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is introduced and investigated. It turns out that if (X,T ) is a topological dynamical system with AP[d] = ∆,

then each ergodic measure of (X,T ) is isomorphic to a d-step pro-nilsystem, and thus (X,T ) has zero entropy.

Moreover, it is shown that if (X,T ) is a strictly ergodic distal system with the property that the maximal

topological and measurable d-step pro-nilsystems are isomorphic, then AP[d] = RP[d] for each d ∈ N. It follows

that for a minimal ∞-pro-nilsystem, AP[d] = RP[d] for each d ∈ N. An example which is a strictly ergodic

distal system with discrete spectrum whose maximal equicontinuous factor is not isomorphic to the Kronecker

factor is constructed.
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1 Introduction

This paper is dedicated to the counterpart of the study of multiple ergodic averages in ergodic theory

in the setting of topological dynamics. The regionally proximal relation of order d along arithmetic

progressions, namely AP[d] for d ∈ N, is introduced and investigated.

In some sense an equicontinuous system is the simplest system in topological dynamics. In the study of

topological dynamics, one of the first problems was to characterize the equicontinuous structure relation

Seq(X) of a system (X,T ), i.e., to find the smallest closed invariant equivalence relation R(X) on (X,T )

such that (X/R(X), T ) is equicontinuous. A natural candidate for R(X) is the so-called regionally

proximal relation RP(X) introduced by Ellis and Gottschalk [10]. By the definition, RP(X) is closed,

invariant, and reflexive, but not necessarily transitive. The problem was then to find conditions under

which RP(X) is an equivalence relation. It turns out to be a difficult problem. Starting with Veech [34],
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researchers, including MacMahon [31], Ellis and Keynes [11] and Bronstein [5], came up with various

sufficient conditions for RP(X) to be an equivalence relation. Note that in our case where T : X → X

is homeomorphism and (X,T ) is minimal, RP(X) is always an equivalence relation. Using the relative

version of equicontinuity, Furstenberg [13] gave the structure theorem of a minimal distal system, which

had a very important influence both in topological dynamics and ergodic theory.

The connection between ergodic theory and additive combinatorics was built in the 1970s with

Furstenberg’s beautiful proof of Szemerédi’s theorem via ergodic theory [14]. For a measurable system

(X,X , µ, T ), Furstenberg asked about the convergence (both in the sense of L2(µ) and almost surely) of

the multiple ergodic averages

1

N

N−1∑
n=0

f1(T
nx) · · · fd(T dnx), (1.1)

where f1, . . . , fd ∈ L∞(X,µ). After nearly 30 years’ efforts of many researchers, this problem for the

case of L2-convergence was finally solved in [21, 35]. In their proofs the notion of characteristic factors,

introduced by Furstenberg and Weiss [16], plays a great role. Loosely speaking, to understand the mul-

tiple ergodic averages 1
N

∑N−1
n=0 f1(T

nx) · · · fd(T dnx), one can replace each function fi by its conditional

expectation with respect to some d-step pro-nilsystem (the 1-step pro-nilsystem is the Kroneker factor).

Thus one can reduce the problem to the study of the same average in a nilsystem. In [21], some very

useful tools, such as dynamical parallelepipeds, ergodic uniformity seminorms, structure theory involving

pro-nilsystems for ergodic systems, were introduced and obtained (for the details we refer to the recent

book by Host and Kra [22]).

In the topological setting, Host et al. [23] obtained a topological structure theorem involving pro-

nilsystems for all minimal distal systems, which can be viewed as an analog of the purely ergodic structure

theory of [21] and the refinement of the Furstenberg’s structure theorem for minimal distal systems.

In [23], a certain generalization of the regionally proximal relation, namely RP[d] (the regionally proximal

relation of order d), is introduced and used to produce the maximal pro-nilfactors. Precisely, in [23] it is

shown that if a system is minimal and distal then RP[d] is an equivalence relation and (X/RP[d], T ) is the

maximal d-step pro-nilfactor of the system. The maximal pro-nilfactor of order d, namely (X/RP[d], T )

can be seen as the characteristic factor of the minimal system (X,T ). In [33], Shao and Ye showed that

all these results in fact hold for arbitrarily minimal systems of abelian group actions. In a recent paper

by Glasner et al. [18], the same question is considered for a general group G, and similar results are

proved. Applications of the above structure theorems can be found in [24,26].

Earlier the counterpart of characteristic factors in topological dynamics was studied by Glasner [17]

from a different point of view, where the characteristic factors for the action T × T 2 × · · · × Tn are

considered. To be precise, let (X,T ) be a topological system and d ∈ N. Let σd = T × T 2 × · · · × T d.

(Y, T ) is said to be a topological characteristic factor of order d if there exists a dense Gδ set Ω of X

such that for each x ∈ Ω the orbit closure L = O(xd, σd) is π × · · · × π (d times) saturated, where

xd = (x, . . . , x) (d times) and π : X → Y is the corresponding factor map, i.e., (x1, x2, . . . , xd) ∈ L if and

only if (x′1, x
′
2, . . . , x

′
d) ∈ L whenever for all 1 6 i 6 d, π(xi) = π(x′i). In [17], it is shown that if (X,T )

is a distal minimal system, then its largest class d distal factor (in the Furstenberg’s tower of a minimal

distal system) is a topological characteristic factor of order d; if (X,T ) is a weakly mixing system, then

the trivial system is its topological characteristic factor.

It is a long open question whether for a minimal distal system in Glasner’s theorem in [17] one can

replace the largest class d distal factor by the maximal pro-nilfactor of order d. Indeed, this is the

case where we consider characteristic factors along cubes of minimal systems. In [6], the topological

characteristic factors along cubes of minimal systems are studied. It is shown that up to proximal

extensions the pro-nilfactors are the topological characteristic factors along cubes of minimal systems.

In particular, for a distal minimal system, the maximal (d− 1)-step pro-nilfactor is the topological cubic

characteristic factor of order d [6].

In this paper, we try to give another way to study the counterpart of characteristic factors in topological

dynamics. Note that for a minimal system, the maximal pro-nilfactor of order d is obtained by the
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regionally proximal relation of order d, i.e., RP[d]. Here we propose a direct approach, i.e., we consider

the regionally proximal relation of order d along arithmetic progressions, namely AP[d] for d ∈ N.
It turns out that if (X,T ) is a topological dynamical system with AP[d] = ∆, then each ergodic

measure of (X,T ) is isomorphic to a d-step pro-nilsystem, and thus (X,T ) has zero entropy. We also

show that if (X,T ) is a strictly ergodic distal system with the property that the maximal topological and

measurable d-step pro-nilsystems are isomorphic, then AP[d] = RP[d] for each d ∈ N. It then follows

that for a minimal ∞-pro-nilsystem, AP[d] = RP[d] for each d ∈ N. We construct an example (X,T )

which is a uniquely ergodic minimal distal system with discrete spectrum whose maximal equicontinuous

factor is not isomorphic to the Kronecker factor.

To finish the introduction we make the following conjecture.

Conjecture 1.1. Let (X,T ) be a minimal distal system. Then AP[d] = RP[d] for any d ∈ N.

Unfortunately, we cannot achieve this currently.

2 Preliminaries

2.1 Topological dynamical systems

A transformation of a compact metric spaceX is a homeomorphism ofX to itself. A topological dynamical

system (t.d.s.) or just a system, is a pair (X,T ), where X is a compact metric space and T : X → X is a

transformation. We use ρ(·, ·) to denote a compatible metric in X. In the sequel, and if there is no room

for confusion, in any t.d.s. we will always use T to indicate the transformation.

A system (X,T ) is transitive if there exists x ∈ X whose orbit O(x, T ) = {Tnx : n ∈ Z} is dense in X

and such a point is called a transitive point. The system is minimal if the orbit of every point is dense

in X. This is equivalent to saying that X and the empty set are the only closed invariant subsets of X.

Let (X,T ) be a system and let B(X) be the Borel σ-algebra. Let M(X) be the set of Borel probability

measures in X. A measure µ ∈ M(X) is T -invariant if for every Borel set B of X, µ(T−1B) = µ(B).

Denote by M(X,T ) the set of invariant probability measures. A measure µ ∈ M(X,T ) is ergodic if for

any Borel set B of X satisfying µ(T−1B∆B) = 0 we have µ(B) = 0 or µ(B) = 1. Denote by Me(X,T )

the set of ergodic measures. The system (X,T ) is uniquely ergodic if M(X,T ) consists of only one

element, and it is strictly ergodic if in addition it is minimal.

