
SCIENCE CHINA
Mathematics

January 2020 Vol. 63 No. 1: 1–22

https://doi.org/10.1007/s11425-018-9502-y

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 math.scichina.com link.springer.com

Progress of Projects Supported by NSFC
. ARTICLES .

Uniqueness of twisted linear periods and twisted
Shalika periods

Fulin Chen1 & Binyong Sun2,3,∗

1School of Mathematical Sciences, Xiamen University, Xiamen 361005, China;
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
3School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email: chenf@xmu.edu.cn, sun@math.ac.cn

Received September 21, 2018; accepted February 25, 2019; published online March 8, 2019

Abstract Let k be a local field of characteristic zero. Let π be an irreducible admissible smooth representation

of GL2n(k). We prove that for all but countably many characters χ’s of GLn(k) × GLn(k), the space of χ-

equivariant (continuous in the archimedean case) linear functionals on π is at most one dimensional. Using this,

we prove the uniqueness of twisted Shalika models.
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1 Introduction

Let k be a local field of characteristic zero. The Shalika subgroup of the general linear group GL2n(k)

(n > 0) is defined to be

Sn(k) :=

{[
a b

0 a

] ∣∣∣∣ a ∈ GLn(k), b ∈ Mn(k)

}
, (1.1)

where “Mn” indicates the algebra of n× n matrices. Fix a character ψSn on Sn(k) such that

ψSn

([
1 b

0 1

])
= ψk(tr(b)), for all b ∈ Mn(k), (1.2)

where ψk : k → C× is a non-trivial unitary character. We will prove the following uniqueness result in

this paper.

Theorem A. For every irreducible admissible smooth representation π of GL2n(k), the space

HomSn(k)(π, ψSn) (1.3)

is at most one dimensional.
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Here and henceforth, when k is archimedean, by an admissible smooth representation of GLm(k)

(m > 0) we mean a Casselman-Wallach representation of it. Recall that a representation of a real

reductive group is called a Casselman-Wallach representation if it is Fréchet, smooth, of moderate growth,

and its Harish-Chandra module has finite length. The reader may consult [8], [25, Chapter 11] or [7] for

details about Casselman-Wallach representations. In the non-archimedean case, the notion of “admissible

smooth representation” retains the usual meaning.

A non-zero element of the space (1.3) is called a local Shalika period of π. Using the Langlands lift

to GL2n, local Shalika periods and their global analogues are fundamental to the study of standard

L-functions of GSpin2n+1 (see [13, Section 3] or [6] for example).

Set

Dn(k) :=

{[
a 0

0 a

] ∣∣∣∣ a ∈ GLn(k)

}
⊂ Sn(k). (1.4)

When ψSn has trivial restriction to Dn(k), Theorem A is proved in [15] for the non-archimedean case

and [3] for the archimedean case. This implies the same result when the restriction of ψSn to Dn(k) is the

square of a character. In generel, Theorem A is assumed in [10, Subsection 2.3] as a working hypothesis.

Similar to the untwisted case [3,15], the proof of Theorem A is based on Shalika zeta integrals [9] and

the following uniqueness result.

Theorem B. Let π be an irreducible admissible smooth representation of GL2n(k). Then for all but

countably many (finitely many in the non-archimedean case) characters χ’s of GLn(k) × GLn(k), the

space

HomGLn(k)×GLn(k)(π, χ) (1.5)

is at most one dimensional.

A non-zero element of the space (1.5) is called a local linear period of π. When χ is the trivial

character, the uniqueness of local linear periods is proved by Jacquet and Rallis [15, Theorem 1.1] for the

non-archimedean case, and by Aizenbud and Gourevitch [1, Theorem 8.2.4] for the archimedean case.

The reader is referred to [9, 15] for the role of local linear periods and their global analogues in the

study of L-functions. In a recent work of the second named author, Theorem B is used in the proof of

a non-vanishing assumption which is critical to the arithmetic study of special values of L-functions for

GSpin2n+1 (see [22, Section 4] for details). This is the original motivation of this paper.

Let us now introduce a technical notion on characters of GLn(k)×GLn(k). We use | · | to denote the

normalized absolute value on k, and we also use it to stand for the character t 7→ |t| of k×. We say that

a character of k× is pseudo-algebraic if it has the form

t 7→


1, if k is non-archimedean,

tm, if k = R,
ι(t)m · ι′(t)m′

, if k ∼= C,

where m and m′ are non-negative integers, and ι and ι′ are the two distinct topological isomorphisms

from k to C.
A character γ of GLn(k) is said to be good if it equals η ◦ det for some character η of k× such that

η2r · | · |−m is not pseudo-algebraic

for all r ∈ {±1,±2, . . . ,±n} and all m ∈ {1, 2, . . . , 2n2}. Note that γ is good if and only if so is γ−1, and

all but countably many (finitely many in the non-archimedean case) characters of GLn(k) are good. A

character χ = γ0 ⊗ γ1 of GLn(k)×GLn(k) is said to be good if the character γ0γ
−1
1 of GLn(k) is good.

Theorem C. Let f be a generalized function on GL2n(k) and let χ be a good character of GLn(k)×
GLn(k). If for every h ∈ GLn(k)×GLn(k),

f(hx) = f(xh) = χ(h)f(x), x ∈ GL2n(k), (1.6)
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as generalized functions on GL2n(k), then

f(x) = f(xt).

Here and as usual, a superscript “t” indicates the transpose of a matrix. For the usual notion of

generalized functions, see [16, Subsection 2.1] (the archimedean case), and [21, Section 2] (the non-

archimedean case), for examples.

Let π be an irreducible admissible smooth representation of GL2n(k), and let χ be a character of

GLn(k)×GLn(k). By taking the generalized matrix coefficient as in [23], we produce a nonzero generalized

function satisfying (1.6) from every nonzero vector in

HomGLn(k)×GLn(k)(π, χ)⊗HomGLn(k)×GLn(k)(π
∨, χ−1).

Here and as usual, a superscript “ ∨” indicates the contragredient representation. It is well known that

(see [11])

HomGLn(k)×GLn(k)(π, χ)
∼= HomGLn(k)×GLn(k)(π

∨, χ−1).

Thus by the Gelfand-Kazhdan criterion (see [23, Theorem 2.3]), Theorem C implies that

the space (1.5) is at most one dimensional if χ is good. (1.7)

Furthermore, it is clear that the space (1.5) is non-zero only if the restriction of χ to the center of GL2n(k)

coincides with the central character of π. Therefore Theorem B follows from (1.7).

