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Abstract The central limit theorem of martingales is the fundamental tool for studying the convergence of

stochastic processes, especially stochastic integrals and differential equations. In this paper, the central limit

theorem and the functional central limit theorem are obtained for martingale-like random variables under the

sub-linear expectation. As applications, the Lindeberg’s central limit theorem is obtained for independent but

not necessarily identically distributed random variables, and a new proof of the Lévy characterization of a G-

Brownian motion without using stochastic calculus is given. For proving the results, Rosenthal’s inequality and

the exponential inequality for the martingale-like random variables are established.
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1 Introduction and notations

Non-additive probabilities and non-additive expectations are useful tools for studying uncertainties in

the statistics, measures of risk, superhedging in finance and non-linear stochastic calculus (see Denis and

Martini [4], Gilboa [5], Marinacci [13] and Peng [14–16, 18, 19], etc.). Peng [16] introduced the notion of

the sub-linear expectation. Under the sub-linear expectation, Peng [16–21] gave the notions of the G-

normal distributions, G-Brownian motions, G-martingales, independence of random variables, identical

distribution of random variables and so on, and developed the weak law of large numbers and central

limit theorem for independent and identically distributed (i.i.d.) random variables. Furthermore, Peng

established the stochastic calculus with respect to the G-Brownian motion. As a result, Peng’s framework

of nonlinear expectation gives a generalization of Kolmogorov’s probability theory. Recently, Bayraktar

and Munk [1] proved an α-stable central limit theorem for independent and identically distributed random

variables. This paper considers the general central limit theorem for random variables which are not

necessarily i.i.d. under the sub-linear expectation. We establish a central limit theorem and a functional

central limit theorem under the conditional Lindeberg’s condition for a kind of martingale-difference-like

random variables. As applications, the central limit theorem for independent but not necessary identically

distributed random variables under the popular Lindeberg’s condition is obtained. The tool for proving
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the central limit theorem is a promotion of Peng’s [20] and gives also a new normal approximation method

for classical martingale differences instead of the characteristic function. For proving the functional central

limit theorem, we also establish Rosenthal’s inequalities for the martingale-like random variables. As the

central limit theorem of classical martingales which is the fundamental tool for studying the convergence

of stochastic processes under the framework of the probability and linear expectation, especially stochastic

integrals and differential equations (see Jacod and Shiryaev [9]), the (functional) central limit theorem of

martingale-difference-like random variables under the sub-linear expectation will provide a way to study

the weak convergence of stochastic integrals and difference equations with respect to the G-Brownian

motion.

In the rest of this section, we state some notations about sub-linear expectations. The main results

on the central limit theorem and functional central limit theorem are stated in Sections 2 and 3 with the

proofs given in the last section. In Section 4, we establish the Rosenthal-type inequalities and an expo-

nential inequality for the maximal sums of the martingale-difference-like random variables. In Section 5,

we consider the Lévy characterization of a G-Brownian motion in a general sub-linear expectation space.

The Lévy characterization of a G-Brownian motion under G-expectation in a Wiener space is established

by Xu and Zhang [25, 26] and extended by Lin [11] by the method of the stochastic calculus. We give

an elementary proof without using stochastic calculus. We find that the functional central limit theorem

gives a new way to show the Lévy characterization.

We use the framework and notations of Peng [20]. Let (Ω,F) be a given measurable space and let H

be a linear space of real functions defined on (Ω,F) such that if X1, . . . , Xn ∈ H then φ(X1, . . . , Xn)

∈ H for each φ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions φ

satisfying

|φ(x)− φ(y)| 6 C(1 + |x|m + |y|m)|x− y|, ∀x,y ∈ Rn,

for some C > 0, m ∈ N depending on φ.

H is considered as a space of “random variables”. In this case, we denote X ∈ H . We also denote the

space of bounded Lipschitz functions and the space of bounded continuous functions on Rn by Cb,Lip(Rn)

and Cb(Rn), respectively.

Definition 1.1. A sub-linear expectation Ê on H is a function Ê : H → R satisfying the following

properties: for all X,Y ∈ H ,

(1) monotonicity: if X > Y then Ê[X] > Ê[Y ];

(2) constant preserving: Ê[c] = c;

(3) sub-additivity: Ê[X + Y ] 6 Ê[X] + Ê[Y ] whenever Ê[X] + Ê[Y ] is not of the form +∞ − ∞ or

−∞+∞;

(4) positive homogeneity: Ê[λX] = λÊ[X], λ > 0.

Here, R = [−∞,∞]. The triple (Ω,H , Ê) is called a sub-linear expectation space. Given a sub-linear

expectation Ê, let us denote the conjugate expectation Ê of Ê by Ê [X] := −Ê[−X], ∀X ∈ H .

A sub-linear expectation Ê is countably sub-additive, if

Ê

[ ∞∑
i=1

Xi

]
6

∞∑
i=1

Ê[Xi] for all random variables Xi > 0.

If X is not in H , we define its sub-linear expectation by Ê∗[X] = inf{Ê[Y ] : X 6 Y ∈ H }. When

there is no ambiguity, we also denote it by Ê. From the definition, it is easily shown that Ê [X] 6 Ê[X],

Ê[X + c] = Ê[X] + c and Ê[X −Y ] > Ê[X]− Ê[Y ] for all X,Y ∈ H with Ê[Y ] being finite. Furthermore,

if Ê[|X|] is finite, then Ê [X] and Ê[X] are both finite.

Definition 1.2 (See [19,20]). (i) (Identical distribution) Let X1 and X2 be two n-dimensional random

vectors defined, respectively, in the sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They

are called identically distributed, denoted by X1
d
= X2, if

Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl,Lip(Rn),
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whenever the sub-expectations are finite. A sequence {Xn;n > 1} of random variables is said to be

identically distributed if Xi
d
= X1 for each i > 1.

(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, . . . , Yn),

Yi ∈ H is said to be independent to another random vector X = (X1, . . . , Xm), Xi ∈ H under Ê,

if for each test function φ ∈ Cl,Lip(Rm × Rn) we have Ê[φ(X,Y )] = Ê[Ê[φ(x,Y )] |x=X ], whenever

φ(x) := Ê[|φ(x,Y )|] <∞ for all x and Ê[|φ(X)|] <∞.

Random variables X1, . . . , Xn are said to be independent if for each 2 6 k 6 n, Xk is independent of

(X1, . . . , Xk−1). A sequence of random variables is said to be independent if for each n, X1, . . . , Xn are

independent.

Next, we introduce the capacities corresponding to the sub-linear expectation. We denote the pair

(V,V) of capacities on (Ω,H , Ê) by setting

V(A) := inf{Ê[ξ] : IA 6 ξ, ξ ∈ H }, V(A) := 1− V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then it is obvious that V is sub-additive, i.e., V(A ∪ B) 6
V(A) + V(B). But V and Ê are not. However, we have

V(A ∪B) 6 V(A) + V(B) and Ê [X + Y ] 6 Ê [X] + Ê[Y ]

due to the fact that V(Ac ∩Bc) = V(Ac\B) > V(Ac)− V(B) and Ê[−X − Y ] > Ê[−X]− Ê[Y ].

The Choquet integrals/expectations of (CV, CV) are defined by

CV [X] =

∫ ∞

0

V (X > t)dt+

∫ 0

−∞
[V (X > t)− 1]dt

with V being replaced by V and V, respectively.
Finally, we recall the notations of G-normal distribution and G-Brownian motion which are introduced

by Peng [20,22].

Definition 1.3 (G-normal random variable). For 0 6 σ2 6 σ2 < ∞, a random variable ξ in a sub-

linear expectation space (Ω̃, H̃ , Ẽ) is called a normal N
(
0, [σ2, σ2]

)
distributed random variable (written

as ξ ∼ N
(
0, [σ2, σ2]

)
under Ẽ), if for any φ ∈ Cl,Lip(R), the function u(x, t) = Ẽ[φ(x+

√
tξ)] (x ∈ R, t > 0)

is the unique viscosity solution of the following heat equation:

∂tu−G(∂2xxu) = 0, u(0, x) = φ(x),

where G(α) = 1
2 (σ

2α+ − σ2α−).

That ξ is a normal distributed random variable is equivalent to that, if ξ′ is an independent copy of ξ,

then

Ẽ[φ(αξ + βξ′)] = Ẽ[φ(
√
α2 + β2X)], ∀φ ∈ Cl,Lip(R) and ∀α, β > 0

(see Peng [22, Definition II.1.4 and Example II.1.13]).

Definition 1.4 (G-Brownian motion). A random process (Wt)t>0 in the sub-linear expectation space

(Ω̃, H̃ , Ẽ) is called a G-Brownian motion (see Peng [22, Definition III.1.2]) if

(i) W0 = 0;

(ii) for each 0 6 t1 6 · · · 6 td 6 t 6 s,

Ẽ[φ(Wt1 , . . . ,Wtd ,Ws −Wt)]

= Ẽ[Ẽ[φ(x1, . . . , xd,
√
t− s)ξ] |x1=Wt1 ,...,xd=Wtd

], ∀φ ∈ Cl,Lip(Rd+1), (1.1)

where ξ ∼ N(0, [σ2, σ2]).

In some papers, for example, [25, 26] by Xu and Zhang, the test functions φ are only required to be

elements in Cb,Lip(Rd+1). It can be shown that if Ẽ[|Wt|p] < ∞ for all p > 0 and t, then that (1.1)

holds for all φ ∈ Cb,Lip(Rd+1) is equivalent to that it holds for all φ ∈ Cl,Lip(Rd+1). Furthermore, if
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the sub-linear expectation Ẽ is countably sub-additive, then these two kinds of definitions are equivalent

because, if X is a random variable in (Ω,H , Ê) such that

Ê[φ(X)] = Ẽ[φ(ξ)], ∀φ ∈ Cb,Lip(R), (1.2)

then Ê[|X|p] <∞ for all p > 0. In fact, if ξ ∼ N(0, [σ2, σ2]) under Ẽ, then (see Peng [22, p. 22])

Ẽ[|ξ|p] = σp

∫ ∞

−∞
|x|p 1√

2π
e−x2/2dx = cpσ

p, ∀ p > 1.

Now, for any z > 0, one can choose a function φ ∈ Cb,Lip(R) such that I{x > z} 6 φ(x) 6 I{x > z − ϵ}.
From (1.2), it follows that

V(|X| > z) 6 Ê[φ(X)] = Ẽ[φ(ξ)] 6 Ṽ(|ξ| > z − ϵ).

Hence

V(|X| > z) 6 Ṽ
(
|ξ| > z

2

)
6 22pẼ[|ξ|2p]

z2p
=
σ2pc2p
z2p

.

It follows that

CV(|X|p) =
∫ ∞

0

V(|X|p > z)dz 6 1 +

∫ ∞

1

σ2pc2p
z2

dz 6 1 + σ2pc2p <∞, ∀ p > 2.

So, if Ê is countably sub-additive or Ê[|X|p] = limc→∞ Ê[(|X| ∧ c)p], then Ê[|X|p] 6 CV(|X|p) < ∞ for

all p > 0 by Zhang [28, Lemma 3.9].

Let C[0,1] be a function space of continuous real functions on [0, 1] equipped with the supremum norm

∥x∥ = sup06t61 |x(t)| and Cb(C[0,1]) is the set of bounded continuous functions h(x) : C[0,1] → R. As

showed in [3,19,22], there is a sub-linear expectation space (Ω̃, H̃ , Ẽ) with Ω̃ = C[0,1] and Cb(C[0,1]) ⊂ H̃

such that (H̃ , Ẽ[∥ · ∥]) is a Banach space, and the canonical process W (t)(ω) = ωt(ω ∈ Ω̃) is a G-

Brownian motion. In the sequel of this paper, the G-normal random variables and G-Brownian motions

are considered in (Ω̃, H̃ , Ẽ).

