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Abstract Statistical machine learning models should be evaluated and validated before putting to work.

Conventional k-fold Monte Carlo cross-validation (MCCV) procedure uses a pseudo-random sequence to partition

instances into k subsets, which usually causes subsampling bias, inflates generalization errors and jeopardizes

the reliability and effectiveness of cross-validation. Based on ordered systematic sampling theory in statistics

and low-discrepancy sequence theory in number theory, we propose a new k-fold cross-validation procedure by

replacing a pseudo-random sequence with a best-discrepancy sequence, which ensures low subsampling bias and

leads to more precise expected-prediction-error (EPE) estimates. Experiments with 156 benchmark datasets

and three classifiers (logistic regression, decision tree and näıve bayes) show that in general, our cross-validation

procedure can extrude subsampling bias in the MCCV by lowering the EPE around 7.18% and the variances

around 26.73%. In comparison, the stratified MCCV can reduce the EPE and variances of the MCCV around

1.58% and 11.85%, respectively. The leave-one-out (LOO) can lower the EPE around 2.50% but its variances are

much higher than the any other cross-validation (CV) procedure. The computational time of our cross-validation

procedure is just 8.64% of the MCCV, 8.67% of the stratified MCCV and 16.72% of the LOO. Experiments

also show that our approach is more beneficial for datasets characterized by relatively small size and large

aspect ratio. This makes our approach particularly pertinent when solving bioscience classification problems.

Our proposed systematic subsampling technique could be generalized to other machine learning algorithms that

involve random subsampling mechanism.
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1 Introduction

All statistical machine learning processes start with a basic truism: garbage in, garbage out. This means

that nonsense input data usually produce nonsense conclusions. However, “garbage in, garbage out” is not
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only about data quality, but also about the way in which data scientists evaluate and choose statistical

machine learning models. Such evaluation often relies on a cross-validation (CV) to estimate model

generalization performance metrics. The holdout procedure is the simplest kind of CV, in which a data

set is split into a training set and a test set. However, the holdout is not reliable as the evaluation

depends heavily on which data points end up in the training set and which in the test set [23]. Thus,

the evaluation may be significantly different depending on how the subsampling is made [23]. The k-fold

Monte Carlo CV (MCCV), the most popular CV procedure, is an effective way to reduce the subsampling

bias in the holdout procedure. Given a dataset of n instances, an MCCV procedure is to randomly

generate k subsets, each of which contains m instances, where n = km. That is to say, each instance

is first assigned an index between 1 and n to construct a subsampling frame. Using the simple random

subsampling (SRS) method, the MCCV procedure then uses a pseudo-random number generator (PRNG)

to generate a random integer sequence. This sequence consists of n distinct, randomly ordered integers

between 1 and n, each of which refers to an element of the subsampling frame. Next, the random integer

sequence is split into k equal-sized parts and the corresponding instances are partitioned into k subsets.

Subsequently, k iterations of training and testing are performed such that in each iteration, a different

subset is held out to estimate the EPE while the remaining k − 1 subsets are used for training [40].

However, relying on the SRS technique to subsample instances to training and test sets not only

generates high computational costs, but also poses risks [5, 31]. The inductive bias of a model and the

subsampling bias in the SRS may be confounded and lead to inflated EPEs [31]. This is especially true

for small, imbalanced, and high dimensional datasets [15]. The random integer sequence used in the SRS

poses a threat to the MCCV’s validity and reliability, as the sequence may seem to be random, but not

truly random and not truly uniformly distributed. This is because the elements in such sequence often

clump at certain arbitrary intervals [16]. When performing SRS, similar instances could be included

in one subset, meaning that information may be over- (clusters) or under-represented (voids) in that

subset [6]. This is just like the random shuffle function of Spotify (a music player App) cannot ensure

songs from a given artist are spread throughout the playlist. To avoid the risk of obtaining dissimilar

subsets, the MCCV procedure should be repeated p times (usually p = 50) with different random seeds to

circumvent the risk of obtaining greatly dissimilar subsets [31], as there are trillions of ways to partition n

instances into k subsets.

