
SCIENCE CHINA
Mathematics

June 2019 Vol. 62 No. 6: 1121–1142

https://doi.org/10.1007/s11425-018-9529-8

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 math.scichina.com link.springer.com

. ARTICLES .

A note on the regularity of the holes for permeability
property through a perforated domain for the 2D

Euler equations
Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday

Christophe Lacave1,∗ & Chao Wang2
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Abstract For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the

Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the

holes dε is equal to or much larger than the size of the holes ε. Such a diluted porous medium is interesting

because it contains some cases where we have a non-negligible effect on the solution when (ε, dε) → (0, 0).

Smaller distances were avoided for mathematical reasons and for these large distances, the geometry of the holes

does not affect or rarely affect the asymptotic result. Very recently, it was shown for the 2D-Euler equations

that a porous medium is non-negligible only for inter-holes distances much smaller than the sizes of the holes.

For this result, the boundary regularity of holes plays a crucial role, and the permeability criterion depends

on the geometry of the lateral boundary. In this paper, we relax slightly the regularity condition, allowing a

corner, and we note that a line of irregular obstacles cannot slow down a perfect fluid in any regime such that

ε ln dε → 0.
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1 Introduction

In this article, we consider the behavior of the 2-D Euler equations in a porous medium. The

velocity uε = (uε1, u
ε
2) of an ideal incompressible fluid filling a domain Ωε is governed by the Euler

equations 
∂tu

ε + uε · ∇uε +∇pε = 0, (t, x) ∈ (0,∞)× Ωε,

div uε = 0, (t, x) ∈ [0,∞)× Ωε,

uε · n = 0, (t, x) ∈ [0,∞)× ∂Ωε,

uε(0, ·) = uε0, x ∈ Ωε,

(1.1)
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where pε is the pressure and Ωε is an exterior domain that is defined later.

Since these equations were established by Euler in 1755, the study of well-posedness and stability was

a constant concern (see, e.g., the references given in the introduction of [8]). One of the main reasons of

so large literature is that the vorticity, defined by

ωε := curluε = ∂1u
ε
2 − ∂2u

ε
1,

satisfies a transport equation

∂tω
ε + uε · ∇ωε = 0, (t, x) ∈ (0,∞)× Ωε, (1.2)

where the velocity should be reconstructed from ωε. This special structure allows to place the 2D-Euler

equations in the intersection of many mathematical areas: non-linear PDEs, the transport equation with

flow maps, the elliptic problem with the Green kernel and the conformal mapping (i.e., using the tools

from complex analysis), geodesic flows on a Riemannian manifold, convex integration.

Here, we are interested in the influence of a porous medium on the behavior of the perfect fluid. The

porous medium is modelized by Nε impermeable obstacles (also called inclusions or holes), of size ε and

separated by a distance dε. For practical interest, it is important to understand the leading behavior

when ε and dε are very small compared with the experiment scale.

Such a question is a standard issue in the homogenization problems. For the Laplace equation, it is

easy to show that the perforated domain has no effect at the limit in the regime dε
√

| ln ε| → ∞ if the

holes are uniformly distributed on a surface and in the regime dε| ln ε| → ∞ if the holes are distributed

on a curve. If the above quantities tend to C > 0 instead of ∞, it was proved that we get a homogenized

system for the Laplace, Stokes and Navier-Stokes steady flows [2,3,21,24,25]. Therein, the authors then

considered a very diluted porous medium—dε ≫ εβ for any β ∈ (0, 1]—and it is natural that the criterion

does not depend on the geometry of the holes. For inviscid fluids, Lions and Masmoudi [19] and Mikelic

and Paoli [22] obtained a homogenized limit for the weakly nonlinear Euler flow through a periodic grid,

i.e., in the regime dε = ε when the holes are distributed on a surface. The Euler equations were treated

in [5,15], where the cases of inter-holes distances smaller than the hole sizes were finally achieved. Here,

the geometry of the lateral boundaries of the holes plays a role in the criterion, so we define precisely the

domain properties.

The shape of the inclusions K was assumed to be a simply-connected compact subset of [−1, 1]2 such

that ∂K ∈ C1,α for α > 0 is a Jordan curve. All the inclusions considered have the same shape

Kε
i,j := zεi,j +

ε

2
K, (1.3)

where the points zεi,j ∈ R2 are uniformly distributed such that the inclusions of size ε are at least separated

by a distance dε, i.e., for i, j ∈ Z and ε > 0, we set

zεi,j :=

(
ε

2
+ (i− 1)(ε+ dε), (j − 1)(ε+ dε)

)
=

(
ε

2
, 0

)
+ (ε+ dε)(i− 1, j − 1). (1.4)

In the horizontal direction, we consider the maximal number of inclusions that we can distribute on the

unit segment [0, 1], and hence we consider

i = 1, . . . , Nε in (1.3)–(1.4),

with

Nε =

[
1 + dε
ε+ dε

]
(where [x] denotes the integer part of x). In the vertical direction, we consider two situations:

• inclusions covering the unit square, namely

j = 1, . . . , Nε in (1.3)–(1.4);
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• inclusions concentrated on the unit segment, namely

j = 1 in (1.3)–(1.4).

When the obstacles are distributed only in one direction, we need to describe the geometry of the

lateral boundaries around the points where the distances between two holes are reached. For simplicity,

let us assume that (±1, 0) ∈ ∂K and that the boundary ∂K is locally parametrized around (1, 0) by

x(s) = 1− ρ|s|1+γ , y(s) = s, s ∈ [−δ, δ]

with ρ, γ > 0, where γ is called the tangency exponent, and δ > 0 can be assumed small. For example,

γ = 1 corresponds formally to the case where K is the unit ball1), whereas γ = ∞ corresponds to the

case where the solid is flat near (±1, 0): [(1,−ρ0), (1, ρ0)] ⊂ ∂K.

In the case of holes distributed in one direction, the main results of [5,15] are as follows: if dε

ε
2+ 1

γ
→ ∞

then the limit motion is not perturbed by the porous medium, whereas, if dε

ε
2+ 1

γ
→ 0 then the unit

segment becomes impermeable at the limit. We note here that the regimes considered correspond to

close inclusions dε ≪ ε, and it is physically natural that a fluid passes easier between disks than between

flat solids.

In the case of holes distributed in the two directions, the asymptotic behavior depends on the limit

of dε

ε : if this limit is ∞ the presence of the porous medium is not felt at the limit, whereas the unit square

becomes impermeable if the limit is zero. Even if the criterion is independent of γ, it was important in

the analysis to have the existence of such a γ > 0, as a consequence of the C1,α regularity assumption.

In both results, it was crucial that γ > 0, and the case of a corner—which corresponds to γ = 0—

was one of the open problems listed in [15]. More precisely, with a corner, the following questions are

unsolved:

(1) If the inclusions are distributed in one direction, are there some regimes such that the porous

medium is not felt at the limit?

(2) If the inclusions are distributed in one direction, are there some regimes when we observe the

impermeable segment?

(3) If the inclusions are distributed in two directions, is it possible to state the impermeability result

when dε

ε → 0?

As we will explain in the final remark, the questions (2) and (3) are unreachable without changing the

full analysis. In this paper, we focus on the first question, where we use the technics developed in [16] by

Lacave et al., in particular the precise behavior of the conformal mapping in the neighborhood of corners.

Formally, taking γ = 0 in the criterion dε ≫ ε2+
1
γ , we would like to prove that the fluid is not perturbed

by the porous medium if dε = εβ for any β > 0 arbitrarily large.

More precisely, we assume in this article that

(H1) ∂K is a Jordan curve of class C1,α for α > 0 except in a finite number of points {xk}k=1,...,N where

∂Ω is a corner of angle θk,

which reads as

lim
s→0,s>0

Angle(−Γ′(sk − s),Γ′(sk + s)) = θk ∈ [0, 2π],

where Γ is a parametrization of ∂Ω (counterclockwise direction) and xk = Γ(sk) for all k = 1, . . . , N .

With this definition, θk corresponds to the angle in the fluid, which means that θk = 3π/2 if K is a

square. Moreover, we assume that a corner is exactly located at the point where the distance is reached

between Kε
i,1 and Kε

i+1,1; for example, let us assume that

(H2) x1 = (1, 0) and there exists ρ > 0 such that the set K ∩ (R+ × {s}) ⊂ [0, (1 − ρ|s|)] × {s} for all

s ∈ [−1, 1].