2 Lindeberg’s central limit theorem for independent random variables

We write ηn
V→ η if V(|ηn − η| > ϵ) → 0 for any ϵ > 0, and write ηn

d→ η if Ê[φ(ηn)] → Ê[φ(η)] holds for

all bounded and continuous functions φ. In this section, we consider the independent random variables

{Xn,k; k = 1, . . . , kn}. Denote σ2
n,k = Ê[X2

n,k], σ
2
n,k = Ê [X2

n,k] and B2
n =

∑kn

k=1 σ
2
n,k. We have the

following Lindeberg’s central limit theorem.

Theorem 2.1. Suppose that the following Lindeberg’s condition is satisfied:

1

B2
n

kn∑
k=1

Ê[(X2
n,k − ϵB2

n)
+] → 0, ∀ ϵ > 0. (2.1)

Furthermore, there is a constant r ∈ [0, 1] such that∑kn

k=1 |rσ
2
n,k − σ2

n,k|
B2

n

→ 0, (2.2)

and also, ∑kn

k=1{|Ê[Xn,k]|+ |Ê [Xn,k]|}
Bn

→ 0. (2.3)

Then for any bounded continuous function φ,

lim
n→∞

Ê

[
φ

(∑kn

k=1Xn,k

Bn

)]
= Ẽ[φ(ξ)], (2.4)

where ξ ∼ N(0, [r, 1]) under Ẽ.
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Theorem 2.1 will be a direct corollary of Theorem 3.1 on the central limit theorem for the martingale-

like sequence. The central limit theorem for independent and identically distributed random variables

under the sub-linear expectation was obtained by Peng [20]. Li and Shi [10] generalized Peng’s result

to a central limit theorem for independent random variables {Xn;n > 1} satisfying Ê[Xi] = Ê [Xi] = 0,

Ê[|Xi|3] 6M <∞, i = 1, 2, . . . , and

1

n

n∑
i=1

|Ê[X2
i ]− σ2| → 0,

1

n

n∑
i=1

|Ê [X2
i ]− σ2| → 0.

It is easily seen that the array { 1√
n
Xk; k = 1, . . . , n} satisfies the condition (2.2) with r = σ2/σ2, (2.3)

and (2.1).

When Ê is a classical linear expectation, (2.2) is automatically satisfied with r = 1. It is easily seen

that (2.2) implies ∑kn

k=1 σ
2
n,k∑kn

k=1 σ
2
n,k

→ r. (2.5)

One may conjecture that (2.2) can be weakened to (2.5). The following example tells us that it is not

the truth.

Example 2.2. Let 0 < τ1, τ2 < 1, and {Xn,k; k = 1, . . . , 2n} be a sequence of independent normal

random variables such that

Xn,k
d∼ N(0, [τ1, 1]), k = 1, . . . , n and Xn,k

d∼ N(0, [τ2, 1]), k = n+ 1, . . . , 2n.

It is easily seen that {Xn,k; k = 1, . . . , 2n} satisfies the conditions (2.1), (2.3) and (2.5) with r = (τ1+τ2)/2,

and B2
n = 2n. It is obvious that∑2n

k=1Xn,k√
n

=

∑n
k=1Xn,k√

n
+

∑2n
k=n+1Xn,k√

n

d∼ ξ + η,

where ξ and η are independent normal random variables with ξ
d∼ N(0, [τ1, 1]), η

d∼ N(0, [τ2, 1]). Song

[24] showed that ξ + η is not G-normal distributed if τ1 ̸= τ2, and hence (2.4) fails.

3 The central limit theorem for the martingale-like sequence

In this section, we consider a general martingale. First, we recall the definition of the conditional ex-

pectation under the sub-linear expectation. Let (Ω,H , Ê) be a sub-linear expectation space. We write

X 6 Y in Lp if Ê[((X − Y )+)p] = 0, X = Y in Lp if both X 6 Y and Y 6 X hold in Lp.

Let Hn,0 ⊂ · · · ⊂ Hn,kn be subspaces of H such that

(1) any constant c ∈ Hn,k, and

(2) if X1, . . . , Xd ∈ Hn,k, then φ(X1, . . . , Xd) ∈ Hn,k for any φ ∈ Cl,Lip(Rd), k = 0, . . . , kn.

Denote L (H ) = {X : Ê[|X|] <∞, X ∈ H }. We consider a system of operators in L (H ),

Ên,k : L (H ) → L (Hn,k)

and denote Ê[X |Hn,k] = Ên,k[X], Ê [X |Hn,k] = −Ên,k[−X]. Ê[X |Hn,k] is called the conditional sub-

linear expectation of X given Hn,k, and Ên,k is called the conditional expectation operator. Suppose

that the operators Ên,k satisfy the following properties: for all X,Y ∈ L (H ),

(a) Ên,k[X + Y ] = X + Ên,k[Y ] in L1 if X ∈ Hn,k, and Ên,k[XY ] = X+Ên,k[Y ] +X−Ên,k[−Y ] in L1

if X ∈ Hn,k and XY ∈ L (H );

(b) Ê[Ên,k[X]] = Ê[X].

It is easily seen that (a) implies that Ên,k[c] = c in L1 and Ên,k[λX] = λÊn,k[X] in L1 if λ > 0. The

definition of the conditional sub-linear expectation can be found in Peng [22], and Xu and Zhang [25,26]
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with the operators satisfying (a), (b) and Ên,k[X] 6 Ên,k[Y ] if X 6 Y , Ên,k[X]− Ên,k[Y ] 6 Ên,k[X −Y ],

Ên,k[[Ên,l[X]]] = Ên,l∧k[X]. It can be showed that these properties can be implied by (a) and (b) (see

Lemma 4.3).

Now, we assume that {Zn,k; k = 1, . . . , kn} is an array of random variables such that Zn,k ∈ Hn,k and

Ê[Z2
n,k] <∞, k = 1, . . . , kn. The following is the central limit theorem.

Theorem 3.1. Suppose that the operators Ên,k satisfy (a) and (b). Assume that the following Linde-

berg’s condition is satisfied:

kn∑
k=1

Ê[(Z2
n,k − ϵ)+ |Hn,k−1]

V→ 0, ∀ ϵ > 0. (3.1)

Furthermore, there are constants ρ > 0 and r ∈ [0, 1] such that

kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

V→ ρ, (3.2)

kn∑
k=1

|rÊ[Z2
n,k |Hn,k−1]− Ê [Z2

n,k |Hn,k−1]|
V→ 0, (3.3)

kn∑
k=1

{|Ê[Zn,k |Hn,k−1]|+ |Ê [Zn,k |Hn,k−1]|}
V→ 0. (3.4)

Then for any bounded continuous function φ,

lim
n→∞

Ê

[
φ

( kn∑
k=1

Zn,k

)]
= Ẽ[φ(

√
ρξ)], (3.5)

i.e.,
∑kn

k=1 Zn,k
d→ √

ρξ, where ξ ∼ N(0, [r, 1]) under Ẽ.

Remark 3.2. When Ê[Zn,k |Hn,k−1] = 0 and Ê [Zn,k |Hn,k−1] = 0, then {Zn,k; k = 1, . . . , kn} is an

array of symmetric martingale differences (see Xu and Zhang [25]). If Ê[·] = EP [·] is a classical linear

expectation, then (3.3) is satisfied with r = 1, and the conclusion coincides with Hall and Heyde [6,

Corollary 3.1].

The following is a direct corollary of Theorem 3.1.

Corollary 3.3. Let {ηn} be a sequence of independent random variables on (Ω,H , Ê) with Ê[ηn] =

Ê [ηn] = 0, Ê[η2n] =: σ2
n → σ2, Ê [η2n] := σ2

n → σ2 and supn Ê[(η
2
n − c)+] → 0 as c → ∞. Suppose that

{an,i; i = 1, . . . , kn} is an array of real random variables in H with an,i being a function of η1, . . . , ηi−1,

max
i

|an,i|
V→ 0 and

kn∑
i=1

a2n,i
V→ ρ,

where ρ > 0 is a constant. Then

lim
n→∞

Ê

[
φ

( kn∑
i=1

an,iηi

)]
= Ẽ[φ(ξ)] (3.6)

for any bounded continuous function φ, where ξ ∼ N(0, [ρσ2, ρσ2]) under Ẽ.

The following corollary is a central limit theorem for moving average processes which include the

autoregressive moving average (ARMA) model.

Corollary 3.4. Let {ηn} be a sequence of independent and identically distributed random variables in

(Ω,H , Ê) with Ê[η1] = Ê [η1] = 0, Ê[η21 ] = σ2 and Ê [η21 ] = σ2, and {an;n > 0} be a sequence of real

numbers with
∑∞

n=0 |an| <∞. Let Xk =
∑∞

i=0 aiηi+k. Then

1√
n

n∑
k=1

Xk
d→ N(0, [a2σ2, a2σ2]), (3.7)
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where a =
∑∞

j=0 aj.

Proof. Let an = 0 if n < 0. Then Xk =
∑∞

i=1 ai−kηi and

1√
n

n∑
k=1

Xk =
∞∑
i=1

(∑n
k=1 ai−k√

n

)
ηi.

Let an,i =
∑n

k=1 ai−k√
n

. Then maxi |an,i| 6 n−1/2
∑∞

i=−∞ |ai| → 0 and
∑∞

i=1 a
2
n,i → a2. The result follows

from Corollary 3.3.

Finally, we give the functional central limit theorems.

Let D[0,1] be the space of right continuous functions having finite left limits which is endowed with

the Skorohod topology, and τn(t) be a non-decreasing function in D[0,1] which takes integer values with

τn(0) = 0, τn(1) = kn. Define Sn,i =
∑i

k=1 Zn,k,

Wn(t) = Sn,τn(t). (3.8)

Theorem 3.5. Suppose that the operators Ên,k satisfy (a) and (b). Assume that the conditions (3.1),

(3.3) and (3.4) in Theorem 3.1 are satisfied. Furthermore, there is a continuous non-decreasing non-

random function ρ(t) such that ∑
k6τn(t)

Ê[Z2
n,k |Hn,k−1]

V→ ρ(t), t ∈ [0, 1]. (3.9)

Then for any 0 = t0 < · · · < td 6 1,

(Wn(t1), . . . ,Wn(td))
d→ (W (ρ(t1)), . . . ,W (ρ(td))), (3.10)

and for any bounded continuous function φ : D[0,1] → R,

lim
n→∞

Ê[φ(Wn)] = Ẽ[φ(W ◦ ρ)], (3.11)

where W is G-Brownian motion on [0, 1] with W (1) ∼ N(0, [r, 1]) under Ẽ, and W ◦ ρ(t) =W (ρ(t)).

Because the proofs of Theorems 3.1 and 3.5 are a little long and need some preparation, we will give

them in the last section.

4 Moment inequalities and exponential inequalities

To prove the central limit theorems and functional central limit theorems, we need some inequalities on

the sums of martingale-difference-like random variables as basic tools. Before we give the inequalities, we

state some properties of the sub-linear expectations Ê and Ên,k. The first is Hölder’s inequality which is

Proposition 16 of Denis et al. [3].

Lemma 4.1 (Hölder’s inequality). Let p, q > 1 be two real numbers satisfying 1
p+

1
q = 1. Then, for two

random variables X,Y in (Ω,H , Ê) we have Ê[|XY |] 6 (Ê[|X|p])
1
p (Ê[|Y |q])

1
q whenever Ê[|X|p] < ∞,

Ê[|Y |q] <∞.

