at analyzing the superconvergence properties of LDG methods by using

generalized alternating numerical fluxes for the convection-diffusion equations. The contribution of this

paper is to consider the more flexible generalized alternating fluxes. The critical step in deriving super-

convergence is to construct special interpolation functions for both variables (the exact solution u and the

auxiliary variable q) with the aid of some suitable correction functions, essentially following [3]. Taking

into account the stability result, we use special projections to eliminate or control the troublesome jump

terms involving projection errors (see, e.g., Lemma 3.2 below). To be more precise, we will establish the

superconvergence between the LDG solution (uh, qh) and special interpolation functions uℓI = Pθu−W ℓ
u

as well as qℓI = Pθ̃q−W ℓ
q , where W

ℓ
u and W ℓ

q are correction functions to be specified later, with the main

technicality being the construction and analysis of some suitable projections tailored to the very choice

of the numerical fluxes. By a rigorous mathematical proof, we prove a superconvergence rate of 2k + 1

for the errors of numerical traces and for the cell averages, and k + 2 for the DG error at generalized

Radau points.

The rest of this paper is organized as follows. In Section 2, we present the LDG method with generalized

alternating fluxes. In Section 3, we construct special functions to correct the error between the LDG

solution and the standard Gauss-Radau projections of the exact solution. Section 4 is the main body of the

paper, in which we show and prove some superconvergence phenomena for cell averages and generalized

Radau points for the periodic boundary conditions. Other boundary cases including the mixed boundary

condition and Dirichlet boundary condition will be considered in Section 5, and the choice of numerical

initial discretization is also given. In Section 6, we present some numerical experiments that confirm the

sharpness of our theoretical results. We will end in Section 7 with concluding remarks and some possible

future work.

2 The LDG scheme

In this section, we present the LDG scheme with generalized alternating fluxes for the linear convection-

diffusion equation (1.1). As usual, we divide the computational domain Ω = [0, 2π] into N cells

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 2π.

For any positive integer r, we define Zr = {1, . . . , r} and denote

xj =
1

2
(xj− 1

2
+ xj+ 1

2
), Ij = (xj− 1

2
, xj+ 1

2
), j ∈ ZN

as the cell centers and cells, respectively. Let hj = xj+ 1
2
− xj− 1

2
be the length of the cell Ij for j ∈ ZN

and h = max16j6N hj . We assume that the partition Ωh is quasi-uniform in the sense that there exists

a constant C independent of h such that Ch 6 hj 6 h, as h goes to zero. Define the finite element space

V k
h = {v ∈ L2(Ω) : v |Ij ∈ P k(Ij), ∀ j ∈ ZN},

where P k(Ij) is the space of polynomials on Ij of degree at most k > 0. We use

ūj+ 1
2
=

1

2
(u+

j+ 1
2

+ u−
j+ 1

2

), [u]j+ 1
2
= u+

j+ 1
2

− u−
j+ 1

2

to denote the mean and jump of the function u at each element boundary point xj+ 1
2
, and the weighted

average is denoted by u
(θ)

j+ 1
2

= θu−
j+ 1

2

+ θ̃u+
j+ 1

2

, θ̃ = 1 − θ, where u+
j+ 1

2

and u−
j+ 1

2

are the traces from the

right and left cells, respectively.

Throughout this paper, we employ W ℓ,p(D) to denote the standard Sobolev space on D equipped with

the norm ∥ · ∥W ℓ,p(D) with ℓ > 0, p = 2 and p = ∞. For simplicity, we set ∥ · ∥W ℓ,p(D) = ∥ · ∥ℓ,p,D with D
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equal to Ω or Ij . The subscript D will be omitted when D = Ω, and W ℓ,p(D) can be written as Hℓ(D)

when p = 2.

In order to construct the LDG scheme, we first introduce an auxiliary variable q = ux; then the

problem (1.1) can be written into a first-order system

ut + (u− q)x = 0, q − ux = 0, (2.1)

where (u − q, u) is the physical flux and u is the so-called prime variable. The LDG scheme is thus to

find uh, qh ∈ V k
h such that for all test functions v, ψ ∈ V k

h ,

(uht, v)j − (uh − qh, vx)j + (ũh − q̂h)v
− |j+ 1

2
− (ũh − q̂h)v

+ |j− 1
2
= 0, (2.2a)

(qh, ψ)j + (uh, ψx)j − ûhψ
− |j+ 1

2
+ ûhψ

+ |j− 1
2
= 0. (2.2b)

Here, (u, v)j =
∫
Ij
uvdx, and ũh, q̂h and ûh are numerical fluxes. We use the generalized alternating

numerical fluxes related to arbitrary parameters λ and θ as in [13], i.e.,

(ũh − q̂h, ûh) = (u
(λ)
h − q

(θ̃)
h , u

(θ)
h ). (2.3)

Note that the parameters in the numerical flux regarding the convection part and diffusion part can be

chosen independently, and to ensure stability the weight λ should satisfy λ > 1
2 .

For simplicity, we introduce the notation pertaining to the DG discretization operator

H1(u, q; v) =

N∑
j=1

H1
j (u, q; v), H2(u;ψ) =

N∑
j=1

H2
j (u;ψ),

where

H1
j (u, q; v) = (q − u, vx)j − (q̂ − ũ)v− |j+ 1

2
+ (q̂ − ũ)v+ |j− 1

2
,

H2
j (u;ψ) = (u, ψx)j − ûψ− |j+ 1

2
+ ûψ+ |j− 1

2
.

Thus, by Galerkin orthogonality, the cell error equation can be written as

(eut, v)j + (eq, ψ)j +H1
j (eu, eq; v) +H2

j (eu;ψ) = 0, ∀ v, ψ ∈ V k
h , (2.4)

where eu = u− uh, eq = q − qh.