1) Or any regular compact set whose curvature is non zero and finite. See [15, (H2)] for the extension of the tangency

exponent to any boundary.
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Here, we have assumed that there is a corner at the point (1, 0) ∈ ∂K, with an angle

θ > 2(π − arctan ρ−1) > π.

To avoid painful arguments for a non-interesting case, let us assume that all the angles θk are greater

than π, which means that K is assumed to be locally convex near the corners. For a technical reason

that will be explained in due course, we also avoid the cusps and we finally assume

(H3) θk ∈ (π, 2π) for all k = 1, . . . , N .

Hence, the domain considered in this paper is the exterior of holes distributed on the unit segment:

Ωε = R2 \
Nε∪
i=1

Kε
i ,

with Kε
i := Kε

i,1 and zεi := zεi,1 defined in (1.3)–(1.4).

Concerning the initial data, we consider as usual an initial vorticity independent of ε, compactly

supported ω0 ∈ L∞
c (R2) and we define the unique continuous initial velocity uε0 associated to ω0 through

the following div-curl problem:

div uε0 = 0 in Ωε, curluε0 = ω0 in Ωε, uε0 · n = 0 on ∂Ωε,

lim
|x|→∞

uε0 = 0,

∫
∂Kε

i

uε0 · τds = 0, for all i.

The last condition means that the initial circulations around the holes are zero.

For fixed ε, Gérard-Varet and Lacave [8] established the existence of a global weak solution (uε, ωε) to

the Euler equations in Ωε such that

(P) ∥ωε∥L∞(R+;L1∩L∞(Ωε)) 6 ∥ω0∥L1∩L∞(Ωε) and the circulations around the holes remain zero.

We denote by (u, ω) the unique global weak solution to the Euler equations in the whole space with the

initial data (u0, ω0), where u0 is the solution of

div u0 = 0 in R2, curlu0 = ω0 in R2, lim
|x|→∞

u0 = 0.

Now, we are in the position to state our main result.

Theorem 1.1. Assume K verifies (H1)–(H3). Let ω0 ∈ L∞
c (R2) and (uε, ωε) be a global weak solution

(verifying (P)) to the Euler equations (1.1) on Ωε with initial vorticity ω0|Ωε and initial circulations 0

around the inclusions. If |ε ln dε| → 0 as (ε, dε) → (0, 0), then uε → u strongly in L2
loc(R+ × R2) and

ωε ⇀ ω weak ∗ in L∞(R+ × R2).

Here, we have extended (uε, ωε) by zero inside the holes. For any β > 0, we note that the case dε = εβ

satisfies |ε ln dε| → 0. Even if this result is a natural extension of the previous works [5, 15], the proof

is not obvious. Indeed, it was listed in [15] as an open question because the conformal mapping is not

regular if the boundary admits a corner. The behavior of solutions of elliptic problems with respect to the

boundary regularity is an important research focus in analysis of PDEs as testified by the huge literature

(see, for example, [12] for results when ∂Ω is Lipschitz, and [6,9,13] in domains with corners) and also in

complex analysis (see [23]). The authors of this article have already used such a theory to prove in [16]

the uniqueness of the Euler solutions if the domain has some corners whose angles are less than or equal

to π/2. The main idea here is to use this analysis to adapt a key proposition of [15] which will give

automatically Theorem 1.1.

Unfortunately, the permeability result when |ε ln dε| → ∞ and the case of hole distributions in both

directions cannot be achieved with this argument (see the final remark for technical details).

The rest of this article is divided in three sections. In the next section, we give the proposition

concerning the behavior of the conformal mapping which will be the key to extend the analysis performed
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in [5,15]. We also state the new estimate for the cell problem and briefly recall how it implies Theorem 1.1.

Section 3 is dedicated to the proof of this new estimate. In the last section, we adapt an argument

performed in [4] and recently revisited2), to state a new stability estimate, with a precise rate, before ω

reaches the segment. Namely, we will prove the following theorem.

Theorem 1.2. Assume K verifies (H1)–(H3). Let ω0 ∈ C1
c (R2 \ ([0, 1]×{0})) and (uε, ωε) be a global

weak solution (verifying (P)) to the Euler equations (1.1) on Ωε with initial vorticity ω0 |Ωε and initial

circulations 0 around the inclusions. Let T > 0 and KT be a compact subset of R2 \ ([0, 1] × {0}) such

that suppω(t, ·) ⊂ KT for all t ∈ [0, T ]. If |ε ln dε| → 0, then there exist εT > 0 and CT > 0 (depending

only on T , KT and ω0) such that

∥ωε − ω∥L∞([0,T ]×R2) 6 CT (dε + ε|ln dε|)
1
2 , ∀ ε 6 εT .

Moreover, for any compact subset K of R2 \ ([0, 1] × [−εT , εT ]), there exists CT,K > 0 (depending only

on T , KT , K and ω0) such that

∥uε(t, ·)− u(t, ·)∥L∞(K) 6 CT,K(dε + ε|ln dε|)
1
2 , ∀ t ∈ [0, T ], ∀ ε 6 εT .

Let us note that it is obvious that for any T , ω is compactly supported on [0, T ]. So the main constraint

is that this theorem holds true until ω reaches the segment. Of course, there are many cases where the

2D Euler vorticity never meets the segment, and then our estimates are global in time in these cases. As

we notice in the core of the proof, this is related to a stability estimate of the Lagrangian trajectories

associated to uε and u. Such an estimate is usually obtained by using a C1 (or log-Lipschitz) norm of

uε − u which sounds very hard to obtain in the vicinity of the porous medium.

We also mention that we can write the last statement in Theorem 1.2 as follows.

Moreover, for any compact subset K of R2 \ ([0, 1]× {0}), there exist εT,K , CT,K > 0 (depending only

on T , KT , K and ω0) such that

∥uε(t, ·)− u(t, ·)∥L∞(K) 6 CT,K(dε + ε|ln dε|)
1
2 , ∀ t ∈ [0, T ], ∀ ε 6 εT,K .

2 The conformal mapping and the new cell estimate

In this section, we bring together several arguments coming from [14,16] concerning the behavior of the

conformal mapping in domains with corners, and from [5,15] concerning the proof of Theorem 1.1 from a

permeability proposition (see Proposition 2.2). This proposition is independent of the Euler motion but

gives the key estimate of the cell problem for tangent divergence free vector fields.

2.1 The conformal mapping

Let T : Kc → R2 \B(0, 1) be the unique biholomorphism such that T (∞) = ∞ and T ′(∞) ∈ R+
∗ , which

means that there exists a bounded holomorphic function h on Kc such that

T (z) = βz + h(z) (2.1)

for some β ∈ R+
∗ . Up to a vertical translation and considering that the corner is located at (1, h0) instead

of (1, 0), we assume without any loss of generality that a small neighborhood of zero is included in K.

This conformal mapping is of class Ck up to the boundary if ∂Ω is of class Ck,α, for α ∈ (0, 1).

The boundary does not verify this regularity assumption in domains with corners, and we collect in the

following proposition the properties of T that we will use later.

Proposition 2.1. Assume that ∂K verifies (H1) and (H3). Let δ0 := 1
6 mini̸=j{|xi − xj |, |T (xi)

− T (xj)|}. Then there exists M > 1 depending on K such that

• T and T −1 extend continuously up to the boundary;

2) Hillairet M, Lacave C, Wu D. A homogenized limit for the 2D Euler equations in a perforated domain. In progress
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• for all x ∈ Kc \
∪N

k=1B(xk, δ0) and y ∈ B(0, 1)
c
\
∪N

k=1B(T (xk), δ0), we have

M−1 6 |DT (x)| 6M, M−1 6 |DT −1(y)| 6M ;

• for any k = 1, 2, . . . , N and all x ∈ Kc ∩B(xk, δ0) and y ∈ B(0, 1)
c
∩B(T (xk), δ0), we have

M−1|x− xk|π/θk−1 6 |DT (x)| 6M |x− xk|π/θk−1,

M−1|y − T (xk)|θk/π−1 6 |DT −1(y)| 6M |y − T (xk)|θk/π−1 ;

• for all x, y ∈ Kc, we have

|T (x)− T (y)| 6M max{|x− y|µ, |x− y|},

where µ = mink
π
θk

∈ ( 12 , 1);

• for all x, y ∈ B(0, 1)
c
, we have

|T −1(x)− T −1(y)| 6M |x− y|.

Proof. Because T is a Riemann mapping and ∂K ∈ C0,α, the first bullet point can be directly obtained.

