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1 Introduction

Let g be a (twisted or untwisted) affine Kac-Moody algebra (without derivation), and ḡ be the quotient

algebra of g modulo its center. When g is of untwisted type, the universal central extension ĝ of the

loop algebra C[t1, t−1
1 ] ⊗ ḡ is called a toroidal Lie algebra. This algebra was first introduced by Moody

et al. [19], where the authors introduced the famous Moody-Rao-Yokonuma (MRY) presentation. The

presentation makes it more effective to study representations of toroidal Lie algebras in a manner similar

to that of untwisted affine Lie algebras [7, 8, 14–16, 19, 25, 26]. Moreover, it turns out that the classical

limit of the quantum toroidal algebra is just the MRY presentation of the toroidal Lie algebra [11,13].

Let µ be a diagram automorphism of g of order N , and µ̄ be the automorphism on ḡ induced from µ.

The twisted loop algebra L(ḡ, µ̄) of ḡ is defined as follows:

L(ḡ, µ̄) =
⊕
n∈Z

Ctn1 ⊗ ḡ(n),

where ḡ(n) = {x ∈ ḡ | µ̄(x) = ξnx} and ξ = e2π
√
−1/N . In this paper, we study the universal central exten-

sion ĝ[µ] of L(ḡ, µ̄), and give the Moody-Rao-Yokonuma presentation for ĝ[µ] when µ is non-transitive.
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Just as the untwisted case, one may expect that the MRY presentation could be used to study the

representation and quantization for the twisted toroidal Lie algebras [11,13,19].

An extended affine Lie algebra (EALA) is a complex Lie algebra, together with a non-zero finite-

dimensional Cartan subalgebra and a non-degenerate invariant symmetric bilinear form, which satisfies

a list of natural axioms [1, 12, 21]. The root system of an EALA is a disjoint union of isotropic and

non-isotropic root systems, and the rank of the free abelian group generated by the isotropic root system

is defined to be the nullity of the EALA [1]. It is known that the nullity 0 EALAs are finite-dimensional

simple Lie algebras over the complex number field, and the nullity 1 EALAs are precisely the affine

Kac-Moody algebras [3]. We remark that the nullity 2 EALAs are the most important class of EALAs

other than the finite-dimensional simple Lie algebras and affine Kac-Moody algebras, which are closely

related to the singularity theory studied by Saito [22] and Slodowy [23]. In addition, the nullity 2 EALAs

are classified in [5] (also see [10]).

For a given EALA L, the subalgebra of L generated by the set of non-isotropic root vectors is called

the core of L [1]. We denote by E2 the class of all Lie algebras that are isomorphic to the centerless

cores (cores modulo their centers) of EALAs with nullity 2. Let sln(Cq) (n > 2) be the special linear Lie

algebra over the quantum torus Cq in two variables [6]. It is proved in [5] that any Lie algebra in E2

is either isomorphic to sln(Cq) with q ∈ C× not a root of unity, or isomorphic to a Lie algebra of the

form L(ḡ, µ̄) with µ non-transitive. The universal central extension ŝln(Cq) of sln(Cq) is given in [6],

and its MRY presentation is obtained in [27] for the purpose of determining the classical limit of the

two-parameter quantum toroidal algebras. The purpose of this paper is to study the universal central

extension ĝ[µ] of L(ḡ, µ̄), and the MRY presentation for ĝ[µ] with µ non-transitive.

The rest of this paper is organized as follows. In Section 2, we recall some facts for the affine Kac-

Moody algebras which will be used later on. In Section 3, we show that any diagram automorphism µ of

an affine Kac-Moody algebra g can be lifted to an automorphism µ̂ for the universal central extension ĝ of

L(ḡ, id). The Lie subalgebra of ĝ fixed by µ̂ is denoted by ĝ[µ]. We prove that ĝ[µ] is the universal central

extension of L(ḡ, µ̄) (see Theorem 3.3), and give the MRY presentation for ĝ[µ] with µ non-transitive (see

Theorem 3.6). Sections 4 and 5 are devoted to the proofs of Theorems 3.3 and 3.6.

We denote the sets of non-zero complex numbers, non-zero integers, and positive integers, respectively

by C×, Z× and Z+. For M ∈ Z+, we set ξM = e2π
√
−1/M and ZM = Z/MZ.

2 Diagram automorphisms of affine Kac-Moody algebras

2.1 Affine Kac-Moody algebras

In this subsection, we collect some basics about affine Kac-Moody algebras that will be used later on.

Let A = (aij)
ℓ
i,j=0 be a generalized Cartan matrix (GCM) of affine type, and g be the affine Kac-

Moody algebra (without derivation) associated to the GCM A. We denote the set {0, 1, . . . , ℓ} by I. By

definition, the Lie algebra g is generated by the Chevalley generators

α∨
i , e±i , i ∈ I

with the defining relations (i, j ∈ I)

[α∨
i , α

∨
j ] = 0, [α∨

i , e
±
j ] = ±aij e±j , [e+i , e

−
j ] = δijα

∨
i , ad(e±i )

1−aij (e±j ) = 0, i ̸= j.

Let ∆ be the root system (including 0) of g, ∆× be the set of real roots in ∆, and ∆0 = ∆\∆× = Zδ2 be
the set of imaginary roots in ∆. Then g has a root space decomposition g =

⊕
α∈∆ gα. Let Π = {αi, i ∈ I}

be the simple root system of g such that e±i ∈ g±αi for i ∈ I, and Q =
⊕

i∈I Zαi be the root lattice of g.

Then the root space decomposition naturally induces a Q-grading on g. In addition, let ḡ be the quotient

algebra of g modulo its center. Then the Q-grading on g naturally induces a Q-grading ḡ =
⊕

α∈Q ḡα
on ḡ.
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Now we recall the twisted loop realization of the affine Kac-Moody algebra g (see [17, Chapters 7

and 8]). Using the notations given in [17, Chapter 4, Tables Aff 1–3], we assume that the GCM A is of

type X
(r)
n .

We start with a finite-dimensional simple Lie algebra ġ of type Xn. Let

α̇∨
i , Ė±

i , i = 1, 2, . . . , n

be the Chevalley generators of ġ, and ḣ =
⊕n

i=1 Cα̇∨
i be a Cartan subalgebra of ġ. We denote by ∆̇ the

root system (containing 0) of ġ with respect to ḣ. Then ġ has a root space decomposition ġ =
⊕

α̇∈∆̇ ġα̇
such that ġ0 = ḣ. Let Π̇ be a fixed simple root system of ∆̇, and ∆̇+ be the set of positive roots with

respect to Π̇. In addition, for each α̇ ∈ ∆̇+, there exist Ė±
α̇ ∈ ġ±α̇ and α̇∨ ∈ ḣ, such that {Ė+

α̇ , α̇
∨, Ė−

α̇ }
form an sl2 triple. Moreover, for a simple root α̇i ∈ Π̇, we assume that Ė±

α̇i
= Ė±

i .

Let ν̇ be a diagram automorphism of ġ of order r. By definition, there exists a permutation ν̇ on the

set {1, 2, . . . , n}, such that

ν̇(Ė±
i ) = Ė±

ν̇(i) and ν̇(α̇∨
i ) = α̇∨

ν̇(i) for i = 1, 2, . . . , n.

For each x ∈ ġ and m ∈ Z, we set

x[m] = r−1
∑
p∈Zr

ξ−mp
r ν̇p(x) and ġ[m] = {x[m] | x ∈ ġ}.

In addition, define the Lie algebra

Aff(ġ, ν̇) =
⊕
m∈Z

Ctm2 ⊗ ġ[m] ⊕ Ck2

with Lie bracket given by

[tm1
2 ⊗ x+ a1k2, t

m2
2 ⊗ y + a2k2] = tm1+m2

2 ⊗ [x, y] + ⟨x, y⟩δm1+m2,0m1k2,

where m1,m2 ∈ Z, x ∈ ġ[m1], y ∈ ġ[m2], a1, a2 ∈ C and ⟨·, ·⟩ is the normalized symmetric invariant bilinear

form on ġ.

We denote

θ̇ =


the highest root of ġ, if r = 1 or Xn = A2ℓ, r = 2,

α̇1 + · · ·+ α̇ℓ, if Xn = Dℓ+1, r = 2, 3,

α̇1 + · · ·+ α̇2ℓ−2, if Xn = A2ℓ−1, r = 2,

α̇1 + 2α̇2 + 2α̇3 + α̇4 + α̇5 + α̇6, if Xn = E6, r = 2.