A homomorphism between the t.d.s. (X,T ) and (Y, T ) is a continuous onto map π : X → Y which

intertwines the actions; one says that (Y, T ) is a factor of (X,T ) and that (X,T ) is an extension of (Y, T ).

One also refers to π as a factor map or an extension and uses the notation π : (X,T ) → (Y, T ). The

systems are said to be conjugate if π is a bijection. An extension π is determined by the corresponding

closed invariant equivalence relation

Rπ = {(x1, x2) : π(x1) = π(x2)} = (π × π)−1∆Y ⊂ X ×X,

where ∆Y is the diagonal on Y .

2.2 Distality and proximality

Let (X,T ) be a t.d.s. A pair (x, y) ∈ X ×X is a proximal pair if

inf
n∈Z

ρ(Tnx, Tny) = 0

and is a distal pair if it is not proximal. Denote by P(X,T ) or PX the set of proximal pairs of (X,T ).

The t.d.s. (X,T ) is distal if (x, y) is a distal pair whenever x, y ∈ X are distinct.

An extension π : (X,T ) → (Y, T ) is proximal if Rπ ⊂ P(X,T ) and is distal if Rπ ∩ P(X,T ) = ∆X .

Observe that when Y is trivial (reduced to one point) the map π is distal if and only if (X,T ) is distal.
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2.3 Independence

The notion of independence was first introduced and studied in [29, Definition 2.1]. It corresponds to a

modification of the notion of the interpolator studied in [19,28] and was discussed in depth in [25].

Definition 2.1. Let (X,T ) be a t.d.s. Given a tuple A = (A1, . . . , Ak) of subsets of X we say

that a subset F ⊂ Z is an independence set for A if for any nonempty finite subset J ⊂ F and any

s = (s(j) : j ∈ J) ∈ {1, . . . , k}J we have ∩
j∈J

T−jAs(j) ̸= ∅.

We denote the collection of all independence sets for A by Ind(A1, . . . , Ak) or IndA.

Definition 2.2. Let (X,T ) be a t.d.s. A pair (x1, x2) ∈ X×X is called an Indap-pair (ap for arithmetic

progression) if for every pair of neighborhoods U1, U2 of x1 and x2 respectively, and every d ∈ N there is

some n ∈ N such that for each (t1, . . . , td) ∈ {1, 2}d,

T−nUt1 ∩ T−2nUt2 ∩ · · · ∩ T−ndUtd ̸= ∅.

Denote by Indap(X,T ) or Indap(X) the set of all Indap-pairs of (X,T ).

2.4 Dynamical parallelepipeds

Let X be a set, and let d > 1 be an integer. We view elements in {0, 1}d as a sequence ϵ = ϵ1 · · · ϵd of 0’s

and 1’s. We denote X2d by X [d]. A point x ∈ X [d] can be written as x = (xϵ : ϵ ∈ {0, 1}d).
Definition 2.3. Let (X,T ) be a topological dynamical system and let d > 1 be an integer. We define

Q[d](X) to be the closure in X [d] of elements of the form

(Tn·ϵx = Tn1ϵ1+···+ndϵdx : ϵ = ϵ1 · · · ϵd ∈ {0, 1}d),

where x ∈ X and n = (n1, . . . , nd) ∈ Zd. When there is no ambiguity, we write Q[d] instead of Q[d](X).

An element of Q[d](X) is called a (dynamical) parallelepiped of dimension d.

As examples, Q[2] is the closure in X [2] = X4 of the set

{(x, Tmx, Tnx, Tn+mx) : x ∈ X,m, n ∈ Z}

and Q[3] is the closure in X [3] = X8 of the set

{(x, Tmx, Tnx, Tm+nx, T px, Tm+px, Tn+px, Tm+n+px) : x ∈ X,m, n, p ∈ Z}.

Let (X,T ) be a system and d > 1 be an integer. The diagonal transformation of X [d] is the map

T [d] : X [d] → X [d] defined by (T [d]x)ϵ = Txϵ for every x ∈ X [d] and every ϵ ∈ {0, 1}d.
Definition 2.4. Face transformations are defined inductively as follows: Let T [0] = T , T

[1]
1 = id× T .

If {T [d−1]
j }d−1j=1 is defined already, then the set

T
[d]
j = T

[d−1]
j × T

[d−1]
j , j ∈ {1, 2, . . . , d− 1},

T
[d]
d = id[d−1] × T [d−1].

(2.1)

The face group of dimension d is the group F [d](X) of transformations of X [d] spanned by the face

transformations. The parallelepiped group of dimension d is the group G[d](X) spanned by the diagonal

transformation T [d] and the face transformations F [d](X). We often write F [d] and G[d] instead of F [d](X)

and G[d](X), respectively. For G[d] and F [d], we use similar notations to that used for X [d]: namely, an

element of either of these groups is written as S = (Sϵ : ϵ ∈ {0, 1}d). In particular, F [d] = {S ∈ G[d] :

S∅ = id}.
For convenience, we denote the orbit closure of x ∈ X [d] under F [d] by F [d](x), instead of O(x,F [d]).

It is easy to verify that Q[d] is the closure in X [d] of

{Sx[d] : S ∈ F [d], x ∈ X}.

If x is a transitive point of X, then Q[d] is the orbit closure of x[d] under the group G[d].
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2.5 Nilmanifolds and nilsystems

Let G be a group. For g, h ∈ G and A,B ⊂ G, we write [g, h] = ghg−1h−1 for the commutator of g and h

and [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator subgroups Gj , j > 1,

are defined inductively by setting G1 = G and Gj+1 = [Gj , G]. Let d > 1 be an integer. We say that G

is d-step nilpotent if Gd+1 is the trivial subgroup.

Let G be a d-step nilpotent Lie group and Γ be a discrete cocompact subgroup of G. The compact

manifold X = G/Γ is called a d-step nilmanifold. The group G acts on X by left translations and we

write this action as (g, x) 7→ gx. The Haar measure µ of X is the unique probability measure on X

invariant under this action. Fix τ ∈ G and let T be the transformation x 7→ τx of X. Then (X,µ, T ) is

called a d-step nilsystem. In the topological setting we omit the measure and just say that (X,T ) is a

d-step nilsystem. For more details on nilsystems, refer to [22].

We need to use inverse limits of nilsystems, so we recall the definition of a sequential inverse limit of

systems. If (Xi, Ti)i∈N are systems with diam(Xi) 6 1 and πi : Xi+1 → Xi are factor maps, the inverse

limit of these systems is defined to be the compact subset of
∏
i∈NXi given by

{(xi)i∈N : πi(xi+1) = xi},

and we denote it by

lim
←−

(Xi, Ti)i∈N.

It is a compact metric space endowed with the distance ρ((xi)i∈N, (yi)i∈N) =
∑
i∈N 1/2iρi(xi, yi), where ρi

is the metric in Xi. We note that the maps Ti induce naturally a transformation T on the inverse limit.

The following structure theorem characterizes inverse limits of nilsystems using dynamical paral-

lelepipeds.

Theorem 2.5 (See [23, Theorem 1.2]). Assume that (X,T ) is a transitive topological dynamical system

and let d > 2 be an integer. The following properties are equivalent:

(1) If x,y ∈ Q[d] have 2d − 1 coordinates in common, then x = y.

(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d], then x = y.

(3) X is an inverse limit of (d− 1)-step minimal nilsystems.

A transitive system satisfying one of the equivalent properties above is called a (d−1)-step pro-nilsystem

or system of order (d− 1).

2.6 Regionally proximal relation of order d

Definition 2.6. Let (X,T ) be a system and let d ∈ N. The points x, y ∈ X are said to be regionally

proximal of order d if for any δ > 0, there exist x′, y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Zd such that

ρ(x, x′) < δ, ρ(y, y′) < δ, and

ρ(Tn·ϵx′, Tn·ϵy′) < δ for every nonempty ϵ ⊂ [d].

In other words, there exists S ∈ F [d] such that ρ(Sϵx
′, Sϵy

′) < δ for every ϵ ̸= ∅. The set of regionally

proximal pairs of order d is denoted by RP[d] (or by RP[d](X,T ) in case of ambiguity), and is called the

regionally proximal relation of order d.