Here, the main job is to study the behavior of T near corners. We consider the corner at x1 = (1, 0).

First, we define a straighten mapping: φ1 := (z − x1)
π
θ1 . It is easy to verify that φ1 is injective and

continuous on Kc ∩B(x1, 2δ1) with some small data δ1.

Next, we define D1 j B(0, 1)
c
to be a C∞ Jordan domain such that

Kc ∩B(x1, δ1) ⊂ T −1(D1) ⊂ Kc ∩B(x1, 2δ1)

and g1 : D1 → B(0, 1) be a Riemann mapping. Define Ω1 := T −1(D1), which is C1,α except at x1, and

Ω̃1 := φ1(Ω1), which is C1,α (for more details about localization and straightening, we refer to the proof

of [23, Theorem 3.9]).

Based on the above notations, we define a Riemann mapping f1 = φ1 ◦ T −1 ◦ g−1
1 : B(0, 1) → Ω̃1. By

the Kellogg-Warschawski theorem (see [23, Theorem 3.6]), we have

C−1
1 6 |f ′1(ζ)| 6 C1, ∀ ζ ∈ B(0, 1).

On the other hand, g−1
1 is a Riemann mapping which satisfies the same property, and hence

C̃−1
1 6 |(φ1 ◦ T −1)′(ζ)| 6 C̃1, ∀ ζ ∈ D1,

which implies that

θ1

πC̃1

|T −1(y)− x1|−π/θ1+1 6 |(T −1)′(y)| 6 θ1C̃1

π
|T −1(y)− x1|−π/θ1+1, ∀ y ∈ D1.

Thus, we get that

π

θ1C̃1

|x− x1|π/θ1−1 6 |T ′(x)| 6 πC̃1

θ1
|x− x1|π/θ1−1, ∀x ∈ Ω1.

For any x ∈ Kc ∩ B(x1, δ1), we look for a smooth path γ in Kc ∩ B(x1, δ1) joining x1 = (1, 0) and x.

Due to the definition of a corner (H1), we state that there exists an angle θ such that the segment

[(1 − δ1, 0), (1, 0)] ⊂ R(θ)K, where R(θ) is the rotation of angle θ around x1 (considering δ1 slightly

smaller if necessary). For example,

θ = − lim
s→0,s>0

Angle((1, 0),Γ′(sk − s)) +
θ1
2

holds. We choose δ1 smaller if necessary, and this rotation is needed to state that the regularity of ∂K
away from the corner implies that, for any (a, b) ∈ R(θ)Kc ∩ B(x1, δ1), the segments [(a, b), (1, b)] and
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[(1, b), (1, 0)) belong to R(θ)Kc ∩ B(x1, δ1). Hence we denote by (a, b) the coordinates of R(θ)x and we

define γ on [0, 1] as

γ̃(t) = ((a− 1)tB + 1, bt), γ = R(−θ)γ̃, (2.2)

where B > 1 is chosen large enough such that γ̃ ⊂ R(θ)Kc ∩ B(x1, δ1). Of course, if the segment

(x1, x] ⊂ Kc ∩B(x1, δ1), then we choose B = 1 (which means that γ is the segment). Integrating on the

curve γ, we get

|T (x)− T (x1)| 6
∫ 1

0

|T ′(γ(t))γ′(t)|dt 6 C

∫ 1

0

(|a− 1|tB + |b|t)π/θ1−1(|a− 1|BtB−1 + |b|)dt

6 C

∫ 1

0

((|a− 1|tB)π/θ1−1|a− 1|BtB−1 + (|b|t)π/θ1−1|b|) dt

6 C

∫ 1

0

((|a− 1|)π/θ1BtBπ/θ1−1 + |b|π/θ1tπ/θ1−1) dt

6 C((|a− 1|)π/θ1 + |b|π/θ1) 6 C|x− x1|π/θ1 , ∀x ∈ Kc ∩B(x1, δ1),

where we have used π/θ1 < 1. In the above estimate, C is independent of a, b and B, hence of x.

If we choose D1 convex, by considering the segment [y, T (x1)] we also obtain that

|T −1(y)− x1| = |(φ1 ◦ T −1)(y)− (φ1 ◦ T −1)(T (x1))|θ1/π 6 C|y − T (x1)|θ1/π, ∀ y ∈ D1,

which implies that

|x− x1|π/θ1 6 C|T (x)− T (x1)|, ∀x ∈ Ω1.

The two previous inequalities give the conclusion for the estimates of (T −1)′ in the neighborhood of T (x1).

These inequalities yield the claims in the second bullet point for k = 1, and similarly for any k =

2, . . . , N . The claims in the first bullet point are also obtained by the Kellogg-Warschawski theorem, by

considering a smooth domain D0 ⊆ B(0, 1)
c
such that

Kc \
N∪

k=1

B(xk, δk) ⊂ T −1(D0) ⊂ Kc \
N∪

k=1

B(xk, δk/2),

g1 : D0 → B(0, 1)
c
is a Riemann mapping and φ0(z) := z.

We now focus on the third bullet point. We now claim that Kc is a-quasiconvex for some a > 1, i.e., for

any x, y ∈ Kc there exists a rectifiable path γ joining x, y and satisfying ℓ(γ) 6 a|x−y|. This follows from
(H1) and (H3) because ∂K is a piecewise C1 Jordan curve with no interior cusp and hence a quasidisc

(see, e.g., [10]), and Ahlfors [1] showed that in 2D, we have

∂K is a quasidisk ⇔ Kc is quasiconvex.

Hence, for any x, y ∈ Kc, let us consider such a path γ. Then we decompose the path as γ = γ0
∪

k γk,

where γk = γ∩B(xk, δk) and γ0 = γ∩ (R2 \
∪

k B(xk, δk)). Up to shorten γ, it is clear that γ can intersect

∂B(xk, δk) only twice, or once (which means that x or y belongs to B(xk, δk)) or never (which means

that the curve avoids this disk or that γ ⊂ B(xk, δk)).

In any of these three cases, we only need to show that for x̄, ȳ ∈ Kc ∩ B(xk, δk) and γk a path in

Kc ∩B(xk, δk) between these two points,∣∣∣∣ ∫ 1

0

T ′(γk(t))γ
′
k(t) dt

∣∣∣∣ 6 C|x̄− ȳ|π/θk , (2.3)

because it will imply

|T (x)− T (y)| 6
∣∣∣∣ ∫ 1

0

T ′(γ(t))γ′(t)dt

∣∣∣∣ 6Mℓ(γ0) +
∑
k

Cℓ(γk)
π/θk 6Mℓ(γ) + C

∑
k

ℓ(γ)π/θk
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6 Cmax{|x− y|µ, |x− y|},

where µ = mink
π
θk
.

As ∫ 1

0

T ′(γk(t))γ
′
k(t) dt = T (ȳ)− T (x̄)

does not depend on the path, we choose another curve. If the segment

[x̄, ȳ] ⊂ Kc ∩B(xk, δk),

then we consider this segment. If not, we consider a curve as (2.2), i.e., on the form

γ(t) = R(θ)(AtB , Ct+ δk
B ) + xk ∈ Kc ∩B(xk, δk), ∀ t ∈ [t0, t1],

where B > 1, A,C ∈ R and R(θ) is a rotation around xk of angle θ such that the segment

[(−δ1, 0) + xk, xk] ⊂ R(θ)K

(considering δk slightly smaller if necessary). To find such a curve, it may be possible to consider t0 < 0

and t1 > 0. Hence, repeating the computations below (2.2), we get (2.3) with C independent of x̄, ȳ

and γ.

The last bullet point is much easier to prove, because it is clear that B(0, 1)
c
is π

2 -quasiconvex and the

first two bullet points imply that DT −1 is uniformly bounded.

This ends the proof.

2.2 The cell estimate and Theorem 1.1

For ε > 0 fixed, it was proved in [8] that the Euler equations (1.1) have a global weak solution

uε ∈ L∞(R+;L2
loc(Ωε)) and ωε ∈ L∞(R+;L1 ∩ L∞(Ωε)),

which satisfies (P). We refer to [8] for the definition of weak-circulation on irregular domains. However,

in the domains considered here, there are some extra regularities which come from the div-curl problem

in domains with corners. We can deduce that uε has a trace which is integrable. This implies that the

weak-circulation coincides with the standard circulation and the conservation then reads as∫
Kε

i

uε(t, ·) · τ ds = 0 for a.e. t ∈ R+.