In addition, for each i = 1, 2, . . . , n, we let ri be the cardinality of the set {ν̇k(i) | k ∈ Zr}. If the GCM

A is of type A
(2)
2ℓ , we set

E±
i = riĖ

±
i[0], E±

ℓ = Ė∓
θ̇[1]

, E±
0 = 2

√
2Ė±

ℓ[0], Hi = riα̇
∨
i[0], Hℓ = −θ̇∨, H0 = 4α̇∨

ℓ[0],

where i = 1, . . . , ℓ− 1. Otherwise, we set

E±
i = riĖ

±
i[0], Hi = riα̇

∨
i[0], E±

0 = rĖ∓
θ̇[1]

, H0 = −rθ̇∨[0], i = 1, . . . , ℓ. (2.1)

It is proved in [17, Theorem 8.3] that g is isomorphic to Aff(ġ, ν̇) with

α∨
ϵ = ra−1

0 k2 + 1⊗H0, e±ϵ = t±1 ⊗ E±
ϵ , α∨

i = 1⊗Hi, e±i = 1⊗ E±
i , i ̸= ϵ, (2.2)

where ϵ = 0, a0 = 1 except that the GCM A is of type A
(2)
2ℓ , in which case ϵ = ℓ, a0 = 2. From now on,

we will often use the following identifications:

g = Aff(ġ, ν̇) and ḡ =
⊕
m∈Z

Ctm2 ⊗ ġ[m]
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without further explanation.

Let Q̇ =
⊕n

i=1 α̇i be the root lattice of ġ. Note that ν̇ induces an automorphism of Q̇ such that

ν̇(α̇i) = α̇ν̇(i) for i = 1, 2, . . . , n. For α̇ ∈ Q̇, set

α̇[0] = r−1
∑
p∈Zr

ν̇p(α̇)

and also set

Q̇[0] = {α̇[0] | α̇ ∈ Q̇} ⊂ ḣ∗.

Then the root lattice Q of g is equivalent to Q̇[0]⊕Zδ2 and the simple root system Π of g is equivalent to

{αϵ = −θ̇[0] + δ2, αℓ−ϵ = α̇ℓ[0], αi = α̇i[0], i ̸= ϵ, ℓ− ϵ}.

We extend the normalized bilinear form ⟨·, ·⟩ on ġ to a symmetric invariant bilinear form on g by letting

⟨tm1
2 ⊗ x+ a1k2, t

m2
2 ⊗ y + a2k2⟩ = δm1+m2,0 ⟨x, y⟩,

wherem1,m2 ∈ Z, x ∈ ġ[m1], y ∈ ġ[m2] and a1, a2 ∈ C. Since the restriction of ⟨·, ·⟩ on ḣ is non-degenerate,

we get a non-degenerate bilinear form (·, ·) on ḣ∗ by duality. In addition, the bilinear form (·, ·) can be

extended to a symmetric bilinear form on Q by letting

(α+mδ2, β + nδ2) = (α, β), (2.3)

where α, β ∈ Q̇[0] and m,n ∈ Z.

2.2 Diagram automorphisms

Throughout this paper, we let µ be a permutation of I with order N such that aij = aµ(i)µ(j) for i, j ∈ I.

It is known that µ induces a diagram automorphism µ of g such that

µ(α∨
i ) = α∨

µ(i), µ(e±i ) = e±µ(i), i ∈ I. (2.4)

This subsection is devoted to an explicit description of the action of µ on g.

It is immediate to see that the permutation µ induces an automorphism of Q such that µ(δ2) = δ2.

Recall from [17, Proposition 8.3] that the finite-dimensional simple Lie algebra ġ can be generated by the

elements E+
i , i ∈ I defined in (2.1). Then we have the following lemma.

Lemma 2.1. (a) The action

E+
i 7→ E+

µ(i), i ∈ I (2.5)

defines (uniquely) an automorphism µ̇ of ġ.

(b) The Cartan subalgebra ḣ of ġ is stable under µ̇, and

µ̇(ν̇(h)) = ν̇(µ̇(h)), ∀h ∈ ḣ. (2.6)

(c) There is a homomorphism ρµ : Q̇→ Z of abelian groups such that

ρµ(ν̇(α̇)) = ρµ(α̇), µ(α̇[0]) = µ̇(α̇)[0] + ρµ(α̇)δ2, α̇ ∈ Q̇. (2.7)

(d) For α̇ ∈ ∆̇, x ∈ ġα̇ and m ∈ Z, we have

µ̇(x[m]) = µ̇(x)[m+ρµ(α̇)]. (2.8)
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Proof. We first consider the case where ν̇ = id. For each α̇ ∈ Q̇, write

µ(α̇) = µ̇(α̇) + ρµ(α̇)δ2 with µ̇(α̇) ∈ Q̇ and ρµ(α) ∈ Z.

Then the map

µ̇ : Q̇→ Q̇, α̇ 7→ µ̇(α̇)

is an automorphism of Q̇ (with order N) and the map

ρµ : Q̇→ Z, α̇ 7→ ρµ(α̇)

is a homomorphism of abelian groups. We define a linear map µ̇ on ġ as follows:

µ̇ : ġ → ġ, Ė±
α̇ 7→ µ̇(Ė±

α̇ ), α̇∨ 7→ µ̇(α̇∨), for α̇ ∈ ∆̇+,

where µ̇(Ė±
α̇ ) are the elements in ġ±µ̇(α̇) determined by the following equation:

µ(1⊗ Ė±
α̇ ) = t

ρµ(±α̇)
2 ⊗ µ̇(Ė±

α̇ ).

It is easy to see that µ̇ is an automorphism of ġ (with order N). Moreover, one can check that the

automorphism µ̇ and the homomorphism ρµ defined above satisfy all the assertions in the lemma.

Next, we consider the case where ν̇ ̸= id. If µ = id, then we only need to take µ̇ = id and ρµ = 0. So

we assume further that µ is nontrivial. Then either

X(r)
n = A

(2)
2ℓ−1 and µ = (0, 1)

or

X(r)
n = D

(2)
ℓ+1 and µ =

∏
06i6⌊ ℓ−1

2 ⌋

(i, l − i).

Observe that, if X
(r)
n = A

(2)
2ℓ−1 (D

(2)
ℓ+1, respectively), then the set {−ν̇(θ̇), α̇2, . . . , α̇2ℓ−2,−θ̇} ({αℓ−1,

α̇ℓ−2, . . . , α̇1,−θ̇,−ν̇(θ̇)}, respectively) is another simple root system of ġ. Thus, if X
(r)
n = A

(2)
2ℓ−1, then

there is an automorphism µ̇ on ġ given by

Ė±
1 7→ −Ė∓

ν̇(θ̇)
, Ė±

i 7→ Ė±
i , 2 6 i 6 2ℓ− 2, Ė±

2ℓ−1 7→ Ė∓
θ̇
.

In addition, if X
(r)
n = D

(2)
ℓ+1, then there is an automorphism µ̇ on ġ given by

Ė±
i 7→ Ė±

ℓ−i, 1 6 i 6 ℓ− 1, Ė±
ℓ 7→ Ė∓

θ̇
, Ė±

ℓ+1 7→ −Ė∓
ν̇(θ̇)

.

It is straightforward to check that in both cases the automorphism µ̇ defined above satisfies the properties

(2.5) and (2.6). This proves the assertions (a) and (b).

For the assertion (c), we define a homomorphism ρµ : Q̇→ Z by letting

ρµ(α̇1) = 1 = ρµ(α̇2ℓ−1), ρµ(α̇i) = 0, 2 6 i 6 2ℓ− 2, if X(r)
n = A

(2)
2ℓ−1,

ρµ(α̇1) = 0, 1 6 i 6 ℓ− 1, ρµ(α̇ℓ) = 1 = ρµ(α̇ℓ+1), if X(r)
n = D

(2)
ℓ+1.

It is obvious that the property (2.7) holds true for all α̇i ∈ Π̇ and hence for all α̇ ∈ Q̇. Finally, it can be

checked case by case that, the property (2.8) holds true for every x = Ė±
i , i = 1, 2, . . . , n. For the general

case, we may assume that α̇ = α̇i1 + · · ·+ α̇is and x = [Ė+
i1
, . . . , [Ė+

is−1
, Ė+

is
]] for some i1, . . . , is ∈ İ. Then

µ̇(x) = µ̇

( ∑
k1,...,ks∈Zr

[Ė+
i1[k1]

, . . . , [Ė+
is−1[ks−1]

, Ė+
is[ks]

]]

)
=

∑
k1,...,ks∈Zr

[µ̇(Ėi1)[k1+ρµ(α̇i1 )]
, . . . , [µ̇(Ėis−1)[ks−1+ρµ(α̇is−1

)], µ̇(Ėis)[ks+ρµ(α̇is )]
]].
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It implies that

µ̇(x)[m+ρµ(α̇)] =
∑

k1+···+ks=m

[µ̇(Ėi1)[k1+ρµ(α̇i1 )]
, . . . , [µ̇(Ėis−1)(ks−1+ρµ(α̇is−1

)), µ̇(Ėis)(ks+ρµ(α̇is ))
]]

= µ̇

( ∑
k1+···+ks=m

[Ė+
i1[k1]

, . . . , [Ė+
is−1[ks−1]

, Ė+
is[ks]

]]

)
= µ̇(x[m])

holds true for every m ∈ Zr. This completes the proof of the assertion (d).

