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1 Introduction

One of the most studied random graphs is the Erdős-Rényi random graph G(n, p), which has vertex

set [n] = {1, 2, . . . , n} and where each pair of vertices is connected by an edge with probability p, in-

dependently of all other edges. However, G(n, p) is not suitable for real-world complex networks. The

power-law degree sequence is one of the most important features of real networks while G(n, p) has an

extremely light tailed degree distribution. In this paper, we will study inhomogeneous random graphs

that generalize G(n, p) but have power-law degree distributions.

Let [n] = {1, 2, . . . , n} be the set of vertices. We first assign a weightWi > 0 to each vertex i and assume

that these weights are i.i.d. random variables. Conditionally given the weights {Wi, i = 1, 2, . . . , n}, we
connect each pair of vertices i, j ∈ [n] independently with probability pij , which depends on the vertex

weights. By choosing different edge occupation probabilities, we can obtain many kinds of inhomogeneous

random graph models, for example, the Chung-Lu model [6], the generalized random graph model [5],

and the Norrs-Reittu model [15].

For the above three models, the number of edges is linear in the number of vertices when the weights

have a finite mean. We call it “the sparse case”. The sparse case has been studied in detail; for example,

Janson and Luczak [10], Bhamidi et al. [2] and van der Hofstad [18] studied the sizes of the largest

components, and Chung and Lu [6, 7] and van den Esker et al. [17] studied the graph distance between

two random vertices. From these results, we can conclude that in the sparse case, except the degree

distributions, many behaviors of inhomogeneous random graphs are similar to those of the Erdős-Rényi

random graph G(n, p/n).
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In this paper, we consider the properties when the weights have an infinite mean. This case has

not received much attention. van der Hofstad [19] and Hu et al. [9] discussed the asymptotic degree

distributions. Janson et al. [11] studied large cliques in the Norrs-Reittu model. The behaviors of

inhomogeneous random graphs are different from those when the weights have a finite mean. In this

paper, we focus on the number of edges. It is known that the number of edges is O(n) if the weights have

a finite mean, while it is O(n log n) here.

Assume that {Wi, i = 1, 2, . . .} are i.i.d. random variables with a power law of the form

P(W > x) ∼ cx−α, x → ∞,

where c > 0, α ∈ (0, 1) are some real constants. It is well known that (see [8])

n−1/α
n∑

i=1

Wi
d→ S, (1.1)

where S is a positive stable random variable with exponent α and

EeitS = exp

{∫ ∞

0

(eitx − 1)ν(dx)

}
= exp

{
− c1|t|α

(
1− i tan

(
πα

2

))}
with ν(dx) = cαx−1−αdx on (0,∞), c1 = cL(α) cos(πα/2) and L(α) =

∫∞
0

1−e−y

yα+1 dy > 0.

Let {Xt, 0 6 t 6 1} be an α-stable subordinator with X1
d
= S. Then η :=

∑
06t61 δ∆Xt is a Poisson

process on (0,∞) with intensity Eη = ν (we refer to [1, 16] for more details).

Let the edge occupation probability be given by

pij =
WiWj

Ln +WiWj
, (1.2)

where Ln can be a real constant or random variable. Assume that Gn is the inhomogeneous random

graph with the edge probability (1.2), and e(Gn) is the number of edges in Gn. At first, we consider the

case where Ln = n1/α.

Theorem 1.1. Assume that Ln = n1/α. Then under the above conditions, we have

e(Gn)

n log n

p−→ c2απ

2 sin(απ)
. (1.3)

Furthermore,
e(Gn)− Ee(Gn)

n

d−→
∫ ∞

0

h(x)(η(dx)− ν(dx)), (1.4)

where

h(x) = E

(
xW

1 + xW

)
, x > 0.

Remark 1.2. In Theorem 1.1, h(x) is a continuous function on (0,∞) and bounded above by 1.

Furthermore, from the proof of Lemma 2.4 in Section 2, we have h(x) 6 C0(x
α ∧ 1) for some C0 > 0 and

the integral
∫∞
0

h(x)(η(dx)− ν(dx)) exists. By applying [13, Lemma 12.2], the limit distribution in (1.4)

has the characteristic function

E exp

{
it

∫ ∞

0

h(x)(η(dx)− ν(dx))

}
= exp

{
cα

∫ ∞

0

eith(x) − 1− ith(x)

xα+1
dx

}
.