The next two lemmas are on the properties of the sub-linear expectation, the capacity and the operators

Ên,k. The proofs will be given in Appendix A. We write X 6 Y in capacity V if V(X − Y > ϵ) = 0 for

all ϵ > 0, and X = Y in capacity V if both X 6 Y and Y 6 X holds in V.
Lemma 4.2. We have

(1) if X 6 Y in Lp, then X 6 Y in V;
(2) if X 6 Y in V and Ê[((X − Y )+)p] <∞, then X 6 Y in Lq for 0 < q < p;

(3) if X 6 Y in V, f(x) is non-decreasing continuous function and V(|Y | >M) → 0 as M → ∞, then

f(X) 6 f(Y ) in V;
(4) if p > 1, X,Y > 0 in Lp, X 6 Y in Lp, then Ê[Xp] 6 Ê[Y p];

(5) if Ê is countably additive, then X 6 Y in V is equivalent to X 6 Y in Lp for any p > 0.
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Lemma 4.3. Suppose that the operators Ên,k satisfy (a) and (b). For X,Y ∈ L (H ), we have

(1) if X 6 Y in L1, then Ên,k[X] 6 Ên,k[Y ] in L1;

(2) Ên,k[X]− Ên,k[Y ] 6 Ên,k[X − Y ] 6 Ên,k[|X − Y |] in L1;

(3) Ên,k[[Ên,l[X]]] = Ên,l∧k[X] in L1;

(4) if |X| 6M in Lp for all p > 1, then |Ên,k[X]| 6M in Lp for all p > 1.

For the martingale-difference-like random variables, we have the following theorem on the Rosenthal-

type inequalities.

Theorem 4.4. Set S0 = 0 and Sk =
∑k

i=1 Zn,i. Suppose that {Zn,i} are a set of bounded random

variables. Then,

Ê
[(

max
k6kn

(Skn − Sk)
)2]

6 Ê

[ kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

]
(4.1)

when Ê[Zn,k|Hn,k−1] 6 0, k = 1, . . . , kn, and in general,

Ê
[
max
k6kn

|Sk|2
]
6 256

{
Ê

[ kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

]

+ Ê

[{ kn∑
k=1

((Ê[Zn,k |Hn,k−1])
+ + (Ê [Zn,k |Hn,k−1])

−)

}2]}
. (4.2)

Moreover, for p > 2 there is a constant Cp such that

Ê
[
max
k6kn

|Sk|p
]
6 Cp

{
Ê

[ kn∑
k=1

Ê[|Zn,k|p |Hn,k−1]

]
+ Ê

[( kn∑
k=1

Ê[Z2
n,k |Hn,k]

)p/2]

+ Ê

[{ kn∑
k=1

((Ê[Zn,k |Hn,k])
+ + (Ê [Zn,k |Hn,k])

−)

}p]}
. (4.3)

Proof. Let Qk = max{Zn,k, Zn,k + Zn,k−1, . . . , Zn,k + · · · + Zn,1}, Mk = maxi6k |Si|. Then, Qk =

Zn,k +Q+
k−1, Q

2
k = Z2

n,k + 2Zn,kQ
+
k−1 + (Q+

k−1)
2, |Qk| 6 2Mkn . It follows that

(
max
k6kn

(Skn − Sk)
)2

= (Q+
kn
)2 6

kn∑
k=1

Z2
n,k + 2

kn∑
k=1

Zn,kQ
+
k−1

6
kn∑
k=1

Ê[Z2
n,k |Hn,k−1] +

kn∑
k=1

(Z2
n,k − Ê[Z2

n,k |Hn,k−1])

+ 2

kn∑
k=1

Ê[Zn,k |Hn,k−1]Q
+
k−1 + 2

kn∑
k=1

(Zn,k − Ê[Zn,k |Hn,k−1])Q
+
k−1

6
kn∑
k=1

Ê[Z2
n,k |Hn,k−1] + 4

kn∑
k=1

(Ê[Zn,k |Hn,k−1])
+Mkn

+

kn∑
k=1

(Z2
n,k − Ê[Z2

n,k |Hn,k−1]) + 2

kn∑
k=1

(Zn,k − Ê[Zn,k |Hn,k−1])Q
+
k−1.

By the fact that Zn,is are bounded, Lemma 4.3(4) and Hölder’s inequality, the random variables con-

sidered above and in the sequel have finite moments of any order. So, the properties of the conditional

expectation operator can be applied freely. The sub-linear expectations of the last two sums above

are non-positive, and the sub-linear expectation of the second sum is also zero when Ê[Zn,k |Hn,k] 6 0,

k = 1, . . . , kn. Taking the sub-linear expectation yields (4.1). By considering {−Zn,k}, for maxk6kn(−Skn
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+ Sk) we have a similar estimate. Note Mkn 6 2maxk6kkn
|Sn − Sk|. It follows that

Ê[M2
kn
] 6 8Ê

[ kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

]

+ 16Ê

[ kn∑
k=1

{(Ê[Zn,k |Hn,k−1])
+ + (Ê [Zn,k |Hn,k−1])

−}Mkn

]

6 8Ê

[ kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

]
+

1

2
Ê[M2

kn
]

+ 128Ê

[( kn∑
k=1

{(Ê[Zn,k |Hn,k−1])
+ + (Ê [Zn,k |Hn,k−1])

−}
)2]

,

where the last inequality is due to ab 6 a2+b2

2 .

For (4.3), we apply the elementary inequality

|x+ y|p 6 2pp2|x|p + |y|p + px|y|p−1sgny + 2pp2x2|y|p−2, p > 2,

and yield

|Qk|p 6 2pp2|Zn,k|p + |Qk−1|p + pZn,k(Q
+
k−1)

p−1 + 2pp2Z2
n,k(Q

+
k−1)

p−2.

It follows that(
max
k6kn

(Skn − Sk)
)p

6 |Qkn |p

6 2pp2
kn∑
k=1

|Zn,k|p + p

kn∑
k=1

Zn,k(Q
+
k−1)

p−1 + 2pp2
kn∑
k=1

Z2
n,k(Q

+
k−1)

p−2

6 2pp2
kn∑
k=1

Ê[|Zn,k|p |Hn,k−1] + p

kn∑
k=1

(Ê[Zn,k |Hn,k−1])
+(Q+

k−1)
p−1

+ 2pp2
kn∑
k=1

Ê[Z2
n,k |Hn,k−1](Q

+
k−1)

p−2 + 2pp2
kn∑
k=1

(|Zn,k|p − Ê[|Zn,k|p |Hn,k−1])

+ p

kn∑
k=1

(Zn,k − Ê[Zn,k |Hn,k−1])(Q
+
k−1)

p−1

+ 2pp2
kn∑
k=1

(Z2
n,k − Ê[Z2

n,k |Hn,k−1])(Q
+
k−1)

p−2.

The sub-linear expectations of the last three sums are non-positive. Note Qk 6 2Mkn and for(
max
k6kn

(−Skn + Sk)
)p

,

we have a similar estimate. It follows that

Ê[Mp
kn
] 6 Cp

{
Ê

[ kn∑
k=1

Ê[|Zn,k|p |Hn,k−1]

]
+ Ê

[ kn∑
k=1

Ê[Z2
n,k |Hn,k−1]M

p−2
kn

]

+ Ê

[ kn∑
k=1

{(Ê[Zn,k |Hn,k−1])
+ + (Ê [Zn,k |Hn,k−1])

−}Mp−1
kn

]}

6 Cp

{
Ê

[ kn∑
k=1

Ê[|Zn,k|p |Hn,k−1]

]
+ Ê

[( kn∑
k=1

Ê[Z2
n,k |Hn,k−1]

)p/2]
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+ Ê

[( kn∑
k=1

{(Ê[Zn,k |Hn,k−1])
+ + (Ê [Zn,k |Hn,k−1])

−}
)p]}

+
1

2
Ê[Mp

kn
],

where the last inequality is due to ab 6 2
p |a|

p/2+(1− 2
p )|b|

p/(p−2) and ab 6 1
p |a|

p+(1− 1
p )|b|

p/(p−1). The

proof is completed.

The next theorem gives the exponential inequality of the martingale-like sequences.

Theorem 4.5. Suppose that the operators Ên,k satisfy (a) and (b), {Zn,k; k = 1, . . . , kn} is an array of

random variables such that Zn,k ∈ Hn,k and Ê[Z2
n,k] < ∞, k = 1, . . . , kn. Assume that Ê[Zn,k |Hn,k−1]

6 0 in L1, k = 1, . . . , kn. Then for all x, y,A > 0,

V
(

max
m6kn

m∑
k=1

Zn,k > x

)
6 V

(
max
k6kn

Zn,k > y or

kn∑
k=1

Ê[Z2
n,k |Hn,k−1] > A

)
+ exp

{
− x2

2(xy +A)

(
1 +

2

3
ln

(
1 +

xy

A

))}
. (4.4)

Proof. Let Xk = Zn,k ∧ y. Then Zn,k − Xk = (Zn,k − y)+ > 0. Denote σ2
n,k = Ê[Z2

n,k |Hn,k−1],

δk =
∑k

i=1 σ
2
n,i, k = 1, . . . , kn. Let f(x) be a function with bounded derivative such that I{x 6 A} 6

f(x) 6 I{x 6 A+ϵ}. Let Yk = Xkf(δk), Tk =
∑k

i=1 Yk. Then Ê[Yk |Hn,k−1] 6 f(δk)Ê[Zn,k |Hn,k−1] 6 0

in L1, Ê[Y
2
k |Hn,k−1] 6 f2(δk)Ê[Z

2
n,k |Hn,k−1] = f2(δk)σ

2
n,k in L1. Denote δ∗k =

∑k
i=1 f

2(δk)σ
2
n,k. It

follows that for any x, y,A > 0,

V
(

max
m6kn

m∑
k=1

Zn,k > x

)
6 V

(
max
k6kn

Zn,k > y or δkn > A
)
+ V

(
max
k6kn

Tk > x
)
.

For any t > 0, by noting Yk 6 y, 0 6 f2(δk)σ
2
n,k 6 δ∗k 6 A+ ϵ and

etYk = 1 + tYk +
etYk − 1− tYk

Y 2
k

Y 2
k 6 1 + tYk +

ety − 1− ty

y2
Y 2
k ,

we have

exp

{
− ety − 1− ty

y2
f2(δk)σ

2
n,k

}
Ê[etYk |Hn,k−1]

6 exp

{
− ety − 1− ty

y2
f2(δk)σ

2
n,k

}{
1 +

ety − 1− ty

y2
Ê[Y 2

k |Hn,k−1]

}
6 1 in L1.

Write

U0 = 1, Uk = exp

{
− ety − 1− ty

y2
δ∗k

}
etTk , k = 1, . . . , kn.

Then

Ê[Uk |Hn,k−1] 6 Uk−1 in L1, k = 1, . . . , kn. (4.5)

Next, we show that for any α > 0,

V
(
max
k6kn

Uk > α
)
6 Ê[U0]

α
. (4.6)

For a given β ∈ (0, α), let f(x) be a continuous function with bounded derivation such that I{x 6
α− β} 6 f(x) 6 I{x 6 α}. Define f0 = 1, fk = f(U1) · · · f(Uk). Then fk ∈ Hk, 0 6 fk 6 1 and

f0U0 +
n∑

k=1

fk−1(Uk − Uk−1) = fnUn +
n∑

k=1

fk−1(1− f(Uk))Uk
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> fnUn +

n∑
k=1

fk−1(1− f(Uk))(α− β)

= (α− β)(1− fn) + fnUn

> (α− β)I
{
max
k6kn

Uk > α
}
.