The reliability of the MCCV increases as the k and p increase. When k = n, the MCCV becomes the

leave-one-out (LOO) CV. In practice, the LOO is not widely used because it is more computationally

demanding and has a larger variance than the MCCV [23]. The stratified MCCV procedure is another

mean to alleviate the subsampling bias issue [36]. The stratified MCCV procedure starts by dividing a

dataset into non-overlapping strata based on its class label vector. It then randomly and proportionally

partitions instances into k subsets from each stratum. While this purposive sampling method ensures the

same distribution of class values in all subsets, it may not ensure the same distributions of feature values.

Thus, subsampling bias problem may remain unsolved. A low subsampling bias is crucial because no

matter how sophisticated a statistical machine learning algorithm is, the resulting model may be biased if

its training sets fail to represent the idiosyncrasies of the complete set [5,31]. Likewise, subsampling bias

and insufficiently informative test data will inflate the EPEs, jeopardizing the validity and reliability of

a CV procedure [15]. We may run the risk of choosing a biased model and drawing a wrong conclusion.

This study follows the ordered systematic subsampling (OSS) theory [29] to propose a simple yet effec-

tive method, the best-discrepancy systematic subsampling method for k-fold CV (hereafter the BDSCV),

which ensures a smaller subsampling bias than the MCCV, stratified CV and LOO. The contribution of

our proposed systematic subsampling method lies in the fact that we make a step further to reduce sub-

sampling bias than the conventional systematic subsampling one, i.e., the first subsampling instance is not

chosen at random as in the conventional OSS method. Instead, it is chosen based on the best-discrepancy

sequence (BDS), a sequence that is a uniformly distributed sequence, finite or infinite, in which the num-

ber of any proportion of its elements falling into an arbitrary interval proportionally converts to the

distance of the interval [32]. Our subsampling interval is also determined by the BDS.

This article is organised as follows. We first introduce the theories of the low discrepancy sequence
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(LDS) and the BDS. We then illustrate subsampling traps in conventional k-fold CV. Next, we propose the

best-discrepancy systematic subsampling method and the BDSCV procedure. We conduct experiments to

provide empirical supports to our theories. Finally, we discuss our proposed procedure and its limitations.

2 Methods

2.1 Low-discrepancy sequences and best-discrepancy sequences

For brevity, we restrict our discussion to the key definitions of low-discrepancy sequence (LDS) and

best-discrepancy sequence (BDS), which are necessary to understand our procedure. We refer interested

readers to the comprehensive reviews of [13,20,26].

Let X denote a sequence x1, x2, . . . , xn, . . . in the unit interval [0, 1). The discrepancy DN of its

consecutive N elements is defined by

DN = sup
06a<b<1

∣∣∣∣C([a, b);N)

N
− (b− a)

∣∣∣∣, (2.1)

where the counting function C([a, b);N) denotes the number of element xn with 1 6 n 6 N for which

xn ∈ [a, b) [26]. This X is said to be an LDS if DN is low for all sufficiently large integers N . The

sequence X is uniformly distributed in [0, 1) if DN → 0 as N → ∞ [26]. In simple terms, the sequence X

is uniformly distributed if every subinterval [a, b) eventually obtains its proper share in [0, 1). A sequence’s

level of uniformity is measured by its discrepancy function DN . A classical theorem of Chung [9] states

that, in general, the PRNG does not produce a sequence with DN lower than N−1/2. In any case, the

order of the discrepancy DN cannot be lower than N−1 logN by [38]. Thus, the best we can hope for DN

is something like

DN 6 cN−1+ε, (2.2)

where ε > 0 is arbitrarily small, and c > 0 is some constant. This explains the following definition.

Definition 2.1. A sequence X is called a BDS, if its discrepancy function DN satisfies (2.2) for

arbitrary ε > 0 and some constant c > 0.

In the following we will present some BDSs that are produced by methods from number theory. Of

particular interests to this paper are those BDSs of the form

{nα}, n = 1, 2, 3, . . . , (2.3)

where {α} denotes the fractional part of a real number α. Plainly each term of (2.3) falls into the unit

interval [0, 1). Denote by X (α) the sequence (2.3).

Theorem 2.2. The sequence X (e) is a BDS, where e is the base of natural logarithm.

Proof. It follows from [1] that (2.2) holds for X (e) with the constant c therein depending only on ε,

and by [30] the dependence of c on ε is effectively computable. See also the arguments in [20, Chapter 4,

Section 5].