Let µ̇ and ρµ be as in Lemma 2.1. Since the bilinear form ⟨·, ·⟩ is non-degenerate on ḣ, we may and do

identify ḣ with its dual space ḣ∗, and extend ρµ to a linear functional on ḣ by C-linearity. The following

result is an explicit description of the action of the diagram automorphism µ.

Proposition 2.2. For each m ∈ Z, α̇ ∈ ∆̇ \ {0}, x ∈ ġα̇ and h ∈ ḣ, we have

µ(tm2 ⊗ x[m]) = t
m+ρµ(α̇)
2 ⊗ µ̇(x[m]), µ(k2) = k2,

µ(tm2 ⊗ h[m]) = tm2 ⊗ µ̇(h[m]) + δm,0 ρµ(h) k2.
(2.9)

Proof. Using Lemma 2.1 and the identification (2.2), one can check that the action given in (2.9) defines

an automorphism of g such that the equation (2.4) holds, as desired.

3 The Lie algebra ĝ[µ] and its MRY presentation

In this section, we define the twisted toroidal Lie algebra ĝ[µ] and state its Moody-Rao-Yokonuma pre-

sentation.

3.1 The Lie algebra ĝ[µ]

In this subsection, we introduce the definition of the Lie algebra ĝ[µ].

For M1,M2 ∈ Z+, let KM1,M2
be the C-vector space spanned by the symbols

tm1
1 tm2

2 k1, tm1
1 tm2

2 k2, m1 ∈M1Z, m2 ∈M2Z

subject to the relation

m1t
m1
1 tm2

2 k1 +m2t
m1
1 tm2

2 k2 = 0.

We define

ĝ =
⊕

m,n∈Z

Ctm1 tn2 ⊗ ġ[n] ⊕K1,r ⊂ (C[t±1
1 , t±1

2 ]⊗ ġ)⊕K1,r

to be a Lie algebra with Lie bracket given by

[tm1
1 tm2

2 ⊗ x, tn1
1 tn2

2 ⊗ y] = tm1+n1
1 tm2+n2

2 ⊗ [x, y] + ⟨x, y⟩
( 2∑

i=1

mit
m1+n1
1 tm2+n2

2 ki

)
, (3.1)

where x ∈ ġ[m2], y ∈ ġ[n2], m1,m2, n1, n2 ∈ Z and K1,r is the center. It follows from [19, 24] that the

projective map

ψ : ĝ →
⊕

m,n∈Z
Ctm1 tn2 ⊗ ġ[n] = C[t1, t−1

1 ]⊗ ḡ

is the universal central extension of the loop algebra L(ḡ, id) of ḡ.
For convenience, we view C[t1, t−1

1 ]⊗ g as a subspace of ĝ in the following way:

tm1
1 ⊗ x = tm1

1 tm2
2 ⊗ ẋ+ atm1

1 k2

for x = tm2
2 ⊗ ẋ + ak2 ∈ g, m1 ∈ Z. Then it is easy to see that the Lie algebra ĝ is spanned by the

elements tm1
1 ⊗ x, k1, t

n1
1 tn2

2 k1, x ∈ g, m1, n1 ∈ Z and n2 ∈ rZ×. Moreover, the commutator relations

among these elements are as follows.
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Lemma 3.1. Let α, β ∈ ∆, x ∈ gα, y ∈ gβ and m1, n1 ∈ Z. If α+ β ∈ ∆× ∪ {0}, then

[tm1
1 ⊗ x, tn1

1 ⊗ y] = tm1+n1
1 ⊗ [x, y] +m1δm1,n1⟨x, y⟩k1. (3.2)

If x = tm2
2 ⊗ ẋ, y = tn2

2 ⊗ ẏ and α+ β ∈ ∆0 \ {0}, then

[tm1
1 ⊗ x, tn1

1 ⊗ y] = tm1+n1
1 ⊗ [x, y] + ⟨ẋ, ẏ⟩m1n2 −m2n1

m2 + n2
tm1+n1
1 tm2+n2

2 k1. (3.3)

Observe that the Lie algebra ĝ is generated by the elements

tm1 ⊗ e±i , tm1 ⊗ α∨
i , k1, i ∈ I, m ∈ Z. (3.4)

Similar to (2.4), the permutation µ induces an automorphism of ĝ as follows.

Lemma 3.2. The assignment

tm1 ⊗ e±i 7→ ξ−mtm1 ⊗ e±µ(i), tm1 ⊗ α∨
i 7→ ξ−mtm1 ⊗ α∨

µ(i), k1 7→ k1 (3.5)

for i ∈ I, m ∈ Z, defines an automorphism µ̂ of ĝ.

Proof. We define a linear transformation µ̂ on ĝ by letting

tm1
1 ⊗ x 7→ ξ−m1tm1

1 ⊗ µ(x),

tm1
1 ⊗ h 7→ ξ−m1

(
tm1
1 ⊗ µ(h)− m1

m2
ρµ(ḣ)t

m1
1 tm2

2 k1

)
,

k1 7→ k1, tn1
1 tn2

2 k1 7→ ξ−n1tn1
1 tn2

2 k1,

where m1, n1 ∈ Z, x ∈ gα, α ∈ ∆× ∪ {0}, h = tm2
2 ⊗ ḣ, m2 ∈ Z×, n2 ∈ rZ× and ḣ ∈ ḣ[m2]. Note that

ρµ(ḣ) ̸= 0 only if m2 ∈ rZ, and so µ̂ is well defined.

By using the explicit action of µ given in Proposition 2.2 and the commutator relations of ĝ given in

Lemma 3.1, one can easily verify that the map µ̂ is an automorphism of ĝ. Moreover, it is obvious that

the actions of µ̂ on those generators in (3.4) coincide with that in (3.5). This completes the proof.

We define ĝ[µ] to be the subalgebra of ĝ fixed by µ̂. Recall from Section 1 that µ̄ is the automorphism

of ḡ induced from µ, and that L(ḡ, µ̄) is the twisted loop algebra of ḡ related to µ̄. Note that L(ḡ, µ̄) is
the subalgebra of L(ḡ, id) fixed by the automorphism

ξ−d1 ⊗ µ̄ : L(ḡ, id) → L(ḡ, id), tm1 ⊗ x 7→ ξ−mtm1 ⊗ µ̄(x), m ∈ Z, x ∈ ḡ.

It follows from (3.5) that

ψ ◦ µ̂ = (ξ−d1 ⊗ µ̄) ◦ ψ. (3.6)

Thus, by taking the restriction of ψ on ĝ[µ], one gets a Lie algebra homomorphism

ψµ = ψ |ĝ[µ] : ĝ[µ] → L(ḡ, µ̄).

The following theorem is the first main result of this paper, whose proof will be presented in Section 4.

Theorem 3.3. The Lie algebra homomorphism ψµ : ĝ[µ] → L(ḡ, µ̄) is a universal central extension of

the twisted loop algebra L(ḡ, µ̄).

3.2 The MRY presentation

Here we state an MRY presentation for ĝ[µ]. Throughout this subsection, we assume that µ is non-

transitive. Observe that a diagram automorphism on g is transitive if and only if g is of type A
(1)
ℓ (ℓ > 1),

and the diagram automorphism is an order ℓ+ 1 rotation of the Dynkin diagram.
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We first introduce some notations. Set V = R⊗ZQ and extend (·, ·) (see (2.3)) to a bilinear form on V

by R-linearity. For i, j ∈ I, we set

α̌i =
1

N

∑
k∈ZN

αµk(i) and ǎij = 2
(α̌i, α̌j)

(α̌i, α̌i)
.

We fix a representative subset of I as follows:

Ǐ = {i ∈ I |µk(i) > i for k ∈ ZN}.

It was proved in [5, Proposition 12.1.10] (see also [9]) that the folded matrix

Ǎ = (ǎij)i,j∈Ǐ

of the GCM A associated with µ is also a GCM of affine type.

For i ∈ I, we denote by O(i) ⊂ I the orbit containing i under the action of the group ⟨µ⟩. The following
result was proved in [5, Lemma 12.1.5].