Observe that the trivial character of GLn(k) × GLn(k) is good. Thus in particular we have proved

the uniqueness of untwisted linear periods, which is first proved in [1, 15]. Note that Theorem C is not

previously known even when χ is trivial. What Jacquet and Rallis [15] and Aizenbud and Gourevitch [1]

have proved is that if (1.6) holds for trivial χ, then f(x) = f(x−1). However, this does not hold for

general characters. More precisely, suppose that a nonzero generalized function f satisfies (1.6). If f is

invariant under the inverse map, then

χ(h)f(x) = f(xh) = f(h−1x−1) = χ(h−1)f(x−1) = χ−1(h)f(x).

This forces χ to be a quadratic character. Hence the method of [1, 15] cannot be applied directly to the

general case.

By linearization, Theorem C is reduced to the following three assertions.

Theorem D. (a) Let f be a generalized function on Mn(k) such that for all g ∈ GLn(k),

f(gxg−1) = f(x), x ∈ Mn(k).

Then f(x) = f(xt).

(b) Let f be a generalized function on Mn(k)×Mn(k) such that for all g, h ∈ GLn(k),

f(gxh−1, hyg−1) = f(x, y), (x, y) ∈ Mn(k)×Mn(k).

Then f(x, y) = f(xt, yt).

(c) Let γ be a good character of GLn(k) and let f be a generalized function on Mn(k) × Mn(k) such

that for all g, h ∈ GLn(k),

f(gxh−1, hyg−1) = γ(g)γ(h−1)f(x, y), (x, y) ∈ Mn(k)×Mn(k).

Then f(x, y) = f(yt, xt).

Part (a) of Theorem D is well known (see [24, Theorem 2.1], [20, Proposition 4.I.2] and [2,4]). By the

method of [18], Part (b) of Theorem D implies the following particular case of the multiplicity one result

of local theta correspondence:

dimHomGLn(k)×GLn(k)(S(Mn(k)), π⊗̂π′) 6 1. (1.8)
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Here, π and π′ are irreducible admissible smooth representations of GLn(k); “⊗̂” stands for the com-

pleted projective tensor product in the archimedean case and the algebraic tensor product in the non-

archimedean case; and S(Mn(k)) is the space of Schwartz functions on Mn(k) carrying the representation

of GLn(k) × GLn(k) by the left and right translations. It is well known that the equality in (1.8) holds

if and only if π′ ∼= π∨ (see [12, Theorems 3.3 and 8.7], [14, Theorem 1A] and [19, Théoréme 1]). This is

a fundamental fact in the theory of Godement-Jacquet L-functions.

Part (c) of Theorem D fails for some non-good characters. For example, set

f =
a Haar measure on Mn(k)× {0}

a Haar measure on Mn(k)×Mn(k)
,

which is a generalized function on Mn(k)×Mn(k) satisfying

f(gxh−1, hyg−1) = |det(g)|n · |det(h)|−n · f(x, y), (x, y) ∈ Mn(k)×Mn(k),

for all g, h ∈ GLn(k). But the generalized functions f(x, y) and f(yt, xt) are not equal to each other unless

n = 0. By this example, [1, Remark 3.1.2] implies that Theorem C fails for some non-good characters.

But we do not know whether or not Theorem B fails for some non-good characters.

Here are a few words on the organization of the paper. In Section 2, we introduce the notions of

graded involutive algebras and graded Hermitian modules, and consider Harish-Chandra descents and

MVW (Moeglin-Vigneras-Waldspurger)-extensions on them. We also introduce some characters which

will occur in the proof of Theorem C. Theorem D is proved in Section 3, and a slight generalization of

Theorem C (see Theorem 4.1) is proved in Section 4. As explained in the earlier part of this introduction,

Theorem B follows from Theorem C by the Gelfand-Kazhdan criterion. Finally, it is proved in Section 5

that Theorem B implies Theorem A.

2 Graded Hermitian modules

As in Section 1, fix a local field k of characteristic zero.

2.1 Hermitian modules and MVW-extensions

By an involutive algebra, we mean a commutative semisimple finite-dimensional k-algebra equipped with

an involutive k-algebra automorphism of it. We use τ to indicate the given involutive automorphisms of

various involutive algebras. Let A be an involutive algebra in this subsection. We say that A is simple if

it is non-zero, and has no non-zero proper τ -stable ideal. This is equivalent to saying that A is either a

field or the product of two fields which are exchanged by τ . In general, A is uniquely a product of simple

involutive algebras.

Let E be a Hermitian A-module, namely, a finitely generated A-module equipped with a non-degenerate

k-bilinear map ⟨·, ·⟩E : E × E → A which satisfies that

⟨u, v⟩E = ⟨v, u⟩τE and ⟨a · u, v⟩E = a⟨u, v⟩E , a ∈ A, u, v ∈ E.

Note that if A is simple, then E is free as an A-module.

Write G(E) for the group of all A-module automorphisms of E which preserve the Hermitian form. The

MVW-extension of G(E), denoted by Ğ(E), is defined to be the subgroup of GL(Ek)× {±1} consisting

of all pairs (g, δ) such that either δ = 1 and g ∈ G(E), or

δ = −1 and ⟨g · u, g · v⟩E = ⟨v, u⟩E , u, v ∈ E.

Here, Ek stands for the underlying k-vector space of E. It is well known that the group Ğ(E) contains

G(E) as a subgroup of index 2 (see [20]).
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Example 2.1. We are particularly interested in the case when A = k× k and τ equals the coordinate

exchange map. In this case, E := An = kn × kn (n > 0) is a Hermitian A-module with the k-bilinear

map given by

⟨(u1, . . . , un; v1, . . . , vn), (u′1, . . . , u′n; v′1, . . . , v′n)⟩E =

( n∑
i=1

uiv
′
i,

n∑
i=1

viu
′
i

)
. (2.1)

Then

G(E) = GL(e1E) = GLn(k) (2.2)

and

Ğ(E) = {±1}nGLn(k),

where e1 denotes the element (1, 0) of A, and the semi-direct product is defined by the action

(−1) · g = g−t, g ∈ GLn(k).

2.2 Graded modules

By a graded algebra, we mean a commutative semisimple finite-dimensional k-algebra A, equipped with

a Z/2Z-grading A = A0 ⊕A1 such that

1 ∈ A0, k ·Ai ⊂ Ai and Ai ·Aj ⊂ Ai+j , i, j ∈ Z/2Z.

Let A = A0 ⊕A1 be a graded algebra in this subsection.