For optimal error estimates of the LDG scheme using the generalized numerical fluxes (2.3)

solving convection-diffusion equations with the periodic boundary conditions, a globally defined pro-

jection Pθ together with Pθ̃ is usually needed. For z ∈ H1(Ωh) =
∪

j∈ZN
H1(Ij), the generalized Gauss-

Radau projection Pθz is defined as the element of V k
h that satisfies∫

Ij

(Pθz − z)vhdx = 0, ∀ vh ∈ P k−1(Ij), (2.5a)

(Pθz)
(θ)

j+ 1
2

= (z(θ))j+ 1
2
, ∀ j ∈ ZN . (2.5b)

It has been shown in [22, 24] that the projection Pθz is well defined for θ ̸= 1
2 , and for θ = 1/2 some

restrictions on the mesh as well as the polynomial degree are needed to guarantee the existence and

optimal approximation property of the projection [2]. Note that when the parameter θ is taken as 0 or

1, the projection Pθ reduces to the standard local Gauss-Radau projection P+
h or P−

h as defined in [10].

Besides, the projection Pθ satisfies the following optimal approximation property [22,24]:

∥z − Pθz∥Ij + h
1
2 ∥z − Pθz∥∞,Ij 6 Chk+

3
2 ∥z∥k+1,∞, (2.6)

where C > 0 is independent of h and z.

To obtain the superconvergence results, the following lemma is useful in describing correction functions.

Lemma 2.1 (See [3]). Suppose A is an N × N circulant matrix with the first row (θ, (−1)k

(1 − θ), 0, . . . , 0) and the last row ((−1)k(1 − θ), 0, 0, . . . , θ), where θ > 1/2. Then, for any vectors

X = (x1, . . . , xN )T and b = (b1, . . . , bN )T satisfying AX = b, it holds that |xj | . ∥b∥∞, ∀ j ∈ ZN .
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3 Correction functions

In what follows, we present the construction of correction functions. The cases for the weights of the

prime variable uh in (2.3) being the same or different are discussed in the following two subsections.

3.1 The case with λ = θ in (2.3)

When λ = θ in (2.3), to construct special interpolation functions (uℓI , q
ℓ
I) by modifying generalized Gauss-

Radau projections with correction functions so that they are superclose to the LDG solution (uh, qh), we

start by denoting by Lj,k the standard Legendre polynomial of degree k on the interval Ij , and assume

that the function v(x, t) has the following Legendre expansion, i.e., on each Ij , j ∈ ZN ,

v(x, t) =
∞∑

m=0

vj,m(t)Lj,m(x), vj,m =
2m+ 1

hj
(v, Lj,m)j .

By the definition of Pθ in (2.5a), we can rewrite Pθv into the following form:

Pθv =

k∑
m=0

vj,m(t)Lj,m(x) + v̄j,k(t)Lj,k(x),

where v̄j,k can be determined by (v − Pθv)
(θ)
j+1/2 = 0 with

v − Pθv = −v̄j,k(t)Lj,k(x) +
∞∑

m=k+1

vj,m(t)Lj,m(x). (3.1)

It follows from the orthogonality of Legendre polynomials and (2.6) that

|v̄j,k| .
2k + 1

hj
|(v − Pθv, Lj,k)j | . hk+1∥v∥k+1,∞.

Following [3], to balance projection errors for the inner product term and the DG operator term, we

define an integral operator D−1
x by

D−1
x u(x) =

1

h̄j

∫ x

x
j− 1

2

u(τ)dτ, τ ∈ Ij ,

where h̄j = hj/2. Obviously, u(x) = h̄j(D
−1
x u(x))x. Moreover, by the properties of Legendre polynomials,

we have

D−1
x Lj,k(x) =

1

2k + 1
(Lj,k+1 − Lj,k−1)(x). (3.2)

To clearly see how to cancel terms involving projection errors with the goal of obtaining superconver-

gence, we split the errors eu and eq into two parts:

eu = u− uh = u− uℓI + uℓI − uh , ηu + ξu, eq = q − qh = q − qℓI + qℓI − qh , ηq + ξq.

Then the error equation (2.4) becomes

(ξut, v)j + (ξq, ψ)j +H1
j (ξu, ξq; v) +H2

j (ξu;ψ) = −(ηut, v)j − (ηq, ψ)j −H1
j (ηu, ηq; v)−H2

j (ηu;ψ).

For the periodic boundary conditions, by choosing v = ξu, ψ = ξq and summing over all j, we have

1

2

d

dt
∥ξu∥2 + ∥ξq∥2 +

(
λ− 1

2

) N∑
j=1

[ξu]
2
j+ 1

2
= −(ηut, ξu)− (ηq, ξq)−H1(ηu, ηq; ξu)−H2(ηu; ξq). (3.3)

From the equation (3.3), we can see that in order to obtain the supercloseness properties between the

numerical solution uh and interpolation function uℓI , we need to obtain a sharp superconvergent bound
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for the right-hand term, essentially using the switch of the time derivative and spatial derivative through

the integral operator D−1
x in combination with integration by parts (see Lemma 3.2 below). Next, we

show how to construct interpolation functions and estimate the right-hand side of (3.3).

To construct the interpolation functions (uℓI , q
ℓ
I), we define a series of functions wu,i, wq,i ∈ V k

h , i ∈ Zk

as follows:

(wu,i − h̄jD
−1
x wq,i−1, v)j = 0, (w

(θ)
u,i)j+ 1

2
= 0, (3.4a)

(wq,i − wu,i − h̄jD
−1
x ∂twu,i−1, v)j = 0, (w

(θ̃)
q,i )j+ 1

2
= 0, (3.4b)

where v ∈ P k−1(Ij) and wu,0 = u− Pθu, wq,0 = q − Pθ̃q.