Remark 2.3. Of course the sequence X (α) can be a BDS for many other α. For example, it is known

[20, Chapter 4, Section 5] that if α is real algebraic, then the sequence X (α) is a BDS. Examples of

these α include
√
p with p ranging over all prime numbers p. Prior studies also propose other ways to

generate BDS, for example the Halton sequence [19] and the van der Corput sequence [44]. Note that

our sequence X (e) in Theorem 2.2 belongs to none of the above examples since e is transcendental. In

this paper we have followed the suggestion of Hua and Wang [20, Chapter 4, Section 5] to use X (e)

rather than those previous sequences, and our numerical experiments support their claim that X (e) is

of important practice implications.

The discrepancy properties of LDS/BDS have attracted a lot of attention [14]. Indeed, point sampling

is an important research area in computational mathematics. For example, Xu and Zhou [46] proposed

a deterministic method to produce the interpolation points and showed its outstanding performance
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with L 1 minimization. Previous studies also report that the LDS can accelerate the convergence for

Monte Carlo quadrature formulas [32] and its points are correlated to provide greater uniformity [41].

The LDS has been applied in many fields other than mathematics, including optimization [17,25,34,43],

machine learning [2,3,8], computer graphics and vision [22,24,27,37,45], finance [4,35,39,42], and engi-

neering [7,11,21,28]. Our study is inspired from these studies, although they do not directly address CV

procedures. We develop the best-discrepancy systematic subsampling method and the BDSCV procedure

based on the BDS.

2.2 Numerical remarks on Subsection 2.1

Panels A–C in Figure 1 show the scatter plots of three random sequences, each of which contains 500

elements. The three sequences contain clear clumps and voids so that it is highly possible that the distance

between two consecutive random elements may be either very small or very large. To formally compute

the DN of each sequence, we randomly choose 50 pairs of interval [a, b) and compute the discrepancy

to uniform distribution for these two sequences using (2.1), respectively. Results are shown in Figure 2,

from which we find that the average DN and the variance of 50 measures of each random sequence are

quite large. That is to say, these three sequences are not quite uniformly distributed.

Panel D in Figure 1 illustrates a BDS of 500 elements. The interval between two consecutive elements

of a BDS is determined by the property of uniformity so that the elements scatter evenly to avoid

clumps and voids. We formally compute the DN of BDS by randomly choosing 50 pairs of interval [a, b)

using (2.1). Figure 2 shows that the resulting discrepancy of BDS is close to zero and the variance of

the 50 measures of BDS is greatly smaller than that of its random counterpart, i.e., unlike the elements

of a random number sequence, the elements of a BDS are as uniformly distributed as possible. Successive

elements are inserted in a position as far as possible from the other elements in order to avoid clustering

and voids. The elements generated sequentially fill in the larger gaps between the previous elements of

the sequence [8].

Random sequences cause subsampling bias in k-fold CV. To illustrate subsampling traps, we generate

an artificial dataset of 16 instances with four binary features and one label vector with 16 classes (i.e.,

each combination of the values of the four binary features corresponds to one class). We duplicate this

dataset five times and form a complete set of 80 instances. A logistic regression model is used to map
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Figure 1 (Color online) The scatter plots of random sequences and of BDS
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Figure 2 (Color online) The uniform discrepancy of random sequences and of BDS

Figure 3 (Color online) The error rate in conventional k-fold CV

out the relations between features and labels. This should be an easy task, as the classification boundary

of this dataset are perfectly clear. Therefore, if the 80 instances are well partitioned into representative

subsets, then the error rate of both Holdout and CV procedure should be zero.

We conduct k-fold CV with the logistic regression model, where k ranges from 2 to 10. Each k-fold CV

procedure is repeated 50 times with different random seeds to circumvent the risk of obtaining largely

dissimilar subsets. Results are shown in Figure 3. The error rate of the k-fold CV is surprisingly high and

the error rate drops when the number of k increases. However, the error rates are always larger than zero.

The box plots also suggest that there are large variations over 50 repetitions. This illustration vividly

demonstrates that there are actually traps in conventional k-fold CV. A major threat to the validity and

reliability of k-fold CV lies in subsampling bias by the clumps and voids illustrated in Figure 1, which

largely jeopardize the representativeness of subsets. Results of model evaluation and selection could be

problematic.