Lemma 3.4. For each i ∈ I, exactly one of the following holds:

(a) The elements αp, p ∈ O(i) are pairwise orthogonal;

(b) O(i) = {i, µ(i)} and aiµ(i) = −1 = aµ(i)i.

As in [5], for i ∈ I, we set

si =

{
1, if (a) holds in Lemma 3.4,

2, if (b) holds in Lemma 3.4.

Now we introduce the following definition.

Definition 3.5. Define M(g, µ) to be the Lie algebra generated by the elements

hi,m, x±i,m, c, i ∈ I, m ∈ Z (3.7)

subject to the relations

(T0) hµ(i),m = ξmhi,m, x±µ(i),m = ξmx±i,m,

(T1) [c, hi,n] = 0 = [c, x±i,n],

(T2) [hi,m, hj,n] =
∑
k∈ZN

mN⟨α∨
i , α

∨
µk(j)⟩δm+n,0mξ

kmc,

(T3) [hi,m, x
±
j,n] = ±

∑
k∈ZN

aiµk(j)x
±
j,m+nξ

km,

(T4) [x+i,m, x
−
j,n] =

∑
k∈ZN

δi,µk(j)

(
hj,m+n +

mN⟨α∨
i , α

∨
i ⟩

2
δm+n,0c

)
ξkm,

(T5) (adx±i,0)
1−ǎij

(
x±j,m

)
= 0, if ǎij 6 0,

(T6) [x±i,m1
, . . . , [x±i,msi

, x±i,msi+1
]] = 0.

In view of (3.4) and (3.5), we know that the Lie algebra ĝ[µ] is generated by the following elements:

tm1 ⊗ e±i(m), tm1 ⊗ α∨
i(m), k1, i ∈ I, m ∈ Z, (3.8)

where x(m) =
∑

p∈ZN
ξ−pmµp(x) for x ∈ g. The following theorem is the second main result of this paper,

whose proof will be presented in Section 5.

Theorem 3.6. The assignment

c 7→ k1, hi,m 7→ tm1 ⊗ α∨
i(m), x±i,m 7→ tm1 ⊗ e±i(m), i ∈ I, m ∈ Z

determines a Lie algebra isomorphism from M(g, µ) to ĝ[µ].

When g is of untwisted type and µ = id, Theorem 3.6 is proved in [19].
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4 Proof of Theorem 3.3

4.1 Multiloop algebras

We start by recalling the definition of multiloop algebras (see [2]). Let k be an arbitrary Lie algebra, and

let σ1, σ2, . . . , σs be pairwise commuting automorphisms on k. From now on, we denote by kσ1,σ2,...,σs

the fixed point subalgebra of k under the automorphisms σ1, σ2, . . . , σs. Suppose further that each auto-

morphism σi has a finite period Mi, i.e., σ
Mi = 1, i = 1, . . . , s. The multiloop algebra associated with k,

σ1, σ2, . . . , σs is by definition the following subalgebra of C[t±1
1 , t±1

2 , . . . , t±1
s ]⊗ k:

LM1,M2,...,Ms(k, σ1, σ2, . . . , σs) =
⊕

m1,m2,...,ms∈Z
Ctm1

1 tm2
2 · · · tms

s ⊗ k(m1,m2,...,ms),

where

k(m1,m2,...,ms) = {x ∈ k | σi(x) = ξmi

Mi
x, i = 1, 2, . . . , s},

and when each Mi is the order of σi we often write

L(k, σ1, σ2, . . . , σs) = LM1,M2,...,Mr (k, σ1, σ2, . . . , σs).

Let σ be an automorphism of k, and (c1, c2, . . . , cs) be an s-tuple in (C×)s. Let

c−d1
1 ⊗ c−d2

2 ⊗ · · · ⊗ c−ds
s ⊗ σ

be the automorphism of C[t±1
1 , t±1

2 , . . . , t±1
s ]⊗ k defined by

tm1
1 tm2

2 · · · tms
s ⊗ x 7→ c−m1

1 c−m2
2 · · · c−ms

s tm1
1 tm2

2 · · · tms
s ⊗ σ(x),

where x ∈ k andmi ∈ Z. It is obvious that the multiloop algebra LM1,...,Ms(k, σ1, . . . , σs) is the subalgebra

of C[t±1
1 , t±1

2 , . . . , t±1
s ]⊗ k fixed by the following commuting automorphisms:

ξ−d1

M1
⊗ 1⊗ · · · ⊗ 1⊗ σ1, 1⊗ ξ−d2

M2
⊗ · · · ⊗ 1⊗ σ2, . . . , 1⊗ · · · ⊗ 1⊗ ξ−ds

Ms
⊗ σs.

4.2 The functor uce

In this subsection, we recall the endofunctor uce on the category of Lie algebras introduced in [20]. Let k

be an arbitrary Lie algebra, and B be the subspace of k⊗ k spanned by all elements of the form

x⊗ y + y ⊗ x and x⊗ [y, z] + y ⊗ [z, x] + z ⊗ [x, y], x, y, z ∈ k.

We define uce(k) = k⊗ k/B to be a Lie algebra with Lie bracket

[x⊗ x′, y ⊗ y′]uce(k) = [x, x′]⊗ [y, y′] +B.

Then we have the following well-defined Lie algebra homomorphism:

uk : uce(k) → [k, k] ⊂ k, x⊗ y 7→ [x, y],

which is in fact a central extension of [k, k].

Let f : k → k0 be a homomorphism of Lie algebras. Then the map

uce(f) : uce(k) → uce(k0),

x⊗ y 7→ f(x)⊗ f(y)

is also a Lie algebra homomorphism. Note that uce is a covariant functor. Therefore, if f is an isomor-

phism, then so is uce(f).

We say that a homomorphism f̂ : uce(k) → uce(k0) covers f : k → k0 if

uk0 ◦ f̂ = f ◦ uk.

The following results were proved in [20].
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Proposition 4.1. Let k be a perfect Lie algebra. Then

(a) the map uk : uce(k) → k is the universal central extension of k, and ker(uk) is the center of uce(k)

when k is centerless;

(b) for any homomorphism f : k → k0 of Lie algebras, the map uce(f) is the unique homomorphism

from uce(k) to uce(k0) that covers f .

We also record the following straightforward result as a lemma that will be used later on.

Lemma 4.2. Let σ1, . . . , σs and τ1, . . . , τs be pairwise commuting automorphisms of Lie algebras k

and k0, respectively. Assume that there is a homomorphism γ : k → k0 such that γ ◦ σi = τi ◦ γ for each

i = 1, . . . , s. Then one has

(a) if the map uce(γ) is injective, then

uce(γ)(uce(k)uce(σ1),...,uce(σs)) = uce(k0)
uce(τ1),...,uce(τs) ∩ im(uce(γ));

(b) if the map γ is an isomorphism, then

uce(γ) : uce(k)uce(σ1),...,uce(σs) ∼= uce(k0)
uce(τ1),...,uce(τs).

Suppose now that σ1 and σ2 are two commuting automorphisms of ġ with periods M1 and M2, respec-

tively. We define

L̂M1,M2(ġ, σ1, σ2) = LM1,M2(ġ, σ1, σ2)⊕KM1,M2

to be the Lie algebra with Lie bracket as in (3.1). In particular, we have ĝ = L̂1,r(ġ, id, ν̇). It was proved

in [24] that L̂M1,M2(ġ, σ1, σ2) is the universal central extension of LM1,M2(ġ, σ1, σ2). For convenience,

when Mi is the order of σi for i = 1, 2, we also write L̂(ġ, σ1, σ2) = L̂M1,M2(ġ, σ1, σ2).

For σ ∈ Aut(ġ) and c1, c2 ∈ C×, one can easily verify that the assignment

tm1
1 tm2

2 ⊗ x 7→ c−m1
1 c−m2

2 tm1
1 tm2

2 ⊗ σ(x), x ∈ ġ, m1,ms ∈ Z,
tm1
1 tm2

2 ki 7→ c−m1
1 c−m2

2 tm1
1 tm2

2 ki, i = 1, 2

determines an automorphism on L̂(ġ, id, id) = uce(L(ġ, id, id)). Note that this automorphism covers

c−d1
1 ⊗ c−d2

2 ⊗ σ, and hence coincides with uce(c−d1
1 ⊗ c−d2

2 ⊗ σ) (see Proposition 4.1(b)). By using this,

it is easy to see that

L̂M1,M2(ġ, σ1, σ2) = (L̂(ġ, id, id))uce(ξ
−d1
M1

⊗1−d2⊗σ1),uce(1
−d1⊗ξ

−d2
M2

⊗σ2).