We refer to [14, Lemma 2.7 and (2.21)] and [15, Step 4 of Subsection 2.3] for more details.

So the idea in [5] is to compare uε which satisfies

div uε = 0 in Ωε, curluε = ωε in Ωε, uε · n = 0 on ∂Ωε

lim
|x|→∞

uε(t, x) = 0,

∮
∂Kε

i

uε · τ ds = 0 for all i,

and

KR2 [ωε](t, x) :=
1

2π

∫
R2

(x− y)⊥

|x− y|2
ωε(t, y) dy

which verifies

divKR2 [ωε] = 0 in Ωε, curlKR2 [ωε] = ωε in Ωε,

lim
|x|→∞

KR2 [ωε](t, x) = 0,

∮
∂Kε

i

KR2 [ωε] · τ ds = 0 for all i.
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As the only difference is the tangency condition, the trick is to introduce, for any function f ∈ L∞
c (Ωε),

an explicit approximate solution vε[f ] such that

div vε[f ] = 0 in Ωε, vε[f ] · n = 0 on ∂Ωε, lim
|x|→∞

vε[f ](t, x) = 0, (2.4)

which is close to KR2 [f ] in the L2 norm. The main proposition, which is proved in the next section, reads

as follows.

Proposition 2.2 (Permeability). Assume that K verifies (H1)–(H3). For any f ∈ L∞
c (Ωε) there

exists vε[f ] satisfying (2.4) such that

∥KR2 [f ]− vε[f ]∥L2(Ωε) 6 C∥f∥L1∩L∞(dε + ε|ln dε|)
1
2 ,

with C independent of f and ε.

In the rest of this section, we repeat quickly why this proposition implies Theorem 1.1. For more

details, we refer to [15, Section 2.2].

Step 1. Uniform L2 estimate for uε −KR2 [ωε].

For each time, we remark that uε − vε[ωε] and KR2 [ωε]− vε[ωε] are divergence free, tend to zero when

|x| → ∞, have the same curl and circulations around Kε
i for all i. The only difference is that uε − vε[ωε]

is tangent to the boundary of Ωε, which implies that it is the Leray projection of KR2 [ωε] − vε[ωε].

Therefore, by orthogonality of this projection in L2 together with the triangle inequality, we have

∥uε −KR2 [ωε]∥L2(Ωε) 6 ∥uε − vε[ωε]∥L2(Ωε) + ∥vε[ωε]−KR2 [ωε]∥L2(Ωε)

6 2∥vε[ωε]−KR2 [ωε]∥L2(Ωε).

Under the estimate of ∥ωε∥L1∩L∞ in (P), Proposition 2.2 gives that

∥uε −KR2 [ωε]∥L2(Ωε) → 0 as ε→ 0 uniformly in time.

Recalling the standard estimate for the Biot-Savart kernel

∥KR2 [f ]∥L∞(R2) 6
∥∥∥∥ 1

2π

∫
R2

|f(y)|
|x− y|

dy

∥∥∥∥
L∞(R2)

6 C∥f∥1/2L1(R2)∥f∥
1/2
L∞(R2), (2.5)

and the fact that ∥1R2\Ωε∥L2 → 0 (because ε→ 0), we infer that

uε −KR2 [ωε] → 0 strongly in L∞(R+;L2(R2)), (2.6)

where we have extended uε by zero inside the holes.

Step 2. Compactness for the vorticity.

Thanks to the uniform estimate of ∥ωε∥L1∩L∞ in (P), Banach-Alaoglu’s theorem infers that we can

extract a subsequence such that

ωε ⇀ ω weak-∗ in L∞(R+;L1 ∩ L∞(R2)),

which establishes the vorticity convergence.

Next, we derive a temporal estimate, so let us fix any test function ϕ ∈ C∞
c ((0,∞) × R2). In [8],

it was proved that (ωε, uε) satisfies (1.2) in the weak sense for any test function compactly supported

in Ωε. However, in our case uε is regular enough to deduce from the tangency property that the transport

equation is also verified for ϕ (see [14, Proposition 2.5 and Lemma 2.6]):∫ ∞

0

∫
R2

ωε∂tϕ+

∫ ∞

0

∫
R2

uεωε · ∇ϕ = 0,
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where we have extended3) ωε and uε by zero in R2 \ Ωε. Thanks to (P), (2.5) and (2.6), we state that∫
R2

uεωε · ∇ϕ =

∫
R2

(uε −KR2 [ωε])ωε · ∇ϕ+

∫
R2

KR2 [ωε]ωε · ∇ϕ

is bounded by C∥∇ϕ(t, ·)∥L2 . Hence, we have

∥∂tωε∥L∞(R+;H−1(R2)) 6 C.

By [18, Lemma C.1], this property can be used to extract a subsequence such that

ωε → ω in C([0, T ];L3/2 ∩ L4(R2)− w) for all T. (2.7)

Step 3. Compactness for the velocity.

Now, we define u := KR2 [ω] and we use the previous steps to pass to the limit in the decomposition

uε − u = (uε −KR2 [ωε]) +KR2 [ωε − ω]. (2.8)

Thanks to (2.6), it is obvious that the first term on the right-hand side of (2.8) converges to zero in

L2
loc(R+ × R2). Considering the second term: for x fixed, the map y 7→ (x−y)⊥

|x−y|2 belongs to

L4/3(B(x, 1)) ∩ L3(B(x, 1)c),

then (2.7) implies that for all t and x, we have∫
R2

(x− y)⊥

|x− y|2
(ωε − ω)(t, y) dy → 0 as ε→ 0.

So, this integral converges pointwise to zero, and it is uniformly bounded by (2.5) and (P) with respect

to x and t. Applying the dominated convergence theorem, we obtain the convergence of KR2 [ωε − ω] in

L2
loc(R+ × R2). This ends the proof of the velocity convergence.

Step 4. Passing to the limit in the Euler equations.

Finally, we verify that (u, ω) is the unique solution of the Euler equations in R2.

The divergence and curl conditions are verified by the expression: u = KR2 [ω]. Next, we use that

uε and ωε satisfy (1.1) in the sense of distributions in Ωε, that uε is regular enough and tangent to the

boundary, to infer that for any test function ϕ ∈ C∞
c ([0,∞)× R2), we have∫ ∞

0

∫
R2

ωε∂tϕdxdt+

∫ ∞

0

∫
R2

∇ϕ · uεωε dxdt = −
∫
R2

ϕ(0, x)ω0(x)1Ωεdx,

where we have extended ωε by zero and used that ωε(0, ·) = ω0 |Ωε (see Step 2). By passing to the limit

as ε→ 0, thanks to the strong-weak convergence of the pair (uε, ωε), we conclude that (u, ω) verifies the

vorticity equation. In the whole plane, this is equivalent to stating that u verifies the velocity equation.

As this solution is unique (see the Yudovich theorem), we deduce that the convergence holds without

extracting a subsequence. This ends the proof of Theorem 1.1.

Remark 2.3. Even if we have a precise rate in Proposition 2.2, for solutions in the Yudovich’s class,

we use Banach-Alaoglu’s and Ascoli’s theorem which do not allow us to give a rate for uε−u. For stronger
solutions, we will manage in the last section to keep this rate.

3 Permeability proposition

In this section, we give the proof of Proposition 2.2. The strategy of the proof is the same as [5,15]. The

main difference is the estimates of the cell problem where we have to use that the conformal mapping is

less regular when ∂K has a corner.

3) Such an extension gives a Dirac mass along the boundary when we compute curluε in R2, but this relation is not

needed in this paper.



Lacave C et al. Sci China Math June 2019 Vol. 62 No. 6 1131

3.1 Construction of the correction

We use the explicit formula of Green’s function (with the Dirichlet boundary condition) in the exterior

of one simply connected compact set K:

GK(x, y) =
1

2π
ln

|T (x)− T (y)|
|T (x)− T (y)∗||T (y)|

,

where T : Kc → R2\B(0, 1) is the biholomorphism defined in Subsection 2.1. Above, we have denoted by

y∗ =
y

|y|2

the conjugate point to y across the unit circle in R2. Hence, it is verified in [11, Subsection 3.1] that the

following vector field

∇⊥
∫
R2\K

GK(x, y)f(y) dy +

∫
R2\K f

2π
∇⊥ ln |T (x)|

is divergence free, tangent to the boundary, goes to zero as |x| → ∞. Moreover, its curl is equal to f and

the circulation around K is equal to zero.