2.3 The best-discrepancy systematic subsampling method

We propose a systematic subsampling method based on the uniformity property of the BDS. The theo-

retical foundation of our proposed method stems from sampling theory, which proves that the ordered
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systematic subsampling (OSS) method can obtain smaller sampling error than the SRS and the stratified

sampling [29]. The OSS method works as follows. A complete dataset should be firstly sorted either

ascendingly or descendingly so that adjacent elements tend to be more similar than elements that are

farther apart. Then, a fixed subsampling interval (also called a “skip”) k is defined as k = n/m, where n

is the dataset size and m is the subset size. The subsampling starts by selecting an element from the

ordered complete dataset at random and then every k-th element is selected until a subset of m elements

is formed. The ordered systematic subsampling outperforms the SRS because the former can avoid choos-

ing two elements adjacent to each other and the resulting subsets are forced to compose of various values,

meaning that the discrepancy between subsets caused by subsampling bias can be reduced [29].

We improve the OSS by replacing the fixed subsampling interval with a BDS. Suppose D = (d1, . . . , dn)

is a one-dimensional dataset with n instances. We use this vector notation to emphasise the importance

of the order of D. Let

D̃ = (d̃1, . . . , d̃n)

be the sorted D, meaning that D̃ is a permutation of the coordinates of D, so that

d̃1 < · · · < d̃n.

This D̃ is to be divided into k subsets, each of which contains m instance (i.e., n = km). To do so, an

integer sequence derived from a BDS is needed that refers to the subsampling frame of a dataset.

Let X = (x1, . . . , xn) be the vector of the first n elements of X (e). Let X̃ = (x̃1, . . . , x̃n) be the

sorted X, meaning that X̃ is a permutation of the coordinates of X, so that

x̃1 < · · · < x̃n.

The ranking vector R = (r1, . . . , rn) of X is such that x̃rj = xj for j = 1, . . . , n. Then, given n = km, we

can chunk R into k disjoint subsets of the same size m, i.e.,

R =
∪

16j6k

Rj , (2.4)

where R1 = (r1, . . . , rm), R2 = (rm+1, . . . , r2m), etc. This R inherits the property of uniformity. We can

use R to partition D̃ into k subsets

D̃ =
∪

16j6k

D̃j ,

where for j = 1, . . . , k,

D̃j = (d̃r : r ∈ Rj). (2.5)

Note that each subset D̃j is written as a vector for the same reason.

Our proposed best-discrepancy systematic subsampling method can make sure the instances in a subset

as heterogeneous as possible while different subsets as homogenous as possible. According to the theory of

analysis of variance [29], we know that the sum of squares of total (SSTO) is decomposed into the sum of

squares within subsets (SSW) plus the sum of squares between subsets (SSB). The level of heterogeneity

of instances within subsets can be measured by the intra-class correlation coefficient (ICC) [29],

ICC = 1− km

km− 1

SSW

SSW+ SSB
, (2.6)

where

SSW =

k∑
i=1

m∑
j=1

(dij − di), (2.7)

SSB = n
k∑

i=1

(di − d), (2.8)
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SSTO = SSW+ SSB. (2.9)

In addition, Equation (2.6) can be transformed as

SSW =
(1− ICC)(n− 1)SSTO

n
. (2.10)

Equation (2.10) implies that SSW becomes larger when ICC becomes negative (i.e., the instances

within a subset are dispersed more than a randomly chosen subset would be). Prior study [29] proves

that to have a negative ICC, the dataset should be ordered, so that it exhibits a positive autocorrelation

(i.e., subsequent instances have similar or the same values) and instances should be chosen with a skip

from the ordered dataset so that a subset is forced to compose of both small values and large values. The

best-discrepancy systematic subsampling method follows exactly these guidelines to allocate instances.

In addition, it is important to mention that the subsampling interval is naturally and uniformly set by

the uniformity property of a BDS. The subsampling interval of the BDS guarantees that a subset is

composed of heterogeneous instances.

2.4 Numerical remarks on Subsection 2.3

We illustrate the relations among the BDS, ICC and SSW in the following example. Suppose a one-

dimensional dataset D is given, and the 21 instances of D are to be partitioned into three subsets

with (2.5). We use X (e) to generate a tiny BDS using e’s 38 digits after the decimal place (see the first

column of Table 1). The property of uniformity of the BDS ensures that the distribution of values in a

subset should be the same or close to that of the complete set, and the between-subset variance should

equal or be close to zero. For example, the second column of Table 1 demonstrates that the variances of

the three subsets (σ2
1 = σ2

2 = σ2
3 = 0.08) are all close to that of the complete set σ2

X = 0.08, provided that

the complete set is evenly chunked into three subsets using the BDS. The third and fourth columns of

Table 1 show that the ranking vector R of the BDS exhibits the same uniformity property as the means

of the three subsets are quite close (10, 10, and 12 respectively).