Remark 1.3. We can get the exact expression of h(x) by using an integral with respect to the distribu-

tion function ofW . But unfortunately, the calculation of the integral is generally too complicated. We now

consider the special case where P(W > x) = x−α for all x > 1. Then we have h(x) = αtα
∫∞
x

1
(1+u)uα du.

If we further assume that α = 1/2, then h(x) = tα(π/2− arctan
√
x).

The sequel is organized as follows. Section 2 is devoted to the proof of Theorem 1.1 stated above. In

Section 3, Theorem 1.1 is generalized to the case where Ln is a random variable, especially Ln =
∑n

k=1 Wk

and Ln = Ln1/α.
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2 Proof of Theorem 1.1

Before proving Theorem 1.1, we show four preliminary lemmas.

Lemma 2.1. Under the conditions of Theorem 1.1, we have

E(e(Gn)) ∼
c2απ

2 sin(απ)
n log n, n → ∞.

Proof. Let an := n1/α. Since P(W > x) ∼ cx−α as x → ∞, we get that, for any ε > 0, there exists

some x0 > 0 such that

(c− ε)x−α < P(W > x) < (c+ ε)x−α, x > x0. (2.1)

At first, we calculate the quantity

θn := E
W1W2

an +W1W2
. (2.2)

By a direct calculation, we have

θn =

∫ 1

0

P

(
W1W2

an +W1W2
> x

)
dx =

∫ 1

0

P

(
W1W2 >

anx

1− x

)
dx

=

∫ ∞

0

an
(an + y)2

P(W1W2 > y)dy =

∫ ∞

x2
0

an
(an + y)2

P(W1W2 > y)dy +O

(
1

an

)
. (2.3)

At first, we estimate P(W1W2 > y). By Fubini’s theorem, we can get that

EWαI(W 6 y) =

∫ y

0

αxα−1P(W > x)dx− yαP(W > y), y > 0. (2.4)

Then, for any y > x0, we have

EWαI(W 6 y) >
∫ y

x0

αxα−1P(W > x)dx− yαP(W > y)

> (c− ε)

∫ y

x0

αxα−1x−αdx− (c+ ε) > (c− ε)α(log y − log x0)− (c+ ε).

Thus, for any y > x2
0,

P(W1W2 > y) > P

(
W2 6 y

x0
,W1 >

y

W2

)
> (c− ε)y−αEWα

2 I

(
W2 6 y

x0

)
> (c− ε)2αy−α(log y − 2 log x0)− (c2 − ε2)y−α. (2.5)

Similarly we can get the upper bound

EWαI(W 6 y) 6
∫ y

x0

αxα−1P(W > x)dx+ xα
0

6 (c+ ε)α(log y − log x0) + xα
0 , y > x0,

and, for any y > x2
0,

P(W1W2 > y) 6 P

(
W2 6 y

x0
,W1 >

y

W2

)
+ P

(
W2 >

y

x0

)
6 (c+ ε)y−αEWα

2 I

(
W2 6 y

x0

)
+ (c+ ε)xα

0 y
−α

6 (c+ ε)2αy−α(log y − 2 log x0) + 2(c+ ε)xα
0 y

−α. (2.6)
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Note that ∫ ∞

0

y−α log y

(an + y)2
dy = a−1−α

n

∫ ∞

0

u−α(log an + log u)

(1 + u)2
du

∼ a−1−α
n log an

∫ ∞

0

1

uα(1 + u)2
du

=
απ

sin(απ)
a−1−α
n log an (2.7)

and ∫ ∞

0

y−α

(an + y)2
dy = a−1−α

n

∫ ∞

0

1

uα(1 + u)2
du =

απ

sin(απ)
a−1−α
n . (2.8)

Then it follows from (2.3)–(2.8) that

θn ∼ c2α2π

sin(απ)
a−α
n log an =

c2απ

sin(απ)
n−1 logn. (2.9)

Let Iij denote the indicator when the edge ij is occupied. Then e(Gn) =
∑

16i<j6n Iij and

E(e(Gn)) = E(E(e(Gn) | W1, . . . ,Wn)) =
∑

16i<j6n

E
WiWj

an +WiWj
=

n(n− 1)

2
θn ∼ c2απ

2 sin(απ)
n log n.