Definition 2.2. We say that A is complex if A1 contains an invertible element of A. We say that A

is real if A1 = 0.

The following lemma is obvious.

Lemma 2.3. Let A → A′ be a homomorphism of graded algebras (i.e., a k-algebra homomorphism

preserving the gradings). If A is complex, then A′ is also complex.

Definition 2.4. A graded A-module is a finitely generated A-module E, equipped with a Z/2Z-grading
E = E0 ⊕ E1 such that

Ai · Ej ⊂ Ei+j , i, j ∈ Z/2Z.

Let E = E0 ⊕ E1 be a graded A-module in this subsection.

Definition 2.5. We say that E is complex if E0 and E1 are isomorphic to each other as A0-modules.

The following lemma is obvious.

Lemma 2.6. Let E = E′ ⊕ E′′ be a direct sum of graded A-modules. If two of E, E′ and E′′ are

complex, then so is the third one.

Note that A⊗A0 E0 is naturally a graded A-module, and the obvious A-module homomorphism

A⊗A0 E0 → E (2.3)

is a homomorphism of graded A-modules, i.e., it preserves the gradings.

Lemma 2.7. If A is complex, then E is complex and the homomorphism (2.3) is an isomorphism.

Proof. Take an invertible element a ∈ A1. Then A1 is a free A0-module with a free generator a, and

the multiplication by a gives an A0-module isomorphism E0 → E1. Thus the lemma follows.

2.3 Graded Hermitian modules and MVW-extensions

Definition 2.8. A graded involutive algebra is a graded algebra A = A0 ⊕ A1 with an involutive

automorphism τ on it which preserves the grading.



6 Chen F et al. Sci China Math January 2020 Vol. 63 No. 1

Thus every graded involutive algebra is a graded algebra as well as an involutive algebra. From now

on, let A = A0 ⊕A1 be a graded involutive algebra. Similar to the above, we say that A is simple if it is

non-zero, and has no non-zero proper graded τ -stable ideal. In general, A is uniquely a product of simple

graded involutive algebras.

We say that a graded involutive algebra is real or complex if it is so as a graded algebra.

Lemma 2.9. If A is simple, then it is either real or complex.

Proof. If A is not real, then there is a non-zero element a in A1 such that aτ = ±a. Note that Aa is a

non-zero graded τ -stable ideal of A. Then A = Aa, which implies that a is invertible.

Note that A0 is obviously an involutive algebra.

Lemma 2.10. If A is simple, then the involutive algebra A0 is simple.

Proof. If A is real, then A0 is obviously simple. So we assume that A is complex. As in the proof of

Lemma 2.9, take an invertible element a ∈ A1 such that aτ = ±a. Then A1 = A0a. Let I0 be a non-zero

involutive ideal of A0. Then I0 ⊕ I0a is a non-zero graded involutive ideal of A. Therefore I0 ⊕ I0a = A

and I0 = A0.

Definition 2.11. A graded Hermitian A-module is a Hermitian A-module E, equipped with a Z/2Z-
grading E = E0 ⊕ E1 such that

Ai · Ej ⊂ Ei+j and ⟨Ei, Ej⟩E ⊂ Ai+j , i, j ∈ Z/2Z.

Thus every graded Hermitian A-module is a Hermitian A-module as well as a graded A-module. From

now on, let E = E0⊕E1 be a graded Hermitian A-module. Note that both E0 and E1 are Hermitian A0-

modules: their Hermitian forms are given by taking the restrictions of ⟨·, ·⟩E . For every graded involutive

quotient A′ of A (a graded involutive quotient is a quotient by a τ -stable graded ideal), the tensor product

A′ ⊗A E is obviously a graded Hermitian A′-module.

As before, denote by Ek the underlying k-vector space of E. The endomorphism algebra End(Ek) is a

Z/2Z-graded k-algebra:

End(Ek) = End(Ek)0 ⊕ End(Ek)1, (2.4)

where

End(Ek)i := {x ∈ End(Ek) | x · Ej ⊂ Ei+j , j ∈ Z/2Z}, i ∈ Z/2Z.

For any Z/2Z-graded vector space over k, we use “¯” to denote the involutive automorphism of it whose

restriction to the degree i part is the multiplication by (−1)i (i ∈ Z/2Z). Specifically, this notation

applies to End(Ek) and all graded involutive algebras.

Denote by H(E) the group of all A-module automorphisms of E which preserve both the grading and

the form ⟨·, ·⟩E . Note that

H(E) = {g ∈ G(E) | ḡ = g}.

Example 2.12. Suppose that A = k×k and τ equals the coordinate exchange map, as in Example 2.1.

Suppose that E := A2n (n > 0) and the k-bilinear map ⟨·, ·⟩E is as in (2.1). We make E into a graded

Hermitian A-module such that the involutive automorphism “¯” is given by

(u1, . . . , un, un+1, . . . , u2n; v1, . . . , vn, vn+1, . . . , v2n)

= (u1, . . . , un,−un+1, . . . ,−u2n; v1, . . . , vn,−vn+1, . . . ,−v2n).

Then it is easy to see that

H(E) = GLn(k)×GLn(k). (2.5)

Hence we have a symmetric pair

(G(E),H(E)) = (GL2n(k),GLn(k)×GLn(k)).
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In general, put

V(A) := {a ∈ A× | aaτ = 1 = aā}.

For each α ∈ V(A), write

H̆α(E) := {(g, δ) ∈ Ğ(E) | ḡ = g if δ = 1; ḡ = αg if δ = −1}. (2.6)

Note that H̆α(E) is a subgroup of Ğ(E), and contains H(E) as a subgroup of index 1 or 2. We call H̆α(E)

the MVW-extension of H(E) associated to α.

2.4 Harish-Chandra descent

Associated to the group G(E) we have the Lie algebra

g(E) := {x ∈ EndA(E) | ⟨x · u, v⟩E + ⟨u, x · v⟩E = 0, u, v ∈ E}.

It admits a natural Z/2Z-grading
g(E) = h(E)⊕ v(E),

where

h(E) := {x ∈ g(E) | x̄ = x}

is the Lie algebra of H(E), and

v(E) := {x ∈ g(E) | x̄+ x = 0}. (2.7)

Put

V(E) := {x ∈ G(E) | xx̄ = 1}.