Lemma 3.1. The functions wu,i, wq,i, i ∈ Zk defined in (3.4) have the following properties:

∥∂twu,i∥∞ . hk+i+1∥u∥k+i+3,∞, ∥wq,i∥∞ . hk+i+1∥u∥k+i+2,∞, (3.5a)

(wu,i, v)j = 0, (wq,i, v)j = 0, ∀ v ∈ P k−i−1(Ij). (3.5b)

Proof. The proof of this lemma is based on deriving the following expression of wu,i and wq,i in each

element Ij , which can be obtained by induction. It holds that

wu,i |Ij =
k∑

m=k−i

βj
i,mLj,m(x), wq,i |Ij =

k∑
m=k−i

γji,mLj,m(x), i ∈ Zk. (3.6)

Step 1. When i = 1, by taking v = Lj,m with m 6 k − 1 in (3.4a) and using (3.2) together with the

orthogonality property of Legendre polynomials, we obtain

(wu,1 − h̄jD
−1
x wq,0, v) =

(
βj
1,k−1Lj,k−1 −

q̄j,k
2k + 1

h̄jLj,k−1, v

)
= 0.

Obviously, βj
1,k−1 =

q̄j,k
2k+1 h̄j , where q̄j,k is the coefficient of the Legendre expansion for q; see (3.1) with v

replaced by q and Pθ replaced by Pθ̃. Using the fact that (w
(θ)
u,1)j+ 1

2
= 0 we have

θβj
1,k + (−1)k(1− θ)βj+1

1,k = (−1)k(1− θ)βj+1
1,k−1 − θβj

1,k−1. (3.7)

Then the linear system (3.7) can be written in the matrix-vector form Aβ1,k = b, where A = circ(θ, (−1)k

(1− θ), 0, . . . , 0) is an N ×N circulant matrix and

β1,k =


β1
1,k

β2
1,k

...

βN
1,k

 , b =


−θβ1

1,k−1 + (−1)k(1− θ)β2
1,k−1

−θβ2
1,k−1 + (−1)k(1− θ)β3

1,k−1

...

−θβN
1,k−1 + (−1)k(1− θ)β1

1,k−1

 .

It is easy to compute the determinant of the matrix A in the form

|A| = θN (1− pN ), p =
(−1)k(θ − 1)

θ
,

and for θ ̸= 1
2 the matrix A is always invertible. Therefore, the linear system (3.7) has the unique solution.

Moreover, by Lemma 2.1, we have

|βj
1,k| . max

16ℓ6N
|bℓ| . hk+2∥u∥k+2,∞, ∀ j ∈ ZN .

Thus,

∥∂twu,1∥∞,Ij = ∥∂t(βj
1,k−1Lj,k−1 + βj

1,kLj,k)∥∞,Ij . hj |∂tq̄j,k| . hk+2∥u∥k+4,∞.
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Similarly, when choosing v = Lj,m,m 6 k − 1 in (3.4b), we obtain

wq,1 |Ij =
k∑

m=k−1

γj1,mLj,m,

where γj1,k−1 = βj
1,k−1 +

∂tūj,k

2k+1 h̄j , and γj1,k is the solution of the linear system Ãγ1,k = b̃, with Ã =

circ(θ̃, (−1)k(1− θ̃), 0, . . . , 0) being an N ×N circulant matrix and

γ1,k =


γ11,k

γ21,k
...

γN1,k

 , b̃ =


−θ̃γ11,k−1 + (−1)k(1− θ̃)γ21,k−1

−θ̃γ21,k−1 + (−1)k(1− θ̃)γ31,k−1

...

−θ̃γN1,k−1 + (−1)k(1− θ̃)γ11,k−1

 .

Consequently, the estimate of ∥wq,1∥∞ in (3.5a) follows by using Lemma 2.1 and the optimal approxima-

tion property (2.6). Moreover, (3.5b) is a trivial consequence of the expression (3.6) when the orthogo-

nality property of Legendre polynomials is taken into account.

Step 2. Suppose that (3.5a) and (3.6) are valid for all i 6 k − 1 and we want to prove that it still

holds for i+ 1. From (3.4a), we can get(
wu,i+1 − h̄jD

−1
x

( k∑
m=k−i

γji,mLj,m

)
, v

)
j

= 0, ∀ v ∈ P k−1(Ij).

In order to get the superconvergent bounds of wu,i+1, we need to find out the expression of coefficient

βi+1,m. After a direct calculation, we have

βj
i+1,k−i−1 = −

γji,k−ih̄j

2(k − i) + 1
, βj

i+1,k−i = −
γji,k−i+1h̄j

2(k − i) + 3
,

βj
i+1,m = h̄j

(
γji,m−1

2m− 1
−
γji,m+1

2m+ 3

)
, m = k − i+ 1, . . . , k − 1.

Moreover, by the fact that w
(θ)
u,i+1 = 0, we get

θ(βj
i+1,k−i−1 + · · ·+ βj

i+1,k) + (1− θ)(−1)k−i−1βj+1
i+1,k−i−1 + · · ·+ (1− θ)(−1)kβj+1

i+1,k = 0.

Again, we can write the above linear system into the matrix-vector form Aβi+1,k = c, and when θ ̸= 1
2 ,

we arrive at the unique existence of the system. Consequently, it follows from Lemma 2.1 that

∥∂twu,i+1∥∞,Ij .
k∑

m=k−i−1

|∂tβj
i+1,m| . h

k∑
m=k−i

|∂tγji,m|

. h∥∂twq,i∥∞ . hk+i+2∥∂tq∥k+i+1,∞ . hk+i+2∥u∥k+i+4,∞.

Analogously, the other estimate of (3.5a) can be obtained, and the orthogonality property in (3.5b) is

a trivial consequence of expressions of wu,i and wq,i in (3.6) with i replaced by i + 1. This finishes the

proof of Lemma 3.1.