By (4.5),

Ê[fk−1(Uk − Uk−1)] = Ê[Ê[fk−1(Uk − Uk−1) |Hk−1]]

= Ê[fk−1(Ê[Uk |Hk−1]− Uk−1)] 6 0.

It follows that

(α− β)V
(
max
k6kn

Uk > α
)
6 Ê[f0U0] = Ê[U0].

(4.6) is proved. Now, note δ∗k 6 A+ ϵ. We have for any t > 0,

exp
{
tmax
k6kn

Tk

}
6 max

k6kn

Uk exp

{
ety − 1− ty

y2
(A+ ϵ)

}
.

Hence by (4.6),

V
(
max
k6kn

Tk > x
)
6 V

(
max
k6kn

Uk > exp

{
tx− ety − 1− ty

y2
(A+ ϵ)

})
6 exp

{
− tx+

ety − 1− ty

y2
(A+ ϵ)

}
.

Choosing t = 1
y ln(1 + xy

A+ϵ ), we have

V
(
max
k6kn

Tk > x
)
6 exp

{
x

y
− x

y

(
A+ ϵ

xy
+ 1

)
ln

(
1 +

xy

A+ ϵ

)}
.

Applying the elementary inequality

ln(1 + t) > t

1 + t
+

t2

2(1 + t)2

(
1 +

2

3
ln(1 + t)

)
,

we have (
A+ ϵ

xy
+ 1

)
ln

(
1 +

xy

A+ ϵ

)
> 1 +

xy

2(xy +A+ ϵ)

(
1 +

2

3
ln

(
1 +

xy

A+ ϵ

))
.

(4.4) is proved by letting ϵ→ 0.

5 Lévy’s characterization of a G-Brownian motion

In this section, we give a Lévy characterization of a G-Brownian motion as an application of Theorem 3.5.

Let {Ht; t > 0} be a non-decreasing family of subspaces of H such that (1) a constant c ∈ Ht, and (2)

if X1, . . . , Xd ∈ Ht, then φ(X1, . . . , Xd) ∈ Ht for any φ ∈ Cl,Lip. We consider a system of operators in

L (H ), Êt : L (H ) → L (Ht) and denote Ê[X |Ht] = Êt[X], Ê [X |Ht] = −Êt[−X]. Suppose that the

operators Êt satisfy the following properties: for all X,Y ∈ L (H ),

(i) Êt[X + Y ] = X + Êt[Y ] in L1 if X ∈ Ht, and Êt[XY ] = X+Êt[Y ] +X−Êt[−Y ] in L1 if X ∈ Ht

and XY ∈ L (H );

(ii) Ê[Êt[X]] = Ê[X].
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Example 5.1. Let Wt be a G-Brownian motion in a sub-linear expectation space (Ω,H , Ê), and

H̃ = {X = φ(Wt1 , . . . ,Wtd) : 0 6 t1 6 · · · 6 td, φ ∈ Cl,Lip(Rd), d > 1},
Ht = {X = φ(Wt1 , . . . ,Wtd) : 0 6 t1 6 · · · 6 td 6 t, φ ∈ Cl,Lip(Rd), d > 1}.

For X = φ(Wt1 , . . . ,Wtd) ∈ H̃ , assume 0 6 t1 6 ti 6 t 6 ti+1 6 · · · 6 td, and define

Êt[X] = Ê[φ(wt1 , . . . , wti ,Wti+1 −Wt + wt, . . . ,Wtd −Wt + wt)] |wt1=Wt1 ,...,wti
=Wti

,wt=Wt .

Then, in the sub-linear expectation space (Ω, H̃ , Ê), the family {Ht, Êt}t>0 satisfies the properties

(i)–(iii).

Definition 5.2. A process Mt is called a martingale, if Mt ∈ L (H ), Mt ∈ Ht and

Ê[Mt |Hs] =Ms, s 6 t.

Denote

wT (M, δ) = sup
|t−s|<δ,t,s∈[0,T ]

|M(t)−M(s)|

and

WT (M, δ) = sup
ti

Ê
[
max
16i6n

|M(ti)−M(ti−1)| ∧ 1
]
,

where the supremum supti is taken over all tis with

0 = t0 < t1 < · · · < tn = T,
δ

2
< ti − ti−1 < δ, i = 1, . . . , n.

The following theorem gives a Lévy characterization of a G-Brownian motion.

Theorem 5.3. Let Mt be a random process in (Ω,H ,Ht, Ê) with M0 = 0,

for all p > 0 and t > 0, CV(|Mt|p) <∞ ⇒ Ê[|Mt|p] <∞. (5.1)

Suppose that Mt satisfies

(I) both Mt and −Mt are martingales;

(II) for a constant σ2 > 0, M2
t − σ2t is a martingale;

(III) for a constant 0 < σ2 6 σ2, −(M2
t − σ2t) is a martingale;

(IV) for any T > 0, limδ→0WT (M, δ) = 0.

Then, Mt satisfies Property (ii) as in Definition 1.4 with M1 ∼ N(0, [σ2, σ2]).

Remark 5.4. The assumption (I) implies that Ê[Mt −Ms |Hs] = Ê [Mt −Ms |Hs] = 0 for all t > s.

Also, under the assumption (I), the assumption (II) is equivalent to that Ê[(Mt −Ms)
2 |Hs] = σ2(t− s)

for all t > s, and (III) is equivalent to that Ê [(Mt −Ms)
2 |Hs] = σ2(t− s) for all t > s.

The assumption (IV) means that Mt is continuous. Note WT (M, δ) 6 ϵ + V(wT (M, δ) > ϵ). It is

satisfied if

(IV′) for any T, ϵ > 0, limδ→0 V(wT (M, δ) > ϵ) = 0.

The condition (IV′) means that Mt is continuous in capacity V uniformly in t on each finite interval.

Also, WT (M, δ) 6 supti(
∑

i Ê[|M(ti)−M(ti−1)|2+α])
1

2+α . (IV) is also satisfied if

(IV′′) there is a constant α > 0 such that for any t > s > 0, Ê[|Mt −Ms|2+α] = o(t− s) as t− s→ 0.

Remark 5.5. Lévy characterization of a G-Brownian motion is first established under G-expectation

in a Wiener space by Xu and Zhang [25, 26] by using the stochastic calculus. We give an elementary

proof by using the functional central limit theorem.

Remark 5.6. If Ê is countably sub-additive, then the condition (5.1) is automatically satisfied. The

G-expectation space considered in Xu and Zhang [25, 26] is complete and so the sub-linear expectation

is countably additive, and (5.1) is satisfied.

In [25,26], the operators Êt are also supposed to have the following assumptions:
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(iii) if X 6 Y , then Êt[X] 6 Êt[Y ];

(iv) Êt[X]− Êt[Y ] 6 Êt[X − Y ];

(v) Êt[[Ês[X]]] = Êt∧s[X].

As in Lemma 4.3, (iii)–(v) hold in L1 if the operators satisfy (i) and (ii).

For proving Theorem 5.3 we need a more lemma.

Lemma 5.7. Suppose that the operators Êt satisfy (i) and (ii), Mt is a martingale in (Ω,H ,Ht, Ê)

such that Theorem 5.3(IV) is satisfied and Ê[(Mt −Ms)
2 |Hs] 6 (t− s)σ2 for all t > s > 0, where σ is a

positive constant. Then,

V(Mt −Ms > x) 6 exp

{
− x2

2(t− s)σ2

}
, for all t > s > 0, x > 0. (5.2)

In particular, for any p > 0, CV([(Mt −Ms)
+]p) 6 cp(t− s)p/2σp.

Proof. Let s = t0 < t1 < · · · < tk = t be a partition of [s, t] with δ/2 < ti − ti−1 < δ. Note Ê[Mti

−Mti−1 |Hti−1 ] = 0 and Ê[(Mti −Mti−1)
2 |Hti−1 ] 6 (ti − ti−1)σ

2. So,
∑k

i=1 Ê[(Mti −Mti−1)
2 |Hti−1 ]

6 (t− s)σ2. By Theorem 4.5, for 0 < y < 1 and x > 0,

V(Mt −Ms > x) 6 V
(
max

i
(Mti −Mti−1) > y

)
+ exp

{
− x2

2(xy + (t− s)σ2)

(
1 +

2

3
ln

(
1 +

xy

(t− s)σ2

))}
6 WT (M, δ)

y
+ exp

{
− x2

2(xy + (t− s)σ2)

(
1 +

2

3
ln

(
1 +

xy

(t− s)σ2

))}
.

By letting δ → 0 and then y → 0, we conclude (5.2). Finally, for p > 0,

CV([(Mt −Ms)
+]p) 6

∫ ∞

0

V(Mt −Ms > x1/p)dx

6 (t− s)p/2σp

∫ ∞

0

exp

{
− x2/p

2

}
dx 6 cp(t− s)p/2σp.

The proof is completed.

Proof of Theorem 5.3. Suppose that (I)–(IV) are satisfied. Note that bothMt and −Mt are martingales,

and Ê[(Mt −Ms)
2 |Hti−1

] = (t− s)σ2. By Lemma 5.7,

CV(|Mt −Ms|p) 6 cp(t− s)p/2σp.

By the assumption (5.1), Ê[|Mt −Ms|p] < ∞ for any p > 0 and t, s. Let Wt be a G-Brownian motion

in a sub-linear expectation (Ω̃, H̃ , Ẽ) with W1 ∼ N(0, [σ2, σ2]). It is sufficient to show that for any

0 < t1 < · · · < td and φ ∈ Cb,Lip(Rd),

Ê[φ(Mt1 , . . . ,Mtd)] = Ẽ[φ(Wt1 , . . . ,Wtd)]. (5.3)

Actually, by noting Ê[|Mt|p] < ∞ for any p > 0, we can extend φ from Cb,Lip(Rd) to Cl,Lip(Rd) by an

elementary argument.

Now, without loss of generality, we assume 0 < t1 < · · · < td 6 1. Note Ê[(|Mt − Ms|3 − c3)+]

6 Ê[|Mt −Ms|4]/c→ 0 as c→ ∞. Then Ê[|Mt −Ms|3] 6 CV(|Mt −Ms|3) = o(t− s) as t− s→ 0. Let

kn = 2n, Zn,k =Mk/2n −M(k−1)/2n , Hn,k = Hk/2n , k = 1, . . . , kn

and τn(t) = [t2n]. Then Ê[Zn,k |Hn,k−1] = Ê [Zn,k |Hn,k−1] = 0,

Ê[Z2
n,k |Hn,k−1] =

σ2

2n
, Ê [Z2

n,k |Hn,k−1] =
σ2

2n
.
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Hence it is easily seen that {Zn,k,Hn,k} satisfy the conditions (3.3), (3.4) and (3.9) with ρ(t) = tσ2,

r = σ2/σ2. Furthermore,
kn∑
k=1

Ê[|Zn,k|3] =
2n∑
k=1

o

(
1

2n

)
→ 0.

So, the Lindeberg’s condition (3.1) is satisfied. Let Wn(·) be defined as in (3.8). By Theorem 3.5,

(Wn(t1), . . . ,Wn(td))
d→ (Wt1 , . . . ,Wtd). On the other hand,

|Wn(t)−Mt| = |Mt −M[2nt]/2n |
V→ 0.

So, (5.3) holds for all φ ∈ Cb,Lip(Rd). The proof is now completed.

6 Proofs of the central limit theorems for martingales

6.1 Proof of the central limit theorem

We give the proof of Theorem 3.1. By (3.1), there exists a sequence of positive numbers 1/2 > ϵn ↘ 0

such that

ϵ−2
n

kn∑
k=1

Ê[(Z2
n,k − ϵ2n)

+ |Hn,k−1]
V→ 0.