Fix an element s of V(E) or v(E) which is semisimple in the sense that it is semisimple as a k-linear

operator on E. Denote by As the finite-dimensional k-subalgebra of EndA(E) generated by s and the

scalar multiplications from A. It is commutative and semisimple. Moreover, it is a graded involutive

algebra: the grading is induced by the grading (2.4), and the involutive automorphism is induced by the

anti-automorphism

EndA(E) → EndA(E), x 7→ xτE (2.8)

specified by

⟨x · u, v⟩E = ⟨u, xτE · v⟩E , u, v ∈ E.

We call the graded involutive algebra As a Harish-Chandra descent of A, and write As = (As)0 ⊕ (As)1
for the grading.

The natural k-algebra homomorphismA→ As is clearly a homomorphism of graded involutive algebras,

namely it preserves both the gradings and the involutions. Assume that E is faithful as an A-module

throughout the rest of the paper. Then the homomorphism A→ As is an embedding.

Lemma 2.13. Assume that A is simple and s ∈ V(E). Then As is complex, or the product of A with

a complex graded involutive algebra, or the product of A×A with a complex graded involutive algebra. In

the last case, the image of s via the projection As → A×A is either (1,−1) or (−1, 1).

Proof. We have an s-stable graded Hermitian A-module decomposition E = E′ ⊕ E′′ such that

s′ : E′ → E′, u 7→ s(u)

has no eigenvalue 1 or −1, and

s′′ : E′′ → E′′, u 7→ s(u)

has no eigenvalue other than ±1. Note that s′ ∈ V(E′) and s′′ ∈ V(E′′). Form the Harish-Chandra

descents As′ ⊂ EndA(E
′) and As′′ ⊂ EndA(E

′′).
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We claim that the natural map

f : As → As′ ×As′′ , x 7→ (x |E′ , x |E′′) (2.9)

is an isomorphism of graded involutive algebras. Indeed, it is easy to see that f is an injective homomor-

phism of graded involutive algebras. Note that s′ − s′−1 is invertible as k-linear map on E′. Thus there

exist b1, b2, . . . , br ∈ k× (r > 1) such that

1 + b1(s
′ − s′−1) + b2(s

′ − s′−1)2 + · · ·+ br(s
′ − s′−1)r = 0.

Together with the fact that s′′ − s′′−1 = 0, this implies

f(1 + b1(s− s−1) + · · ·+ br(s− s−1)r) = (0, 1).

Thus (0, 1) is in the image of f . This easily implies that f is surjective.

Finally, As′ is complex since it contains the invertible element s′−s′−1 ∈ (As′)1. Furthermore, As′′
∼= 0,

As′′
∼= A or As′′

∼= A×A, if the set

{ϵ = ±1 | ϵ is an eigenvalue of s′′}

has cardinalities 0, 1, or 2, respectively. This proves the lemma.

Similarly, one has the following result for s ∈ v(E).

Lemma 2.14. Assume that A is simple and s ∈ v(E). Then As is complex, or the product of A with

a complex graded involutive algebra.

Proof. We have an s-stable graded Hermitian A-module decomposition E = E′ ⊕ E′′ such that

s′ : E′ → E′, u 7→ s(u)

has no eigenvalue 0, and

s′′ : E′′ → E′′, u 7→ s(u)

has no eigenvalue other than 0. As in the proof of Lemma 2.13, the lemma follows by showing that

As
∼= As′ ×As′′ , As′ is complex, and As′′ is either zero or isomorphic to A.

Write Es for the space E viewing as an As-module. Put (Es)i := Ei (i ∈ Z/2Z). Then Es =

(Es)0 ⊕ (Es)1 is a graded As-module. As in [21, Lemma 3.1], define a Hermitian form

⟨·, ·⟩Es : Es × Es → As

on Es by requiring that

trAs/k(a⟨u, v⟩Es) = trA/k(⟨a · u, v⟩E), u, v ∈ E, a ∈ As.

Lemma 2.15. One has that

⟨(Es)i, (Es)j⟩Es ⊂ (As)i+j , i, j ∈ Z/2Z.

Proof. Let u ∈ (Es)i and v ∈ (Es)j . For each a ∈ As, one has that

trAs/k(a⟨u, v⟩Es ) = trAs/k(ā⟨u, v⟩Es)

= trA/k(⟨ā · u, v⟩E)
= trA/k(⟨ā · u, v⟩E )

= trA/k((−1)i+j⟨a · u, v⟩E)
= trAs/k((−1)i+ja⟨u, v⟩Es).

Therefore ⟨u, v⟩Es = (−1)i+j⟨u, v⟩Es and the lemma follows.
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By Lemma 2.15, Es is a graded Hermitian As-module. We call it a Harish-Chandra descent of E.

We say that a graded Hermitian A-module is complex if it is so as a graded A-module.

Lemma 2.16. Assume that s ∈ v(E) and E is complex. Then the Harish-Chandra descent Es of E is

also complex.

Proof. Without loss of generality, we assume that A is simple. If As is complex, then Es is complex by

Lemma 2.7. Using Lemma 2.14, we assume that As = A×A′ for some complex graded involutive algebra

A′. Note that A′ ⊗As Es is complex as a graded A′-module (see Lemma 2.7). Then by the equality

Es = (A⊗As Es)× (A′ ⊗As Es), (2.10)

it suffices to show that A ⊗As Es is complex. Note that both Es and A′ ⊗As Es are complex as graded

A-modules. Thus by Lemma 2.6, (2.10) implies that the graded A-module A ⊗As Es is complex. This

proves the lemma.

Similarly, we have the following result for s ∈ V(E).

Lemma 2.17. Assume that E is complex and s = xx̄−1 for some x ∈ G(E) such that x commutes

with x̄. Then the Harish-Chandra descent Es of E is also complex.

Proof. As in the proof of Lemma 2.16, we assume without loss of generality that A is simple. If As

is complex, then the lemma follows by Lemma 2.7. If As is the product of a complex graded involutive

algebra and A, then the lemma follows by the same proof as in Lemma 2.16. Thus by Lemma 2.13, we

may (and do) further assume that As = A+ × A− × A′, where A′ is complex, A± = A and the image of

s via the projection As → A± is ±1.

Write E± := A± ⊗As Es and E′ := A′ ⊗As Es. Then we have that

Es = E+ × E− × E′ and G(Es) = G(E+)×G(E−)×G(E′).

Note that x ∈ G(Es) ⊂ G(E). Write x− for the image of x under the projection G(Es) → G(E−). Then

the equality

x−x̄
−1
− = −1

implies that x− exchanges (E−)0 and (E−)1. Thus E− is complex. Note that E′ is also complex (see

Lemma 2.7). Thus it suffices to prove that E+ is complex. Indeed, we know that Es, E− and E′ are all

complex as graded A-modules. By Lemma 2.6, this implies that E+ is also complex, as required.