It is easy to see that RP[d] is a closed and invariant relation. Observe that

P(X,T ) ⊆ · · · ⊆ RP[d+1] ⊆ RP[d] ⊆ · · · ⊆ RP[2] ⊆ RP[1] = RP(X,T ).

The following theorems proved in [23] (for minimal distal systems) and in [33] (for general minimal

systems) tell us conditions under which (x, y) belongs to RP[d] and the relation between RP[d] and d-step

pro-nilsystems, which are defined in Theorem 2.5.

Theorem 2.7. Let (X,T ) be a minimal system and let d ∈ N. Then

(1) (x, y) ∈ RP[d] if and only if (x, y, . . . , y) ∈ Q[d+1] if and only if (x, y, . . . , y) ∈ F [d+1](x[d+1]).

(2) RP[d] is an equivalence relation.

(3) (X,T ) is a d-step pro-nilsystem if and only if RP[d] = ∆X .
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2.7 ∞-step pro-nilsystems

The regionally proximal relation of order d allows to construct the maximal d-step pro-nilfactor of a

system. In [23], it was shown that for a minimal distal system (X,T ) the quotient of X under RP[d](X,T )

is the maximal d-step pro-nilfactor of X. In general one has the following theorem.

Theorem 2.8 (See [33]). Let π : (X,T ) → (Y, T ) be a factor map between minimal systems and let

d ∈ N. Then,

(1) π × π(RP[d](X,T )) = RP[d](Y, T ).

(2) (Y, T ) is a d-step pro-nilsystem if and only if RP[d](X,T ) ⊂ Rπ.

In particular, Xd = X/RP[d](X,T ), the quotient of (X,T ) under RP[d](X,T ), is the maximal d-step

pro-nilfactor of X.

It follows that for any minimal system (X,T ),

RP[∞] =
∩
d>1

RP[d]

is a closed invariant equivalence relation (we write RP[∞](X,T ) in case of ambiguity). Now we formulate

the definition of ∞-step pro-nilsystems.

Definition 2.9 (See [8]). A minimal system (X,T ) is an ∞-step pro-nilsystem or a system of order ∞,

if the equivalence relation RP[∞] is trivial, i.e., coincides with the diagonal.

Remark 2.10. Similar to Theorem 2.8, one can show that the quotient of a minimal system (X,T )

under RP[∞] is the maximal ∞-step pro-nilfactor of (X,T ).

3 Regionally proximal relation of order d along arithmetic progressions

Now we introduce the notion of the regionally proximal relation of order d along arithmetic progressions.

3.1 Definition of AP[d](X,T )

3.1.1 Definition

In [23] RP[d] was introduced based on d-dimensional parallelepipeds. Now we define a relation based on

Furstenberg’s original average.

Definition 3.1. Let (X,T ) be a t.d.s. and d ∈ N. We say that (x, y) ∈ X ×X is a regionally proximal

pair of order d along arithmetic progressions if for each δ > 0 there exist x′, y′ ∈ X and n ∈ Z such that

ρ(x, x′) < δ, ρ(y, y′) < δ and

ρ(T in(x′), T in(y′)) < δ for each 1 6 i 6 d.

The set of all such pairs is denoted by AP[d](X) and is called the regionally proximal relation of order d

along arithmetic progressions.

For a relation B on X let R(B) be the smallest closed invariant equivalence generated by B.

Remark 3.2. (1) When d = 1, AP[1](X) is nothing but the regionally proximal relation RP(X).

(2) Note that for n = (n, n, . . . , n) ∈ Zd, one has

{n · ϵ : ϵ = (ϵ1, ϵ2, . . . , ϵd) ∈ {0, 1}d \ {∅}} = {n, 2n, . . . , dn}.

It follows easily that AP[d](X) ⊂ RP[d](X) for each d ∈ N, and hence R(AP[d](X)) ⊂ RP[d](X).

Lemma 3.3. Let k ∈ N. Then AP[d](X,T ) = AP[d](X,T k).

Proof. First, we note that AP[d](X,T ) ⊃ AP[d](X,T k). Now let (x, y) ∈ AP[d](X,T ). Then for each

δ > 0 there exist x′, y′ ∈ X and n ∈ Z such that ρ(x, x′) < δ, ρ(y, y′) < δ and ρ(T in(x′), T in(y′)) < δ1 for

each 1 6 i 6 d, where δ1 < δ is such that ρ(z1, z2) < δ1 implies ρ(T jz1, T
jz2) < δ for each 1 6 j 6 dk.

Then we know that (x, y) ∈ AP[d](X,T k).
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3.1.2 Comparing AP[d] with RP[d]

In order to show that RP[d] is an equivalence relation in [33] (see also [23]) one proves that (x, y) ∈ RP[d]

if and only if for each neighborhood U of y there is n = (n1, . . . , nd+1) ∈ Zd+1 such that Tn·ϵ(x) ∈ U for

each ϵ ̸= ∅. Since AP[1] = RP[1], it is natural to ask if for d = 1, (x, y) ∈ AP[1], if and only if for each

neighborhood U of y there is n ∈ N such that Tnx, T 2nx ∈ U . Unfortunately this is not the case as the

following example shows.

Consider T : T2 → T2, (x, y) 7→ (x + α, x + y), where α is irrational. Then Tn(x, y) = (x + nα,

y + nx+ a(n)α) with a(n) = 1
2n(n− 1). It is easy to see that

RP[1] = {((x, y1), (x, y2)) : x, y1, y2 ∈ T}.

Let y ∈ T = [0, 1) and y ̸= 0, 13 ,
2
3 . We claim it is not true that for each neighborhood U of (0, y) there

is n ∈ N such that Tn(0, 0), T 2n(0, 0) ∈ U . Assume that this is the case, i.e., for each ϵ > 0 there is n ∈ N
such that

−ϵ < nα (mod 1) < ϵ, −ϵ < 2nα (mod 1) < ϵ,

and

−ϵ < y − a(n)α (mod 1) < ϵ, −ϵ < y − a(2n)α (mod 1) < ϵ.

A simple calculation shows that 3y = 0 (mod 1), which leads to a contradiction. Thus, we do not have

the property for AP[1] as for RP[1].

3.1.3 A question

It is easy to check that AP[d](X) is a closed T × T invariant relation. We do not know if it is an

equivalence relation, i.e.,

Question 1. Is it true that for a minimal t.d.s. AP[d](X) is an equivalence relation? If not, is this

true when (X,T ) is also distal ?

3.2 Systems with AP[d](X) = X ×X

In this subsection, we show that in some cases we have AP[d](X) = X × X. Glasner [17] studied the

diagonal action σd = T × T 2 × · · · × T d and showed the following theorem.

Theorem 3.4 (See [17]). Let (X,T ) be a minimal weakly mixing t.d.s. Then for each d ∈ N there is

a dense Gδ subset Kd of X such that for each x ∈ Kd, the orbit of (x, . . . , x) under σd is dense in Xd.

Using this result we have the following proposition.

Proposition 3.5. Let (X,T ) be a minimal t.d.s. Then the following statements are equivalent:

(1) Each pair is an Indap-pair, i.e., Indap(X) = X ×X.

(2) (X,T ) is weakly mixing.

(3) AP[d](X) = X ×X for some d > 2.

Proof. (1) ⇒ (2). Assume that U0 and U1 are two non-empty open subsets of X. Then there is n ∈ N
such that

T−nU0 ∩ T−2nU0 ∩ T−3nU0 ∩ T−4nU1 ̸= ∅,

which implies that N(U0, U0) ∩N(U0, U1) ̸= ∅, and hence (X,T ) is weakly mixing.

(2) ⇒ (1). Let d > 1, Ad = {0, 1}d = {S1, . . . , S2d} and s = S1S2 · · ·S2d ∈ {0, 1}d2d = {s1, . . . , sd2d}.
Assume that U0 and U1 are two non-empty open subsets of X. By Theorem 3.4 there are x ∈ X and

n ∈ N such that

(Tnx, T 2nx, . . . , T (d2d)nx) ∈
d2d∏
i=1

Usi .
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This implies that for each (t1, . . . , td) ∈ Ad,

T−nUt1 ∩ T−2nUt2 ∩ · · · ∩ T−ndUtd ̸= ∅,

i.e., each pair is an Indap-pair.

(1) ⇒ (3) is obvious. To show (3) ⇒ (1) we observe that RP(X) = X ×X which implies weak mixing

by the well-known results (see, for example, [1]).