Let Z∗
n,k = (−2ϵn) ∨ Zn,k ∧ (2ϵn). Then

kn∑
k=1

Ê[(Zn,k − Z∗
n,k)

2 |Hn,k−1] 6
kn∑
k=1

Ê[(Z2
n,k − ϵ2n)

+ |Hn,k−1]
V→ 0

and
kn∑
k=1

Ê[|Zn,k − Z∗
n,k | |Hn,k−1] 6 ϵ−1

n

kn∑
k=1

Ê[(Z2
n,k − ϵ2n)

+ |Hn,k−1]
V→ 0.

Hence, {Z∗
n,k; k = 1, . . . , kn} satisfy the conditions (3.2)–(3.4). Furthermore, let

hk = ϵ−2
n

k∑
i=1

Ê[(Z2
n,k − ϵ2n)

+ |Hn,k−1]

and f be a bounded Lipschitz function such that I{x 6 ϵ} 6 f(x) 6 I{x 6 2ϵ}. Then,

V(Zn,k ̸= Z∗
n,k for some k)

= V
(
max
k6kn

|Zn,k| > 2ϵn

)
6 V

( kn∑
k=1

[1 ∧ (Z2
n,k − ϵ2n)

+] > ϵ2n

)

6 V
( kn∑

k=1

[1 ∧ (Z2
n,k − ϵ2n)

+] > ϵ2n, hkn 6 ϵ

)
+ V(hkn > ϵ)

= V
( kn∑

k=1

[1 ∧ (Z2
n,k − ϵ2n)

+]f(hk) > ϵ2n, hkn 6 ϵ

)
+ V(hkn > ϵ)

6 Ê

[
ϵ−2
n

kn∑
k=1

[1 ∧ (Z2
n,k − ϵ2n)

+]f(hk)

]
+ V(hkn > ϵ)

6 Ê

[
ϵ−2
n

kn∑
k=1

f(hk)Ê[[1 ∧ (Z2
n,k − ϵ2n)

+] |Hn,k−1]

]
+ V(hkn > ϵ)

6 2ϵ+ V(hkn > ϵ) → 0 as n→ ∞ and then ϵ→ 0.
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It follows that for any bounded function φ,

Ê

[∣∣∣∣φ( kn∑
k=1

Zn,k

)
− φ

( kn∑
k=1

Z∗
n,k

)∣∣∣∣] 6 2 sup
x

|φ(x)|V(Zn,k ̸= Z∗
n,k for some k) → 0.

So, without loss of generality we can assume that there is a positive sequence 1 > ϵn ↘ 0 such that

|Zn,k| 6 ϵn, k = 1, . . . , kn.

Denote S0 = 0, δ0 = 0, Sk =
∑k

i=1 Zn,i, a
2
n,k = Ê[Z2

n,k |Hn,k−1], δk =
∑k

i=1 a
2
n,i, k = 1, . . . , kn. Let

f(x) be a function with bounded derivative such that I{x 6 ρ + ϵ/2} 6 f(x) 6 I{x 6 ρ + ϵ}. Let

Z∗
n,k = Zn,kf(δk). Then {Z∗

n,k; k = 1, . . . , kn} satisfy the conditions (3.2)–(3.4), and

kn∑
k=1

Ê[(Z∗
n,k)

2 |Hn,k−1] = δ∗kn
, (6.1)

where δ∗kn
=

∑kn

k=1 f(δk)Ê[Z
2
n,k |Hn,k−1] 6 ρ+ ϵ. The above equalities hold in L1 by the property (a) of

the operators Ên,k and then hold in any Lq by Lemma 4.2(2) since δ∗kn
is bounded in Lq by Lemma 4.3(4).

Furthermore,

{Zn,k ̸= Z∗
n,k for some k} ⊂

{ kn∑
k=1

a2n,k > ρ+
ϵ

2

}
.

So, without loss of generality we can further assume that

δkn =

kn∑
k=1

Ê[Z2
n,k |Hn,k−1] 6 ρ+ ϵ

in L1. Similarly, we can assume

χkn :=

kn∑
k=1

{|Ê[Zn,k |Hn,k−1]|+ |Ê [Zn,k |Hn,k−1]|} < ϵ < 1

in L1. Lemma 4.3(4) implies that all the random variables considered above and in the sequel are bounded

in Lp for all p > 0.

Now, by Theorem 4.4,

Ê

[
max
k6kn

( k∑
i=1

Zn,i

)2]
6 256Ê[δkn ] + 256Ê[χ2

kn
]. (6.2)

If ρ = 0, then δkn

V→ 0. Note χkn

V→ 0. So, Ê[(
∑kn

i=1 Zn,i)
2] → 0, and then the result is obvious. In the

sequel, we suppose ρ ̸= 0. Let φ be a bounded continuous function with bounded derivation. Without

loss of generality, we assume |φ(x)| 6 1. We want to show that

Ê[φ(Skn)] → Ẽ[φ(
√
ρξ)]. (6.3)

In the classical probability space, the above convergence is usually shown by verifying the convergence of

the related characteristic functions (see Hall and Heyde [6, pp. 60–63] and Pollard [23, pp. 171–174]). As

shown by Hu and Li [8], the characteristic function cannot determine the distribution of random variables

in the sub-linear expectation space. Peng [18,20] developed a method to show the above convergence for

independent random variables. Here we promote Peng’s argument such that it is also valid for martingale

differences which give also a new normal approximation method for classical martingale differences instead

of the characteristic function.

Now, for a small but fixed h > 0, let V (t, x) be the unique viscosity solution of the following equation:

∂tV +G(∂2xxV ) = 0, (t, x) ∈ [0, ρ+ h]× R, V |t=ρ+h = φ(x), (6.4)
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where G(α) = 1
2 (α

+ − rα−). Then by the interior regularity of V ,

∥V ∥C1+α/2,2+α([0,ρ+h/2]×R) <∞, for some α ∈ (0, 1). (6.5)

According to the definition of G-normal distribution, we have V (t, x) = Ẽ[φ(x +
√
ρ+ h− tξ)] where

ξ ∼ N(0, [r, 1]) under Ẽ. In particular,

V (h, 0) = Ẽ[φ(
√
ρξ)], V (ρ+ h, x) = φ(x).

It is obvious that, if φ(·) is a global Lipschitz function, i.e., |φ(x) − φ(y)| 6 C|x − y|, then |V (t, x)

− V (t, y)| 6 C|x− y| and

|V (t, x)− V (s, x)| 6 CẼ[|ξ|]|
√
ρ+ h− t−

√
ρ+ h− s| 6 CẼ[|ξ|]|t− s|1/2.

So, |∂xV (t, x)| 6 C, |∂tV (t, x)| 6 CẼ[|ξ|]/
√
ρ+ h− t, |V (ρ + h, x) − V (ρ, x)| 6 CẼ[|ξ|]

√
h and

|V (h, 0) − V (0, 0)| 6 CẼ[|ξ|]
√
h. Following the proof of Lemma 5.4 of [20], it is sufficient to show

that

lim
n→∞

Ê[V (ρ, Skn)] = V (0, 0). (6.6)

As we have shown, we can assume that δkn 6 ρ+ h/4 =: h0 < 2ρ in L1. It is obvious that |V (t, x)| 6 1

and

Ê[|V (ρ, Skn)− V (δkn ∧ h0, Skn)|] 6 CÊ[|δkn ∧ h0 − ρ|1/2] → 0.

Hence, it is sufficient to show that

lim
n→∞

Ê[V (δkn
∧ h0, Skn

)] = V (0, 0). (6.7)

Let δ̃i = δi ∧ h0. Then δ̃i+1 − δ̃i 6 a2n,i+1, |δ̃i| 6 h0 = ρ+ h/4. It follows that

|∂xV (δ̃i, Si)| 6 C, |∂tV (δ̃i, Si)| 6
C√
h
6 C.

Also, by the fact that ∂xxV is uniformly α-Hölder continuous in x and α/2-Hölder continuous in t on

[0, ρ+ h/2]× R, it follows that

|∂2xxV (δ̃i, Si)| 6 |∂2xxV (0, 0)|+ C|δ̃i|α/2 + C|Si|α 6 C + C|Si|α.

Now, applying Taylor’s expansion, we have

V (δ̃kn , Skn)− V (0, 0)

=

kn−1∑
i=0

{[V (δ̃i+1, Si+1)− V (δ̃i, Si+1)] + [V (δ̃i, Si+1)− V (δ̃i, Si)]} =:

kn−1∑
i=0

{Iin + J i
n}

with

J i
n = ∂tV (δ̃i, Si)(δ̃i+1 − δ̃i) +

1

2
∂2xxV (δ̃i, Si)Z

2
n,i+1 + ∂xV (δ̃i, Si)Zn,i+1

=

{
a2n,i+1∂tV (δ̃i, Si) +

1

2
∂2xxV (δ̃i, Si)Z

2
n,i+1 −

1

2
(∂2xxV (δ̃i, Si))

−(ra2n,i+1 − Ê [Z2
n,i+1 |Hn,i])

}
+ {∂xV (δ̃i, Si)Zn,i+1}+

{
1

2
(∂2xxV (δ̃i, Si))

−(ra2n,i+1 − Ê [Z2
n,i+1 |Hn,i])

}
+ {∂tV (δ̃i, Si)(δ̃i+1 − δ̃i − a2n,i+1)}

=: J i
n,1 + J i

n,2 + J i
n,3 + J i

n,4

and

Iin = (δ̃i+1 − δ̃i)[(∂tV (δ̃i + γ(δ̃i+1 − δ̃i), Si+1)− ∂tV (δ̃i, Si+1))
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+ (∂tV (δ̃i, Si+1)− ∂tV (δ̃i, Si))]

+
1

2
[∂2xxV (δ̃i, Si + βZn,i+1)− ∂2xxV (δ̃i, Si)]Z

2
n,i+1,

where γ and β are between 0 and 1. Thus∣∣∣∣Ê[V (δ̃kn , Skn)]− V (0, 0)− Ê

[ kn−1∑
i=0

(J i
n,1 + J i

n,2)

]∣∣∣∣
6 Ê

[∣∣∣∣V (δ̃kn , Skn)− V (0, 0)−
kn−1∑
i=0

(J i
n,1 + J i

n,2)

∣∣∣∣]

6 Ê

[ kn−1∑
i=0

(|Iin|+ |J i
n,3|+ |J i

n,4|)
]
. (6.8)

For J i
n,1, it follows that

Ê[J i
n,1 |Hn,i] = [∂tV (δ̃i, Si) +G(∂2xxV (δ̃i, Si))]a

2
n,i+1 = 0 in L1.

It follows that

Ê

[ kn−1∑
i=0

J i
n,1

]
= Ê

[ kn−2∑
i=0

J i
n,1 + Ê[Jkn−1

n,1 |Hn,kn−1]

]
= Ê

[ kn−2∑
i=0

J i
n,1

]
= · · · = 0. (6.9)

For J i
n,2, we denote J̃ i

n,2 = |∂xV (δ̃i, Si)|(|Ê[Zn,i+1 |Hn,i]|+ |Ê [Zn,i+1 |Hn,i]|). Then

Ê[J i
n,2 − J̃ i

n,2 |Hn,i]

= Ê[J i
n,2 |Hn,i]− J̃ i

n,2

6 (∂xV (δ̃i, Si))
+Ê[Zn,i+1 |Hn,i]− (∂xV (δ̃i, Si))

−Ê [Zn,i+1 |Hn,i]− J̃ i
n,2 6 0 in L1.