2.5 Complex Hermitian modules over split graded involutive algebras

Note that every involutive algebra is the product of all its simple involutive quotients (an involutive

quotient is a quotient by a τ -stable ideal), and that every simple involutive algebra is either a field, or

the product of two fields which are exchanged by the involutive automorphism.

Definition 2.18. We say that A is split if every simple involutive quotient of A0 is the product of two

fields which are exchanged by the involutive automorphism.

Let A → A′ be a homomorphism of graded involutive algebras. If A is split, then A′ is also split. In

particular, we get the following lemma.

Lemma 2.19. The Harish-Chandra descent of a split graded involutive algebra is also split.

Let k′ be a field extension of k of finite degree. With the coordinate exchanging automorphism, k′×k′ is

obviously a simple, real, split graded involutive algebra. Let k′′ be a quadratic separable algebra over k′.

It is thus either a quadratic field extension of k′, or a product of two copies of k′. We view k′′ as a graded

algebra so that its degree 0 subalgebra equals k′. Then k′′ × k′′ is also a graded algebra. Together with

the coordinate exchanging automorphism, k′′ × k′′ becomes a graded involutive algebra which is simple,

split and complex. Conversely, we have the following elementary lemma whose proof is omitted.

Lemma 2.20. Every real, simple, split graded involutive algebra has the form k′ × k′ as above; and

every complex, simple, split graded involutive algebra has the form k′′ × k′′ as above.
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Only complex graded Hermitian modules over split graded involutive algebras will appear in the proof

of Theorem C. Thus, in the rest part of this paper, we assume that

• the graded involutive algebra A is split, and the graded Hermitian A-module E is complex.

Fix an element α ∈ V(A).

Lemma 2.21. If A is complex, then there is an element β ∈ A× such that

ββτ = 1 and ββ̄−1 = α.

Proof. Assume that A is simple without loss of generality. Write A = k′′×k′′ as in Lemma 2.20. Then

the lemma is a reformulation of Hilbert’s Theorem 90.

Lemma 2.22. If A is complex and β is as in Lemma 2.21, then the map

H̆α(E) → Ğ(E0),

(g, δ) 7→

{
(g |E0 , 1), if δ = 1,

((βg) |E0 ,−1), if δ = −1

(2.11)

is a well-defined group isomorphism.

Proof. Note that 1 ∈ V(A), and the map

H̆α(E) → H̆1(E),

(g, δ) 7→

{
(g, 1), if δ = 1,

(βg,−1), if δ = −1

is a well-defined group isomorphism. Therefore, in order to prove the lemma, we may (and do) assume

that α = β = 1. Then it is clear that (2.11) is a group homomorphism. It is bijective since it has an

inverse map

Ğ(E0) → H̆1(E),

(g, δ) 7→

{
(1A ⊗ g, 1), if δ = 1,

(τ ⊗ g,−1), if δ = −1.

The proof is completed.

If A = k′ × k′ is real and simple as in Lemma 2.20, then (see (2.5))

H(E) = G(E0)×G(E1) ∼= GLn(k
′)×GLn(k

′), (2.12)

where n := rankA(E0) = rankA(E1). Moreover,

H̆1(E) = Ğ(E0)×{±1} Ğ(E1) (the fiber product), (2.13)

and

H̆−1(E) ∼= {±1}n (GLn(k
′)×GLn(k

′)), (2.14)

where the semidirect product is defined by the action

(−1) · (g1, g2) = (g−t
2 , g−t

1 ), g1, g2 ∈ GLn(k0).

Lemma 2.23. Assume that A is real. Then up to conjugation by H(E) ⊂ H̆−1(E), there exists a

unique element of order 2 in H̆−1(E) \H(E).

Proof. Without loss of generality assume that A is simple. Then the lemma easily follows by the

isomorphism (2.14).

Note that if A is real and simple, then α = ±1. Combining (2.13), Lemmas 2.22 and 2.23, we obtain

the following result.

Proposition 2.24. The group H̆α(E) contains H(E) as a subgroup of index 2.
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2.6 Some characters

If A is real and simple, then H(E) = G(E0)×G(E1), which is the product of two copies of a general linear

group as in (2.12). We thus define the notion of good characters of H(E) as in Section 1. In general, we

make the following definition.

Definition 2.25. A character of H(E) is said to be good if its restriction to H(A′ ⊗A E) is good, for

all real simple graded involutive quotient A′ of A.

Let α ∈ V(A) be as before.

Lemma 2.26. The set

{x ∈ G(E) | x = αx̄} (2.15)

is a single left H(E)-coset as well as a single right H(E)-coset.

Proof. It is routine to check that the left translation (and the right translation) of H(E) on the set (2.15)

is transitive. Thus it remains to show that this set is non-empty. Without loss of generality assume that

A is simple. If A is complex, then a scalar multiplication provided by Lemma 2.21 is an element of the

set (2.15). The case when A is real is obvious.

With Lemma 2.26 in mind, we make the following definition.

Definition 2.27. A character χ̆ of H̆α(E) is said to be linearly good if there is a good character χ

of H(E) such that for some (and hence all) x in the set (2.15),

χ̆(g) = χ(xgx−1)χ(g−1) for all g ∈ H(E). (2.16)

As in the proof of Lemma 2.17, write

A = A′ ×A+ ×A− (2.17)

as a product of graded involutive algebras such that A′ is complex, A+ and A− are real, and the image

of α under the projection map A→ A± is ±1. Then

E = E′ × E+ × E−, (2.18)

where E′ = A′ ⊗A E is a graded Hermitian A′-module, and E± = A± ⊗A E is a graded Hermitian

A±-module.

Lemma 2.28. Every linearly good character of H̆α(E) has trivial restriction to H(E′)×H(E+).

Proof. Using Lemma 2.21, we assume that the element x in (2.16) is a scalar multiplication when

restricted to E′. Then the lemma easily follows.

Lemma 2.29. If A = k′ × k′ is simple and real and H̆−1(E) is realized as in (2.14), then a character

of H̆−1(E) is linearly good if and only if its restriction to H(E) has the form γ ⊗ γ−1, where γ is a good

character of GLn(k
′).

Proof. This is elementary and we omit the details.

Definition 2.30. A character χ̆ of H̆α(E) is said to be linearly relevant if χ̆(g) = −1 for every element

g ∈ H̆α(E) \H(E) whose image under the obvious homomorphism H̆α(E) → H̆−1(E
−) has order 2.