Now we introduce a cutoff function φε
i equal to 1 close to Kε

i :

φε
i (x) := φε(x− zεi ) (3.1)

with φε ∈ C1 such that φε ≡ 1 on ε
2∂K and φε

iφ
ε
j ≡ 0 if i ̸= j. As we will see later, φε will be constructed

such that

suppφε ⊂
[
− ε− dε

2
,
ε+ dε

2

]
× [−ε, ε].

If we have assumed that we also have a corner at the point (−1, 0) then we could construct φε such that

suppφε ⊂
[
− ε+ dε

2
,
ε+ dε

2

]
× [−ε, ε]

and then it would be obvious that φε
iφ

ε
j ≡ 0 if i ̸= j. But constructing φε such that the support is included

in a polygon instead of in a square, we can avoid this assumption (see Subsection 3.3 for details).

Then, the correction is defined by

vε[f ] := ∇⊥ψε,

where

ψε(x) :=
1

2π

(
1−

∑
i,j

φε
i (x)

)∫
Ωε

ln |x− y|f(y) dy

+
1

2π

∑
i,j

φε
i (x)

∫
Ωε

ln
ε|T ε

i (x)− T ε
i (y)||T ε

i (x)|
2β|T ε

i (x)− T ε
i (y)

∗|
f(y) dy

with

T ε
i (x) := T

(
x− zεi
ε/2

)
: (Kε

i )
c → R2 \B(0, 1). (3.2)

In the neighborhood of Kε
i , this correction corresponds to the Biot-Savart law in the exterior of one

obstacle, whereas, far away from the porous medium, it is equal to the Biot-Savart law in the whole plane

R2. More precisely, we can check that vε[f ] verifies the following properties:

div vε[f ] = 0 in Ωε, vε[f ] · n = 0 on ∂Ωε, lim
x→∞

|vε[f ](x)| = 0.

We decompose KR2 [f ]− vε[f ] as

KR2 [f ]− vε[f ] =
1

2π

∑
i

∇⊥φε
i (x)(w

1,ε
i + w2,ε

i ) + φε
i (x)(w

3,ε
i + w4,ε

i ), (3.3)
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where

w1,ε
i (x) =

∫
Ωε

ln
2β|x− y|

ε|T ε
i (x)− T ε

i (y)|
f(y) dy,

w2,ε
i (x) =

∫
Ωε

ln
|T ε

i (x)− T ε
i (y)

∗|
|T ε

i (x)|
f(y) dy,

w3,ε
i (x) =

∫
Ωε

(
(x− y)⊥

|x− y|2
− (DT ε

i )
T(x)

(T ε
i (x)− T ε

i (y))
⊥

|T ε
i (x)− T ε

i (y)|2

)
f(y) dy,

w4,ε
i (x) = (DT ε

i )
T(x)

∫
Ωε

(
T ε
i (x)− T ε

i (y)
∗

|T ε
i (x)− T ε

i (y)
∗|2

− T ε
i (x)

|T ε
i (x)|2

)⊥

f(y) dy.

In the following subsection, we estimate wk,ε
i on the support of φε

i , and next, we look for the best

cutoff function φε.

3.2 Cell problem estimates

When K = B(0, 1), T = Id (so β = 1) and wε
1 = wε

3 ≡ 0. In this case, we also have

T ε
i (x)− T ε

i (y)
∗ =

2

ε

(
x− zεi − ε2

y − zεi
4|y − zεi |2

)
.

Except in an ε-neighborhood of the inclusion, we note that T ε
i (y)

∗ is small compared with T ε
i (x). Hence,

we can guess that wε
2 and wε

4 are small. This remark is the main motivation of this decomposition, and

in the following estimates, we split the integrals in two parts: a small area in the vicinity of the inclusion

and the faraway region where T behaves as βId. Due to the lost of the boundary regularity, some changes

are needed compared with [5, 15] for the estimates close to the holes.

From the definition of T ε
i in (3.2), it is clear that Proposition 2.1 gives

|T ε
i (x)− T ε

i (y)| 6 Cmax{ε−µ|x− y|µ, ε−1|x− y|}, (3.4)

where

µ = min
k

π

θk
.

Moreover, we have that

(T ε
i )

−1(y) =
ε

2
T −1(y) + zεi

and Proposition 2.1 also implies

∥(T ε
i )

−1∥Lip 6 Cε. (3.5)

As T behaves at infinity as βId, it holds that for all r > 0,

T ε
i (∂B(zεi , r) ∩ (Kε

i )
c) ⊂ B

(
0, C1

r

ε

)
\B

(
0, C2

r

ε

)
(3.6)

and

(T ε
i )

−1(∂B(0, r + 1)) ⊂ B(zεi , εC3(r + 1)) \B(zεi , εC4(r + 1)) (3.7)

for some C1, C2, C3, C4 positive numbers independent of i and ε. For a proof, we refer to [5, Lemma 2.2]

where we can easily check that we only use the fact that T and T −1 are continuous up to the boundary

and that a small neighborhood of zero is included in K (see the beginning of Subsection 2.1).

Estimate of w1,ε
i . For x ∈ suppφε

i fixed, we decompose the integral in two parts

Ωε
C := {y ∈ Ωε, |T ε

i (x)− T ε
i (y)| 6 ε−1/4},

Ωε
F := {y ∈ Ωε, |T ε

i (x)− T ε
i (y)| > ε−1/4}.

(3.8)
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In the subdomain close to the inclusion, i.e., in Ωε
C defined in (3.8), we set z = εT ε

i (x) and we change

variables η = εT ε
i (y):∫

Ωε
C

|ln(ε|T ε
i (x)− T ε

i (y)|)f(y)| dy

6
∫
B(z,ε3/4)

∣∣∣∣ln |z − η|f
(
(T ε

i )
−1

(
η

ε

))∣∣∣∣ |detD(T ε
i )

−1|(ηε )
ε2

dη

6
∫
B(z,ε3/4)

∣∣∣∣ln |z − η|f
(
(T ε

i )
−1

(
η

ε

))∣∣∣∣14 |detDT −1|
(
η

ε

)
dη.

Using that DT −1 and f are bounded functions, we compute that∫
Ωε

C

|ln(ε|T ε
i (x)− T ε

i (y)|)f(y)| dy 6 C∥f∥L∞

∫
B(0,ε3/4)

|ln |ξ|| dξ 6 C∥f∥L∞ε3/2|ln ε|.

To deal with ln(2β|x− y|), we remark that if y ∈ Ωε
C , then (3.5) gives

|x− y| = |(T ε
i )

−1(T ε
i (x))− (T ε

i )
−1(T ε

i (y))| 6 εC|T ε
i (x)− T ε

i (y)| 6 Cε3/4.

So, we have ∫
Ωε

C

|ln(2β|x− y|)f(y)| dy 6
∫
B(x,Cε3/4)

|ln(2β|x− y|)f(y)| dy

6 ∥f∥L∞

∫
B(0,Cε3/4)

|ln |2βξ|| dξ 6 C∥f∥L∞ε3/2|ln ε|.

In the subdomain far away from the inclusion, i.e., in Ωε
F defined in (3.8), we have by (3.4),

ε−1/4 6 |T ε
i (x)− T ε

i (y)| 6 Cmax{ε−µ|x− y|µ, ε−1|x− y|}.

Hence

|x− y| > min

{
ε1−

1
4µ

C
,
ε3/4

C

}
=
ε3/4

C

because

µ = min
i

{
π

θi

}
< 1.

On the other hand, we use the definition of T ε
i in (3.2) and the decomposition (2.1) to write

ln
ε|T ε

i (x)− T ε
i (y)|

2β|x− y|
= ln

|2β(x− y) + ε(h(
x−zε

i

ε/2 )− h(
y−zε

i

ε/2 ))|
2β|x− y|

. (3.9)

When ε is small enough, we have in Ωε
F :

ε|h(x−zε
i

ε/2 )− h(
y−zε

i

ε/2 )|
2β|x− y|

6 ε∥h∥L∞

β|x− y|
6 Cε1/4 6 1

2
.