We are now ready to define the correction functions as follows. For any positive integer ℓ ∈ Zk, we

define in each element Ij ,

W ℓ
u =

ℓ∑
i=1

wu,i, W ℓ
q =

ℓ∑
i=1

wq,i, (3.8)

and the special interpolation functions are

uℓI = Pθu−W ℓ
u, qℓI = Pθ̃q −W ℓ

q . (3.9)
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Lemma 3.2. Suppose u ∈ W k+ℓ+3,∞(Ω), ℓ ∈ Zk is the solution of (1.1), and uℓI and qℓI are defined

by (3.9). Then ∀ v, ψ ∈ V k
h , we have

|((u− uℓI)t, v)j − (W ℓ
u, vx)j + (W ℓ

q , vx)j | . hk+ℓ+1∥u∥k+ℓ+3,∞∥v∥1,Ij , (3.10a)

|(q − qℓI , ψ)j + (W ℓ
u, ψx)j | . hk+ℓ+1∥u∥k+ℓ+2,∞∥ψ∥1,Ij . (3.10b)

Proof. By the orthogonality property of wu,i and wq,i, i ∈ Zk−1, we have

D−1
x wu,i(x

−
j+ 1

2

) =
1

h̄j
(wu,i, 1)j = 0 = D−1

x wu,i(x
+
j− 1

2

),

D−1
x wq,i(x

−
j+ 1

2

) =
1

h̄j
(wq,i, 1)j = 0 = D−1

x wq,i(x
+
j− 1

2

).

It follows from integration by parts that

(∂twu,i, v)j = −h̄j(D−1
x ∂twu,i, vx)j = −(wq,i+1 − wu,i+1, vx), v ∈ V k

h , i ∈ Zk−1,

(wq,i, v)j = −h̄j(D−1
x wq,i, vx)j = −(wu,i+1, vx), v ∈ V k

h , i ∈ Zk−1.

Then

((u− uℓI)t, v)j − (W ℓ
u, vx)j + (W ℓ

q , vx)j = ((u− Pθu)t, v)j +
ℓ∑

i=1

[(∂twu,i, v)j + (wq,i − wu,i, vx)j ]

= (∂twu,ℓ, v)j .

Similarly, it holds that

(q − qℓI , ψ)j + (W ℓ
u, ψx)j = (wq,ℓ, ψ)j .

By (3.5a), we can get the desired result (3.10).

3.2 The case with λ ̸= θ in (2.3)

When parameters λ and θ in (2.3) pertaining to convection and diffusion terms are chosen differently, a

pair of suitable interpolation functions in possession of the supercloseness property should be constructed,

which are based on a combination of modified projections and new correction functions. To do that, let

us first recall a new modified projection [13], i.e., Πh(u, q) = (Pθu, P
∗
θ̃
q), in which Pθu ∈ V k

h has been

given in (2.5a), and P ∗
θ̃
q ∈ V k

h depends on both u and q satisfying∫
Ij

(P ∗
θ̃
q)vhdx =

∫
Ij

qvhdx, ∀ vh ∈ P k−1(Ij),

(P ∗
θ̃
q)

(θ̃)

j+ 1
2

= (q(θ̃))j+ 1
2
+ (λ− θ)[u− Pθu]j+ 1

2

for any j = 1, . . . , N . Moreover, this projection have the following approximation property:

∥q − P ∗
θ̃
q∥Ij 6 Chk+

3
2 (∥q∥k+1,∞ + |λ− θ| · ∥u∥k+1,∞).

From the above estimate of q − P ∗
θ̃
q, it is easy to see that the coefficient q̄j,k can be controled by the

prime and auxiliary variables. It holds that

|q̄j,k| .
2k + 1

hj
|(q − P ∗

θ̃
q, Lj,k)| . hk+1(∥q∥k+1,∞ + |λ− θ| · ∥u∥k+1,∞) . hk+1∥u∥k+2,∞.

Next, the corresponding correction functions pertaining to two different weights λ and θ can be easily

defined. Specifically, we define the functions wu,i, wq,i, i ∈ Zk satisfying

(wu,i − h̄jD
−1
x wq,i−1, z)j = 0, (w

(θ)
u,i)j+ 1

2
= 0, (3.11a)

(wq,i − wu,i − h̄jD
−1
x ∂twu,i−1, z)j = 0, (w

(θ̃)
q,i )j+ 1

2
= (w

(λ)
u,i )j+ 1

2
, (3.11b)

where z ∈ P k−1(Ij), and wu,0 = u− Pθu,wq,0 = q − P ∗
θ̃
q.

Let us finish this section by providing the following theorem.
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Theorem 3.3. When λ ̸= θ in (2.3), the functions wu,i, wq,i, i ∈ Zk defined in (3.11) still have the

following properties:

∥∂twu,i∥∞ . hk+i+1∥u∥k+i+3,∞, ∥wq,i∥∞ . hk+i+1∥u∥k+i+2,∞,

(wu,i, v)j = 0, (wq,i, v)j = 0, ∀ v ∈ P k−i−1(Ij).

Moreover, when u ∈W k+ℓ+3,∞(Ω), ℓ ∈ Zk, the special interpolation functions

uℓI = Pθu−W ℓ
u, qℓI = P ∗

θ̃
q −W ℓ

q

with (3.8) satisfy

|((u− uℓI)t, v)j − (W ℓ
u, vx)j + (W ℓ

q , vx)j | . hk+ℓ+1∥u∥k+ℓ+3,∞∥v∥1,Ij ,
|(q − qℓI , ψ)j + (W ℓ

u, ψx)j | . hk+ℓ+1∥u∥k+ℓ+2,∞∥ψ∥1,Ij .

Proof. Since there is only slight difference between (3.4) and (3.11) in terms of different boundary

collocations, Theorem 3.3 can thus be proved by an argument similar to that in Subsection 3.1 with

different vectors b, b̃ and c, etc. The detailed proof is omitted.

4 Superconvergence

In this section, we show the superconvergence properties for the LDG solution at some special points as

well as cell averages, which are mainly based on the supercloseness result for the error between the LDG

solution (uh, qh) and the newly designed interpolation functions (uℓI , q
ℓ
I).

Theorem 4.1. Let u ∈ W k+ℓ+3,∞(Ω), ℓ ∈ Zk be the exact solution of (1.1), and uh and qh be the

numerical solutions of LDG scheme (2.2). Then for the periodic boundary conditions, we have

∥uℓI − uh∥+
(∫ t

0

∥qℓI − qh∥2dτ
) 1

2

6 C(1 + t)hk+ℓ+1,

where C depends on ∥u∥k+ℓ+3,∞.