Note that every linearly relevant character of H̆α(E) also has trivial restriction to H(E′)×H(E+).

In this subsection, let s be a semisimple element of v(E). Write αs for the image of α under the natural

embedding A ↩→ As. Note that αs ∈ V(As) and H̆αs(Es) is a subgroup of H̆α(E).

Lemma 2.31. Every linearly good character of H̆α(E) restricts to a linearly good character of H̆αs(Es),

and every linearly relevant character of H̆α(E) restricts to a linearly relevant character of H̆αs(Es).

Proof. The first assertion is obvious since every good character of H(E) restricts to a good character

of H(Es). Note that the decomposition (2.18) is As-stable, and

As = (A′)s′ × (A+)s+ × (A−)s− ,
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where s′ ∈ v(E′) is the restriction of s to E′, and s± ∈ v(E±) is the restriction of s to E±. The second

assertion of the lemma then easily follows by the commutative diagram

H̆α(E) −−−−→ H̆−1(E
−)x x

H̆αs(Es) −−−−→ H̆−1((E
−)s−).

The proof is completed.

2.7 Some characters on a doubling group

We form the semi-direct product

Ğ(E) := {±1}n (Ğ(E)× Ğ(E))

by letting {±1} act on Ğ(E)× Ğ(E) as

(−1) · (ğ, h̆) := (h̆, ğ), ğ, h̆ ∈ Ğ(E).

Set H̆(E) := H̆1(E) and consider the fiber product

H̆(E) := {±1}n{±1} (H̆(E)×{±1} H̆(E)) = {(δ, g, h) | (g, δ), (h, δ) ∈ H̆(E)}.

It is a subgroup of Ğ(E), and contains H(E)×H(E) as a subgroup of index two.

Parallel to Definition 2.27, we make the following definition.

Definition 2.32. A character of H̆(E) is said to be doubly good if its restriction to H(E) × H(E)

equals χ⊗ χ−1 for some good character χ of H(E).

Parallel to Definition 2.30, we make the following definition.

Definition 2.33. A character ξ̆ of H̆(E) is said to be doubly relevant if

ξ̆(δ, g, g) = δ for all (g, δ) ∈ H̆(E).

Let x be an element of G(E) which is normal in the sense of [1], namely, xx̄ = x̄x. In this subsection,

put

s := xx̄−1 = x̄−1x ∈ V(E),

and assume it is semisimple as a k-linear operator on E. Note that s ∈ V(As). Define a map

ȷx : H̆s(Es) → H̆(E),

(g, δ) 7→

{
(1, xgx−1, g), if δ = 1,

(−1, gx−1, xg), if δ = −1.

(2.19)

This is a well-defined group homomorphism.

We prove the following proposition in the rest of this subsection.

Proposition 2.34. Let ξ̆ be a character on H̆(E). If ξ̆ is doubly relevant or doubly good, then the

character ξ̆ ◦ ȷx of H̆s(Es) is respectively linearly relevant or linearly good.

Note that x ∈ G(Es), the image of the map (2.19) is contained in H̆(Es), and every doubly good or

doubly relevant character of H̆(E) restricts to a character of H̆(Es) which is respectively doubly good

or doubly relevant. Thus for the proof of Proposition 2.34, we assume without loss of generality that

s = α ∈ A.

Write

A = A′ ×A+ ×A− and E = E′ × E+ × E−,

as in (2.17) and (2.18).
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Lemma 2.35. Let (g,−1) ∈ H̆α(E). Assume that the image of (g,−1) under the natural homomor-

phism H̆α(E) → H̆−1(E
−) has order 2. Then there is an element (b,−1) ∈ H̆(E) such that b2 = g2.

Proof. Without loss of generality assume that A is simple. The lemma is obvious when A is real. So

we further assume that A is complex. Using Lemma 2.21, take an element β ∈ A× such that

ββτ = 1 and ββ̄−1 = α.

Then b := βg fulfills the requirement of the lemma.

Let ξ̆ be a character on H̆(E) as in Proposition 2.34.

Lemma 2.36. If ξ̆ is doubly relevant, then the character ξ̆ ◦ ȷx is linearly relevant.

Proof. Let (g,−1) be as in Lemma 2.35. Then (−1, gx−1, b) ∈ H̆(E) and

(−1, gx−1, b)(−1, gx−1, xg)(−1, gx−1, b)−1 = (−1, b, b),

where b is as in Lemma 2.35. The lemma then easily follows.

It is obvious that if ξ̆ is doubly good, then the character ξ̆ ◦ ȷx is linearly good. This finishes the proof

of Proposition 2.34.

3 A vanishing result of generalized functions

As before, let A = A0 ⊕ A1 be a split graded involutive algebra, α ∈ V(A), and let E = E0 ⊕ E1 be a

complex graded Hermitian A-module. Recall the MVW-extension H̆α(E) of H(E) defined in (2.6) and

the space v(E) defined in (2.7). Let the group H̆α(E) act on v(E) by

(g, δ) · x := δgxg−1, (g, δ) ∈ H̆α(E), x ∈ v(E).

The main goal of this section is to prove the following result, which is a reformulation of Theorem 3.1

(see Remark 3.2).

Theorem 3.1. Let χ̆ be a character of H̆α(E) which is linearly good and linearly relevant. Then the

space of χ̆-equivariant generalized functions on v(E) is zero, i.e.,

C−∞
χ̆ (v(E)) = 0. (3.1)

Recall that a generalized function f on v(E) is said to be χ̆-equivariant if for all g ∈ H̆α(E),

f(g · x) = χ̆(g)f(x), x ∈ v(E).

The space of such generalized functions is denoted by C−∞
χ̆ (v(E)). Similar notation will be used later on

without further explanation.

Remark 3.2. Theorem 3.1 is easily reduced to the case when A is simple. Assume now that A

is simple. When A is real and α = 1, it is obvious that Theorem 3.1 is a reformulation of Part (b)

of Theorem D. Similarly, when A is real and α = −1, Theorem 3.1 is a reformulation of Part (c) of

Theorem D. Furthermore, as we will explain in Subsection 3.2, when A is complex, Theorem 3.1 is a

reformulation of Part (a) of Theorem D.