Similarly Ê[−J i
n,2 − J̃ i

n,2 |Hn,i] 6 0 in L1. It follows that

Ê

[ kn−1∑
i=0

(±J i
n,2 − J̃ i

n,2)

]
= Ê

[ kn−2∑
i=0

(±J i
n,2 − J̃ i

n,2) + Ê[±Jkn−1
n,1 − J̃kn−1

n,2 |Hn,kn−1]

]

6 Ê

[ kn−2∑
i=0

(±J i
n,2 − J̃ i

n,2)

]
6 · · · 6 0. (6.10)

Hence

Ê

[
±

kn−1∑
i=0

J i
n,2

]
6 Ê

[ kn−1∑
i=0

(±J i
n,2 − J̃ i

n,2)

]
+ Ê

[ kn−1∑
i=0

J̃ i
n,2

]
6 Ê

[ kn−1∑
i=0

J̃ i
n,2

]
. (6.11)

Note |∂xV (δ̃i, Si)| 6 C, χkn

V→ 0 and χkn
6 1 in any Lp. Combining (6.9) and (6.11) we have∣∣∣∣Ê[ kn−1∑

i=0

(J i
n,1 + J i

n,2)

]∣∣∣∣ 6 Ê

[ kn−1∑
i=0

J̃ i
n,2

]
6 CÊ[χkn

] → 0.

For J i
n,3, it is easily seen that

kn−1∑
i=0

|J i
n,3| 6 C

(
1 + max

i6kn

|Si|α
) kn∑

i=1

|ra2n,i − Ê [Z2
n,i |Hn,i−1]|. (6.12)

Write βkn =
∑kn

i=1 |ra2n,i − Ê [Z2
n,i |Hn,i−1]|. Note that

βkn

V→ 0 and βkn 6 2δkn 6 2h0 in any Lp
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and Ê[maxi6kn |Si|2] 6 256{Ê[δkn ] + Ê[χ2
kn
]} 6 256(h0 + 1) by (6.2). So

Ê

[ kn−1∑
i=0

|J i
n,3|

]
6 C

(
Ê
[(

1 + max
i6kn

|Si|α
)2])1/2

(Ê[β2
kn
])1/2 → 0.

For J i
n,4, note that |δ̃i+1 − δ̃i − a2n,i+1| 6 a2n,i+1, and δ̃i+1 − δ̃i − a2n,i+1 = δi+1 − δi − a2n,i+1 = 0 when

δkn 6 h0. It follows that

Ê

[ kn−1∑
i=0

|J i
n,4|

]
6 CÊ[δknI{δkn > h0}] 6 C(Ê[δ2kn

])1/2(V(δkn > h0))
1/2 = 0.

For Iin, note both ∂tV and ∂xxV are uniformly α-Hölder continuous in x and α/2-Hölder continuous

in t on [0, ρ+ h/2]× R. Without loss of generality, we assume α < τ . Also, δ̃i+1 − δ̃i 6 an,i+1. We then

have

|Iin| 6 C
∣∣an,i+1

∣∣2+α
+ Ca2n,i+1|Zn,i+1|α + |Zn,i+1|2+α

6 Cϵαna
2
n,i+1 + CϵαnZ

2
n,i+1 = Cϵαna

2
n,i+1 + Cϵαn(Z

2
n,i+1 − a2n,i+1)

in any Lq by Lemma 4.2. So

kn−1∑
i=0

|Iin| 6 2Cϵαn + Cϵαn

kn∑
i=1

(Z2
n,i − a2n,i) in L1, (6.13)

by noting
∑kn

i=1 a
2
n,i 6 2ρ in L1, where the sub-linear expectation under Ê of the last term is zero. It

follows that

Ê

[ kn−1∑
i=0

|Iin|
]
6 2Cϵαn → 0.

(6.7) is proved. Hence, (6.3) holds for any bounded function φ with bounded derivative.

If φ is a bounded and uniformly continuous function, we define a function φδ as a convolution of φ

and the density of a normal distribution N(0, δ), i.e.,

φδ = φ ∗ ψδ with ψδ(x) =
1√
2πδ

exp

{
− x2

2δ

}
,

where φ ∗ ψδ denotes the convolution of φ and ψδ. Then

|φ′
δ(x)| 6 sup

x
|φ(x)|δ−1/2 and sup

x
|φδ(x)− φ(x)| → 0

as δ → 0. Hence, (6.3) holds for any bounded and uniformly continuous function φ.

Now, for a bounded continuous function φ and given a number N > 1, we define

φ1(x) = φ((−N) ∨ (x ∧N)).

Then, φ1 is a bounded and uniformly continuous function, and |φ(x)− φ1(x)| 6 CI{|x| > N}. So

sup
n

Ê

[∣∣∣∣φ( kn∑
k=1

Zn,k

)
− φ1

( kn∑
k=1

Zn,k

)∣∣∣∣]

6 CV
(∣∣∣∣ kn∑

k=1

Zn,k

∣∣∣∣ > N

)
6 CN−2 sup

n
Ê

[( kn∑
k=1

Zn,k

)2]
6 CN−2 sup

n
(Ê[δkn ] + Ê[χ2

kn
]) 6 3CN−2 → 0 as N → ∞

by (6.2). The proof of Theorem 3.1 is now completed.
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6.2 Proof of the functional central limit theorem

For proving the functional central limit theorem, we need a more lemma.

Lemma 6.1. Suppose that the operators Ên,k satisfy (a) and (b), Xn ∈ Hn,k′
n

⊂ H is a d1-

dimensional random vector, and Yn ∈ H is a d2-dimensional random vector. Write Hn = Hn,k′
n
.

Assume that Xn
d→ X, and for any bounded Lipschitz function φ(x,y) : Rd1

⊗
Rd2 → R,

Ê[|Ê[φ(x,Yn) |Hn]− Ẽ[φ(x,Y )]|] → 0, ∀x, (6.14)

where X and Y are two random vectors in a sub-linear expectation space (Ω,H , Ẽ) with Ṽ(∥X∥ > λ) → 0

and Ṽ(∥Y ∥ > λ) → 0 as λ→ ∞. Then

(Xn,Yn)
d→ (X̃, Ỹ ), (6.15)

where Ỹ is independent to X̃, X̃
d
= X and Ỹ

d
= Y .

Proof. Suppose φ(x,y) : Rd1

⊗
Rd2 → R is a bounded continuous function. We want to show that

Ê[φ(Xn,Yn)] → Ẽ[φ(X̃, Ỹ )]. (6.16)

First we assume that φ(x,y) is a bounded Lipschitz function. Without loss of generality, we assume

0 6 φ(x,y) 6 1 and |φ(x1,y1)− φ(x2,y2)| 6 ∥x1 − x2∥+ ∥y1 − y2∥. Let gn(x) = Ê[φ(x,Yn) |Hn] and

g(x) = Ẽ[φ(x, Ỹ )]. Then

|g(x1)− g(x2)| 6 Ẽ[|φ(x1, Ỹ )− φ(x2, Ỹ )|] 6 ∥x1 − x2∥

and

|Ê[φ(Xn,Yn) |Hn]− gn(x)| 6 Ê[|φ(Xn,Yn)− φ(x,Yn)| |Hn] 6 ∥Xn − x∥ in L1

by Lemma 4.3. We use an argument of Hu et al. [7] (see Proposition 3.4) to approximate the function

φ(x,y). For fixed N > 1, denote BN (0) = {x : ∥x∥ 6 N}. By partition of the unity theorem, there exist

hi ∈ Cb,Lip(Rd1), i = 1, . . . , kN , such that 0 6 hi(x) 6 1, IBN (0) 6
∑kn

i=1 hi(x) 6 1, and the diameter of

support λ(supp(hi)) 6 1/N . Choose xi such that hi(xi) > 0. Then∣∣∣∣Ê[φ(Xn,Yn) |Hn]−
kN∑
i=1

hi(Xn)gn(xi)

∣∣∣∣
6

kN∑
i=1

hi(Xn)|Ê[φ(Xn,Yn) |Hn]− gn(xi)|+
(
1−

kN∑
i=1

hi(Xn)

)
|Ê[φ(Xn,Yn) |Hn]|

6
kN∑
i=1

hi(Xn)∥Xn − xi∥+
(
1−

kN∑
i=1

hi(Xn)

)
6 1

N
+

(
1−

kN∑
i=1

hi(Xn)

)
in L1.

It follows that ∣∣∣∣Ê[φ(Xn,Yn)]− Ê

[ kN∑
i=1

hi(Xn)gn(xi)

]∣∣∣∣
=

∣∣∣∣Ê[Ê[φ(Xn,Yn) |Hn]]− Ê

[ kN∑
i=1

hi(Xn)gn(xi)

]∣∣∣∣
6 Ê

[∣∣∣∣Ê[φ(Xn,Yn) |Hn]−
kN∑
i=1

hi(Xn)gn(xi)

∣∣∣∣]

6 1

N
+ Ê

[
1−

kN∑
i=1

hi(Xn)

]
.
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Similarly, ∣∣∣∣Ẽ[φ(X̃, Ỹ )]− Ẽ

[ kN∑
i=1

hi(X̃)g(xi)

]∣∣∣∣
=

∣∣∣∣Ẽ[g(X̃)]− Ẽ

[ kN∑
i=1

hi(X̃)g(xi)

]∣∣∣∣
6 Ẽ

[∣∣∣∣g(X̃)−
kN∑
i=1

hi(X̃)g(xi)

∣∣∣∣] 6 1

N
+ Ẽ

[
1−

kN∑
i=1

hi(X̃)

]
.

On the other hand, we have ∣∣∣∣Ê[ kN∑
i=1

hi(Xn)gn(xi)

]
− Ê

[ kN∑
i=1

hi(Xn)g(xi)

]∣∣∣∣
6

kN∑
i=1

Ê[|gn(xi)− g(xi)|] as n→ ∞

by (6.14), and

Ê

[ kN∑
i=1

hi(Xn)g(xi)

]
→ Ẽ

[ kN∑
i=1

hi(X̃)g(xi)

]
,

Ê

[
1−

kN∑
i=1

hi(Xn)

]
→ Ẽ

[
1−

kN∑
i=1

hi(X̃)

]

as n→ ∞, by the fact that Xn
d→ X̃. Combining the above arguments, we have

lim sup
n→∞

|Ê[φ(Xn,Yn)]− Ẽ[φ(X̃, Ỹ )]|

6 2

N
+ 2Ẽ

[
1−

kN∑
i=1

hi(X̃)

]
6 2

N
+ 2Ṽ(∥X∥ > N) → 0 as N → ∞.

Hence (6.16) is proved for any bounded Lipschitz function φ. For a bounded and uniformly continuous

function φ, we define

φδ = φ ∗ ψδ with ψδ(x,y) =
1

(2πδ)(d1+d2)/2
exp

{
−

∑d1

i=1 x
2
i +

∑d2

j=1 y
2
j

2δ

}
.

Then φδ is a bounded Lipschitz function with supx,y |φδ(x,y) − φ(x,y)| → 0 as δ → 0. Hence, (6.16)

holds for any bounded and uniformly continuous function φ. Finally, let φ(x,y) be a bounded continuous

function with |φ(x,y)| 6M . Let λ > 0. For x = (x1, . . . , xd), denote xλ = ((−λ)∨ (x1∧λ)λ, . . . , (−λ)∨
(xd1 ∧λ)) and define yλ similarly. Let φλ(x,y) = φ(xλ,yλ). Then φλ is a bounded uniformly continuous

function with

|φλ(x,y)− φ(x,y)| 6 2MI{∥x∥ > λ}+ 2MI{∥y∥ > λ}.