Remark 3.6. (1) Let (X,T ) be a weakly mixing t.d.s. If in addition (X,T ) is TE1), then

(X,T )× (X,T 2)× · · · × (X,T d)

is weakly mixing (and TE) (see [27, Corollary 4.2]). Without the assumption of TE, this is not true in

general.

(2) Let (X,T ) be a t.d.s. If there is a dense Gδ set X0 such that for each x ∈ X0, (x, x, . . . , x) has a

dense orbit under σd inX
d, then using the method of the previous theorem we get thatAP[d](X) = X×X

for each d > 1.

To show the following property we need a lemma from [15].

Lemma 3.7 (See [15, Theorem 1.24]). Let N = N1 ∪ N2 ∪ · · · ∪ Nd for some d ∈ N. Then there is

1 6 i 6 d such that Ni is piece-wise syndetic.

Theorem 3.8. Let π : (X,T ) → (Y, T ) be a proximal extension between two t.d.s. Then

AP[d](X) ⊃ Rπ = {(x, y) ∈ X2 : π(x) = π(y)}

for any d ∈ N. In particular, if (X,T ) is proximal, then AP[d](X) = X ×X for any d ∈ N.

Proof. Assume to the contrary that there are d ∈ N and a pair (x1, x2) ∈ Rπ but (x1, x2) ̸∈ AP[d].

This implies that there is ϵ0 > 0 such that if 0 < ϵ 6 ϵ0 then for each m ∈ N there is 1 6 i 6 d satisfying

ρ(T imx1, T
imx2) > ϵ.

Let

Ei = {m ∈ N : ρ(T imx1, T
imx2) > ϵ}, 1 6 i 6 d.

Then N = E1 ∪ · · · ∪ Ed, and then by Lemma 3.7 there is 1 6 i 6 d such that Ei is piece-wise syndetic.

This implies that E1 ⊃ iEi is piecewise syndetic. Thus the orbit closure of (x1, x2) under T ×T contains

a minimal point which is not on the diagonal, which leads to a contradiction, since π is proximal.

To finish the section we ask the following question.

Question 2. Let (X,T ) be a minimal system and assume that (x, y) is proximal. Is it true that

(x, y) ∈ AP[d] for each d ∈ N?

3.3 Factors and extensions

The following property follows directly by the definition.

Proposition 3.9. Let π : (X,T ) → (Y, T ) be a factor map between two systems. Then

π × π(AP[d](X)) ⊂ AP[d](Y ).

Generally we do not have π × π(AP[d](X)) = AP[d](Y ). For example, let (X1, T1) and (X2, T2) be

two non-trivial proximal t.d.s. with X1 ∩ X2 = ∅ and X = X1 ∪ X2. Assume that T : X → X is

such that T (x) = Ti(x) if x ∈ Xi. Then (X,T ) has two minimal points. It is clear that AP[d](X,T ) =

X1 ×X1 ∪X2 ×X2 ̸= X ×X. Let (Y, S) be the t.d.s. obtained by collapsing the two minimal points.

Then AP[d](Y ) = Y × Y since (Y, S) is proximal. Choose (y1, y2) ∈ Y × Y such that yi is not minimal

and yi ∈ Xi. It is clear that (y1, y2) ̸∈ AP[d](X).

1) TE means topologically ergodic, i.e., for all non-empty open sets U, V ⊆ X, N(U, V ) is syndetic.
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Question 3. Let π : (X,T ) → (Y, T ) be a factor map between two minimal systems. Is it true that

π × π(AP[d](X)) = AP[d](Y )?

Proposition 3.10. Let (X,T ) be the inverse limit of (Xi, Ti) with bonding maps πi : Xi+1 → Xi. If

x = (x1, x2, . . .) and y = (y1, y2, . . .) ∈ X are such that (xi, yi) ∈ AP[d](Xi), then (x, y) ∈ AP[d](X).

Proof. Let ϵ > 0, and let U ×V be a neighborhood of (x, y). Then there are i ∈ N and a neighborhood

Ui × Vi of (xi, yi) such that π−1i (Ui) ⊂ U and π−1i (Vi) ⊂ V . Since (xi, yi) ∈ AP[d](Xi) there are x′i ∈ Ui
and y′i ∈ Vi such that there is n > 0 large enough with ρ(T jni x′i, T

jn
i y′i) < ϵ′ (1 6 j 6 d, ϵ′ > 0) and

ρ(πi−1,kT
jn
i x′i, πi−1,kT

jn
i y′i) <

ϵ
2 , where 1 6 j 6 d, 1 6 k 6 i− 2. Note that πi−1,k : Xi → Xk is defined

by πi−1,k = πk · · ·πi−1. Now choose i with
∑∞
m=i+1

diam(Xi)
2m(1+diam(Xi))

< ϵ
2 .

Put x′ = (· · ·x′i · · · ) ∈ π−1i (Ui) and y
′ = (· · · y′i · · · ) ∈ π−1i (Vi). Then

T jn(x′) = (· · ·T jni (x′i) · · · ) and T jn(y′) = (· · ·T jni (y′i) · · · ).

Thus we have ρ(T jnx′, T jny′) < ϵ.

4 Systems with AP[d] = ∆

In this section we discuss the structure of a t.d.s. with AP[d] = ∆, and we show that each ergodic

measure of (X,T ) is isomorphic to a system of order d, and in particular (X,T ) has zero entropy.

4.1 Metric description

4.1.1 Some known results

Let d ∈ N. A factor (Z,Z, ν, T ) of X is characteristic for averages

1

N

N−1∑
n=0

f1(T
nx) · · · fd(T dnx) (4.1)

if the limiting behavior of (4.1) only depends on the conditional expectation of fi with respect to Z,∥∥∥∥ lim
N→∞

1

N

N−1∑
n=0

(Tnf1T
2nf2 · · ·T dnfd − TnE(f1 | Z)T 2nE(f2 | Z) · · ·T dnE(fd | Z))

∥∥∥∥
L2

= 0

for any f1, . . . , fd ∈ L∞(X,X , µ). The system Z is a universal characteristic factor if it is a characteristic

factor of X, and a factor of any other characteristic factor of X. The universal characteristic factor

of (4.1) always exists [21,35], and is denoted by (Zd−1,Zd−1, µd−1, T ).

Theorem 4.1 (See [21]). Let (X,X , µ, T ) be an ergodic system and d ∈ N. Then the system (Zd−1,

Zd−1, µd−1, T ) is a (measure theoretic) inverse limit of (d− 1)-step nilsystems. (Zd−1,Zd−1, µd−1, T ) is

called a system of order d− 1.

We also need the following classic result by Furstenberg [14].

Theorem 4.2 (See [14]). Let (X,X , µ, T ) be a measure preserving transformation and let A ∈ X be a

set with positive measure. Then for every integer k > 1,

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0.

Remark 4.3. In fact by [21, Theorem 1.1], one can replace lim inf in Theorem 4.2 by lim, i.e.,

lim
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0.
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4.1.2 Consequences

Let (X,B, µ, T ) be an ergodic measure preserving transformation and (Zk,Zk, µk, T ) be the k-step nil-

factor of (X,B, µ, T ). Let µ =
∫
Zk
µzdµk(z) be the disintegration of µ over µk. Pairs in the support of

the measure

λk =

∫
Zk

µz × µzdµk(z)

are called Lµk -pairs, where L
µ
k = Supp(λk).

Now we may obtain the following theorem related to Lµk .

Theorem 4.4. Let (X,T ) be a t.d.s. and µ an ergodic Borel measure on X. Let k > 1 be an integer.

Then Lµk ⊂ AP[k](X). Moreover,
∞∩
k=1

Lµk ⊂ Indap(X).

Proof. Let (x0, x1) ∈ Lµk . Then for any neighborhood U0 × U1 of (x0, x1),

λk(U0 × U1) =

∫
Zk

E(1U0 | Zk)E(1U1 | Zk)dµk > 0.