We note easily that ∣∣∣∣ln |b+ c|
|b|

∣∣∣∣ 6 2
|c|
|b|
, if

|c|
|b|

6 1

2
. (3.10)

Applying this inequality with

c = ε

(
h

(
x− zεi
ε/2

)
− h

(
y − zεi
ε/2

))
and b = 2β(x− y), we compute from (3.9),∣∣∣∣ln ε|T ε

i (x)− T ε
i (y)|

2β|x− y|

∣∣∣∣ 6 2
ε|h(x−zε

i

ε/2 )− h(
y−zε

i

ε/2 )|
2β|x− y|

6 Cε

|x− y|
.
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Therefore, using (2.5), we obtain∫
Ωε

F

∣∣∣∣ln 2β|x− y|
ε|T ε

i (x)− T ε
i (y)|

f(y)

∣∣∣∣ dy 6 Cε

∫
Ωε

|f(y)|
|x− y|

dy 6 Cε∥f∥1/2L∞∥f∥1/2L1 ,

which allows us to conclude that

∥w1,ε
i ∥L∞(suppφε

i )
6 Cε∥f∥L1∩L∞ (3.11)

with C independent of i, ε and f .

Estimate of w2,ε
i . Setting z = εT ε

i (x), and changing variables η = εT ε
i (y), we get

w2,ε
i (x) =

∫
B(0,ε)c

ln
|z − ε2η∗|

|z|
f

(
ε

2
T −1

(
η

ε

)
+ zεi

)
1

4
|detDT −1|

(
η

ε

)
dη.

As mentioned in the beginning of Subsection 2.1, we assume, without loss of generality, that there is

δ > 0 so that B(0, δ) ⊂ K. Hence, for x ∈ suppφε
i , we note that |x − zεi | > δε, and then, we deduce

by (3.6) that |z| > C2δε. So, for any η we have

|ε2η∗|
|z|

6 ε

C2δ|η|
,

and infer by (3.10) (with b = z and c = −ε2η∗) that∣∣∣∣ ln |z − ε2η∗|
|z|

∣∣∣∣ 6 2
ε2|η∗|
|z|

6 2ε

C2δ|η|
if

ε

C2δ|η|
6 1

2
.

Therefore, we define R = 2/(C2δ) and split the integral in two parts: B(0, Rε)c and B(0, Rε) \B(0, ε).

In the first subdomain B(0, Rε)c, we use the previous inequality to compute∣∣∣∣∫
B(0,Rε)c

ln
|z − ε2η∗|

|z|
f

(
ε

2
T −1

(
η

ε

)
+ zεi

)
1

4
|detDT −1|

(
η

ε

)
dη

∣∣∣∣
6 2ε

C2δ

∫
R2

|f( ε2T
−1(ηε ) + zεi )| 14 |detDT −1|(ηε )

|η|
dη

6 Cε

∥∥∥∥f(ε2T −1

(
η

ε

)
+ zεi

)
1

4
detDT −1

(
η

ε

)∥∥∥∥1/2
L∞

∥∥∥∥f(ε2T −1

(
η

ε

)
+ zεi

)
1

4
detDT −1

(
η

ε

)∥∥∥∥1/2
L1

6 Cε∥f∥1/2L∞∥f∥1/2L1 ,

where we have applied (2.5) for the function

η 7→
∣∣∣∣f(ε2T −1

(
η

ε

)
+ zεi

)∣∣∣∣14 |detDT −1|
(
η

ε

)
at x = 0, and used that DT −1 is bounded and that∥∥∥∥f(ε2T −1

(
η

ε

)
+ zεi

)
1

4
detDT −1

(
η

ε

)∥∥∥∥
L1

= ∥f∥L1

by changing variables back.

In the second subdomain B(0, Rε) \B(0, ε), we use the relation

|z − ε2η∗|
|z|

=
|η − ε2z∗|

|η|
,

which can be easily verified by squaring both sides. As DT −1 is bounded and ε2z∗ ∈ B(0, ε), we compute∣∣∣∣ ∫
B(0,Rε)\B(0,ε)

ln
|z − ε2η∗|

|z|
f

(
ε

2
T −1

(
η

ε

)
+ zεi

)
1

4
|detDT −1|

(
η

ε

)
dη

∣∣∣∣
6 2C∥f∥L∞

∫
B(0,(R+1)ε)

|ln |η||dη

6 C∥f∥L∞ε2|ln ε|,
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which allows us to conclude that

∥w2,ε
i ∥L∞(suppφε

i )
6 Cε∥f∥L1∩L∞ (3.12)

with C independent of i, ε and f .

Estimates of w3,ε
i and w4,ε

i . Rewrite w3,ε
i :

w3,ε
i (x) =

∫
Ωε

(x− y)⊥

|x− y|2
f(y) dy − (DT ε

i )
T(x)

∫
Ωε

(T ε
i (x)− T ε

i (y))
⊥

|T ε
i (x)− T ε

i (y)|2
f(y) dy,

=: I1(x) + (DT ε
i )

T(x)I2(x).

By (2.5), we have that

∥I1∥L∞(Ωε) 6 C∥f∥L1∩L∞ .

For I2, like w
2,ε
i , we have

I2

(
(T ε

i )
−1

(
z

ε

))
= ε

∫
B(0,ε)c

(z − η)⊥

|z − η|2
f

(
ε

2
T −1

(
η

ε

)
+ zεi

)
1

4
|detDT −1|

(
η

ε

)
dη.

So with the same argument as for the first part of w2,ε
i , we use (2.5) together with the bound of DT −1

to state

∥I2∥L∞(Ωε) 6 εC∥f∥L1∩L∞ .

Finally, by Proposition 2.1, we obtain that

∥w3,ε
i ∥L4(suppφε

i )
6 ∥1∥L4(suppφε

i )
∥I1∥L∞(Ωε) + ∥DT ε

i ∥L4(suppφε
i )
∥I2∥L∞(Ωε) (3.13a)

6 C(ε1/4(ε+ dε)
1/4 + ε1/2∥DT ∥L4([−2− dε

ε ,1+ dε
ε ]×[−2,2]\K))∥f∥L1∩L∞

6 Cε1/2
(
1 +

(
dε
ε

)1/4)
∥f∥L1∩L∞ 6 Cε1/4(ε1/4 + d1/4ε )∥f∥L1∩L∞ , (3.13b)

where we have used that DT belongs to L4 close to ∂K (as θk < 2π) and goes to β at infinity.

For w4,ε
i , we write a similar decomposition

w4,ε
i (x) = (DT ε

i )
T(x)I3(x)

with

I3

(
(T ε

i )
−1

(
z

ε

))
= ε

∫
B(0,ε)c

(
z − ε2η∗

|z − ε2η∗|2
− z

|z|2

)⊥

f

(
ε

2
T −1

(
η

ε

)
+ zεi

)
1

4
|detDT −1|

(
η

ε

)
dη.

Then we follow the argument of [11, Theorem 2.1], i.e., we split the integral in two parts:

• in B(0, 2ε)c where |z − ε2η∗| > ε/2 (recalling that |z| > ε), so using that∣∣∣∣ a

|a|2
− b

|b|2

∣∣∣∣ = |a− b|
|a||b|

we need to estimate

ε

∫
B(0,2ε)c

ε2

ε
2ε

f( ε2T
−1(ηε ) + zεi )

|η|
1

4
|detDT −1|

(
η

ε

)
dη

which is less than Cε∥f∥L1∩L∞ (see the argument above);

• in B(0, 2ε) \B(0, ε), where it is clear that

ε

∫
B(0,2ε)

1

|z|

∣∣∣∣f(ε2T −1

(
η

ε

)
+ zεi

)∣∣∣∣14 |detDT −1|
(
η

ε

)
dη 6 ε2∥f∥L∞

and where we change variables ξ = ε2η∗ in the last integral to compute

ε

∫
B(0,ε)\B(0,ε/2)

(z − ξ)⊥

|z − ξ|2
f

(
ε

2
T −1(εξ∗) + zεi

)
1

4
|detDT −1|(εξ∗) ε

4

|ξ|4
dξ,

which is less than Cε∥f∥L1∩L∞ (as before, using (2.5) and changing variables back to compute ∥f∥L1).
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We conclude as for w3,ε
i :

∥w4,ε
i ∥L4(suppφε

i )
6 Cε1/4(ε1/4 + d1/4ε )∥f∥L1∩L∞ . (3.14)

Therefore, putting together the form of φε
i in (3.1), the decomposition (3.3) and the estimates (3.11),

(3.12), (3.13b) and (3.14) we have obtained

∥KR2 [f ]− vε[f ]∥L2(Ωε) 6 C∥f∥L1∩L∞(ε∥∇φε∥L2 + ε1/4(ε1/4 + d1/4ε )∥φε∥L4)

√∑
i

1

6 C∥f∥L1∩L∞(ε1/2∥∇φε∥L2 + ε−1/4(ε1/4 + d1/4ε )∥φε∥L4). (3.15)

3.3 The optimal cutoff function

So the question is to find the best φε such that the right-hand side term of (3.15) tends to zero.