This proves Lemma 2.1.

Lemma 2.2. Under the conditions of Theorem 1.1, we have Var(e(Gn)) = o(E(e(Gn))
2), n → ∞.

Proof. By using the same method as that in the proof of Lemma 2.1, we have

E

(
W1W2

an +W1W2

)2

=

∫ 1

0

P

(
W1W2

an +W1W2
>

√
x

)
dx =

∫ ∞

x2
0

2any

(an + y)3
P(W1W2 > y)dy +O

(
1

a2n

)
and ∫ ∞

0

y1−α log y

(an + y)3
dy = a−1−α

n

∫ ∞

0

u1−α(log an + log u)

(1 + u)3
du

∼ a−1−α
n log an

∫ ∞

0

u1−α

(1 + u)3
du =

πα(1− α)

2 sin((1− α)π)
a−1−α
n log an,∫ ∞

0

y1−α

(an + y)3
dy = a−1−α

n

∫ ∞

0

u1−α

(1 + u)3
du =

πα(1− α)

2 sin((1− α)π)
a−1−α
n .

Combining the above facts with (2.5) and (2.6), we get that

E

(
W1W2

an +W1W2

)2

= O(1)a−α
n log an = O(1)n−1 log n. (2.10)

Then

E(e(Gn)(e(Gn)− 1)) =
∑

{i,j}̸={i′,j′}

EIijIi′j′

=
∑

{i,j}∩{i′,j′}=∅

EIijIi′j′ +
∑

{i,j}̸={i′,j′}
{i,j}∩{i′,j′}̸=∅

EIijIi′j′

=
∑

{i,j}∩{i′,j′}=∅

EIijEIi′j′ + 3

(
n

3

)
E

W1W2

an +W1W2

W1W3

an +W1W3

6 (E(e(Gn)))
2 +

n3

4

(
E

(
W1W2

an +W1W2

)2

+ E

(
W1W3

an +W1W3

)2)
= (E(e(Gn)))

2 +O(1)n2 log n.

This together with Lemma 2.1 yields Lemma 2.2.
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Lemma 2.3. Let {X,Yn, Xm, Xm,n, n > 1,m > 1} be random variables such that as n → ∞,

Xm,n
d−→ Xm

holds for any fixed m > 1, and moreover Xm
d−→ X as m → ∞. Assume that for any ε > 0,

lim sup
m→∞

lim sup
n→∞

P(|Xm,n − Yn| > ε) = 0.

Then Yn
d−→ X, as n → ∞.

Proof. See Theorem 4.2 in [3].

Lemma 2.4. Under the conditions of Theorem 1.1, we have

1

n

∑
16i<j6n

(
WiWj

an +WiWj
− θn

)
d−→

∫ ∞

0

h(x)(η(dx)− ν(dx)),

where θn is defined in (2.2).

Proof. By the Hoeffding representation (see [14]), we have

∑
16i<j6n

WiWj

an +WiWj
− n(n− 1)θn

2
= (n− 1)

n∑
i=1

(gn(Wi)− Egn(Wi)) +
∑

16i<j6n

hn(Wi,Wj),

where

hn(x, y) =
xy

an + xy
− gn(x)− gn(y) + θn, x < 0, y > 0

and

gn(x) = E

(
W1W2

an +W1W2

∣∣∣∣W1 = x

)
= E

(
xW

an + xW

)
= h

(
x

an

)
, x > 0

with

h(x) = E

(
xW

1 + xW

)
=

∫ 1

0

P

(
xW

1 + xW
> y

)
dy

=

∫ ∞

0

x

(1 + xy)2
P(W > y)dy, x > 0.

By the Lebesgue dominated convergence theorem, we can easily get that h(x) is a continuous function

on [0,∞). For any ε > 0, by applying (2.1), we have

h(x) 6
∫ x0

0

x

(1 + xy)2
dy + (c+ ε)

∫ ∞

x0

x

(1 + xy)2
y−αdy

6 x0x

1 + x0x
+ (c+ ε)xα

∫ ∞

xx0

1

(1 + y)2yα
dy

6 (x0x) ∧ 1 + (c+ ε)xαI(x 6 1)

∫ ∞

0

1

(1 + y)2yα
dy

+ (c+ ε)xαI(x > 1)
1

1 + α
(xx0)

−1−α.