By Theorem 4.1, we have

lim
N→∞

1

N

N−1∑
n=0

µ(U0 ∩ T−nU1 ∩ T−2nU1 ∩ · · · ∩ T−(k+1)nU1)

= lim
N→∞

1

N

N−1∑
n=0

∫
X

1U0
(x)1U1

(Tnx)1U1
(T 2nx) · · · 1U1

(T (k+1)nx)dµ(x)

= lim
N→∞

1

N

N−1∑
n=0

∫
Zk

E(1U0 | Zk)(z)E(1U1 | Zk)(Tnz) · · ·E(1U1 | Zk)(T (k+1)nz)dµk(z)

> lim inf
N→∞

1

N

N−1∑
n=0

ak+2

∫
Zk

1Aa(z)1Aa(T
nz) · · · 1Aa(T

(k+1)nz)dµk(z)

= lim inf
N→∞

1

N

N−1∑
n=0

ak+2µ(Aa ∩ T−nAa ∩ T−2nAa ∩ · · · ∩ T−(k+1)nAa),

where a > 0 and Aa = {z ∈ Zk : E(1U0 | Zk)(z) > a and E(1U1 | Zk)(z) > a}.
As E(1U0 | Zk) 6 1 and E(1U1 |Zk) 6 1, one has

0 < b :=

∫
Zk

E(1U0 | Zk)E(1U1 | Zk)dµk

=

∫
Aa

E(1U0 | Zk)E(1U1 | Zk)dµk +
∫
Zk\Aa

E(1U0 | Zk)E(1U1 | Zk)dµk

6 µk(Aa) + aµk(Zk \Aa).

Hence there exists a > 0 such that µk(Aa) = b− aµk(Zk \Aa) > 0. So

lim
N→∞

1

N

N−1∑
n=0

µ(U0 ∩ T−nU1 ∩ T−2nU1 ∩ · · · ∩ T−(k+1)nU1) > 0

following Theorem 4.2. In particular, there is some x ∈ X such that x ∈ U0 and T jnx ∈ U1 for

j = 1, 2, . . . , k + 1.

Given ϵ > 0, let U0 × U1 be a neighborhood of (x0, x1) with diameters of U0 and U1 less than ϵ. By

the above discussion, letting x′0 = x and x′1 = Tn(x), we get that T jnx′0, T
jnx′1 ∈ U1 for j = 1, 2, . . . , k.

This implies that (x0, x1) ∈ AP[k](X).
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Now assume that

(x0, x1) ∈
∞∩
k=1

Lµk

and U0 ×U1 is a neighborhood of (x0, x1). Let (i0, i1, . . . , im) ∈ {0, 1}m+1. In a similar discussion to the

above, we get that there is n > 0 such that

Ui0 ∩ T−nUi1 ∩ · · · ∩ T−mnUim ̸= ∅.

Since m is arbitrary, for a fixed k ∈ N by choosing suitable (i0, i1, . . . , im) we get that (x0, x1) ∈
Indap(X). To see this, we show for every pair of neighborhoods U0, U1 of x0 and x1 respectively, and

every d ∈ N there is some n ∈ N such that for each (t1, . . . , td) ∈ {0, 1}d,

T−nUt1 ∩ T−2nUt2 ∩ · · · ∩ T−ndUtd ̸= ∅.

Let {0, 1}d = {t(k) = (t
(k)
1 , . . . , t

(k)
d ) : k = 1, 2, . . . , 2d}. Let m = d · 2d and

(i1, . . . , im) = (t(1), t(2), . . . , t(2
d)) ∈ {0, 1}d·2

d

.

There is n > 0 such that

T−nUi1 ∩ · · · ∩ T−mnUim ̸= ∅.

Set Vt(k) = T−nU
t
(k)
1

∩ T−2nU
t
(k)
2

∩ · · · ∩ T−ndU
t
(k)
d

. Then one has

T−nUi1 ∩ · · · ∩ T−mnUim = Vt(1) ∩ T−nVt(2) ∩ T−2nVt(2) ∩ · · · ∩ T−(2
d−1)nV

t(2d) .

It follows that Vt(k) ̸= ∅ for all k ∈ {1, 2, . . . , 2d}. Since {0, 1}d = {t(k) : k = 1, 2, . . . , 2d}, we have that

for each (t1, . . . , td) ∈ {0, 1}d,

T−nUt1 ∩ T−2nUt2 ∩ · · · ∩ T−ndUtd ̸= ∅.

The proof is completed.

A direct application of the above theorem is as follows.

Theorem 4.5. Let (X,T ) be a t.d.s. with AP[d](X) = ∆ for some integer d > 1. Then for each

ergodic Borel measure µ, (X,µ, T ) is measure theoretically isomorphic to a d-step pro-nilsystem.

Likewise, if AP[∞](X) = ∆, then for each ergodic Borel measure µ, (X,µ, T ) is measure theoretically

isomorphic to an ∞-step pro-nilsystem.

4.2 Topological description

Let (X,T ) be a t.d.s. A pair (x, y) ∈ X ×X is said to be asymptotic when limn→+∞ d(Tnx, Tny) = 0.

The set of asymptotic pairs of (X,T ) is denoted by Asym(X,T ).

The notion of the entropy pair was introduced by Blanchard [2, 3]. Let (X,T ) be a t.d.s. and x and

x′ be two distinct points of X. Call (x, x′) ∈ X2 an entropy pair of (X,T ) if for every open cover {U, V }
of X with x ∈ int(U c), x′ ∈ int(V c) we have that the entropy htop({U, V }) > 0. Let E(X,T ) be the set

of entropy pairs.

It is proved2) that Indap has the lifting property. Since P ⊂ RP[d], we know that X/RP[d] is distal,

and hence has zero entropy. Here, we have the following proposition.

Proposition 4.6. Let (X,T ) be a t.d.s. Then

(1) Asym(X,T ) ⊂ AP[d](X). Consequently, X/R(AP[d](X)) has zero topological entropy.

(2) E(X,T ) ⊂ Indap(X,T ) ⊂ AP[d](X,T ). This also implies that X/R(AP[d](X)) has zero topological

entropy.

(3) If µ ∈Me(X,T ) is not measure theoretically isomorphic to an ∞-step nilsystem, then Indap ̸= ∆X ,

where an ∞-step nilsystem means that it is an inverse limit of minimal nilsystems. This also implies that

X/R(AP[d](X)) has zero topological entropy.

2) Huang W, Li H, Ye X. Localization and dynamical Ramsey property. Preprint
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Proof. (1) It is easy to see that Asym(X,T ) ⊂ AP[d](X). It follows that Asym(X,T ) ⊂ AP[d](X).

By the result of [4] we know that X/R(AP[d](X)) has zero topological entropy.

(2) It was shown in [28] that if (x1, x2) ∈ E(X,T ) then each neighborhood U1 × U2 of (x1, x2) has an

independence set of positive density. By the famous Szemerédi’s theorem, each positive density set con-

tains arbitrarily long arithmetic progressions, which implies that E(X,T ) ⊂ Indap(X,T ) ⊂ AP[d](X,T ).

Thus, one gets that X/R(AP[d](X)) has zero topological entropy.

(3) The proof is similar to that of [8, Theorem 6.4]. If Indap(X) = ∆X , then by Theorem 4.4 we have∩
k∈N L

µ
k ⊂ Indap(X) = ∆X . It is easy to verify that

∩
k∈N L

µ
k = Lµ∞ where Lµ∞ is the support of

λ∞ =

∫
Z∞

µz × µzdµ∞(z)

with (Z∞, µ∞) the inverse limit of (Zk, µk). Thus for each ergodic measure µ, (X,µ, T ) is measure

theoretically isomorphic to an ∞-step nilsystem.

If µ ∈ Me(X,T ) is not measure theoretically isomorphic to an ∞-step nilsystem, then Indap ̸=
∆X . Since Indap(X,T ) has the lifting property and Indap(X,T ) ⊂ AP[d](X,T ), we conclude that

X/R(AP[d](X)) has zero topological entropy.

5 For a d-step pro-nilsystem, AP[i] = RP[i], 1 666 i 666 d

In this section we show that for a d-step pro-nilsystem,

AP[i] = RP[i], 1 6 i 6 d.

Hence at least in this case, AP[i] is an equivalence relation.

Let X be a compact metric space and let M(X) be the collection of regular Borel probability measures

on X provided with the weak star topology. Then M(X) is a compact metric space in which X is

embedded by the mapping x 7→ δx, where δx is the Dirac measure at x. If ϕ : X → Y is a continuous map

between compact metric spaces, then ϕ induces a continuous map ϕ∗ : M(X) → M(Y ) which extends

ϕ, where (ϕ∗µ)(A) = µ(ϕ−1A) for all Borel sets A ⊆ Y .