Then, D is ascendingly sorted as D̃ so that adjacent instances tend to be more similar than instances

that are farther apart. The 21 instances are partitioned into three subsets with (2.5) (see the fifth to

seventh columns of Table 1). The three subset variances are quite close to that of D (σ2
D = 0.01) and

the SSB is almost zero (0.0082). As expected, the ICC is negative (−0.1242) and the SSW is 0.2168.

The instances with adjunct or the same values (for example, the 9th, 10th and 11th elements of D) are

forced to spread out between different subsets. The ranking vector R makes the distributions of values

highly similar among three subsets, as none of them consists of unrepresentative (i.e., mainly low or high)

values.

To compare, we use the SRS to split D into three subsets and repeat the procedure 50 times. The

average of SSB of these SRS procedures is 0.0208, which is 2.531 times larger than that of the best-

discrepancy systematic subsampling method. This experiment shows that subsampling bias can be greatly

reduced by the proposed method, even though the sample size of this tiny dataset is only 21. We conduct

an additional experiment with 500 datasets of different sizes (ranging from 54 to 999) and with different

levels of variance (ranging from 0 to 0.025), skewness (ranging from 0 to 0.116), and kurtosis (ranging

from 0.506 to 31.398). The results suggest that regardless the characteristics of a dataset, the SSB of the

best-discrepancy systematic subsampling method is much smaller (23.16%) than that of the SRS.

In short, this example proves that the best-discrepancy systematic subsampling method can satisfy

Lohr’s [29] two conditions that make the ICC negative. In contrast, the SRS cannot guarantee all

subsets are of heterogeneous instances. Indeed, there are too many possibilities to randomly generate k

subsets. It is then difficult to avoid “bad”, quasi-homogeneous subsets with only or mainly small or large

values. Therefore, the best-discrepancy systematic subsampling procedure outperforms the SRS in terms

of subset representativeness.
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Table 1 Elements with the best discrepancy systematic subsampling method

BDS R D̃

XI subsetXI
RI subsetRI

D̃I d̃i after partition subsetdi

0.7183 16 1.501 1.7016

0.4366 10 1.532 1.6710

0.1548 I 4 I 1.553 1.604 I

0.8731 µ1 : 0.44 19 µ1 : 10 1.604 1.8019 µ1 : 1.66

0.5914 σ2
1 : 0.08 13 σ2

1 : 36 1.625 1.6813 σ2
1 : 0.01

0.3097 7 1.636 1.647

0.0280 1 1.647 1.501

0.7463 17 1.658 1.7617

0.4645 11 1.669 1.6711

0.1828 II 5 II 1.6710 1.625 II

0.9011 µ2 : 0.47 20 µ2 : 10 1.6711 1.9020 µ2 : 1.69

0.6194 σ2
2 : 0.08 14 σ2

2 : 36 1.6812 1.6914 σ2
2 : 0.01

0.3377 8 1.6813 1.658

0.0559 2 1.6914 1.532

0.7742 18 1.7015 1.7818

0.4925 12 1.7016 1.6812

0.2108 III 6 III 1.7617 1.636 III

0.9291 µ3 : 0.50 21 µ3 : 12 1.7818 1.9221 µ3 : 1.70

0.6474 σ2
3 : 0.08 15 σ2

3 : 36 1.8019 1.7015 σ2
3 : 0.01

0.3656 9 1.9020 1.669

0.0839 3 1.9221 1.553

SSW 1.6678 756 0.2168

SSB 0.0109 14 0.0082

ICC −0.1591 −0.1455 −0.1241

3 The BDSCV procedure

We propose a k-fold CV procedure that is built upon the best-discrepancy systematic subsampling pro-

cedure. The pseudocode of BDSCV is shown in Figure 4.