Thus, we obtain that h(x) 6 C0(x
α ∧ 1) for some constant C0 > 0. Now in order to prove Lemma 2.4, it

is sufficient to show that

n∑
i=1

(
h

(
Wi

an

)
− Eh

(
Wi

an

))
d→
∫ ∞

0

h(x)(η(dx)− ν(dx)) (2.11)
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and

1

n

∑
16i<j6n

hn(Wi,Wj)
p→ 0. (2.12)

Denote random counting measures (point processes) by µn =
∑n

i=1 δWi/an
, n > 1 on (0,∞). Then by

[13, Theorems 15.28 and 15.29] we have

µn
d→ η, Eµn

v→ Eη = ν,

where η =
∑

06t61 δ∆Xt is a Poisson process on (0,∞) with intensity ν,
v→ denotes the vague convergence

on (0,∞) and
d→ means convergence in distribution of random measures with respect to the vague

topology. (Please refer to [12] for the details on convergence of random measures.) For any δ > 0 and

K > 0, hδ,K(x) = h(x)I(δ 6 x 6 K) is a continuous function with compact support on (0,∞). Then we

have

n∑
i=1

(
hδ,K

(
Wi

an

)
− Ehδ,K

(
Wi

an

))
=

∫ ∞

0

hδ,K(x)(µn(dx)− Eµn(dx))

d→
∫ ∞

0

hδ,K(x)(η(dx)− ν(dx)). (2.13)

Note that η is a Poisson process with intensity ν(dx) = cαx−α−1dx on (0,∞). Then, by the fact that

h(x) 6 C0(x
α∧1) is a continuous function, we have

∫∞
0

h2(x)ν(dx) < ∞. Hence, by [13, Theorem 12.13],

the integral
∫∞
0

h(x)(η(dx)− ν(dx)) exists and∫ ∞

0

hδ,K(x)(η(dx)− ν(dx))
p−→

∫ ∞

0

h(x)(η(dx)− ν(dx)) (2.14)

as δ → 0 and K → ∞.

Define hc
δ,K(x) := h(x) − h(x)I(δ 6 x 6 K). Then, by noting that h(x) 6 C0(x

α ∧ 1), we have that,

for any 0 < δ < 1 < K,

E

( n∑
i=1

(
hc
δ,K

(
Wi

an

)
− Ehc

δ,K

(
Wi

an

)))2

= nE

(
hc
δ,K

(
W

an

)
− Ehc

δ,K

(
W

an

))2

6 nE

(
hc
δ,K

(
W

an

))2

6 2C2
0nE

(
W

an

)2α

I(W < δan) + 2C2
0nP(W > Kan).

It is similar to (2.4) that, for δan > x0,

nE

(
W

an

)2α

I(W < δan) 6
2αn

a2αn

∫ δan

0

x2α−1P(W > x)dx

6 2αn

a2αn

(
x2α
0

(2α)
+ (c+ ε)

∫ δan

x0

xα−1dx

)
6 2n

a2αn

(
x2α
0

(2α)
+

c+ ε

α
δαaαn

)
,

which implies lim supδ→0 lim supn→∞ nE(W/an)
2I(W < δan) = 0. By noting that

lim sup
K→∞

lim sup
n→∞

nP(W > Kan) 6 lim sup
K→∞

lim sup
n→∞

n(c+ ε)(Kan)
−α = 0,

we have

lim sup
δ→0,K→∞

lim sup
n→∞

E

( n∑
i=1

(
hc
δ,K

(
Wi

an

)
− Ehc

δ,K

(
Wi

an

)))2

= 0,
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and then, for any ε > 0,

lim sup
δ→0,K→∞

lim sup
n→∞

P

(∣∣∣∣ n∑
i=1

(
hc
δ,K

(
Wi

an

)
− Ehc

δ,K

(
Wi

an

))∣∣∣∣ > ε

)
= 0. (2.15)

Now (2.11) follows from Lemma 2.3 and (2.13)–(2.15).