In other words, we have the following isomorphism:

uce(L(ġ, id, id)ξ
−d1
M1

⊗1−d2⊗σ1,1
−d1⊗ξ

−d2
M2

⊗σ2) ∼= uce(L(ġ, id, id))uce(ξ
−d1
M1

⊗1−d2⊗σ1),uce(1
−d1⊗ξ

−d2
M2

⊗σ2). (4.1)

4.3 Automorphism groups

In this subsection we collect some basics on the automorphism group of g, one may consult [5, Section 6]

for details. Let Aut(A) be the group of diagram automorphisms of g. Define the outer automorphism

group of g to be

Out(A) = ⟨ω⟩ ×Aut(A),

where ω is the Chevalley involution of g.

Let Hom(Q,C×) denote the set of group homomorphisms from Q to C×, which is viewed as a group

under pointwise multiplication. The group Hom(Q,C×) can be identified as a subgroup of Aut(g) in the

following way:

Hom(Q,C×) ↩→ Aut(g), ρ 7→ (x 7→ ρ(α)x), x ∈ gα, α ∈ ∆. (4.2)

Define the inner automorphism group of g to be

Aut0(g) = ⟨exp(adxα) | α ∈ ∆×⟩ ·Hom(Q,C×).
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Consider now the group homomorphism

χ̄ : Aut(g) → Aut(ḡ),

where χ̄(τ) = τ̄ is the automorphism of ḡ induced from τ . Note that the restriction of χ̄ on Out(A)

and Hom(Q,C×) are both injective. Thus we may view them as subgroups of Aut(ḡ). The following

statements were proved in [5, Propositions 6.1.5 and 6.1.8].

Proposition 4.3. The homomorphism χ̄ is an isomorphism. Furthermore,

Aut(g) = Aut0(g)oOut(A), Aut(ḡ) = Aut0(ḡ)oOut(A),

where Aut0(ḡ) = χ̄(Aut0(g)).

By Proposition 4.3, we have the following projections:

p : Aut(g) → Out(A) and p̄ : Aut(ḡ) → Out(A)

such that p̄ ◦ χ̄ = p. An automorphism σ of g (resp. ḡ) is said to be of the first kind if p(σ) (resp. p̄(σ))

lies in Aut(A). Otherwise, we say that σ is of the second kind.

4.4 Universal central extensions

This subsection is devoted to a proof of the following theorem.

Theorem 4.4. Let η̄ be an automorphism of ḡ of the first kind with period M . Then the Lie algebra

uce(L(ḡ, id))uce(ξ
−d1
M ⊗η̄) is the universal central extension of the loop algebra LM (ḡ, η̄) = L(ḡ, id)ξ

−d1
M ⊗η̄.

Recall that the automorphism µ̂ of ĝ = uce(L(ḡ, id)) covers the automorphism ξ−d1 ⊗ µ̄ of L(ḡ, id)
(see (3.6)), and so coincides with uce(ξ−d1 ⊗ µ̄) (see Proposition 4.1(b)). Thus, Theorem 3.3 is just a

special case of Theorem 4.4.

We first establish some technical results. Let σ̄ be an automorphism of ḡ with period M . It is known

that the twisted loop algebra of ḡ related to σ̄ is independent from the choice of its periods [4, Lemma 2.3].

In the following, we extend this result to their universal central extensions.

Lemma 4.5. Let σ̄ be an automorphism of ḡ of finite period, and M and M ′ two periods of σ̄. Then

uce(L(ḡ, id))uce(ξ
−d1
M ⊗σ̄) ∼= uce(L(ḡ, id))uce(ξ

−d1
M′ ⊗σ̄). (4.3)

Proof. We may (and do) assume that M ′ = bM for some b ∈ Z+. Consider the natural imbedding

ib : L(ḡ, id) → L(ḡ, id), tm1 ⊗ x 7→ tbm1 ⊗ x,

where m ∈ Z and x ∈ ḡ. It is clear that the image of ib is the Lie algebra Lb(ḡ, id) = Lb,r(ġ, id, ν̇) and

that

(ξ−d1

M ′ ⊗ σ̄) ◦ ib = ib ◦ (ξ−d1

M ⊗ σ̄). (4.4)

By using Proposition 4.1(b), it is easy to see that the action of uce(ib) on the center of uce(L(ḡ, id))
= uce(L1,r(ġ, id, ν̇)) is given by

tm1
1 tm2

2 ki 7→ tbm1
1 tm2

2 ki, i = 1, 2, m1 ∈ Z, m2 ∈ rZ.

This implies

the map uce(ib) is injective (4.5)

and

im(uce(ib)) = uce(Lb,r(ġ, id, ν̇))



1192 Chen F L et al. Sci China Math June 2021 Vol. 64 No. 6

= uce(L(ġ, id, id))uce(ξ
−d1
b ⊗1−d2⊗1),uce(1−d1⊗ξ−d2

r ⊗ν̇)

= (uce(L(ġ, id, id))uce(1
−d1⊗ξ−d2

r ⊗ν̇))uce(ξ
−d1
b ⊗1−d2⊗1)

= uce(L(ḡ, id))uce(ξ
−d1
b ⊗1). (4.6)

Note that we also have

uce(L(ḡ, id))uce(ξ
−d1
M′ ⊗σ̄) ⊂ uce(L(ḡ, id))(uce(ξ

−d1
M′ ⊗σ̄))M

= uce(L(ḡ, id))uce((ξ
−d1
M′ ⊗σ̄)M )

= uce(L(ḡ, id))uce(ξ
−d1
b ⊗1).

This together with (4.6) gives

im(uce(ib)) ∩ uce(L(ḡ, id))uce(ξ
−d1
M′ ⊗σ̄) = uce(L(ḡ, id))uce(ξ

−d1
M′ ⊗σ̄). (4.7)

Now the assertion is implied by (4.4), (4.5), (4.7) and Lemma 4.2(a).

Let σ̄ be an automorphism of ḡ with the period M . Now ḡ = L(ġ, ν̇) itself is a twisted loop algebra

and so is independent from the choice of the period of ν̇. Namely, if M ′ is another period of ν̇, then one

has the natural isomorphism ḡ ∼= LM ′(ġ, ν̇). Via this isomorphism, σ̄ induces an automorphism, say σ̄′,

of LM ′(ġ, ν̇) with the period M . Similar to Lemma 4.5, we have the following lemma.

Lemma 4.6. Let σ̄,M,M ′ and σ̄′ be as above. Then one has

uce(L(ḡ, id))uce(ξ
−d1
M ⊗σ̄) ∼= uce(L(LM ′(ġ, ν̇), id))uce(ξ

−d1
M ⊗σ̄′). (4.8)

Proof. Set b =M ′/r and define the embedding

jb : ḡ = L(ġ, ν̇) → L(ġ, id), tm2
2 ⊗ x 7→ tbm2

2 ⊗ x, m2 ∈ Z, x ∈ ġ.

Then the image of jb is the Lie algebra LM ′(ġ, ν̇) and

jb ◦ σ̄ = σ̄′ ◦ jb. (4.9)

Moreover, the action of uce(1−d1 ⊗ jb) on the center of uce(L(ḡ, id)) is given by

tm1
1 tm2

2 ki 7→ tm1
1 tbm2

2 ki, i = 1, 2, m1 ∈ Z, m2 ∈ rZ.

This implies

the map uce(1−d1 ⊗ jb) is injective (4.10)

and

im(uce(1−d1 ⊗ jb)) = uce(L1,M ′(ġ, id, ν̇)) = uce(L(LM ′(ġ, ν̇), id)). (4.11)

Then the lemma follows from (4.9)–(4.11) and Lemma 4.2(a).

Using Lemma 4.5, we have the following result.

Lemma 4.7. Let σ̄ be an automorphism of ḡ with period M . Then

uce(L(ḡ, id))uce(ξ
−d1
M ⊗σ̄) ∼= uce(L(ḡ, id))uce(ξ

−d1
M ⊗p̄(σ̄)). (4.12)

Proof. Recall the isomorphism χ̄ : Aut(g) → Aut(ḡ) given in Proposition 4.3. Then we may choose an

automorphism σ of g such that σM = id and χ̄(σ) = σ̄. This together with [18, Lemma 4.31] gives that

there exists a ρ ∈ Hom(Q,C×) such that

ρ p̄(σ̄) = p̄(σ̄) ρ, ρM = id and σ̄ is conjugate to p̄(σ̄)ρ.
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Note that the automorphisms ρ and p̄(σ̄) of ḡ satisfy all the assumptions stated in [4, Theorem 5.1]. Then

it follows from [4, (5.3)] that the automorphism ξ−d1

M ⊗ ρp̄(σ̄) is conjugate to ξ−d1

M2 ⊗ p̄(σ̄). This together

with Lemmas 4.2(b) and 4.5 gives

uce(L(ḡ, id))uce(ξ
−d1
M ⊗σ̄) ∼= uce(L(ḡ, id))uce(ξ

−d1
M ⊗ρp̄(σ̄))

∼= uce(L(ḡ, id))uce(ξ
−d1
M2 ⊗p̄(σ̄))

∼= uce(L(ḡ, id))uce(ξ
−d1
M ⊗p̄(σ̄)).