Suppose we are given an independently and identically distributed m dimensional dataset D of n

instances, where D ∈ Rn×m. Each instance in D consists of a class label vector Y and vectors of measured

feature covariates X. As discussed in the previous section, D is sorted before subsampling. However,

it is difficult to decide along which axis to sort D. An arbitrary yet effective way is to transform D

from multi-dimensional space to one-dimensional space using a dimensionality-reduction technique H,

which produces a linear transformation T ∈ Rm×1 and results in E = DT , where E ∈ Rn×1 and E is

the underlying structure of D and points to a direction where there is the most variance and where the

elements in E are most spread out.

Simply stated, it is just like to project all dimensions of a dataset on the component vector E, which

is a combination of all dimensions with weights. The instances with close or the same values in E are

considered similar in the terms of all dimensions but not just of label classes. In addition, E can be served

as an axis along which D is sorted so that instances that are similar to some extent are then gathered

and separated from dissimilar ones. Therefore, we ascendingly sort E as Ẽ and then sort D as D̃, so that

Ẽ = D̃T . These Ẽ and T are then discarded and will not be included in subsequent analyses.

Next, we generate a BDS with n elements and then a ranking vector R accordingly. We partition D̃

into k subsets, using the same allocation mechanism in (2.5).

Thirdly, the k subsets of D̃ are used to conduct a standard k-fold CV procedure with a classifier A.

Let Fk be the k-th fold that serves as the test set, and D̃k be the training set obtained by removing
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Figure 4 Pseudocode of the BDSCV procedure

the instances in Fk from D̃. The estimated EPE over k folds with the dimensionality-reduction tech-

nique H is estimated as in [31]:

EPE(D̃)H,A =
1

K

K∑
k=1

̂EPE(Fk). (3.1)

In addition, the variance of the CV estimator is estimated as in [31]:

σ2
H,A =

1

K

K∑
k=1

(EPE(Fk)H,A − EPE(D̃)H,A)
2. (3.2)

Finally, different dimensionality-reduction techniques may lose different amounts of information from

the complete dataset [10]. Sweeping different candidate techniques, such as principal component analysis

(PCA), factor analysis (FA), kernel PCA (kPCA), or truncated singular value decomposition (tSVD),

will enable us to fine tune the BDSCV procedure, so that the original space of D can be reduced to one-

dimensional space while retaining the most important information as much as possible in E. Therefore,

previous steps are repeated using different dimensionality-reduction techniques in order to find the best H

in terms of EPE(D̃)H,A and its corresponding σ2
H,A as the final CV results for the classifier A.

4 Experiments

We first test the logistic regression model in Subsection 2.2 with the proposed 10-fold BDSCV. The model

achieves zero error rate in every fold, which suggests that the BDSCV can eliminate subsampling bias to a

great extent. We then test the BDSCV with the Penn machine learning benchmark (PMLB) datasets [33].

Note that we eliminate 10 PMLB datasets that are too big to be computed on a personal computer. The

characteristics of these 156 datasets are summarized in Table 2. We compare the performance of our

proposed BDSCV to MCCV, stratified MCCV and LOO.

The MCCV and stratified MCCV procedures are conducted using the scikit-learn cross-validation

module (version 0.19.2) with 50 repetitions for the three classifiers respectively. Our proposed BDSCV

is mainly built on the same scikit-learn module except the subsampling part. We use the MCCV as the

benchmark and compute the following three comparative performance metrics as:

(a) the comparative EPE ratio of a classifier A, which is

φEPEA =
EPEBDSCV/Stratified/LOOA

EPEMCCVA

; (4.1)



206 Guo L et al. Sci China Math January 2021 Vol. 64 No. 1

Table 2 Descriptive statistics of 156 PMLB datasets

#Instances #Features #Labels Aspect Ratio

Minimum 32.00 2.00 2.00 0.00

Maximum 28056.00 240.00 26.00 0.54

Mean 2056.34 24.77 3.83 0.05

Median 2000.00 9.00 2.00 0.01

Table 3 Number of datasets that each CV reaches the lowest EPEs and variances

Classifier
BDSCV MCCV Stratified MCCV LOO

EPE Var EPE Var EPE Var EPE Var

L1) 118 101 8 15 14 43 23 2

DT2) 115 102 8 21 12 43 43 12

NB3) 125 94 4 8 8 55 22 2

1) L: Logistic
2) DT: Decision Tree
3) NB: Näıve Bayes

(b) the comparative variance ratio of a classifier A, which is

φσ2
A =

σ2
BDSCV/Stratified/LOOA

σ2
MCCVA

; (4.2)

and (c) the comparative computational burden ratio of the k-fold CV procedures, which is