Proof. Using Lemma 3.2, we obtain

|(ηut, v)j + (ηq, ψ)j +H1
j (ηu, ηq; v) +H2

j (ηu;ψ)|
= |((u− uℓI)t, v)j − (W ℓ

u, vx)j + (W ℓ
q , vx)j + (q − qℓI , ψ)j + (W ℓ

u, ψx)j |
= |(∂twu,ℓ, v)j + (wq,ℓ, ψ)j |
. hk+ℓ+1∥u∥k+ℓ+3,∞(∥v∥1,Ij + ∥ψ∥1,Ij ).

Inserting the above estimate into (3.3) and summing over all j, one has

1

2

d

dt
∥ξu∥2 + ∥ξq∥2 . hk+ℓ+1∥u∥k+ℓ+3,∞(∥ξu∥+ ∥ξq∥).

If we choose a suitable initial condition such that ∥ξu(0)∥ = 0, then Theorem 4.1 follows by using Young’s

inequality and Gronwall’s inequality.

4.1 Superconvergence of numerical fluxes

In this subsection, we present the superconvergence results of the numerical fluxes.

Theorem 4.2. Assume that u ∈ W 2k+3,∞(Ω), k > 1 is the solution of (1.1), and uh and qh are the

numerical solutions of the LDG scheme (2.2) with the initial solution uh(·, 0) = ukI (·, 0). Then for the

periodic boundary conditions, we have

∥eu,n∥ . C(1 + t)h2k+1,

(∫ t

0

∥eq,n∥2dτ
) 1

2

. C(1 + t)h2k+1,
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where

∥ev,n∥ =

(
1

N

N∑
j=1

|(v − v̂h)(xj+ 1
2
, t)|2

) 1
2

, v = u or v = q.

Proof. It follows from the inverse inequality and the supercloseness result in Theorem 4.1 that

∥eu,n∥ =

(
1

N

N∑
j=1

|(ûI − ûh)(xj+ 1
2
, t)|2

) 1
2

.
(

1

N

N∑
j=1

h−1
j ∥uI − uh∥2Ij∪Ij+1

) 1
2

. ∥ukI − uh∥ . C(1 + t)h2k+1.

By using the superclosenece result in Theorem 4.1 again, superconvergence of the auxiliary variable q

can be derived analogously. This finishes the proof of Theorem 4.2.

4.2 Superconvergence for cell averages

Theorem 4.3. Assume that the conditions of Theorem 4.1 are satisfied. Then for the periodic boundary

conditions, we have

∥eu∥c . (1 + t)h2k+1∥u∥2k+3,∞,

(∫ t

0

∥eq∥2cdτ
) 1

2

. (1 + t)h2k+1∥u∥2k+3,∞, (4.1)

where ∥ev∥c = ( 1
N

∑N
j=1(

1
hj
(ev, 1)j)

2)
1
2 , v = u or v = q.

Proof. Taking ∥eu∥c as an example, by the properties of Pθ and the definition of ukI , we obtain

(eu, 1)j = (ukI − uh, 1)j + (W k
u , 1)j . (4.2)

The superconvergence result can thus be proved by using the orthogonality property in (3.5b), the

Cauchy-Schwarz inequality and Theorem 4.1.

4.3 Superconvergence at generalized Radau points

As a natural extension of Radau points for θ = 1, the roots of generalized Radau polynomials for the

weight θ are introduced in [18]. To be more specific, the generalized Radau polynomials are defined as

R∗
k+1 =

{
Lk+1 − (2θ − 1)Lk, when k is even,

(2θ − 1)Lk+1 − Lk, when k is odd.
(4.3)

For superconvergence analysis, instead of using the global projection Pθu, a much simpler local pro-

jection Phu is introduced [3]:∫
Ij

(Phu− u)v = 0, ∀ v ∈ P k−1(Ij),

θPhu(x
−
j+ 1

2

) + (1− θ)Phu(x
+
j− 1

2

) = θu(x−
j+ 1

2

) + (1− θ)u(x+
j− 1

2

).

Lemma 4.4 (See [3]). Suppose u ∈W k+2,∞(Ω) and Phu is the local projection of u defined above with

θ ̸= 1
2 . Then

|(u− Phu)(R
r
j,m)| . hk+2∥u∥k+2,∞,

|∂x(u− Phu)(R
r∗
j,m)| . hk+1∥u∥k+2,∞,

∥Phu− Pθu∥∞ . hk+2∥u∥k+2,∞.

Here, Rr
j,m and Rr∗

j,m are the roots of rescaled Radau polynomials R∗
j,m+1 and ∂xR

∗
j,m+1.
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We are now ready to show the superconvergence result at generalized Radau points.

Theorem 4.5. Let u ∈ W k+5,∞(Ω) and uh be the numerical solution of (1.1). Suppose uℓI , ℓ > 2 is

the special interpolation function defined in (3.9). Then for the periodic boundary conditions, we have

∥eu,r∥ . (1 + t)hk+2∥u∥k+5,∞, ∥eu,rx∥ . (1 + t)hk+1∥u∥k+5,∞,(∫ t

0

∥eq,l∥2dτ
) 1

2

. (1 + t)hk+2∥u∥k+5,∞,

(∫ t

0

∥eq,lx∥2dτ
) 1

2

. (1 + t)hk+1∥u∥k+5,∞,

where

∥eu,r∥ = max
j∈ZN

|(u− uh)(R
r
j,m)|, ∥eu,rx∥ = max

j∈ZN

|(u− uh)x(R
r∗
j,m)|,

∥eq,l∥ = max
j∈ZN

|(q − qh)(R
l
j,m)|, ∥eq,lx∥ = max

j∈ZN

|(q − qh)x(R
l∗
j,m)|.

Here, Rl
j,m and Rl∗

j,m are the roots of the rescaled Radau polynomials R∗
j,m+1 and ∂xR

∗
j,m+1 in (4.3) with θ

replaced by θ̃.