We next prove (2.12). Notice that if {i1, j1} ∩ {i2, j2} = ∅, then hn(Wi1 ,Wj1) and hn(Wi2 ,Wj2) are

independent random variables and Ehn(Wi1 ,Wj1)hn(Wi2 ,Wj2) = 0. If i1 = i2 and j1 ̸= j2, then Wj1 and

Wj2 are conditionally independent given Wi1 , and

Ehn(Wi1 ,Wj1)hn(Wi2 ,Wj2) = E(E(hn(Wi1 ,Wj1) |Wi1)E(hn(Wi1 ,Wj2) |Wi1)) = 0.

Thus, we have

1

n2
E

( ∑
16i<j6n

hn(Wi,Wj)

)2

=
n− 1

2n
Eh2

n(W1,W2). (2.16)

Since 0 6 W1W2/(an + W1W2) 6 1, by the Lebesgue dominated convergence theorem, we obtain that

E(W1W2/(an +W1W2))
2 → 0 as n → ∞. By conditional Jensen’s inequality, Eg2n(W1) 6 E(W1W2/(an

+W1W2))
2 → 0. Hence,

Eh2
n(W1,W2) 6 4

(
E

(
W1W2

an +W1W2

)2

+ Eg2n(W1) + Eg2n(W2) + θ2n

)
→ 0. (2.17)

Then by using the Chebyshev inequality, (2.12) follows from (2.16) and (2.17).

The proof of Lemma 2.4 is completed.

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. By the Chebyshev inequality and Lemmas 2.1 and 2.2, we obtain (1.3).

In the following, we will prove (1.4). Let Iij denote the indicator when the edge ij is occupied. Then

we have e(Gn) =
∑

16i<j6n Iij and EIij = θn for all 1 6 i < j 6 n, where θn is defined in (2.2).

Furthermore, for any t ∈ R, we have

E exp

{
it
e(Gn)− Ee(Gn)

n

}
= E

(
E

(
exp

{
it

n

∑
16i<j6n

(Iij − θn)

} ∣∣∣∣W1, . . . ,Wn

))

= E

( ∏
16i<j6n

e−itθn/n

(
1 + (eit/n − 1)

WiWj

an +WiWj

))
=: EeYn ,

where

Yn =
∑

16i<j6n

(
log

(
1 + (eit/n − 1)

WiWj

an +WiWj

)
− itθn

n

)

and log(·) is the principal value of the complex logarithm function.

By using the Maclaurin series expansion of log(1 + x) for complex x with |x| < 1, we have

| log(1 + x)− x|
|x|2

−→ 1

2
, |x| → 0.

Hence there exists some constant c0 > 0 such that | log(1 + x)− x| 6 |x|2 holds for any |x| 6 c0.

Then, for sufficiently large n, we have∣∣∣∣Yn − it

n

∑
16i<j6n

(
WiWj

an +WiWj
− θn

)∣∣∣∣
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6 |eit/n − 1|2
∑

16i<j6n

(
WiWj

an +WiWj

)2

+

∣∣∣∣eit/n − 1− it

n

∣∣∣∣ ∑
16i<j6n

WiWj

an +WiWj

6 t2

n2

∑
16i<j6n

(
WiWj

an +WiWj

)2

+
t2

2n2

∑
16i<j6n

WiWj

an +WiWj
, (2.18)

where we have used the inequalities |eix − 1| 6 |x| and |eix − 1− ix| 6 x2/2 for any x ∈ R.
By the Lebesgue dominated convergence theorem, we have

t2

n2
E

∑
16i<j6n

(
WiWj

an +WiWj

)2

6 t2

2
E

(
W1W2

an +W1W2

)2

→ 0.

Thus, by Chebyshev’s inequality, we have

t2

n2

∑
16i<j6n

(
WiWj

an +WiWj

)2
p→ 0. (2.19)

Similarly, we have

t2

2n2

∑
16i<j6n

WiWj

an +WiWj

p→ 0. (2.20)

Now, it follows from (2.18)–(2.20) and Lemma 2.4 that

Yn
d→ it

∫ ∞

0

h(x)(η(dx)− ν(dx)).