We consider two cases.

In the regime where dε/ε > δ for some δ > 0, then we consider φ ∈ C∞ such that φ ≡ 1 on [−1, 1]2

and φ ≡ 0 on [−1− δ, 1 + δ]2 and we set

φε(x) := φ

(
x

ε/2

)
.

As

suppφε ⊂
[
− ε+ dε

2
,
ε+ dε

2

]2
\
[
− ε

2
,
ε

2

]2
,

we obviously have that φε ≡ 1 on ε
2∂K and φε

iφ
ε
j ≡ 0 if i ̸= j. We also compute ∥∇φε∥L2 6 C and

∥φε∥L4 6 Cε1/2. In this case, (3.15) reads as

∥KR2 [f ]− vε[f ]∥L2(Ωε) 6 C∥f∥L1∩L∞(ε1/2 + d1/2ε ),

which implies the estimate stated in Proposition 2.2.

Now, we consider the interesting regime where dε/ε→ 0. The idea is to define a cutoff function which

depends on the space between ε
2K and ε

2K + (dε + ε, 0). As we have not assumed that there is a corner

at the point (−1, 0), we will only use that (H2) implies that{
(x1, x2) : x2 ∈ [−ε, ε], ε

2
− ρ|x2| < x1 <

ε

2
+ dε

}
⊂ R2 \

(
ε

2
Kε ∪

{
ε

2
Kε + (dε + ε, 0)

})
,

and we split this area in two:{
(x1, x2) : x2 ∈ [−ε, ε], ε

2
− ρ|x2| < x1 6 ε+ dε

2
− ρ

2
|x2|

}
,{

(x1, x2) : x2 ∈ [−ε, ε], ε+ dε
2

− ρ

2
|x2| < x1 <

ε

2
+ dε

}
.

Therefore, we construct φε such that

φε ≡ 1 on

{
(x1, x2) : x2 ∈

[
− ε

2
,
ε

2

]
, −ε

2
< x1 <

ε

2
− ρ|x2|

}
(3.16)

and

φε ≡ 0 on R2 \
{
(x1, x2) : x2 ∈ [−ε, ε], −ε+ dε

2
− ρ

2
|x2| < x1 <

ε+ dε
2

− ρ

2
|x2|

}
. (3.17)

Up to decrease ρ, we can assume that ρ < 1, and it holds true that φε ≡ 1 on ε
2∂K and φε

iφ
ε
j ≡ 0 if i ̸= j,

and that

suppφε ⊂
[
− ε− dε

2
,
ε+ dε

2

]
× [−ε, ε].
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Hence, we define

d(x2) :=
dε
2

+
ρ

2
|x2|,

which verifies

d(x2) =

(
ε+ dε

2
− ρ

2
|x2|

)
−
(
ε

2
− ρ|x2|

)
and

d(x2) = −ε
2
−
(
− ε+ dε

2
− ρ

2
|x2|

)
.

Let φ ∈ C∞(R) be a positive non-increasing function such that φ(s) = 1 if s 6 0 and φ(s) = 0 if s > 1.

We finally introduce

φε(x) = φ

(
2|x2| − ε

ε

)[
1− φ

(
( ε+dε

2 − ρ
2 |x2|)− x1

d(x2)

)
− φ

(
x1 − (− ε+dε

2 − ρ
2 |x2|)

d(x2)

)]
.

As ρ < 1, we have that − ε
2 6 ε

2 − ρ|x2| for all x2 ∈ [−ε, ε] and we can check that this φε verifies

(3.16)–(3.17).

It is not a problem that the cut-off function φε /∈ C1 because the set where it is not derivable is

negligible. All we want is ∥∇φε∥L2 and ∥φε∥L4 .

Since φε(x) ∈ [0, 1] for all x ∈ R2, it is clear from (3.17) that

∥φε∥L4 6 C(ε(ε+ dε))
1
4 6 Cε1/2,

as we are in the regime dε < ε.

Next, we see that for all x we have

|∇φε(x)| 6 C

ε
+

C

d(x2)
,

where we have used that on the support of

φ′
(
( ε+dε

2 − ρ
2 |x2|)− x1

d(x2)

)
we have ∣∣∣∣(ε+ dε

2
− ρ

2
|x2|

)
− x1

∣∣∣∣ 6 d(x2).

So we compute

∥∇φε∥L2 6 C

(
2ε(ε+ dε)

ε2
+ 4

∫ ε

0

∫ d(x2)

0

1

d(x2)2
dx1dx2

)1/2

6 C

(
1 +

dε
ε

+ 4

∫ ε

0

1

d(x2)
dx2

)1/2

6 C

(
1 +

dε
ε

+

∫ ε

0

dx2
dε + ρx2

)1/2

6 C

(
1 +

dε
ε

+ ln
dε + ρε

dε

)1/2

.

In the case dε 6 ε, this gives

∥∇φε∥L2 6 C

(
1 +

dε
ε

+ ln
ε

dε

)1/2

6 C(1 + | ln dε|)1/2.

Thus, (3.15) reads as

∥KR2 [f ]− vε[f ]∥L2(Ωε) 6 C∥f∥L1∩L∞(d1/2ε + ε1/2| ln dε|1/2),

which ends the proof of Proposition 2.2.
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4 Estimates with a precise rate for stronger solutions

This section is dedicated to the proof of Theorem 1.2; then ω0 is now assumed to be smooth and compactly

supported in KT , as ω(t, ·) for all t ∈ [0, T ]. We mainly follow the proof of [4, Subsection 7.2].

For ε1 > 0 small enough, let us introduce two intermediate compact subsets K1 and K2 such that

KT b K1 b K2 b Ωε, for all ε 6 ε1.

Then we define Tε ∈ (0, T ] such that ωε stays compactly supported in K1:

Tε := sup
T̃∈[0,T ]

{T̃ , suppωε(t, ·) ⊂ K1, ∀ t ∈ [0, T̃ ]}.

By the local regularity argument, uε is continuous in K1 and transports the vorticity, so we state that

Tε > 0 and that there are only two possibilities:

(1) Tε = T , hence suppωε(t, ·) ⊂ K1 for all t ∈ [0, T ];

(2) Tε < T , hence suppωε(Tε, ·) ∩ ∂K1 ̸= ∅.
In the sequel of this section, we will derive uniform estimates for all t ∈ [0, Tε] (where the support of ωε

is included in K1), and we will conclude by a bootstrap argument that (2) cannot happen if ε is small

enough, which will imply that the estimates hold true on [0, T ].

For Yudovich solutions, local elliptic estimates on K1 allow us to define uniquely the Lagrangian flow:

for any x ∈ suppω0, there exist t(x) > 0 and a unique curve

Xε(·, x) ∈W 1,∞([0, t(x)))

such that Xε(t, x) ∈ K1 for each t ∈ [0, t(x)),

Xε(t, x) = x+

∫ t

0

uε(s,Xε(s, x)) ds, ∀ t ∈ [0, t(x)),

as well as Xε(t(x), x) ∈ ∂K1 if t(x) < Tε. As uε is uniformly (in time) log-Lipschitz on K1, we obtain

d

dt
Xε(t, x) = uε(t,Xε(t, x)) for a.e. t ∈ [0, t(x)). (4.1)

When the velocity uε is not globally regular, it is not clear that the solution ωε of the linear transport

equation (for uε given) constructed in [8] coincides with the solution which is constant along the char-

acteristics Xε(t, ·)#ω0. For domains with corners, one may show that uε is even smoother and that the

vorticity is a renormalized solution of the transport equation (1.2) in the sense of DiPerna and Lions [7]

(see also [14, Lemmas 2.7 and 2.8]). By the uniqueness for linear transport equations [7], we deduce that

ωε(t) = Xε(t, ·)#ω0, for a.e. t > 0

in the sense that for a.e. t > 0 we have∫
Ωε

ωε(t, x)φ(x) dx =

∫
Ωε

ω0(x)φ(X
ε(t, x)) dx

for all φ ∈ Cc(Ω
ε). Due to the definition of Tε, we deduce that t(x) = Tε for all x ∈ suppω0.

After redefining ωε on a set of measure zero, this becomes

ωε(t, x) = ω0((X
ε)−1(t, ·))(x).