Definition 5.1. An extension π : (X,T ) → (Y, T ) of t.d.s. is said to have a relatively invariant

measure (RIM for short) if there exists a continuous homomorphism λ : Y → M(X) of t.d.s. such that

π∗ ◦ λ : Y → M(Y ) is just the (Dirac) embedding.

In other words, π is an RIM extension if and only if for every y ∈ Y there is a λy ∈ M(X) with

suppλy ⊆ π−1(y) and the map y 7→ λy : Y → M(X) is a homomorphism of t.d.s; this map λ is called a

section for π. Note that π : X → {⋆} has an RIM if and only if X has an invariant measure if and only

if M(X) has a fixed point, where {⋆} stands for the trivial system.

Definition 5.2. An extension ϕ : (Z, T ) → (Y, T ) is called a group extension with group G if the

following conditions are fulfilled:

(1) G is a compact Hausdorff topological group, acting continuously on Z from the right as a group of

automorphisms of the system Z; this means that there is a continuous mapping (x, g) 7→ xg : Z×G→ Z

such that

(a) (right action) ∀x ∈ Z, ∀ g1, g2 ∈ G, x(g1g2) = (xg1)g2, xeG = x;

(b) (automorphisms) ∀ g ∈ G,∀x ∈ Z, T (xg) = (Tx)g.

(2) The fibers of ϕ are precisely the G-orbits in Z, i.e., for all x ∈ Z, ϕ−1(ϕ(x)) = xG.

A basic theorem about equicontinuous extension is the following result.

Theorem 5.3 (See [9]). Let π : X → Y be an extension of minimal systems. Then π is equicontinuous

if and only if it is a factor of a group extension, i.e., we have the following commutative diagram with ϕ
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a group extension:

X

π

��

Z.
ψoo

ϕ~~}}
}}
}}
}}

Y

Glasner [20, Proposition 3.8] showed that every distal extension has an RIM; for our purpose we need

a little more.

Proposition 5.4. Let (X,T ) be a minimal system and let π : (X,T ) → (Y, T ) be a distal extension.

Then π has an RIM with a section λ such that Suppλy = π−1(y) for all y ∈ Y .

Proof. One can find the proof of the first part of the statements in [20] or [7, Chapter V, (6.5)]. Since

we need to show the second part of the statements, we give the whole proof of the results for completeness.

Let π : (X,T ) → (Y, T ) be a factor between two minimal systems. Then by Furstenberg structure

theorem for distal extensions π is distal if and only if there exist a countable ordinal ζ and a directed

family of factors (Xθ, T ), θ 6 ζ such that

(1) X0 = Y and Xζ = X;

(2) for θ < ζ the extension πθ : Xθ+1 → Xθ is equicontinuous; and

(3) for a limit ordinal ξ 6 ζ,

Xξ = lim
←−θ<ξ

Xθ.

For convenience if a section satisfies Suppλy = π−1(y) for all y ∈ Y then we say it is a section with

full support. Hence to prove the result, we need to show (I) each equicontinuous extension has a section

with full support; (II) a (transfinite) composition of RIM with full support section has an RIM with full

support section.

(I) Each equicontinuous extension has a section λ and Suppλy = π−1(y) for all y ∈ Y .

Let π : X → Y be an equicontinuous extension of minimal systems. Now by Theorem 5.3 we have the

following diagram with ϕ a group extension:

X

π

��

Z.
ψoo

ϕ~~}}
}}
}}
}}

Y

Now assume that ϕ satisfies all conditions in Definition 5.2. For x ∈ Z and f ∈ C(Z), let

λ̂ϕ(x)(f) =

∫
K

f(xg)dµ(g),

where µ is the Haar measure on the group G. Then Y → M(Z), y 7→ λ̂y is a section for ϕ. Since for all

x ∈ Z, ϕ−1(ϕ(x)) = xG, by the definition of λ̂, we have

Suppλ̂ϕ(x) = Suppµ = xG = ϕ−1(ϕ(x))

for all x ∈ Z.

Now let λ = ψ∗ ◦ λ̂ : Y → M(X), where ψ∗ : M(Z) → M(X) is the map induced by ψ : Z → X.

Then λ is a section for π, and

Suppλy = ψ(Suppλ̂y) = ψ(ϕ−1(y)) = π−1(y)

for all y ∈ Y . This ends the proof for equicontinuous extensions.

(II) A (transfinite) composition of RIM with full support section has an RIM with full support section.

To prove the statement, it suffices to show two cases. One is the composition of two extensions with

the properties, and the other is the inverse limit of extensions.
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First, let π1 : X → Y and π2 : Y → Z be open factor extensions between minimal systems and let π1
and π2 have RIMs with full support sections. Let λ1 : Y → M(X) and λ2 : Z → M(Y ) be two sections.

Define η : Z → M(X) such that for each z ∈ Z,

ηz(f) =

∫
Y

(∫
X

fdλ1y(x)

)
dλ2z(y),

for each f ∈ C(X). To check that η is a section we need to show that η is continuous and (π2 ◦ π1)∗(ηz)
= δz. The continuity of η follows from that of λi, i = 1, 2. Now we check that (π2 ◦ π1)∗(ηz) = δz. In

fact,

(π2 ◦ π1)∗(ηz)(B) = ηz(π
−1
1 ◦ π−12 (B))

=

∫
Y

(∫
X

1π−1
2 (B)dδy

)
dλ2z(y) =

∫
Y

1Bdδz = δz(B),

for each B ∈ B(Z), since λi, i = 1, 2 is a section.

Finally, we show Supp(ηz) = (π2◦π1)−1(z) for each z ∈ Z. Fix z ∈ Z and assume that x ∈ (π2◦π1)−1(z)
and U is an open neighborhood of x. Then

ηz(U) =

∫
Y

(∫
X

1Udλ
1
y(x)

)
dλ2z(y) =

∫
Y

λ1y(U)dλ2z(y) > 0,

since (1) π1(U) is open in Y , and π2◦π1(U) is open in Z, (2) for y ∈ π1(U), λ1y(U) > 0 and λ2z(π1(U)) > 0.

Next, we discuss the inverse limit. Assume that X is an inverse limit of Xn. Let πn : X → Xn and

πn,m : Xn → Xm if n > m (we set πn,n = id). For any x ∈ X1 and f ∈ C(X) define

ηx(f) = lim
n→∞

(ηn)x(fn),

if f is a limit of fn ◦ πn with fn ∈ C(Xn). Here, (ηn)x ∈ M(Xn) is defined by induction using the

previous argument.

It is easy to check that ηx is well defined. Moreover, if f = fnπn for some n ∈ N then ηx(f) =

(ηn+i)x(fnπn+i,n) = (ηn)x(fn) for i > 0.

Then we check that η : X1 → M(X) is a section. To show the continuity of η, assume that yn → y. We

show ηyn → ηy, i.e., for each f ∈ C(X), ηyn(f) → ηy(f). This follows from the facts that when f is close

to fkπk in C(X), ηz(f) is close to ηz(fkπk) = (ηk)z(fk) for each z ∈ X1 uniformly; and ηk : X1 → M(Xk)

is continuous.

We are left to show that (π1)
∗ηx1(B) = δx1(B) for each B ∈ B(X1). In fact,

(π1)
∗ηx1(B) = ηx1(π

−1
1 (B)) = lim

n→∞
(ηn)x1(π

−1
n,1(B)) = δx1(B).

To show η is full, we note that {π−1n (Un) : Un is open in Xn, n ∈ N} is a base for the topology of X.

Fix x1 ∈ X1 and let x ∈ π−11 (x1) and U be an open neighborhood of x. Then there is n ∈ N such that

U ⊃ π−1n (Un) and x1 ∈ πn,1(Un), where Un is an open set in Xn. Then ηx1(U) > (ηn)x1(Un) > 0. The

proof is completed.

Now we have the following result.

Proposition 5.5. Let (X,T ) be a strictly ergodic system with a unique invariant measure µ and let

π : (X,T ) → (Y, T ) be a distal extension. Let µ =
∫
Y
µydν(y) be the disintegration of µ over ν, where

v = π∗(µ). Then there is Y0 ⊂ Y with a full measure such that for each y ∈ Y0, Supp(µy) = π−1(y).