Hence, by noting that |eYn | 6 1 and applying the dominated Lebesgue convergence theorem, we get

that, for any t ∈ R,

E exp

{
it
e(Gn)− Ee(Gn)

n

}
= EeYn → Eexp

{
it

∫ ∞

0

h(x)(η(dx)− ν(dx))

}
.

Then we obtain (1.4) and the proof of Theorem 1.1 is completed.

3 Number of edges in the generalized random graph model

In Theorem 1.1, we assume that Ln in the edge occupation probability (1.2) is a fixed constant. But in

most of the existing literature, Ln is assumed to be the total weight of all vertices, i.e., Ln =
∑n

k=1 Wk.

Hence, in this section, we shall extend Theorem 1.1 to the case where Ln is a random variable. We still

use Gn to denote the generalized random graph model with the edge probability (1.2), and e(Gn) is the

number of edges in Gn. Except that Ln is a random variable, other conditions are the same as those in

Theorem 1.1.

Theorem 3.1. Assume that n−1/αLn
d→ Z holds for some positive random variable Z. Then we have

e(Gn)

n log n

d−→ c2απ

2 sin(απ)
Z−α.

Remark 3.2. If Ln =
∑n

k=1 Wk, then, by Theorem 3.1, we have

e(Gn)

n log n

d−→ c2απ

2 sin(απ)
S−α,

where S is defined in (1.1). The limit random variable has, apart from a scale factor, a Mittag-Leffler

distribution with parameter α (see [4, Subsection 8.0.5]). Another case of interest is that Ln = Ln1/α,

where L is a positive random variable. In this case, we get that

e(Gn)

n log n

d−→ c2απ

2 sin(απ)
L−α.

It is interesting that the limit distributions are the same for Ln =
∑n

k=1 Wk and Ln = n1/αS.
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Proof of Theorem 3.1. In the proof, we denote by Gn(bn) the inhomogeneous random graph obtained

with the edge occupation probability (conditionally on the weights {Wi, i = 1, . . . , n})

pbnij =
WiWj

bn +WiWj
,

where bn is a constant or random variable. Then, by suitable coupling, we may assume that Gn(bn) ⊃
Gn(b

′
n) if bn < b′n.

Since Ln/an
d→ Z and Z is a positive random variable, for any ε > 0, there exists some constant A > 0

such that P(1/A 6 Ln/an 6 A) > 1− ε. We choose δ > 0 small enough such that

(c0 + ε)

(
k0

k0 + 1

)α

> c0 +
ε

2

holds true, where

c0 :=
c2απ

2 sin(απ)
, k0 := [(δA)−1].

Hence, for any ε > 0,

P

(
e(Gn)

n2L−α
n log n

> c0 + ε

)
6 P

(
e(Gn)

n2L−α
n log n

> c0 + ε,
1

A
6 Ln

an
6 A

)
+ P

(
Ln

an
̸∈
[
1

A
,A

])
6

k1∑
k=k0

P

(
e(Gn)

n2L−α
n log n

> c0 + ε, kδ 6 Ln

an
6 (k + 1)δ

)
+ ε

6
k1∑

k=k0

P

(
e(Gn(kδan))

n2((k + 1)δan)−α logn
> c0 + ε

)
+ ε

6
k1∑

k=k0

P

(
e(Gn(kδan))

n2(kδan)−α log n
> c0 +

ε

2

)
+ ε,

where k1 = [A/δ]. From the proof of Theorem 1.1, we can get that, for any fixed k > 0,

e(Gn(kδan))

n2(kδan)−α log n

p−→ c0.

Thus, for any fixed k > 0,

P

(
e(Gn(kδan))

n2(kδan)−α log n
> c0 +

ε

2

)
→ 0,

and then

lim sup
n→∞

P

(
e(Gn)

n2L−α
n log n

> c0 + ε

)
6 ε.

Similarly

lim sup
n→∞

P

(
e(Gn)

n2L−α
n log n

< c0 − ε

)
6 ε.

Hence,

e(Gn)

n2L−α
n log n

p−→ c0.

Then Theorem 3.1 follows by Slutsky’s theorem and the fact that Ln/an
d→ Z.
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