Uniform boundedness of uε on K1 now yields ωε ∈ C([0, Tε];L
1(Ωε)). It is then not hard to show that

uε is continuous4) on [0, Tε] × K1, which also means that (4.1) holds for all (t, x) ∈ [0, Tε] × suppω0.

4) The velocity is log-Lipschitz uniformly in t (the constant depends only on ∥ωε∥L1∩L∞ ; see, e.g., [20, Appendix 2.3]).

From the div-curl problem verified by u(t1, ·) − u(t2, ·), it is possible to show |u(t1, x) − u(t2, x)| 6 C∥ω(t1, ·)
− ω(t2, ·)∥1/2L1 ∥ω(t1, ·)− ω(t2, ·)∥1/2L∞ (see, e.g., [11, Theorem 4.1]) which then implies the continuity with respect to t.
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For more details about renormalized solutions, we refer, for example, to [16, Proposition 4.1] or [17,

Subsection 3.2]. For ω0 ∈ C1, it is then possible to show from the formula

ωε(t, x) = ω0((X
ε)−1(t, ·))(x)

that ωε belongs to C1
c ([0, Tε]×K1).

We also define the flow associated to (u, ω): (t, x) 7→ X(t, x) on R+ × R2 by
∂X

∂t
(t, x) = u(t,X(t, x)),

X(0, x) = x,
(4.2)

and we will use that ω is constant along these trajectories: ω(t,X(t, x)) = ω0(x).

4.1 Stability estimates for velocities

The first step of our proof is to derive a uniform estimate of u − uε in [0, Tε] ×K1. By Proposition 2.2

together with (P) we get easily by orthogonality of the Leray projector (see Step 1 in Subsection 2.2)

that for all t ∈ [0, Tε],

∥(uε −KR2 [ωε])(t, ·)∥L2(Ωε) 6 2∥vε[ωε(t, ·)]−KR2 [ωε(t, ·)]∥L2(Ωε) 6 C(dε + ε|ln dε|)
1
2 ,

so we deduce by harmonicity (as uε −KR2 [ωε] is curl and divergence free)

∥(uε −KR2 [ωε])(t, ·)∥L∞(K1) 6 C∥(uε −KR2 [ωε])(t, ·)∥L2(K2) 6 C(dε + ε|ln dε|)
1
2 .

Using also (2.5) and the compact support of ω and ωε, we finally get for all ε 6 ε1 and t ∈ [0, Tε],

∥(uε − u)(t, ·)∥L∞(K1) 6 ∥(uε −KR2 [ωε])(t, ·)∥L∞(K1) + ∥KR2 [ωε − ω](t, ·)∥L∞(K1)

6 C((dε + ε|ln dε|)
1
2 + ∥(ωε − ω)(t, ·)∥L∞(R2)). (4.3)

Moreover, using the standard elliptic estimate (see, e.g., [4, Lemma 7.2])

∥∇KR2 [f ]∥L∞(R2) 6 C(1 + ∥f∥L1∩L∞(R2) + ∥f∥L∞(R2) ln(1 + ∥∇f∥L∞(R2)))

we again obtain by harmonicity that

∥∇uε(t, ·)∥L∞(K1) 6 ∥(uε −KR2 [ωε])(t, ·)∥L2(K2) + ∥∇KR2 [ωε](t, ·)∥L∞(K1)

6 C(1 + ln(1 + ∥∇ωε(t, ·)∥L∞(R2))), ∀ ε 6 ε1, ∀ t ∈ [0, Tε]. (4.4)

4.2 Uniform C1 estimates for vorticities

Differentiating the vorticity equation, we get for i = 1, 2,

∂t∂iω
ε + uε · ∇∂iωε = −∂iuε · ∇ωε,

and hence

∂iω
ε(t,Xε(t, x)) = ∂iω0(x)−

∫ t

0

(∂iu
ε · ∇ωε)(s,Xε(s, x)) ds.

AsXε(t, x) ∈ K1 for all (t, x) ∈ [0, Tε]×suppω0 and as we have a bound for ∥∇uε∥L∞([0,Tε]×K1) (see (4.4)),

we get that

∥∇ωε(t, ·)∥L∞(R2) 6 ∥∇ω0∥L∞(R2) + C

∫ t

0

∥∇ωε(s, ·)∥L∞(R2) ln(2 + ∥∇ωε(s, ·)∥L∞(R2)) ds.

Gronwall’s lemma allows us to conclude the following estimate for the vorticity:

∥∇ωε(t, ·)∥L∞(R2) 6 C, ∀ ε 6 ε1, ∀ t ∈ [0, Tε]. (4.5)
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4.3 Stability estimates for vorticities

Subtracting the vorticity equations, we can write

∂t(ω − ωε) + u · ∇(ω − ωε) = −(u− uε) · ∇ωε,

∂t(ω − ωε) + uε · ∇(ω − ωε) = −(u− uε) · ∇ω,

which imply that

(ω − ωε)(t,X(t, x)) = −
∫ t

0

((u− uε) · ∇ωε)(s,X(s, x)) ds,

(ω − ωε)(t,Xε(t, x)) = −
∫ t

0

((u− uε) · ∇ω)(s,Xε(s, x)) ds.

As the support of (ω−ωε)(t, ·) is included in X(t, suppω0)∪Xε(t, suppω0), we use (4.3) and (4.5) to write

∥(ω − ωε)(t, ·)∥L∞(R2)

6 C

(
(dε + ε|ln dε|)

1
2 +

∫ t

0

∥(ω − ωε)(s, ·)∥L∞(R2) ds

)
, ∀ ε 6 ε1, ∀ t ∈ [0, Tε].

Therefore, Gronwall’s lemma gives

∥(ω − ωε)(t, ·)∥L∞(R2) 6 C(dε + ε|ln dε|)
1
2 , ∀ ε 6 ε1, ∀ t ∈ [0, Tε], (4.6)

and (4.3) becomes

∥(u− uε)(t, ·)∥L∞(K1) 6 C(dε + ε|ln dε|)
1
2 , ∀ ε 6 ε1, ∀ t ∈ [0, Tε]. (4.7)

4.4 Stability estimates for trajectories

From the definition of the trajectories (4.1)–(4.2) and repeating the decomposition of Subsection 4.1, we

compute

∂t|(Xε −X)(t, x)|2

6 2|(Xε −X)(t, x)|(|(uε − u)(t,Xε(t, x))|+ |u(t,Xε(t, x))− u(t,X(t, x))|)

6 C|(Xε −X)(t, x)|((dε + ε|ln dε|)
1
2 + |(Xε −X)(t, x)|), ∀ ε 6 ε1, ∀ t ∈ [0, Tε],

where we have used (4.7) and that u ∈ C1([0, T ]× R2). We deduce again by Gronwall’s lemma that

|(Xε −X)(t, x)| 6 C(dε + ε|ln dε|)
1
2 , ∀ ε 6 ε1, ∀ t ∈ [0, Tε], ∀x ∈ suppω0. (4.8)

4.5 The bootstrap argument and conclusion

In summary, for ω0, T and KT given, we fix K1,K2 and ε1, so there exists C > 0 such that the estimates

(4.6)–(4.8) are valid for all ε 6 ε1 and t ∈ [0, Tε]. Now we choose ε2 6 ε1 such that

C(dε + ε|ln dε|)
1
2 6 1

2
d(∂KT , ∂K1)

for all ε 6 ε2. AsX(t, x) ∈ KT for all (t, x) ∈ [0, T ]×suppω0, we conclude from (4.8) that the situation (2)

on page 1138 is impossible. This allows us to conclude that Tε = T for all ε 6 ε2 and that (4.6)–(4.8)

are valid for all ε 6 ε2, t ∈ [0, T ].

In Subsection 4.1, replacing K1 by any compact subset K of R2 \ ([0, 1] × [−ε2, ε2)], and using (4.6),

we get easily that (4.7) is valid if we replace K1 by K. This ends the proof of Theorem 1.2.

A remark on the open questions (2)–(3) listed on page 1123. These two questions cannot be

easily solved by adapting the analysis developed in [15]. Therein, the key to get the impermeability was
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to compute the area between two holes. However, with a corner we can follow line by line Subsection 4.1

in [15] with γ = 0 and we cannot hope better than

Aε(s) 6 C(εs2 + dεs),

which means that
Aε(s)

(εs)2
6 C

(
1

ε
+

dε
ε2s

)
is never small. This prevents us to estimate the fluid flux passing through the segment in the L2 framework

as it was done in [15].
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