It follows that

lim sup
n→∞

|Ê[φ(Xn,Yn)]− Ẽ[φ(X̃, Ỹ )]|

6 lim sup
n→∞

|Ê[φλ(Xn,Yn)]− Ẽ[φλ(X̃, Ỹ )]|

+ 2M lim sup
n→∞

{V(∥Xn∥ > λ) + V(∥Yn∥ > λ)}

+ 2M{Ṽ(∥X∥ > λ) + Ṽ(∥Y ∥ > λ)}
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6 4M

{
Ṽ
(
∥X∥ > λ

2

)
+ Ṽ

(
∥Y ∥ > λ

2

)}
→ 0 as λ→ ∞.

The proof is completed.

Remark 6.2. In the original proofs of Lemma 6.1 and Theorem 3.5, we need an additional assumption

on the operators Ên,k as follows:

(a′) If X = (X1, . . . , Xd) ∈ Hn,k, Z ∈ H and φ(x, y) is a bounded Lipschitz function, then

Ê[φ(X, Z)] = Ê[Ên,k[φ(x, Z)] |x=X ].

We thank one of the referees mentioning us Proposition 3.4 of Hu et al. [7] which helps us to remove

this condition, though we fail to verify this proposition when the point by point monotonicity of the

conditional sub-linear expectation (see Hu et al. [7, Definition 3.1(1)]) is replaced by the L1-monotonicity

(see Lemma 4.3(1)).

Proof of Theorem 3.5. With the same argument as that at the beginning of the proof of Theorem 3.1,

we can assume that

χkn :=

kn∑
k=1

{|Ê[Zn,k |Hn,k−1]|+ |Ê [Zn,k |Hn,k−1]|} < 1

in L1, δkn =
∑kn

k=1 Ê[Z
2
n,k |Hn,k−1] 6 2ρ(1) in L1 and |Zn,k| 6 ϵn, k = 1, . . . , kn, with a sequence

0 < ϵn → 0. Let 0 < t1 < t2 6 1. Consider {Z∗
n,k := Zn,τn(t1)+k; k = 1, . . . , k∗n}, S∗

i =
∑i

k=1 Zn,τn(t1)+k

and k∗n = τn(t2)− τn(t1). Then

S∗
k∗
n
= Sn,τn(t2) − Sn,τn(t1) =

k∗
n∑

k=1

Zn,τn(t1)+k

and
k∗
n∑

k=1

Ê[Z2
n,τn(t1)+k |Hn,τn(t1)+k−1]

V→ ρ(t2)− ρ(t1).

By Theorem 2.1,

Sn,τn(t2) − Sn,τn(t1)
d→W (ρ(t2))−W (ρ(t1)).

Furthermore, for any bounded Lipschitz function φ(u, x), let V u(t, x) be the unique viscosity solution of

the following equation:

∂tV
u +G(∂2xxV

u) = 0, (t, x) ∈ [0, ϱ+ h]× R, V u |t=ϱ+h = φ(u, x),

where ϱ = ρ(t2)− ρ(t1). With the same argument for showing (6.3), we can show that

Ê[|Ê[φ(u, Sn,τn(t2) − Sn,τn(t1)) |Hn,τn(t1)]− Ẽ[φ(u,W (ρ(t2))−W (ρ(t1)))]|] → 0. (6.17)

The only difference is that (6.8)–(6.10) are needed to be replaced, respectively, by

Ê

[∣∣∣∣Ê[V u(δ∗k∗
n
∧ h0, S∗

k∗
n
) |Hn,τn(t1)]− V u(0, 0)− Ê

[ k∗
n−1∑
i=0

(J i
n,1,∗ + J i

n,2,∗)

∣∣∣∣Hn,τn(t1)

]∣∣∣∣]

6 Ê

[∣∣∣∣V u(δ∗k∗
n
∧ h0, S∗

k∗
n
)− V u(0, 0)−

k∗
n−1∑
i=0

(J i
n,1,∗ + J i

n,2,∗)

∣∣∣∣],
Ê

[ k∗
n−1∑
i=0

J i
n,1,∗

∣∣∣∣Hn,τn(t1)

]
= Ê

[
Ê

[ k∗
n−1∑
i=0

J i
n,1,∗

∣∣∣∣Hn,τn(t1)+k∗
n−1

] ∣∣∣∣Hn,τn(t1)

]

= Ê

[ k∗
n−2∑
i=0

J i
n,1,∗ + Ê[Jkn−1

n,1,∗ |Hn,τn(t1)+k∗
n−1]

∣∣∣∣Hn,τn(t1)

]
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= Ê

[ k∗
n−2∑
i=0

J i
n,1,∗

∣∣∣∣Hn,τn(t1)

]
= · · · = 0 in L1

and

Ê

[ kn−1∑
i=0

(±J i
n,2,∗ − J̃ i

n,2,∗)

∣∣∣∣Hn,τn(t1)

]

= Ê

[
Ê

[ kn−2∑
i=0

(±J i
n,2,∗ − J̃ i

n,2,∗) + Ê[±Jkn−1
n,1 − J̃kn−1

n,2 |Hn,kn−1]

∣∣∣∣Hn,τn(t1)

]]

6 Ê

[ kn−2∑
i=0

(±J i
n,2,∗ − J̃ i

n,2,∗)

∣∣∣∣Hn,τn(t1)

]
6 · · · 6 0 in L1,

where J i
n,1,∗, J

i
n,2,∗ and J̃ i

n,2,∗ are defined the same as J i
n,1, J

i
n,2 and J̃ i

n,2 with {Z∗
n,k} taking the place of

{Zn,k}. On the other hand, note Sn,τn(t1)
d→W (ρ(t1)). Hence,

(Sn,τn(t1), Sn,τn(t2) − Sn,τn(t1))
d→ (W (ρ(t1)),W (ρ(t2))−W (ρ(t1)))

by (6.17) and Lemma 6.1. By induction, for any 0 = t0 < · · · < td 6 1,

(Sn,τn(t1) − Sn,τn(t0), . . . , Sn,τn(td) − Sn,τn(td−1))

d→ (W (ρ(t1))−W (ρ(t0)), . . . ,W (ρ(td))−W (ρ(td−1))),

which implies (3.10). So, we have shown the convergence of finite-dimensional distributions of Wn. By

Peng [22, Theorem 9] on the tightness and the argument of Lin and Zhang [12] or Zhang [27], to show

that (3.11) holds for bounded continuous function φ, it is sufficient to show that for any ϵ′ > 0,

lim
δ→0

lim sup
n→∞

V(wδ(Wn) > 3ϵ′) = 0, (6.18)

where ωδ(x) = sup|t−s|<δ,t,s∈[0,1] |x(t)−x(s)| (see Proposition B.1 in Appendix B). Assume 0 < δ < 1/10.

Let 0 = t0 < t1 < · · · < tK = 1 such that tk − tk−1 = δ, and let tK+1 = tK+2 = 1. It is easily seen that

V(wδ(Wn) > 3ϵ′) 6 2

K−1∑
k=0

V
(

max
s∈[tk,tk+2]

|Sn,τn(s) − Sn,τn(tk)| > ϵ′
)
.

On the other hand, for t, γ > 0, by (4.3) we have

Ê
[
max
s6γ

|Sn,τn(t+s) − Sn,τn(t)|
4
]

6 CÊ

[ τn(t+γ)∑
k=τn(t)+1

Ê[Z4
n,k |Hn,k−1]

]
+ CÊ

[( τn(t+γ)∑
k=τn(t)+1

Ê[Z2
n,k |Hn,k−1]

)2]

+ CÊ

[( τn(t+γ)∑
k=τn(t)+1

{|Ê[Zn,k |Hn,k−1]|+ |Ê [Zn,k |Hn,k−1]|}
)4]

6 CÊ

[( τn(t+γ)∑
k=τn(t)+1

Ê[Z2
n,k |Hn,k−1]

)2]
+ Cϵ2n · 2ρ+ CÊ[χ4

kn
].

The last two terms above will go to zero by (3.4). For considering the first term, we note

2ρ(1) >
τn(t+γ)∑

k=τn(t)+1

Ê[Z2
n,k |Hn,k−1]

V→ ρ(t+ γ)− ρ(t). (6.19)
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It follows that

Ê

[( τn(t+γ)∑
k=τn(t)+1

Ê[Z2
n,k |Hn,k−1]

)2]
→ (ρ(t+ γ)− ρ(t))2.

So, we conclude that

lim sup
n

2

K−1∑
k=0

V
(

max
s∈[tk,tk+2]

|Sn,τn(s) − Sn,τn(tk)| > ϵ′
)

6 lim sup
n

2
K−1∑
k=0

(
1

ϵ∗

)4

Ê
[

max
s∈[tk,tk+2]

|Sn,τn(s) − Sn,τn(tk)|
4
]

6 C
K−1∑
k=0

1

(ϵ∗)4
(ρ(tk+2)− ρ(tk))

2 6 C
ρ(1)

(ϵ∗)4
sup

|t−s|62δ

|ρ(t)− ρ(s)| → 0

by taking δ → 0. Hence, (6.18) is verified. The proof is completed.
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Appendix A The properties of the conditional expectations

In this appendix, we give the proofs of Lemmas 4.2 and 4.3 on the properties of the conditional expecta-

tion.

Proof of Lemma 4.2. (1) is obvious. For (2), note that

Ê[((X − Y )+)q] 6 ϵq + cqV(X − Y > ϵ) + Ê[((X − Y − c)+)q]

and

Ê[((X − Y − c)+)q] 6 Ê[((X − Y )+)p]

cp−q
→ 0 as c→ ∞.

The result follows.

For (3), let ϵ > 0 and M > 0 be given. Let 0 < δ < 1 such that |x − y| 6 δ and |y| 6 M implies

|f(x)− f(y)| 6 ϵ. Then,

V(f(X)− f(Y ) > ϵ) 6 V(X − Y > δ) + V(|Y | >M).

The result follows.

For (4), note for y, x > 0, xp − yp 6 pxp−1(x− y). So,

Ê[Xp]− Ê[Y p] 6 pÊ[Xp−1(X − Y )+] 6 p(Ê[Xp])1/q(Ê[((X − Y )+)p])1/p = 0.

For (5), note that the countable additivity of Ê implies

Ê[((X − Y )+)p] 6
∫ ∞

0

V(((X − Y )+)p > y)dy =

∫ ∞

0

V(X − Y > y1/p)dy

(see Zhang [28, Lemma 3.9]). The result follows.

Proof of Lemma 4.3. (1) Let 0 6 f ∈ Hn,k be a bounded random variable. Then

Ê[f(Ên,k[X]− Ên,k[Y ])] = Ê[Ên,k[fX − Ên,k[fY ]]]

= Ê[fX − Ên,k[fY ]] 6 Ê[fX − fY + fY − Ên,k[fY ]]

6 Ê[f(X − Y )+] + Ê[fY − Ên,k[fY ]] 6 Ê[fY − Ên,k[fY ]]

= Ê[Ên,k[fY − Ên,k[fY ]]] = Ê[Ên,k[fY ]− Ên,k[fY ]] = 0,

which implies Ê[(Ên,k[X] − Ên,k[Y ])+] = 0. In fact, let Z = Ên,k[X] − Ên,k[Y ] and choose f to be a

bounded Lipschitz function of Z such that I{Z > 2ϵ} 6 f 6 I{Z > ϵ}. Then,

Ê[Z+] 6 2ϵ+ Ê[fZ] 6 2ϵ.

(2) The second inequality is due to (1). For the first one, let Z = Ên,k[X] − Ên,k[Y ] − Ên,k[X − Y ].

With the same argument as in (1), it is sufficient to show that Ê[fZ] 6 0 for any bounded 0 6 f ∈ Hn,k.

Now,

Ê[fZ] = Ê[Ên,k[fX − Ên,k[fY ]− Ên,k[fX − fY ]]]

= Ê[fX − Ên,k[fY ]− Ên,k[fX − fY ]]
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= Ê[(fY − Ên,k[fY ]) + (fX − fY − Ên,k[fX − fY ])]

6 Ê[fY − Ên,k[fY ]] + Ê[fX − fY − Ên,k[fX − fY ]] = 0.