Proof. By choosing ℓ = 2 in Theorem 4.1, we obtain ∥uh−u2I∥ . (1+t)hk+3∥u∥k+5,∞. From the inverse

inequality, we can get ∥uh − u2I∥∞ . h−
1
2 ∥uh − u2I∥ . (1 + t)hk+

5
2 ∥u∥k+5,∞. By the triangle inequality,

|(u− uh)(R
r
j,m)| . ∥uh − u2I∥∞ + |(u− Phu)(R

r
j,m)|+ ∥Phu− Pθu∥∞ + ∥W 2

u∥∞ . hk+2∥u∥k+2,∞.

The superconvergence results for the derivative of errors and the auxiliary variable q can be obtained by

the same arguments. This completes the proof of Theorem 4.5.

Remark 4.6. The analysis of superconvergence is mainly based on the supercloseness between the

LDG solution (uh, qh) and the interpolation function (uℓI , q
ℓ
I) by asking for (W ℓ

u,W
ℓ
q ) satisfying

(W ℓ
u)

(θ)

j+ 1
2

= 0, (W ℓ
q )

(θ̃)

j+ 1
2

= 0, j ∈ ZN .

Therefore, when λ ̸= θ, the superconvergence results for auxiliary variable q are no longer valid,

since (3.11b) is needed indicating that (W ℓ
q )

(θ̃)

j+ 1
2

̸= 0. Another reason is that the superconvergent result of

order k+2 for the difference between the local Gauss-Radau projection and the modified global projection

no longer holds. In addition, when λ = θ, superconvergence of q can be proved in the L2([0, T ];L2[0, 2π])

norm while superconvergence can be observed numerically in the L∞([0, T ];L2[0, 2π]) norm.

5 Other boundary conditions

5.1 Mixed boundary conditions

For mixed boundary conditions

u(0, t) = g1(t), ux(2π, t) = g2(t), (5.1)

the numerical fluxes are chosen as

(ũh − q̂h, ûh)j+ 1
2
=


(g1 − q+h , g1), j = 0,

(uθh − qθ̃h, u
θ
h), j = 1, . . . , N − 1,

(u−h − g2, u
−
h ), j = N.

(5.2)

The corresponding global projections Pθ and Pθ̃ are modified to be in the following piecewise global

version, i.e., 
(P̃θu, v)j = (u, v)j , ∀ v ∈ P k−1(Ij),

(P̃θu)
(θ)

j+ 1
2

= u
(θ)

j+ 1
2

, j = 1, . . . , N − 1,

(P̃θu)
−
N+ 1

2

= u−
N+ 1

2

, j = N



1316 Liu X B et al. Sci China Math June 2021 Vol. 64 No. 6

and 
(P̃θ̃q, η)j = (q, η)j , ∀ η ∈ P k−1(Ij),

(P̃θ̃q)
(θ̃)

j− 1
2

= q
(θ̃)

j− 1
2

, j = 2, . . . , N,

(P̃θ̃q)
+
1
2

= q+1
2

, j = 1.

(5.3)

Obviously, the projection P̃θ can be decoupled starting from the cell IN and P̃θ̃ can be computed from

the cell I1. Moreover, we have the following optimal approximation properties.

Lemma 5.1 (See [24]). Assume z ∈ W k+1,∞(Ij) with θ ̸= 1
2 . Then projection P = P̃θ or P = P̃θ̃

defined above satisfies the following approximation property:

∥z − Pz∥Ij + h
1
2 ∥z − Pz∥∞,Ij 6 Chk+

3
2 ∥z∥k+1,∞,

where C is independent of h and z.

Replacing Pθ (Pθ̃) by P̃θ (P̃θ̃), we are able to construct the following correction functions in possession

of supercloseness properties, i.e., for z ∈ P k−1(Ij),

(wu,i − h̄jD
−1
x wq,i−1, z)j = 0, (w

(θ)
u,i)j+ 1

2
= 0, ∀ j ∈ ZN−1,

(wq,i − wu,i − h̄jD
−1
x ∂twu,i−1, z)j = 0, (w

(θ̃)
q,i )j+ 1

2
= 0, ∀ j ∈ ZN−1,

(w−
u,i)N+ 1

2
= 0, (w+

q,i) 1
2
= 0.

The superconvergence results can thus be obtained if we follow the same argument as that in Sections 3

and 4.

5.2 Dirichlet boundary conditions

For Dirichlet boundary conditions

u(0, t) = g3(t), u(2π, t) = g4(t) (5.4)

following [9], we choose the numerical fluxes as

(ũh − q̂h, ûh)j+ 1
2
=


(g3 − q+h , g3), j = 0,

(uθh − qθ̃h, u
θ
h), j = 1, . . . , N − 1,

(u−h − q−h , g4), j = N.

Similarly, we still need to make slight changes to the projection. For the projection P̃θ̃, we still adopt

the definition in (5.3), while the projection P̃θ is modified as follows:
(P̃θu, v)j = (u, v)j , ∀ v ∈ P k−1(Ij),

(P̃θu)
(θ)

j+ 1
2

= u
(θ)

j+ 1
2

, j ∈ ZN−1,

(P̃θu)
−
N+ 1

2

= u−
N+ 1

2

+ (P̃θ̃q − q)−
N+ 1

2

.

From the last equation we can see that, compared with the mixed boundary condition, the left limit of

the projection at point xN+ 1
2
consists of two parts. One is the left limit of the exact solution u at point

xN+ 1
2
, and the other is the left limit of the projection error of the auxiliary variable q at point xN+ 1

2
.

Since we do not have any information about the auxiliary variable q at the boundary, we need to use the

prime variable u to eliminate the boundary term introduced by P̃θ̃q − q at point xN+ 1
2
.