Therefore, we complete the proof.

Let Hom(Q̇,C×) be the set of group homomorphisms from Q̇ to C×. Similar to (4.2), we may (and

do) view Hom(Q̇,C×) as a subgroup of Aut(ġ). From now on, let η̄ be as in Theorem 4.4. The following

characterization of LM (ḡ, η̄) plays a key role in the proof of Theorem 4.4.

Lemma 4.8. There exist finite order automorphisms ρ̇ and τ̇ of ġ such that

ρ̇ ∈ Hom(Q̇,C×), ν̇ρ̇ = ρ̇ν̇, (ν̇ρ̇)τ̇ = τ̇(ν̇ρ̇) and LM1,M2(ġ, τ̇ , ν̇ρ̇)
∼= LM (ḡ, η̄),

where M1 and M2 are some periods of τ̇ and ν̇ρ̇, respectively.

Proof. By [5, Theorem 10.1.1], there exist finite order automorphisms τ̇ and σ̇ such that L(ḡ, η̄) ∼=
L(ġ, τ̇ , σ̇). Up to conjugation, we may assume that σ̇ is of the form ρ̇ ϑ̇, where ρ̇ ∈ Hom(Q̇,C×) and ϑ̇

is a diagram automorphism of ġ such that ρ̇ ϑ̇ = ϑ̇ ρ̇. If g is of untwisted type, then it follows from the

proof of [5, Theorem 10.1.1] that one may take ϑ̇ = id = ν̇. If g is of twisted type, then by comparing

the classification results (the relative and absolute types) given in [5, Table 3] and [10, Table 9.2.4], we

find out that the diagram automorphism ϑ̇ can also be taken to be ν̇.

Notice that the automorphisms ρ̇ and ν̇ satisfy the assumptions given in [4, Theorem 5.1]. Thus, there

is an automorphism φ of L(ġ, id) such that

φ ◦ (ξ−d2

M2
⊗ ν̇ρ̇) ◦ φ−1 = ξ−d2

M2
2

⊗ ν̇. (4.13)

Denote by τ ′ the automorphism

φ ◦ (1−d2 ⊗ τ̇) ◦ φ−1

of L(ġ, id). Then τ ′ commutes with the automorphism ξ−d2

M2
2

⊗ ν̇, and hence preserves the Lie algebra

LM2
2
(ġ, ν̇). Write τ ′′ for the restriction of τ ′ on LM2

2
(ġ, ν̇), and τ̄ for the automorphism of ḡ induced

from τ ′′ via the isomorphism ḡ ∼= LM2
2
(ġ, ν̇). So by definition we have

L(ġ, id, id)ξ
−d1
M1

⊗1−d2⊗τ̇ ,1−d1⊗ξ
−d2
M2

⊗ρ̇ν̇ ∼= L(L(ġ, id), id)
ξ
−d1
M1

⊗τ ′,1−d1⊗(ξ
−d2

M2
2

⊗ν̇)

∼= L(LM2
2
(ġ, ν̇), id)ξ

−d1
M1

⊗τ ′′ ∼= LM1(ḡ, τ̄). (4.14)

Lemma 4.9. One has

uce(L(L(ġ, id), id))
uce(ξ

−d1
M1

⊗τ ′),uce(1−d1⊗(ξ
−d2

M2
2

⊗ν̇)) ∼= uce(L(LM2
2
(ġ, ν̇), id))uce(ξ

−d1
M1

⊗τ ′′).

Proof. Due to the isomorphisms

uce(L(ġ, id, id))
uce(1−d1⊗ξ

−d2

M2
2

⊗ν̇) ∼= uce(L1,M2
2
(ġ, id, ν̇)) ∼= uce(L(LM2

2
(ġ, ν̇), id)),

it suffices to show that the restriction of uce(ξ−d1

M1
⊗ τ ′) on uce(L(LM2

2
(ġ, ν̇), id)) coincides with

uce(ξ−d1

M1
⊗ τ ′′). Set k = L(ġ, id, id) and k0 = L1,M2

2
(ġ, id, ν̇) = L(LM2

2
(ġ, ν̇), id). Then by definition

one has

uk ◦ uce(ξ−d1

M1
⊗ τ ′) = (ξ−d1

M1
⊗ τ ′) ◦ uk, uk0 ◦ uce(ξ

−d1

M1
⊗ τ ′′) = (ξ−d1

M1
⊗ τ ′′) ◦ uk0 ,
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uk0 = uk |uce(k0)=L̂
1,M2

2
(ġ,id,ν̇) and ξ−d1

M1
⊗ τ ′′ = ξ−d1

M1
⊗ τ ′ |k0 .

This implies that the restriction of uce(ξ−d1

M1
⊗ τ ′) on uce(k0) covers ξ−d1

M1
⊗ τ ′′. Combining this with

Proposition 4.1(b), we obtain the desired result.

Now, by using Lemmas 4.9, 4.2(b) and 4.6, we can extend the isomorphisms given in (4.14) to their

universal central extensions as follows:

uce(L(ġ, id, id))uce(ξ
−d1
M1

⊗1−d2⊗τ̇),uce(1−d1⊗ξ
−d2
M2

⊗ρ̇ν̇)

∼= uce(L(L(ġ, id), id))
uce(ξ

−d1
M1

⊗τ ′),uce(1−d1⊗(ξ
−d2

M2
2

⊗ν̇))

∼= uce(L(LM2
2
(ġ, ν̇), id))uce(ξ

−d1
M1

⊗τ ′′)

∼= uce(L(ḡ, id))uce(ξ
−d1
M1

⊗τ̄). (4.15)

Combining Lemma 4.8 with (4.14), we get the isomorphism

LM1(ḡ, τ̄)
∼= LM (ḡ, η̄).

By using [5, Theorem 10.1.1 and Corollary 10.1.5], we get that τ̄ is of the first kind. Moreover, it follows

from [5, Theorem 13.2.3] that the diagram automorphism p̄(τ̄) is conjugate to p̄(η̄). Thus, one can

conclude from Lemmas 4.5 and 4.7 that

uce(L(ḡ, id))uce(ξ
−d1
M1

⊗τ̄) ∼= uce(L(ḡ, id))uce(ξ
−d1
M1

⊗p̄(τ̄))

∼= uce(L(ḡ, id))uce(ξ
−d1
M1

⊗p̄(η̄))

∼= uce(L(ḡ, id))uce(ξ
−d1
M ⊗η̄).

Combining this with (4.15), we get that

uce(L(ḡ, id))uce(ξ
−d1
M ⊗η̄) ∼= uce(L(ġ, id, id))uce(ξ

−d1
M1

⊗1−d2⊗τ̇),uce(1−d1⊗ξ
−d2
M2

⊗ρ̇ν̇)

is centrally closed. This completes the proof of Theorem 4.4.

5 Proof of Theorem 3.6

Throughout this section, we assume that the diagram automorphism µ is non-transitive.

5.1 The root system of ĝ[µ]

In this subsection, we determine the non-isotropic roots in ĝ[µ]. As indicated in [5, Section 14], this

affords an explicit realization of all nullity 2 reduced extended affine root systems given by Saito [22].

Recall that V = R⊗Z Q, and we extend µ to a linear automorphism on V by R-linearity. We denote

by Vµ the fixed point subspace of V under the isometry µ, πµ : V → Vµ the canonical projection of V

onto Vµ, and Q̂µ the abelian group πµ(Q)× Z.
Define a Q× Z-grading on ĝ =

⊕
(α,n)∈Q×Z ĝα,n by letting

tn1
1 ⊗ x ∈ ĝα,n1 , k1 ∈ ĝ0,0, tn1

1 tn2
2 k1 ∈ ĝn2δ2,n1 ,

where x ∈ gα, α ∈ ∆, n1 ∈ Z and n2 ∈ rZ×. The above grading induces a Q̂µ-grading

ĝ[µ] =
⊕

(α,n)∈Q̂µ

ĝ[µ]α,n

on ĝ[µ] such that for any (α, n) ∈ Q̂µ,

ĝ[µ]α,n = {x ∈ ĝ[µ] ∩ ĝβ,n | β ∈ Q, πµ(β) = α}.
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Notice that this is the unique Q̂µ-grading on ĝ[µ] such that

tn1 ⊗ e±i(n) ∈ ĝ[µ]±α̌i,n, tn1 ⊗ α∨
i(n) ∈ ĝ[µ]0,n, k1 ∈ ĝ[µ]0,0 (5.1)

for i ∈ I and n ∈ Z.
Consider now the following subsets of Q̂µ:

Φµ = {(α, n) ∈ Q̂µ | ĝ[µ]α,n ̸= 0},

Q̂×
µ = {(α, n) ∈ Q̂µ | (α, α) ̸= 0},

Φ×
µ = Φµ ∩ Q̂×

µ = {(α, n) ∈ Φµ | (α, α) ̸= 0}.