φTime =
TimeBDSCV/Stratified/LOO

TimeMCCV
. (4.3)

Our experiments are conducted on a desktop personal computer (CPU: Intel Core i7-7700 eight cores,

Memory: 64G, and SSD: 256GB). Note that computing time may slightly vary depending on the overall

load and specifications of a computer. Table 3 shows that the number of datasets in which each of the four

CV procedures achieve the same lowest EPEs and variances (it is possible that multiple CV procedures

obtain the lowest performance metrices in a dataset). As expected, the BDSCV achieves the lowest EPEs

and variances in most datasets, followed by the LOO and the stratified MCCV. Table 3 suggests that

there are significant subsampling biases among different CV procedures and if we count on the most

widely used 10-fold MCCV to do model selections, then we probably make the wrong choices.

We summarize the three comparative performance metrics in Table 4. The EPEs, variances and

computational time of each classifier and of each dataset can be found in supplementary material.

The comparisons between the BDSCV and the MCCV are as follows (see Panel A in Table 4). On

average, the EPELogistic and σ2
Logistic of the former is 94.04% and 70.30% of that of the latter respec-

tively; the EPEDecisionTree and σ2
DecisionTree of the BDSCV is 88.02% and 77.50% of that of the MCCV

respectively; and the EPENäıve Bayes and σ2
Näıve Bayes of the former is 96.41% and 72.00% of that of the

latter respectively. On average, the BDSCV can lower the EPEs around 7.18% and the variances around

26.73% regardless classifiers. In comparison, the stratified MCCV can slightly reduce subsampling bias

by decreasing the EPEs of the MCCV around 1.58% and the variances around 11.85%. The LOO can

lower the EPEs around 2.50% but its variances are much higher than the any other CV procedure (see

Panels B and C in Table 4). The computational time of the BDSCV is just 8.64% of the MCCV, 8.67%

of the stratified MCCV and 16.72% of the LOO (see Panel D in Table 4). These results suggest that the

proposed BDSCV outperforms the other CV procedures as it can extrude significant subsampling bias

while using a small fraction of computational time of the other CV procedures. Being computationally

efficient is especially important where it is expensive or impractical to train multiple models.

Finally, our proposed CV procedure may not be a cure-all and be more pertinent to a dataset with

particular characteristics. We compute the aspect ratio (i.e., the number of features divided by the
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Table 4 Comparisons between different CV procedures

A: BDSCV vs. MCCV

Aspect ratio EPEL σ2
L EPEDT σ2

DT EPENB σ2
NB

Q1 97.95% 64.29% 90.51% 87.88% 98.61% 75.11%

Q2 94.45% 67.06% 90.25% 64.22% 96.57% 57.31%

Q3 91.37% 66.80% 82.92% 78.72% 95.89% 72.47%

Q4 92.36% 83.06% 88.41% 79.17% 94.59% 83.11%

Average 94.04% 70.30% 88.02% 77.50% 96.41% 72.00%

B: Stratified MCCV vs. MCCV

Aspect ratio EPEL σ2
L EPEDT σ2

DT EPENB σ2
NB

Q1 99.48% 72.02% 98.91% 91.23% 99.59% 80.99%

Q2 97.96% 83.79% 99.53% 93.58% 99.91% 89.41%

Q3 97.25% 90.41% 94.35% 93.08% 98.79% 85.73%

Q4 98.40% 94.25% 97.62% 93.73% 99.25% 85.59%

Average 98.28% 85.12% 97.60% 92.90% 99.39% 86.43%

C: LOO vs. MCCV

Aspect ratio EPEL σ2
L EPEDT σ2

DT EPENB σ2
NB

Q1 99.72% 44036.96% 93.16% 36397.24% 100.01% 37667.87%

Q2 100.20% 7897.06% 92.52% 7693.12% 100.36% 7000.07%

Q3 97.43% 4977.84% 91.25% 4084.19% 101.24% 6016.48%

Q4 98.25% 4387.51% 98.45% 4411.73% 97.44% 3858.06%

Average 98.90% 15324.84% 93.85% 13146.57% 99.76% 13635.62%

D: Computational time comparisons

Aspect ratio BDSCV
MCCV

Stratified
MCCV

LOO
MCCV

BDSCV
Stratified

LOO
Stratified

BDSCV
LOO

Q1 9.15% 99.62% 886.01% 9.19% 889.44% 3.08%

Q2 8.48% 99.68% 152.33% 8.51% 153.16% 9.68%

Q3 8.52% 99.79% 126.15% 8.54% 126.61% 20.60%

Q4 8.42% 99.80% 90.95% 8.43% 91.23% 33.53%

Average 8.64% 99.72% 313.86% 8.67% 315.11% 16.72%

L: Logistic

DT: Decision Tree

NB: Näıve Bayes

number of instances) of the 156 datasets and divide them into four groups based on the quantiles of the