The superconvergence results can be obtained if we define the following correction functions: for

z ∈ P k−1(Ij),

(wu,i − h̄jD
−1
x wq,i−1, z)j = 0, (w

(θ)
u,i)j+ 1

2
= 0, ∀ j ∈ ZN−1,

(wq,i − wu,i − h̄jD
−1
x ∂twu,i−1, z)j = 0, (w

(θ̃)
q,i )j+ 1

2
= 0, ∀ j ∈ ZN−1,

(w+
q,i) 1

2
= 0, (w−

u,i)N+ 1
2
= (w−

q,i)N+ 1
2
.
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5.3 Initial discretization

In this section, we consider how to discretize the initial datum. Initial value discretization is very

important for the study of superconvergence, which can be obtained by using the same technique as that

in [3]. Specifically, for the periodic boundary conditions,

(1) according to the definition of projections Pθ and Pθ̃, calculate wu,0 and wq,0;

(2) calculate wu,i and wq,i by the equations (3.4);

(3) calculate W ℓ
u =

∑ℓ
i=1 wu,i and u

ℓ
I = Pθu−W ℓ

u;

(4) let uh(·, 0) = uℓI(·, 0).

6 Numerical results

In this section, we provide numerical examples to illustrate our theoretical findings. For the time dis-

cretization, we use the explicit third-order total variation diminishing method and take ∆t = CFL ∗ h2.
Example 6.1. We consider the following problem:

ut + ux − uxx = 0, (x, t) ∈ [0, 2π]× (0, T ],

u(x, 0) = sin(x)− x, x ∈ R

with the periodic boundary condition, where the exact solution is u(x, t) = e−t sin(x− t).

Table 1 lists the results for u with λ = θ, from which we observe the (2k+1)-th-order superconvergence

for numerical traces as well as cell averages, and that the convergence orders of the error and its derivative

are k + 2 and k + 1, respectively. Table 2 shows errors and orders for q, demonstrating that our results

hold true for the auxiliary variable when λ = θ. Moreover, the results with different weights for λ and

θ are given in Table 3, and similar conclusions can be observed for u, indicating that choosing different

parameters for the convection term and the diffusion term does not affect the superconvergence results

as far as the prime variable u is concerned.

Example 6.2. We consider the following problem:

ut + ux − uxx = 0, (x, t) ∈ [0, 2π]× (0, T ],

u(x, 0) = sin(x)− x, x ∈ R

with the mixed boundary conditions u(0, t) = e−t sin(t) − t and ux(2π, t) = e−t cos(t) + 1; the exact

solution is u(x, t) = e−t sin(x− t) + x− t.

Table 1 Errors and orders for u (λ = θ, T = 1.0, k = 2, 3, 4)

N ∥eun∥ Order ∥eu∥c Order ∥eu,r∥ Order ∥eu,rx∥ Order

k = 2 20 5.20E−08 – 1.91E−07 – 4.53E−06 – 6.95E−05 –

CFL = 0.01 40 1.83E−09 4.83 6.23E−09 4.94 2.80E−07 4.01 8.74E−06 2.99

λ = 0.8 80 6.09E−11 4.91 1.99E−10 4.96 1.74E−08 4.01 1.10E−06 2.99

θ = 0.8 160 1.96E−12 4.96 6.32E−12 4.98 1.08E−09 4.00 1.38E−07 2.99

k = 3 15 5.35E−10 – 6.62E−10 – 1.90E−07 – 1.27E−05 –

CFL = 0.005 30 3.82E−12 7.13 5.69E−12 6.86 5.53E−09 5.10 7.86E−07 4.02

λ = 0.9 45 2.07E−13 7.19 3.50E−13 6.88 7.12E−10 5.05 1.55E−07 4.00

θ = 0.9 60 2.66E−14 7.13 4.80E−14 6.91 1.67E−10 5.01 4.89E−08 4.01

k = 4 10 1.60E−11 – 5.08E−11 – 8.34E−08 – 7.88E−06 –

CFL = 0.001 15 2.04E−13 10.76 1.23E−12 9.17 7.35E−09 5.98 1.06E−06 4.94

λ = 1.2 20 1.07E−14 10.23 7.91E−14 9.54 1.31E−09 6.01 2.54E−07 4.98

θ = 1.2 25 6.74E−15 2.10 9.02E−15 9.73 3.41E−10 6.01 8.33E−08 4.99
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Table 2 Errors and orders for q (λ = θ, T = 1.0, k = 2, 3, 4)

N ∥eqn∥ Order ∥eq∥c Order ∥eq,l∥ Order ∥eq,lx∥ Order

k = 2 20 1.28E−07 – 2.50E−08 – 5.10E−06 – 8.50E−05 –

CFL = 0.01 40 4.15E−09 4.94 1.04E−09 4.59 3.19E−07 3.99 1.06E−05 3.00

λ = 0.7 80 1.33E−10 4.96 3.76E−11 4.79 2.00E−08 4.00 1.33E−06 2.99

θ = 0.7 160 4.21E−12 4.98 1.26E−12 4.90 1.25E−09 4.00 1.67E−07 3.00

k = 3 15 1.55E−09 – 5.31E−10 – 4.14E−07 – 1.44E−05 –

CFL = 0.005 30 1.26E−11 6.94 3.81E−12 7.12 1.25E−08 5.05 8.92E−07 4.01

λ = 0.9 45 7.52E−13 6.96 2.07E−13 7.19 1.63E−09 5.02 1.76E−07 4.01

θ = 0.9 60 1.02E−13 6.93 2.66E−14 7.12 3.83E−10 5.03 5.54E−08 4.01

k = 4 10 5.72E−11 – 1.58E−11 – 1.02E−07 – 8.12E−06 –

CFL = 0.001 15 1.60E−12 8.82 2.03E−13 10.74 8.79E−09 6.05 1.11E−06 4.91

λ = 1.2 20 1.32E−13 8.68 1.08E−14 10.21 1.55E−09 6.03 2.63E−07 5.00

θ = 1.2 25 2.00E−14 8.45 6.80E−15 2.06 4.04E−10 6.03 8.70E−08 4.95

Table 3 Errors and orders for u (λ ̸= θ, T = 1.0, k = 2, 3, 4)