(3) Suppose k < l. Let Z = Ên,k[[Ên,l[X]]] − Ên,k[X] and f > 0 be a bounded random variable in

Hn,k. Then,

Ê[fZ] = Ê[Ên,k[[Ên,l[fX]]]− Ên,k[fX]]

= Ê[Ên,k[Ên,l[fX − Ên,k[fX]]]] = Ê[fX − Ên,k[fX]] = 0,

which implies Ê[Z+] = 0. On the other hand, note −Z 6 Ên,k[X − Ên,l[X]] by Property (2). We have

Ê[f(−Z)] 6 Ê[Ên,k[fX − Ên,l[fX]]] = Ê[fX − Ên,l[fX]] = 0,

which implies Ê[(−Z)+] = 0. So, Ê[|Z|] = 0,

(4) Let Z = Ên,k[X] and 0 6 f ∈ Hn,k be a bounded random variable with fZ+ = 0 and |f | 6 1.

Then Z ∈ L (H ). We first show that f |Z|p ∈ L (H ) for any p > 1. It is obvious that f |Z| ∈ L (H ).

Assume that k > 1 is an integer, and f |Z|p ∈ L (H ) for p 6 k. Let p′ > k, p′ 6 p < p′ + 1. Note

0 6 f |X||Z|p−1 6 p′ + 1− p

p′
|X|

p′
p′+1−p +

p− 1

p′
f |Z|p

′
.

Choosing p′ = k yields X, f |Z|p−1, f |X||Z|p−1 ∈ L (H ). So by the properties (a), (b) and (2),

Ê[f |Z|p] = Ê[f |Z|p−1(−Ên,k[X])] = Ê[−Ên,k[Xf |Z|p−1]]

6 Ê[Ên,k[|X| · f |Z|p−1]] = Ê[f |X||Z|p−1] <∞

if k 6 p < k + 1. Choosing p′ = k + 1/2 and repeating the same argument, we have Ê[f |Z|p] < ∞
if k + 1/2 6 p < k + 3/2. So, f |Z|p ∈ L (H ) for k 6 p 6 k + 1. By induction, for any p > 1,

Ê[f |Z|p] <∞ which implies Ê[(Z−)p] <∞. In addition, similarly by choosing f such that fZ− = 0, we

have Ê[(Z+)p] < ∞. So, we have Ê[|Z|p] < ∞ for any p > 1. Finally, by (1), |Z| 6 M in L1. Hence, by

Lemma 4.2(2), the result follows. The proof is now completed.

Appendix B The tightness

Proposition B.1. Let {Zn,k; k = 1, . . . , kn} be an array of random variables with Ê[|Zn,k|] < ∞,

k = 1, . . . , kn, and τn(t) be a non-decreasing function in D[0,1] which takes integer values with τn(0) = 0

and τn(1) = kn. Define Sn,i =
∑i

k=1 Zn,k,

Wn(t) = Sn,τn(t). (B.1)

Assume that for any ϵ > 0,

lim
δ→0

lim sup
n→∞

V(wδ(Wn) > ϵ) = 0, (B.2)

where ωδ(x) = sup|t−s|<δ,t,s∈[0,1] |x(t)−x(s)|. Then {Wn} is tight in D[0,1] endowed the Skorohod topology,

i.e., for any η > 0, there exists a compact set K in D[0,1] such that

sup
n

V(Wn ̸∈ K) 6 η. (B.3)

Furthermore, if (3.10) holds for any 0 < t1 < · · · < td 6 1, then (3.11) holds.

Proof. The proof of the tightness is similar to that of the tightness of probability measures (see Billings-

ley [2]). The only difference we shall note is that V may be not countably additive and may be not

continuous. For T0 ⊂ [0, 1], define

w(x, T0) = sup
t,s∈T0

|x(t)− x(s)|
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and

w′
δ(x) = inf

ti
max
16i6ν

w(x, [ti−1, ti)),

where the infimum extends over all sets {ti} with

0 = t0 < t1 < · · · < tν−1 < tν = 1, min
16i6ν

(ti − ti−1) > δ.

Note w′
δ(x) 6 w2δ(x),

|x(t)| 6 |x(0)|+
k∑

i=1

∣∣∣∣x( itk
)
− x

(
(i− 1)t

k

)∣∣∣∣ 6 |x(0)|+ kw1/k(x),

and Wn(0) = 0. From (B.2) it follows that

lim
a→∞

lim sup
n→∞

V
(
sup
t

|Wn(t)| > a
)
= 0 (B.4)

and

lim
δ→0

lim sup
n→∞

V(w′
δ(Wn) > ϵ) = 0, ∀ ϵ > 0. (B.5)

For fixed n, let 0 < tn1 < · · · < tnν−1 6 1 be the jump times of the step function τn(t), t
n
0 = 0, tnν = 1. Then

w(Wn, [t
n
i−1, t

n
i )) = 0, i = 1, . . . , ν. Let δn0 = min16i6ν−1(t

n
i − tni−1) if t

n
ν−1 = 1, and = min16i6ν(t

n
i − tni−1)

if tnν−1 < 1. Then

w′
δ(Wn) = 0 when δ < δn0 . (B.6)

On the other hand, it is obvious that

lim
a→∞

V
(
sup
t

|Wn(t)| > a
)
6 lim

a→∞

∑kn

k=1 Ê[|Zn,k|]
a

= 0.

Hence, (B.4) and (B.5) imply that

lim
a→∞

sup
n

V
(
sup
t

|Wn(t)| > a
)
= 0 (B.7)

and

lim
δ→0

sup
n

V(w′
δ(Wn) > ϵ) = 0, ∀ ϵ > 0. (B.8)

Now, for any η > 0 and a sequence 0 < ϵk → 0, choose a > 0 and 0 < δk → 0 such that

sup
n

V
(
sup
t

|Wn(t)| > a
)
<
η

2
and sup

n
V(w′

δk
(Wn) > ϵk) <

η

2k+1
.

Now, let B0 = {x ∈ D[0,1] : supt |x(t)| 6 a}, Bk = {x ∈ D[0,1] : w
′
δk
(x) 6 ϵk} and A =

∩∞
k=0Bk. Then

supx∈A supt |x(t)| 6 a and limδ→0 supx∈A w
′
δ(x) = 0. By the Arzalá-Ascoli thorem, the closure of A is a

compact set in D[0,1]. On the other hand, by noting (B.6),

{Wn ̸∈ cl(A)} ⊂
{
sup
t

|Wn(t)| > a
} ∞∪

k=1

{w′
δk
(Wn) > ϵk}

⊂
{
sup
t

|Wn(t)| > a
} ∪

k:δk>δn0

{w′
δk
(Wn) > ϵk}.

By the (finite) sub-additivity of V, it follows that

V(Wn ̸∈ cl(A)) 6 V
(
sup
t

|Wn(t)| > a
)
+

∑
k:δk>δn0

V(w′
δk
(Wn) > ϵk)
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< η/2 +

∞∑
k=1

η

2k+1
= η. (B.9)

The proof of the tightness (B.3) is completed.

Now, consider the G-Brownian motion W . In [27], it is proved that

lim
δ→0

Ṽ(wδ(W ) > ϵ) = 0 for any ϵ > 0.

Note that ρ(·) is a uniformly continuous function on [0, 1]. It follows that

lim
δ→0

Ṽ(wδ(W ◦ ρ) > ϵ) = 0 for any ϵ > 0.

With the same argument as (B.9) one can show that for any η > 0, there exists a compact set K in D[0,1]

such that Ṽ(W ◦ ρ ̸∈ K) < η.

For 0 = t0 < t1 < t2 < · · · < td−1 < td = 1, we define the projection πt1,...,td from D[0,1] to Rd by

πt1,...,tdx = (x(t1), . . . , x(td)),

and define a map Π−1
t1,...,td

from Rd to D[0,1] by

Π−1
t1,...,td

(x1, . . . , xd) =


0, if t ∈ [t0, t1),

xk, if t ∈ [tk, tk+1) (k = 1, . . . , d),

xd, if t = td.

Then Π−1
t1,...,td

is a continuous map. Denote π̃t1,...,td = Π−1
t1,...,td

◦ πt1,...,td . Let φ ∈ Cb(D[0,1]). Then

φ(π̃t1,...,tdx) = φ ◦ Π−1
t1,...,td

(x(t1), . . . , x(td)) and φ ◦ Π−1
t1,...,td

∈ Cb(Rd). By (3.10) on the convergence of

the finite-dimensional distributions of Wn, it follows that

lim
n→∞

Ê[φ(π̃t1,...,tdWn)] = lim
n→∞

Ê[φ ◦Π−1
t1,...,td

(Wn(t1), . . . ,Wn(td))]

= Ẽ[φ ◦Π−1
t1,...,td

(W (ρ(t1)), . . . ,W (ρ(td)))] = Ẽ[φ(π̃t1,...,tdW ◦ ρ)].

Now, suppose that ti+1− ti < δ for i = 0, . . . , d−1. Recall ωδ(x) = sup|t−s|<δ |x(t)−x(s)|, and let d0(·, ·)
be the Skorohod distance in D[0,1] and ∥x∥ = sup06t61 |x(t)|. It is easily seen that

d0(π̃t1,...,tdx, x) 6 ∥π̃t1,...,tdx− x∥ 6 ωδ(x).

Let ϵ > 0 be given. Since φ is a continuous function, for each x, there is an ϵx > 0 such that

|φ(x)− φ(y)| < ϵ

2
whenever d0(x, y) < ϵx.

Let K ⊂ D[0,1] be a compact set. Then it can be covered by a union of finite many of the sets {y :

d0(x, y) < ϵx/2}, x ∈ K. So, there is an ϵK > 0 such that |φ(x)− φ(y)| < ϵ whenever d0(x, y) < ϵK and

x ∈ K. Denote M = supx |φ(x)|. It follows that

|φ(π̃t1,...,tdx)− φ(x)| < ϵ+ 2MI{ωδ(x) > ϵK}+ 2MI{x ̸∈ K}.

By the tightness of {Wn} and W ◦ ρ, respectively, we can choose K and δ such that

sup
n

V(ωδ(Wn) > ϵK) + sup
n

V(Wn ̸∈ K) 6 ϵ

4M

and

Ṽ(ωδ(W ◦ ρ) > ϵK) + Ṽ(W ◦ ρ ̸∈ K) 6 ϵ

4M
.

Hence

|Ê[φ(Wn)]− Ẽ[φ(W ◦ ρ)]|
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6 |Ê[φ(π̃t1,...,tdWn)]− Ẽ[φ(π̃t1,...,tdW ◦ ρ)]|

+ |Ê[φ(Wn)]− Ê[φ(π̃t1,...,tdWn)]|+ |Ẽ[φ(π̃t1,...,tdW ◦ ρ)]− Ẽ[φ(W ◦ ρ)]|

6 |Ê[φ(π̃t1,...,tdWn)]− Ẽ[φ(π̃t1,...,tdW ◦ ρ)]|
+ 2ϵ+ 2MV(ωδ(Wn) > ϵK) + 2MV(Wn ̸∈ K)

+ 2M Ṽ(ωδ(W ◦ ρ) > ϵK) + 2M Ṽ(W ◦ ρ ̸∈ K)

6 |Ê[φ(π̃t1,...,tdWn)]− Ẽ[φ(π̃t1,...,tdW ◦ ρ)]|+ 3ϵ.

Letting n→ ∞ and then ϵ→ 0 completes the proof of (3.11).
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