3.1 The general strategy

For the convenience of the reader, here we give an outline for the proof of Theorem 3.1. Let χ̆ be as in

Theorem 3.1. Recall that by [1, Theorem 4.2], the equality (3.1) is implied by

C−ξ
χ̆ (v(E)) = 0. (3.2)
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Here, the left-hand side of (3.2) stands for the space of χ̆-equivariant tempered generalized functions

on v(E), and similar notation will be used later on. Note that in the non-archimedean case, all generalized

functions are said to be tempered by convention.

Define a non-degenerate symmetric k-bilinear form on g(E) by

⟨y, z⟩g(E) := the trace of yz as a k-linear operator on E. (3.3)

Note that the restriction of this bilinear form on v(E) is still non-degenerate. Fix a non-trivial unitary

character ψk of k as in Section 1. Denote by

F : C−ξ(v(E)) → C−ξ(v(E)) (3.4)

the Fourier transform which is normalized such that for every Schwartz function f on v(E),

F(f)(x) =

∫
v(E)

f(y)ψk(⟨x, y⟩g(E)) dy, x ∈ v(E), (3.5)

where dy is the self-dual Haar measure on v(E). It is clear that the Fourier transform (3.4) intertwines

the action of H̆α(E). Thus we have the following lemma.

Lemma 3.3. The Fourier transform F preserves the space C−ξ
χ̆ (v(E)).

The rest part of this section is devoted to a proof of (3.2). This will be done by an induction argument on

sdim(E) := dimk(E)− dimk(A).

We first prove in Subsection 3.2 that (3.1) (and hence (3.2)) holds when A is complex (see Proposition 3.5).

This in particular shows that (3.2) holds when sdim(E) = 0. Next, we prove in Subsection 3.3 that when A

is real, under the induction hypothesis, every f ∈ C−ξ
χ̆ (v(E)) is supported in the null cone NE of v(E)

(see Proposition 3.6). Using Lemma 3.3, it remains to show that when A is real, if both f ∈ C−ξ
χ̆ (v(E))

and its Fourier transform F(f) are supported in NE , then f must be zero. This assertion will be proved

in Subsection 3.4 (see Proposition 3.9), which is the key step in our proof of (3.2). Finally, by putting

the above results together, in Subsection 3.5 we complete the proof of (3.2).

3.2 The complex case

In this subsection we assume that A is complex. Let the group Ğ(E0) act on the Lie algebra g(E0) by

(g, δ) · x := δgxg−1, (g, δ) ∈ Ğ(E0), x ∈ g(E0).

Lemma 3.4. Assume that A is complex. Then there is an element γ of A1 ∩ A× such that γτ = γ.

Moreover, the map

v(E) → g(E0), x 7→ (γx) |E0 (3.6)

is a well-defined k-vector space isomorphism which is equivariant with respect to the group isomorphism

H̆α(E) → Ğ(E0) of (2.11).

Proof. The existence of such a γ follows form Lemma 2.20. It is routine to check that the map (3.6) is

well-defined and equivariant with respect to the group isomorphism (2.11). It is bijective since it has an

inverse map

g(E0) → v(E), x 7→ γ−1(1A ⊗ x).

This completes the proof.

Now, from Lemma 3.4, it follows that Theorem 3.1 is equivalent to saying that

C−∞
χ̆E0

(g(E0)) = 0,

where χ̆E0 is the quadratic character of Ğ(E0) with kernel G(E0). Note that this is nothing but a

reformulation of Part (a) of Theorem D, which is well-known. We record this result in the following

proposition.

Proposition 3.5. Theorem 3.1 holds when A is complex.
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3.3 Reduction to the null cone

Set

NE := {x ∈ v(E) | x is nilpotent as a k-linear operator on E}.

We shall prove the following proposition in this subsection.

Proposition 3.6. Assume that for all split graded involutive algebra A′, all α′ ∈ V(A′), all faithful

complex graded Hermitian A′-module E′ and all character χ̆′ on H̆α′(E′) which are linearly good and

linearly relevant,

sdim(E′) < sdim(E) ⇒ C−ξ
χ̆′ (v(E

′)) = 0. (3.7)

Then every f ∈ C−ξ
χ̆ (v(E)) is supported in v(A) +NE, where

v(A) := {a ∈ A | aτ = a and ā = −a} ⊂ v(E).

Fix a semisimple element s ∈ v(E) \ v(A). Then we have that dimk(A) < dimk(As) and hence

sdim(Es) < sdim(E). Put

v(Es)
◦ := {y ∈ v(Es) | J(y) ̸= 0},

where J(y) is the determinant of the composition of the following k-linear maps:

v(E)/v(Es)
x7→[x,y]−−−−−→ h(E)/h(Es)

x7→[x,y]−−−−−→ v(E)/v(Es).

Note that the function J is H̆αs(Es)-invariant and thus v(Es)
◦ is a H̆αs(Es)-stable open subset of v(Es),

where αs denotes the image of α under the inclusion map A → As, as before. Let H̆α(E) act on

H̆α(E)× v(Es)
◦ via the left multiplication on the first factor. Define an H̆α(E)-equivariant map

H̆α(E)× v(Es)
◦ → v(E), (g, y) 7→ g.y. (3.8)

Lemma 3.7. The map (3.8) is a submersion, and its image contains s+NEs .

Proof. The lemma easily follows from the facts that

g(E) = h(E)⊕ v(E),

and that the centralizer of s ∈ v(E) in g(E) equals

g(Es) = h(Es)⊕ v(Es).

This completes the proof.

Note that H̆αs(Es) equals the stabilizer of s in H̆α(E) under the action (3.1). Thus the submersion (3.8)

yields a well-defined injective restriction map (see [16, Lemma 2.7])

C−ξ
χ̆ (v(E)) → C−ξ

χ̆s
(v(Es)

◦),

where χ̆s denotes the restriction of χ̆ to H̆αs(Es). Lemma 2.31 and (3.7) imply that

C−ξ
χ̆s

(v(Es)) = 0.

By a standard argument (see [15, Subsection 5.1]), this implies that

C−ξ
χ̆s

(v(Es)
◦) = 0.

Thus every f ∈ C−ξ
χ̆ (v(E)) vanishes on the image of (3.8), which contains s+NEs by Lemma 3.7. This

completes the proof of Proposition 3.6 by the following lemma.

Lemma 3.8. There is a decomposition

v(E) =
⊔

s is a semisimple element of v(E)

(s+NEs
).

Proof. This easily follows from the Jordan decomposition theorem for the Lie algebra g(E) of G(E).
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3.4 Reduction within the null cone

Let V = V0 ⊕ V1 be a Z/2Z-graded finite dimensional vector space over k with

n := dimV0 = dimV1 > 1.