It is obvious that Φµ ⊂ πµ(∆)× Z and so we have

Φ×
µ ⊂ πµ(∆)× × Z, (5.2)

where πµ(∆)× = {α ∈ πµ(∆) | (α, α) ̸= 0}. By definition, for each i ∈ I we have α̌i = πµ(αi). In addition,

for i ∈ I with si = 2, we have 2α̌i = πµ(αi + αµ(i)). This shows

kiα̌i ∈ πµ(∆)×, 1 6 ki 6 si, i ∈ Ǐ . (5.3)

For i ∈ I, we let Ni be the cardinality of the orbit O(i) in I and set di =
N
Ni

. Denote by W̌ the Weyl

group of the folded GCM Ǎ. Then we have the following description of the set Φ×
µ .

Proposition 5.1. One has

Φ×
µ = {(w̌(kiα̌i), p) | w̌ ∈ W̌ , i ∈ Ǐ , 1 6 ki 6 si, p ∈ (ki − 1)di + kidiZ} (5.4)

and that

dim ĝ[µ]α,p = 1, ∀ (α, p) ∈ Φ×
µ . (5.5)

Before proving Proposition 5.1, we first give a characterization of the set πµ(∆)×. This result is a

slight generalization of [5, Proposition 12.1.16].

Lemma 5.2. One has

πµ(∆)× = {w̌(kiα̌i) | w̌ ∈ W̌ , i ∈ Ǐ , 1 6 ki 6 si}. (5.6)

Proof. For convenience, we set

∆̌en = {w̌(kiα̌i) | w̌ ∈ W̌ , i ∈ Ǐ , 1 6 ki 6 si}.

We first show that

W̌ (πµ(∆)) ⊂ πµ(∆). (5.7)

Let rα̌i , i ∈ Ǐ denote the reflections associated to α̌i. Note that the Weyl group W̌ is generated by these

reflections. Thus we only need to show that

rα̌i(πµ(∆)) ⊂ πµ(∆), i ∈ Ǐ . (5.8)

If si = 1, it is shown in the proof of [5, Proposition 12.1.16] that for each α ∈ ∆, the following relation

holds true:

rα̌i(πµ(α)) = πµ

(( ∏
p∈O(i)

rαp

)
(α)

)
∈ πµ(∆).
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If si = 2, then 2α̌i = αi+αµ(i) ∈ ∆ as ai,µ(i) = −1. Note that πµ(α̌i) = α̌i and hence (α̌i, πµ(α)) = (α̌i, α)

for all α ∈ ∆. This implies that

rα̌i(πµ(α)) = πµ(α)− 2
(α̌i, πµ(α))

(α̌i, α̌i)
α̌i = πµ

(
α− 2

(α̌i, α)

(α̌i, α̌i)
α̌i

)
= πµ

(
α− 2

(α̌i, α)

(2α̌i, 2α̌i)
2α̌i

)
= πµ(r2α̌i(α)) ∈ πµ(∆).

Thus we complete the proof of the assertion (5.8) and hence the assertion (5.7). Now, as the reflections

preserve the bilinear form (·, ·), we have

W̌ (πµ(∆)×) ⊂ πµ(∆)×.

This together with (5.3) gives

∆̌en ⊂ W̌ (πµ(∆)×) ⊂ πµ(∆)×.

For the reverse inclusion, observe first that any non-zero element β ∈ πµ(∆) can be written uniquely

in the form β =
∑

i∈Ǐ niα̌i, where ni’s are either all non-negative integers or all non-positive integers.

Set htβ =
∑

i∈Ǐ ni. Assume that β ∈ πµ(∆)×. We then show that β ∈ ∆̌en by using induction on htβ.

Without loss of generality, we may assume that htβ > 0. Since (β, β) > 0, there are some i ∈ Ǐ such that

(β, α̌i) > 0 and that ni > 0. If rα̌i(β) is positive, then we are done by the induction hypothesis. If rα̌i(β)

is negative, then β = qα̌i for some positive integer q. This implies that β = πµ(α) for some

α =
∑

p∈O(i)

mpαp ∈ ∆ with
∑

p∈O(i)

mp = q.

If si = 1, then q must equal 1 as all αp, p ∈ O(i) are pairwise orthogonal. If si = 2, then q can be 1 or 2,

as |O(i)| = 2 and aiµ(i) = −1. This completes the proof.

As a by-product of Lemma 5.2, we have the following corollary.

Corollary 5.3. Let i, j ∈ I with ǎij 6 0. Then for every p ∈ Z, the elements ((1− ǎij)α̌i + α̌j , p) and

((si + 1)α̌i, p) are contained in Q̂×
µ but not contained in Φ×

µ .

Proof. By Lemma 5.2, it suffices to show that if ǎij 6 0, then (1 − ǎij)α̌i + α̌j is non-isotropic.

Otherwise,

0 = 2
(α̌i, (1− ǎij)α̌i + α̌j)

(α̌i, α̌i)
= 2(1− ǎij) + ǎij = 2− ǎij ,

which leads to a contradiction.

Let ǧ be the subalgebra of ĝ[µ] generated by the elements α∨
i(0), e

±
i(0), i ∈ Ǐ. Then by applying

Corollary 5.3 we have the following corollary.

Corollary 5.4. The Lie algebra ǧ is isomorphic to the derived subalgebra of the Kac-Moody algebra

associated with Ǎ.

Proof. It suffices to check that the elements α∨
i(0), e

±
i(0), i ∈ Ǐ satisfy the defining relations of the derived

subalgebra of the Kac-Moody algebra associated with Ǎ. Only the Serre relations

(ade±i(0))
1−ǎij (e±i(0)) = 0, i ̸= j ∈ Ǐ

are non-trivial. But such relations are immediate from Corollary 5.3.

Now we are ready to complete the proof of Proposition 5.1. Using (5.2) and Lemma 5.2, we know that

any element in Φ×
µ has the form

(w̌(kiα̌i), p), w̌ ∈ W̌ , 1 6 ki 6 si, i ∈ Ǐ , p ∈ Z. (5.9)



Chen F L et al. Sci China Math June 2021 Vol. 64 No. 6 1197

Regard ĝ[µ] as a module of the affine Kac-Moody algebra ǧ (see Corollary 5.4) via the adjoint action.

Then it is integrable, and for each p ∈ Z, the graded subspace ĝ[µ]p of ĝ[µ] is a ǧ-submodule, where

ĝ[µ]p =
⊕

α̌∈πµ(∆)

ĝ[µ]α̌,p.

Using this and the standard sl2-theory, we obtain that (w̌(kiα̌i), p) ∈ Φ×
µ if and only if (kiα̌i, p) ∈ Φ×

µ .

Moreover, we have dim ĝ[µ]w̌(kiα̌i),p = dim ĝ[µ]kiα̌i,p. So we only need to treat the case where w̌ = 1.

We first consider the case where ki = 1. Note that for each i ∈ Ǐ,

ĝ[µ]α̌i,p = Ctp1 ⊗ e+i(p) = C
∑

s∈ZNi

( ∑
k∈Zdi

ξ−kr
di

)
ξ−pstp1 ⊗ e+µs(i).

This together with the fact ∑
k∈Zdi

ξ−pk
di

̸= 0 ⇔ p ∈ diZ

gives that (α̌i, p) ∈ Φ×
µ if and only if p ∈ diZ. Next, for the case where ki = 2 (and hence si = 2), we

have

ĝ[µ]2α̌i,p = Ctp1 ⊗ [e+i , e
+
µ(i)](p).

This together with the fact

µ([e+i , e
+
µ(i)]) = [e+µ(i), e

+
i ] = −[e+i , e

+
µ(i)]

gives that (2α̌i, p) ∈ Φ×
µ if and only if p ∈ di +NZ. Therefore, we complete the proof of Proposition 5.1.