Proof. Since π is distal, it has an RIM by Proposition 5.4. Let λ : Y →M(X) be a section for π. Then

µ̃ =
∫
λy d ν(y) is an invariant measure of (X,T ). By unique ergodicity, µ̃ = µ. Since the disintegration

is unique, there is Y0 ⊂ Y with full measure such that for each y ∈ Y0, µy = λy. Thus the result follows

from Proposition 5.4.
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The following lemmas come from [8].

Lemma 5.6. Let (X,T ) be a minimal system of order n. Then the maximal measurable and topological

factors of order d coincide, where d 6 n.

Lemma 5.7. Let (X,T ) be a minimal ∞-step pro-nilsystem. Then (X,T ) is an inverse limit of

minimal di-step nilsystems.

Recall that for d ∈ N, Xd = X/RP[d].

Lemma 5.8. Let (X,T ) be a minimal system. If Xn = Xn+1 then Xk = Xn for any k > n.

Now it is time to give the main result of this section.

Theorem 5.9. Let (X,T ) be a unique ergodic minimal distal system such that for each d > 1, Zd is

isomorphic to Xd. Then for d > 1, AP[d] = RP[d].

Consequently, for a minimal ∞-nilsystem, we have for d > 1, AP[d] = RP[d].

Proof. We use induction. It is clear that for d = 1, AP[1] = RP[1]. Assume that AP[d] = RP[d] for

1 6 d 6 n. Let µ be the unique ergodic measure on (X,T ). Let π : X → Xn+1 = X/RP[n+1] be the

factor map and ν = π(µ). By the assumption, π can be viewed as the factor map from X to Zn+1.

Let µ =
∫
Xn+1

µzdν(z) be the disintegration of µ over ν and

λ =

∫
Xn+1

µz × µzdν(z).

By Theorem 4.4, Supp(λ) ⊂ AP[n+1].

We are going to show that Supp(λ) = Rπ. First we note that λ(Rπ) = 1, so Supp(λ) ⊂ Rπ. By

Proposition 5.5 there is a measurable set Y0 ⊂ Xn+1 with a full measure such that for any y ∈ Y0,

Supp(µy) = π−1(y). Let W = Supp(λ). Since

λ(W ) =

∫
Y0

µy × µy(W )dν(y) = 1,

we have that for a.e. y ∈ Y , µy × µy(W ) = 1. This implies that

Supp(µy)× Supp(µy) ⊂W, a.e. y ∈ Y.

Thus by the distality of π, we have Supp(λ) = Rπ. Thus, Rπ = Supp(λ) ⊂ AP[n+1]. Since AP[n+1]

⊂ RP[n+1], we conclude that AP[n+1] = RP[n+1]. This ends the proof of the first statement of the

theorem.

When (X,T ) is a minimal ∞-step pro-nilsystem, (X,T ) is uniquely ergodic (see [8]). The result follows

from what we just proved, Lemmas 5.6–5.8 and an inverse limit argument.

6 An example

In general it is not difficult to find a system whose maximal measurable and topological factors of order d

do not coincide, where d 6 n. In fact Lehrer [30] showed the following result: every ergodic system has

a uniquely ergodic and topologically mixing model. Pick any non-periodic ergodic system with discrete

spectrum, and by Lehrer’s result let (X,T ) be its uniquely ergodic and topologically mixing model. Since

(X,T ) is topologically mixing, its maximal equicontinuous factor Z1 is trivial.

By Lemma 5.6, for a minimal system of order n, the maximal measurable and topological factors of

order d coincide, where d 6 n. It is natural to ask that for a distal minimal system, if the maximal

measurable and topological factors of order d coincide.

In this section we construct a strictly ergodic distal system such that Z1 is not isomorphic to X1, i.e.,

we want to give the following example.
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Example 6.1. There is a uniquely ergodic minimal distal system (X,T ) with discrete spectrum whose

maximal equicontinuous factor is not equal to (X,T ).

Proof. Let us state the general idea. Let Tα : T → T, x 7→ x+α, x ∈ T, and mT be the unique measure

of the irrational rotation Tα on T. Then mT is the Lebesgue measure on T. We construct T : T2 → T2

having the form of T (x, y) = (x + α, y + u(x)) such that (T2, T ) is minimal distal and uniquely ergodic

with the unique measure µ = mT2 = mT ×mT, where u : T → T is continuous. At the same time (T, Tα)
is the maximal equicontinuous factor of (T2, T ).

Step 1. The construction of u.

Let us construct u using some results of [12]. Choose an irrational α and a subsequence {nk} of integers

with nk ̸= 0, n−k = −nk such that

h(θ) =
∑
k ̸=0

1

|k|
(e2πinkα − 1)e2πinkθ

and g(e2πiθ) = e2πiλh(θ) (where λ ∈ R will be determined later) are C∞-functions of [0, 1) and T respec-

tively. It is clear that

h(θ) = H(θ + α)−H(θ), where H(θ) =
∑
k ̸=0

1

|k|
e2πinkθ.

Thus, H(·) ∈ L2(0, 1) is a measurable function. However, H(·) cannot correspond to a continuous function

since
∑
k ̸=0

1
|k| = ∞ and here the series is not Cesero summable at θ = 0 (see [36]). Therefore, for some λ,

e2πiλH(θ) cannot be a continuous function either.

Considering R(e2πiθ) = e2πiλH(θ), we get R(e2πiαs)/R(s) = g(s) with R : T → T measurable but not

continuous.

Put u(x) = λh(x) + β, where α and β are irrational such that Tα,β : T2 → T2, (x, y) 7→ (x+ α, y + β)

is minimal on T2 and thus uniquely ergodic.

Step 2. The system (T2, T ) with T (x, y) = (x + α, y + u(x)) is strictly ergodic, and (T2, T, µ) is

isomorphic to (T2, Tα,β ,mT2).

It is clear that mT2 is an invariant measure for T . Define ϕ : T2 → T2, (x, y) 7→ (x, y − λH(x)). It

is clear that ϕ is measurable and mT2 is an invariant measure for ϕ. Moreover, we have the following

commuting diagram:

(T2,mT2)

ϕ

��

T // (T2,mT2)

ϕ

��
(T2,mT2)

Tα,β

// (T2,mT2),

since ϕ◦T (x, y) = (x+α, y+β−λH(x)) = Tα,β ◦ϕ(x, y). By the fact that ϕ is a measurable isomorphism

it follows that (T2,mT2 , T ) is ergodic (as (T2,mT2 , Tα,β) is ergodic). This implies that (T2,mT2 , T ) is

uniquely ergodic (see [15, Proposition 3.10]). Since Supp(mT2) = T2, it follows that (T2, T ) is minimal.

Step 3. (T, Tα) is the maximal equicontinuous factor of (T2, T ).

To show this fact we need some preparation. Let π : (T2, T ) → (T, Tα) be the projection to the first

coordinate and ρ =
∫ 1

0
u(x)dx. We show that u is an unbounded motion, i.e., there exists x′ ∈ T such

that

sup
n>1

|u(x′) + u(x′ + α) + · · ·+ u(x′ + (n− 1)α)− nρ| = +∞.

This is equivalent to say the following lemma.

Lemma 6.2. There exists x′ ∈ T such that

sup
n>1

|λh(x′) + λh(x′ + α) + · · ·+ λh(x′ + (n− 1)α)− nρ∗| = +∞, (6.1)

where ρ∗ =
∫ 1

0
λh(x)dx = 0.
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The proof of Lemma 6.2 will be given at the end of the proof. By Lemma 6.2 there exists x′ ∈ T such

that supn>1 |
∑n−1
j=0 u(x

′+jα)−nρ| = +∞.Without loss of generality, we assume that supn>1{
∑n−1
j=0 u(x

′

+ jα)− nρ} = +∞.

We need another well-known lemma (see, for example, [32, Lemma 4.1]). Note that the degree of u

is zero.

Lemma 6.3. There exist x1, x2 ∈ T such that

sup
n>1

{u(x1) + u(x1 + α) + · · ·+ u(x1 + (n− 1)α)− nρ} 6 2

and

inf
n>1

{u(x2) + u(x2 + α) + · · ·+ u(x2 + (n− 1)α)− nρ} > −2.

Now we are ready to show that (T, Tα) is the maximal equicontinuous factor of (T2, T ). Since

RP[1](T2, T ) is T × T -invariant and closed it remains to prove that

RP[1](T2, T ) ⊃ {(x1, y1), (x1, y2) : y1, y2 ∈ T}.