N ∥eun∥ Order ∥eu∥c Order ∥eu,r∥ Order ∥eu,rx∥ Order

k = 2 20 1.41E−07 – 3.09E−07 – 4.75E−06 – 6.71E−05 –

CFL = 0.01 40 4.60E−09 4.93 9.89E−09 4.97 2.91E−07 4.03 8.58E−06 2.97

λ = 1.2 80 1.47E−10 4.96 3.13E−10 4.98 1.80E−08 4.01 1.09E−06 2.97

θ = 0.8 160 4.66E−12 4.98 9.88E−12 4.99 1.12E−09 4.01 1.37E−07 2.99

k = 3 15 1.85E−10 – 7.44E−10 – 2.59E−07 – 4.80E−06 –

CFL = 0.002 30 1.60E−12 6.85 5.46E−12 7.09 8.03E−09 5.01 3.01E−07 3.99

λ = 0.9 45 9.64E−14 6.93 3.13E−13 7.04 1.05E−09 5.01 5.96E−08 3.99

θ = 1.1 60 1.28E−14 7.02 4.16E−14 7.02 2.50E−10 5.00 1.88E−08 4.00

k = 4 10 1.87E−10 – 1.69E−10 – 8.13E−08 – 7.88E−06 –

CFL = 0.001 15 4.93E−12 8.97 4.63E−12 8.88 7.20E−09 5.98 1.06E−06 4.95

λ = 0.8 20 3.54E−13 9.15 3.35E−13 9.12 1.28E−09 6.00 2.53E−07 4.98

θ = 1.2 25 4.33E−14 9.41 4.09E−14 9.43 3.38E−10 5.97 8.31E−08 4.99

Table 4 Errors and rates for the mixed boundary condition (5.1)

N
λ = θ = 0.8 λ = θ = 1.2

∥eun∥ Order ∥eu∥c Order ∥eun∥ Order ∥eu∥c Order

P 1

40 2.30E−05 – 3.48E−05 – 8.25E−06 – 1.35E−05 –

80 2.72E−06 3.08 4.30E−06 3.02 1.06E−06 2.95 1.75E−06 2.94

160 3.31E−07 3.04 5.35E−07 3.01 1.35E−07 2.97 2.24E−07 2.97

320 4.07E−08 3.02 6.67E−08 3.00 1.71E−08 2.99 2.82E−08 2.98

P 2

20 7.36E−08 – 1.83E−07 – 4.49E−07 – 7.09E−07 –

40 2.05E−09 5.16 5.64E−09 5.02 1.37E−08 5.04 2.24E−08 4.98

80 6.10E−11 5.07 1.76E−10 5.00 4.16E−10 5.04 6.99E−10 5.00

160 1.87E−12 5.04 5.10E−12 5.10 1.27E−11 5.03 2.15E−11 5.02

P 3

20 9.64E−11 – 1.56E−10 – 3.90E−11 – 8.65E−11 –

30 5.53E−12 7.05 9.63E−12 6.88 2.26E−12 7.02 4.93E−12 7.07

40 7.04E−13 7.16 1.32E−12 6.90 3.12E−13 6.88 6.45E−13 7.07

50 1.65E−13 6.50 2.93E−13 6.77 9.82E−14 5.17 1.82E−13 5.66

The problem is solved by the LDG scheme (2.2) with k = 1, k = 2 and k = 3, respectively, and the

numerical fluxes are chosen as (5.2). We list various errors and corresponding convergence rates when

λ = θ = 0.8, λ = θ = 1.2 in Table 4. The superconvergence results of order 2k+1 at numerical traces and
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Table 5 Errors and rates for the Dirichlet boundary condition (5.4)

N
λ = θ = 0.7 λ = θ = 0.9

∥eun∥ Order ∥eu∥c Order ∥eun∥ Order ∥eu∥c Order

P 1

40 3.44E−05 − 5.27E−05 − 1.54E−05 − 2.51E−05 −
80 4.15E−06 3.05 6.62E−06 2.99 1.95E−06 2.98 3.21E−06 2.96

160 5.09E−07 3.03 8.27E−07 3.00 2.46E−07 2.99 4.07E−07 2.98

320 6.28E−08 3.02 1.03E−07 3.00 3.09E−08 2.99 5.12E−08 2.99

P 2

20 2.03E−08 − 1.13E−07 − 7.07E−08 − 2.47E−07 −
40 7.83E−10 4.69 3.69E−09 4.93 2.34E−09 4.92 7.89E−09 4.97

80 3.13E−11 4.65 1.20E−10 4.94 7.56E−11 4.95 2.50E−10 4.98

160 1.06E−12 4.88 3.81E−12 4.98 2.38E−12 4.99 7.83E−12 5.00

P 3

20 1.26E−10 − 2.05E−10 − 6.23E−11 − 1.25E−10 −
30 7.77E−12 6.87 1.17E−11 7.06 3.78E−12 6.91 6.87E−12 7.15

40 1.05E−12 6.94 1.65E−12 6.81 5.36E−13 6.79 1.02E−12 6.62

50 2.57E−13 6.33 3.26E−13 7.26 1.98E−13 4.47 1.93E−13 7.48

cell averages demonstrate that the superconvergence also holds for mixed boundary conditions. In

addition, to verify theoretical results for Dirichlet boundary conditions, we consider Example 6.2 with

the following Dirichlet boundary conditions:

u(0, t) = e−t sin(t) + t, u(2π, t) = e−t cos(t)− 1.

The results are shown in Table 5, which confirms that the conclusion still holds for Dirichlet boundary

conditions.

7 Concluding remarks

In this paper, we obtain the superconvergence of the LDG methods with generalized alternating numer-

ical fluxes for solving the convection-diffusion equations. The main techniques are the construction of

correction functions and analysis of the generalized Gauss-Radau projections and their modified counter-

parts, with the purpose of obtaining a superconvergent (2k + 1)-th-order for the error between a special

interpolation function and the LDG solution. Different boundary conditions including periodic, mixed,

and Dirichlet boundary conditions are considered. The sharpness of the theoretical results is confirmed

by numerical experiments. In our further work, we will consider the degenerate diffusion problems and

multi-dimensional equations.
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