5.2 Proof of Theorem 3.6

We start with the following lemma.

Lemma 5.5. The assignment

c 7→ k1, hi,m 7→ tm1 ⊗ α∨
i(m), x±i,m 7→ tm1 ⊗ e±i(m), i ∈ I, m ∈ Z

determines (uniquely) a surjective Lie homomorphism from M(g, µ) to ĝ[µ].

Proof. One needs to check that the generators α∨
i(m), e

±
i(m), k1, i ∈ I,m ∈ Z of ĝ[µ] satisfy the defining

relations (T0)–(T6) of M(g, µ). The relations (T0)–(T4) follow from a direct verification by using (3.1),

and the relations (T5)–(T6) are immediate from Proposition 5.1.

Denote by ϕµ : M(g, µ) → ĝ the Lie homomorphism given in Lemma 5.5, and

ϕ̄µ = ψµ ◦ ϕµ : M(g, µ) → L(ḡ, µ̄)

the composition of the map ϕµ and the universal central extension ψµ : ĝ[µ] → L(ḡ, µ̄). By the universal

property of ψµ, we see that Theorem 3.6 follows from the following result.

Proposition 5.6. The Lie homomorphism ϕ̄µ : M(g, µ) → L(ḡ, µ̄) is a central extension.

The rest part of this subsection is devoted to a proof of Proposition 5.6. Notice that there is a (unique)

Q̂µ-grading M(g, µ) =
⊕

(α,n)∈Q̂µ
M(g, µ)α,n on M(g, µ) such that

deg c = (0, 0), deg hi,m = (0,m) and deg x±i,m = (±α̌i,m), i ∈ I, m ∈ Z.

We also introduce a Q̂µ-grading structure L(ḡ, µ̄) =
⊕

(α,n)∈Q̂µ
L(ḡ, µ̄)α,n so that the quotient map

ψµ : ĝ[µ] → L(ḡ, µ̄) is graded. It is obvious that the homomorphism ϕµ is Q̂µ-graded (see (5.1)) and so

is the homomorphism ϕ̄µ.

Let M(g, µ)± be the subalgebra of M(g, µ) generated by {x±i,m | i ∈ I,m ∈ Z}, and M(g, µ)0 the

subalgebra of M(g, µ) generated by {hi,m | i ∈ I,m ∈ Z}. Then we have the following triangular

decomposition of M(g, µ), whose proof is straightforward and omitted.
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Lemma 5.7. One has M(g, µ) = M(g, µ)+ ⊕M(g, µ)0 ⊕M(g, µ)−.

Recall from Lemma 5.2 that

πµ(∆)× = {w̌(kiα̌i) | w̌ ∈ W̌ , i ∈ Ǐ , 1 6 ki 6 si}.

Lemma 5.8. Let (α, p) ∈ Q̂×
µ . Then the following results hold true:

(1) if M(g, µ)α,p ̸= 0, then α ∈ πµ(∆)×;

(2) if α = w̌(α̌i) for some i ∈ Ǐ and w̌ ∈ W̌ , then the dimension of the graded subspace M(g, µ)α,p is 1

if p ∈ diZ, and is 0 otherwise;

(3) if α = w̌(2α̌i) for some i ∈ Ǐ with si = 2 and w̌ ∈ W̌ , then the dimension of the graded subspace

M(g, µ)α,p is 1 if p ∈ di +NZ, and is 0 otherwise.

Proof. Denote by M0(g, µ) the subalgebra of M(g, µ) generated by the elements hi,0, x
±
i,0 and i ∈ Ǐ .

Then one concludes from the relations (T2)–(T5) that M0(g, µ) is the derived subalgebra of the Kac-

Moody algebra associated with Ǎ. Viewing M(g, µ) as an M0(g, µ)-module by the adjoint action, we see

from (T3)–(T6) that the M0(g, µ)-module M(g, µ) is integrable. Moreover, for each p ∈ Z, the subspace

M(g, µ)p =
⊕

(α,p)∈Q̂µ

M(g, µ)α,p

of M(g, µ) is an M0(g, µ)-submodule. A standard sl2-theory argument gives that

dimM(g, µ)α,p = dimM(g, µ)w̌(α),p, w̌ ∈ W̌ .

Assume now that M(g, µ)α,p ̸= 0 for some (α, p) ∈ Q̂µ. We now prove that α ∈ πµ(∆)× by using

induction on htα. Here and as before, htα =
∑

i∈Ǐ ni if α =
∑

i∈Ǐ niα̌i. By Lemma 5.7, the integers

ni, i ∈ Ǐ are either all non-negative or all non-positive. We assume that htα > 0, so that all ni are

non-negative. Then there exist some i ∈ Ǐ such that (α̌i, α) > 0 and ni > 0. If ht rα̌i(α) > 0, then we are

done by the induction hypothesis. Otherwise ht rα̌i(α) < 0 and so α = kα̌i for some positive integer k.

But the relation (T6) forces that 1 6 k 6 si. This proves the assertion (1).

The assertion (2) is implied by (T0) as M(g, µ)α̌i,p = Cx+i,p. As for the assertion (3), we have Ni = 2

and αiµ(i) = −1 in this case. Then by the assertion (2) and Lemma 5.7, we get that

M(g, µ)2α̌i,p =
∑

m+n=p
m,n∈(N/2)Z

[M(g, µ)α̌i,m,M(g, µ)α̌i,n]. (5.10)

So the proof of the assertion (3) can be reduced to the proof of the following facts: M(g, µ)2α̌i,p = 0 if

p ∈ NZ, and dimM(g, µ)2α̌i,p = 1 if p ∈ N/2 + NZ. We first show that M(g, µ)2α̌i,p = 0 if p ∈ NZ.
By (5.10), this is implied by

[x+i,mN/2, x
+
i,nN/2] = 0 if m ≡ n (mod 2). (5.11)

Using (T4), we have

[x+i,mN/2, x
−
i,nN/2] =

N

2
hi,(m+n)N/2 + ac

for some a ∈ C. In addition, by (T3), we have

[hi,mN/2, x
+
i,nN/2] =

(2− (−1)m)N

2
x+i,(m+n)N/2.

Thus, if m ≡ n (mod 2), then

[[x+i,0, x
−
i,0], [x

+
i,mN/2, x

+
i,nN/2]] =

N2

2
[x+i,mN/2, x

+
i,nN/2],

[[x+i,mN/2, x
+
i,nN/2], x

−
i,0] = 0.
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Combining these with (T6), we get

N2

2
[x+i,mN/2, x

+
i,nN/2] = [[x+i,0, x

−
i,0], [x

+
i,mN/2, x

+
i,nN/2]]

= [[x+i,0, [x
+
i,mN/2, x

+
i,nN/2]], x

−
i,0] + [x+i,0, [[x

+
i,mN/2, x

+
i,nN/2], x

−
i,0]]

= [[x+i,0, [x
+
i,mN/2, x

+
i,nN/2]], x

−
i,0] = 0.

This completes the verification of (5.11).

We now prove that dimM(g, µ)2α̌i,p = 1 if p ∈ N/2 +NZ. It follows from (T3) and (T4) that

[x−i,0, [x
−
i,0,M(g, µ)2α̌i,p]] ⊂ Chi,p. (5.12)

It is immediate from the (T2)–(T4) that Cx+i,0 + Cx−i,0 + Chi,0 ∼= sl2. Then by (5.10), (5.12) and the

assertion (1), we find that the space spanned by M(g, µ)kα̌i,p, hi,p, k = ±1 and k = ±2 is an irreducible

sl2-module. This gives that dimM(g, µ)2α̌i,p 6 1. But one can conclude from Proposition 5.1 that

dimM(g, µ)2α̌i,p > dim ĝ[µ]2α̌i,p = 1,

as ϕµ is a graded surjective homomorphism. Thus we complete the proof of the assertion (3).

Now we are in a position to complete the proof of Proposition 5.6. It follows from Proposition 5.1 and

Lemma 5.8 that

ker ϕ̄µ ⊂ M(g, µ)iso =
⊕

(α,p)∈Q̂0
µ

M(g, µ)α,p, (5.13)

where

Q̂0
µ = {(α, p) ∈ Q̂µ | (α, α) = 0}.

Note that Q̂0
µ + Q̂×

µ ⊂ Q̂×
µ , which in particular shows that

[x±i,m,M(g, µ)iso] ∩M(g, µ)iso = {0}, for i ∈ I, m ∈ Z. (5.14)

Finally, Proposition 5.6 follows from (5.13) and (5.14), as the Lie algebra M(g, µ) is generated by the

elements x±i,m, i ∈ I,m ∈ Z.
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