To do this consider

T∞,+ =
{
x ∈ T : sup

n>1
{u(x) + u(x+ α) + · · ·+ u(x+ (n− 1)α)− nρ} = +∞

}
.

It is Gδ- and Tα-invariant. As x
′ ∈ T∞,+ we know that x′ + iα ∈ T∞,+, i ∈ N.

Fix y1, y2 ∈ T. For ϵ > 0 let

U1 = (x1 − ϵ, x1 + ϵ)× (y1 − ϵ, y1 + ϵ) and U2 = (x1 − ϵ, x1 + ϵ)× (y2 − ϵ, y2 + ϵ).

Choose i∗ ∈ N such that x∗1 = x′+ i∗α (mod Z) ∈ (x1− ϵ, x1+ ϵ). Since x∗1 ∈ T∞,+, there exists m ∈ N
such that

u(x∗1) + u(x∗1 + α) + · · ·+ u(x∗1 + (m− 1)α)−mρ > 3.

Now consider Q : (x1 − ϵ, x1 + ϵ) → R, x 7→
∑m−1
j=0 u(x+ jα)−mρ+ y1. Then by Lemma 6.3,

Q(x1 − ϵ, x1 + ϵ) ⊃
[
y1 +

m−1∑
j=0

u(x1 + jα)−mρ, y1 +

m−1∑
j=0

u(x∗1 + jα)−mρ

]
⊃ [y1 + 2, y1 + 3].

Thus, there is x∗ ∈ (x1 − ϵ, x1 + ϵ) such that Q(x∗) = y2 +
∑m−1
j=0 u(x1 + jα)−mρ (mod Z). Now we

have (x∗, y1) ∈ U1 and (x1, y2) ∈ U2. Moreover,

Tm(x∗, y1) =

(
x∗ +mα, y1 +

m−1∑
j=0

u(x∗ + jα)

)

= (x∗ +mα, y1 +Q(x∗) +mρ) =

(
x∗ +mα, y2 +

m−1∑
j=0

u(x1 + jα)

)
,

Tm(x1, y2) =

(
x1 +mα, y2 +

m−1∑
j=0

u(x1 + jα)

)
.

This implies that

∥Tm(x∗, y1)− Tm(x1, y2)∥ 6 ∥x∗ − x1∥ < ϵ,

i.e., we have proved that ((x1, y1), (x1, y2)) ∈ RP[1](T2, T ). It follows that

RP[1](T2, T ) = {((x, y1), (x, y2)) : x, y1, y2 ∈ T} = Rπ,

since π is distal.
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To show Lemma 6.2 we need the following lemma.

Lemma 6.4 (See [12, Theorem 3.1]). Let (Ω0, T0) be a strictly ergodic system and µ0 its unique ergodic

measure. Let Ω = Ω0 ×T and let T : Ω → Ω be defined by T (w0, s) = (T0(w0), g(w0)s), where g : Ω0 → T
is a continuous function. Then if the equation gk(w0) = R(T0(w0))/R(w0) has a solution R : Ω0 → T
which is measurable but not equal almost everywhere to a continuous function, then

lim
N→∞

1

N

N−1∑
n=0

f ◦ Tn(w)

cannot exist for all continuous functions f and all w ∈ Ω.

Proof of Lemma 6.2. Let

T∞ =
{
x ∈ T : sup

n>1
|λh(x) + λh(x+ α) + · · ·+ λh(x+ (n− 1)α)− nρ∗| = +∞

}
. (6.2)

It is clear that T∞ is a Gδ- and Tα-invariant subset, and thus if it is not empty then it is a dense Gδ
subset of T.

Assume to the contrary that T∞ = ∅. We claim that there exists M ∈ N such that

|λh(x) + λh(x+ α) + · · ·+ λh(x+ (n− 1)α)− nρ∗| 6M

for any n > 1 and x ∈ T. If the claim does not hold, then there exist xk ∈ T and nk → +∞ such that

|λh(xk) + λh(xk + α) + · · ·+ λh(xk + (nk − 1)α)− nkρ
∗| > k. (6.3)

Consider

Tl = {x ∈ T : ∃n ∈ N s.t. |λh(x) + λh(x+ α) + · · ·+ λh(x+ (n− 1)α)− nρ∗| > l},

l ∈ N. It is clear that Tl is open and T∞ =
∩
l∈N Tl. Now we show that Tl is a dense open subset for any

l ∈ N.
Fix l ∈ N. For any non-empty open subset V of T, there exists r = r(V ) ∈ N such that

∪r
i=0 T

−i
α V = T.

Choose k > l + r|ρ∗|+ rmaxx∈T |λh(x)|. By (6.3) we have

|λh(xk + iα) + λh(xk + iα+ α) + · · ·+ λh(xk + iα+ (nk − i− 1)α)− (nk − i)ρ∗| > l

for i = 0, 1, . . . , r, i.e., xk + iα ∈ Tl. Since
∪r
i=0 T

−i
α V = T, there exists 0 6 i 6 r with xk + iα ∈ V ∩ T.

This implies that Tl is dense, and hence T∞ is dense, which leads to a contradiction. This proves the

claim.

Consider now S : T× R → T× R, (x, y) 7→ (x+ α, y + λh(x)− ρ∗). Since

Sn(x, y) = (x+ nα, y + λh(x) + · · ·+ λh(x+ (n− 1)α)− nρ∗)

for any n > 0, we have {Sn(0, 0) : n > 0} ∈ T× [−M,M ]. Thus, E = {Sn(0, 0) : n > 0} ⊂ T× [−M,M ]

is an S-invariant compact subset. This deduces that there is a minimal subset F ⊂ E.

As S is distal, (F, S) is a minimal distal system and p : T × R → T, (x, y) 7→ x is a factor map from

(F, S) to (T, Tα).
Let I(x) = {y ∈ R : (x, y) ∈ F} for any x ∈ T. Fix x ∈ T. We claim that |I(x)| = 1. In fact

let y∗1 = max I(x) and y∗2 = min I(x). Then y∗2 6 y∗1 . As (F, S) is minimal, there are {nk} such that

Snk(x, y∗2) → (x, y∗1). This implies

y∗2 + λh(x) + · · ·+ λh(x+ (nk − 1)α)− nkρ
∗ → y∗1

and we assume that

y∗1 + λh(x) + · · ·+ λh(x+ (nk − 1)α)− nkρ
∗ → y∗3 ∈ I(x).
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Thus, y∗1 6 y∗3 and hence y∗1 = y∗3 . This implies y∗1 = y∗2 , i.e., |I(x)| = 1. This ends the proof of the claim.

By what we just proved we know that there exists g̃ : T → R continuous such that

{(x, g(x)) : x ∈ T} = F.

Note that the continuity of g follows from the fact that the projection p : E → T is one to one.

Since SF = F we get that (x+ α, g̃(x+ α)) = (x+ α, g̃(x) + λh(x)− ρ∗) for any x ∈ T. As ρ∗ = 0 we

know that λh(x) = g̃(x+ α)− g̃(x), ∀x ∈ T.
Now consider U : T2 → T2, (w1, w2) 7→ (w1e

2πiα, g(w1)w2), where g(e
2πiθ) = e2πiλh(θ). Since R(e2πiαs)/

R(s) = g(s) with R : T → T is measurable but not continuous, by Lemma 6.4 there exist f ∈ C(T2) and

(w1, w2) ∈ T2 such that

lim
N→∞

1

N

N−1∑
n=0

f ◦ Un(w1, w2) does not exist.

On the other hand since λh(x) = g̃(x+ α)− g̃(x), ∀x ∈ T, by writing w1 = e2πix1 and w2 = e2πiy1 we

have

1

N

N−1∑
n=0

f ◦ Un(w1, w2) =
1

N

N−1∑
n=0

f(e2πi(x1+nα), e2πi(y1+g̃(x1+nα)−g̃(x1)))

=
1

N

N−1∑
n=0

H̃(nα) =
1

N

N−1∑
n=0

H̃(Tnα (0)) →
∫ 1

0

H̃(t)dt,

by the unique ergodicity of (T, Tα), where H̃(t) = f(e2πi(x1+t), e2πi(y1+g̃(x1+t)−g̃(x1))) is a periodic contin-

uous function of period 1 for t. It is a contradiction. Thus, we have proved that T∞ ̸= ∅, and this ends

the proof.
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