aspect ratio. The first group includes 67 datasets whose number of features is smaller or equal to 1%

of number of instances. The second group includes 20 datasets whose percentages of number of features

to number of instances are in the range of (1%, 2%]. The third group includes 33 datasets whose aspect

ratios are in the range of (2%, 5%]. In addition, the fourth group includes 36 datasets whose aspect ratios

are larger than 5%. Table 4 shows that the BDSCV can significantly reduce subsampling bias in the

third and fourth groups of datasets, as the EPEs of the BDSCV are significantly smaller. These findings

imply that the BDSCV could be particularly effective in analysing in bioscience datasets, which usually

are characterized as high dimensionality and relatively small sample sizes [12,15].

In short, these experiments confirm that the MCCV suffers a lot from subsampling bias. The BDSCV

can reduce subsampling bias in the EPEs and variances of the three classifiers to a significant extent.

The improvements of the stratified MCCV are not as substantial as the BDSCV. The LOO does not have

significant advantages compared with the other CV procedures. Both the stratified MCCV and the LOO

are not as computationally efficient as the BDSCV. In addition, the decision tree is the most sensitive

classifier to subsampling bias in terms of EPEs, especially in the datasets with high aspect ratios (i.e.,

the 3rd and 4th groups) in which the BDSCV can deflate the EPEDecisionTree around 15% on average.

The logistic regression is the most sensitive classifier to subsampling bias in terms of variances, especially

in the datasets with relatively low aspect ratio (i.e., the 1st, 2nd and 3rd groups) in which the BDSCV
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can reduce variances around 34%.

5 Discussion and closing remarks

A statistical machine learning model could be affected by the idiosyncrasies of training data if the dis-

crepancy between k subsets is too high. As a result, the EPEs and variances of an MCCV procedure are

contaminated by subsampling bias and cannot reflect the true generalization performance of a model’s

inductive mechanism. The inflated metrics will interfere with data scientists making right decisions.

Our experimental results confirm that subsampling bias in the MCCV procedure greatly jeopardizes its

validity and reliability for model selection even after 50 repetitions. Our experiments also confirm that

the subsampling bias can be reduced through Lohr’s guidelines [29]—systematic subsampling from an

ordered population with a skip. The BDSCV follows these guidelines so that it is relatively more precise,

stable and computationally efficient than all the other three CV procedures.

It is important to point out that the BDSCV is not meant to completely replace other CV procedures.

As the results of our experiments suggest that the advantages of the different types of CV may depend

on dataset characteristics and decision boundary. We recommend using the BDSCV in the datasets

characterized with high aspect ratios (i.e., small dataset size and high dimensionality) and for the non-

parametric classifier such as the decision tree. Besides, the BDSCV is much more computational efficient

than the other CV procedures so it is suitable for the time-critical statistical machine learning problems.

Finally, it is beneficial to estimate the true generalization performance of a learning function using different

CV procedures in order to choose the model with the lowest EPEs and variances. Further studies are

also necessary to determinate what is the most appropriate CV procedure for a particular dataset and

for a statistical machine learning model.

In conclusion, this study sheds more light on the literature of CV and statistical machine learning

model evaluation by proposing the BDSCV procedure, which is a new way to estimate a model’s relatively

objective generalizability by significantly reducing subsampling bias in existing CV procedures. It also

helps the model to pick out the hidden underlying mapping between input-output vectors and to remain

stable when the training set changes, leading to more precise estimations and more confident inferences.

What is more, our proposed procedure is straightforward and computationally efficient. Unlike other

information-preserving subsampling techniques [18] that need to understand the complete dataset in

great detail, our procedure does not make the CV computation more complex. Lastly, our subsampling

method may replace the random mechanism used in many statistical machine learning algorithms.
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