Put

v := Hom(V1, V0)⊕Hom(V0, V1) and h := End(V0)⊕ End(V1),

which are the odd and even parts of the Z/2Z-graded algebra End(V ), respectively. Set

H := GL(V0)×GL(V1) ∼= GLn(k)×GLn(k),

which acts naturally on v. Denote by

Nv := {(x, y) ∈ v | x ◦ y : V0 → V0 is a nilpotent operator}

the nilpotent cone in v. We shall prove the following result in this subsection.

Proposition 3.9. Let γ be a good character of GLn(k) as in Section 1, and view γ⊗γ−1 as a character

of H via the isomorphism in (3.4). Let f be a γ ⊗ γ−1-equivariant tempered generalized function on v

such that both f and its Fourier transform F(f) are supported in Nv. Then f is the zero function.

Here, the Fourier transform F is defined as in (3.5). When γ is trivial, Proposition 3.9 is proved in [15]

for the non-archimedean case and in [1] for the archimedean case. Our proof for Proposition 3.9 is similar

to that in [1].

Write s for the Lie algebra sl2(k) equipped with a Z/2Z-grading s = s0 ⊕ s1 such that[
1 0

0 −1

]
∈ s0 and

[
0 1

0 0

]
,

[
0 0

1 0

]
∈ s1.

A graded s-module is defined to be an s-module W with a Z/2Z-grading W =W0 ⊕W1 such that

si ·Wj ⊂Wi+j , i, j ∈ Z/2Z.

For every non-negative integer λ and every ω ∈ Z/2Z, we write V ω
λ for the graded s-module such that

it is the irreducible highest weight module with highest weight λ as an sl2(k)-module, and that the

highest weight vector has grading ω. Note that the graded s-module V ω
λ is graded-irreducible, namely it

is nonzero and has no nonzero proper graded submodule. Conversely, every graded-irreducible s-module

is isomorphic to V ω
λ for a uniquely determined pair (λ, ω). Moreover, every graded s-module is a direct

sum of graded-irreducible s-modules.

Let O be an H-orbit in Nv. Recall that every e ∈ O can be extended to a graded sl2-triple {h, e,f}
in the sense that (see [17, Proposition 4])

[h, e] = 2e, [h,f ] = −2f , [e,f ] = h, f ∈ Nv and h ∈ h. (3.9)

Via this triple, V becomes a graded s-module. Decompose this graded s-module as

V = V ω1

λ1
⊕ V ω2

λ2
⊕ · · · ⊕ V ωd

λd
, d > 1.

Write

h = (h0,h1) ∈ h = End(V0)× End(V1),

and set

ĥ := (h0,−h1) ∈ h.

The following lemma is easy to check.
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Lemma 3.10. For each i = 1, 2, . . . , d, one has that

tr(ĥ |V ωi
λi

) =


0, if λi is even,

λi + 1, if λi is odd and ωi = 0,

−λi − 1, if λi is odd and ωi = 1.

In particular, one has that

tr(ĥ) ∈ {0,±2, . . . ,±2n}.

For each 1 6 i, j 6 d, set

mi,j := tr((2− h) |
Hom(V

ωi
λi

,V
ωj
λj

)f1
) + tr((2− h) |

Hom(V
ωj
λj

,V
ωi
λi

)f1
)− (λi + 1)(λj + 1).

Here, Hom(V
ωj

λj
, V ωi

λi
) is obviously viewed as a graded s-module, and Hom(V

ωj

λj
, V ωi

λi
)f1 is the space of

vectors in its odd part which are annihilated by f . Similar notation will be used without further

explanation.

Lemma 3.11. For each 1 6 i, j 6 d, one has that

mi,j =



min{λi, λj}+ 1, if λi ̸≡ λj (mod 2),

2min{λi, λj}+ 2, if λi ≡ λj ≡ 1 (mod 2) and ωi = ωj ,

0, if λi ≡ λj ≡ 1 (mod 2) and ωi ̸= ωj ,

−|λi − λj | − 1, if λi ≡ λj ≡ 0 (mod 2) and ωi = ωj ,

λi + λj + 3, if λi ≡ λj ≡ 0 (mod 2) and ωi ̸= ωj .

Proof. This lemma is similar to [1, Lemma 7.7.9] and its proof is also similar. The numbers mi,j can

be computed directly by the facts that

tr((2− h) |(V ω
λ )f1

) =

{
λ+ 2, if λ+ ω is odd,

0, if λ+ ω is even,

and that

(V ωi

λi
)∗ ⊗ V

ωj

λj
=

min{λi,λj}⊕
l=0

V
ωi+λi+ωj−l
λi+λj−2l .

The proof is completed.

Under the adjoint action of the triple {h, e,f}, End(V ) becomes a graded s-module with v as its odd

part. The following result is similar to [15, Lemma 3.1] and [1, Lemma 7.7.5].

Lemma 3.12. One has that

2n2 < tr((2− h) |vf ) 6 4n2.

Proof. The proof of this inequality is the same as that of [1, Lemma 7.7.5] by using Lemma 3.11.

Let γ be a character of GLn(k) and let γk be the character of k× such that γ = γk ◦ det. View γ⊗ γ−1

as a character of H. Denote by C−ξ(v,O) the space of tempered generalized functions on v \ (∂O) with

support in O, and denote by C−ξ
γ⊗γ−1(v,O) its subspace of γ⊗γ−1-equivariant elements, where ∂O denotes

the complement of O in its closure in v. We will use similar notation without further explanation.

Let k× act on C−ξ(v) by

(t · f)(x, y) = f(t−1x, t−1y), t ∈ k×, f ∈ C−ξ(v). (3.10)

Note that the orbit O is invariant under dilation, and thus k× acts on C−ξ
γ⊗γ−1(v,O) as in (3.10).
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Lemma 3.13. Let η : k× → C× be an eigenvalue for the action of k× on C−ξ
γ⊗γ−1(v,O). Then

η2 = γ
−tr(ĥ)
k · | · |tr((2−h) |

vf ) · κ

for some pseudo-algebraic character κ of k×.

Proof. View v as an H × k×-space. Then O is an H × k×-orbit and the η-eigenspace in C−ξ
γ⊗γ−1(v,O)

equals C−ξ
(γ⊗γ−1)⊗η−1(v,O). The sl2-triple {h,e,f} integrates to an algebraic homomorphism

ϕ : SL2(k) → GL(V )

which maps [
t 0

0 t−1

]
to an element, say Dt, of H. Set

T := {(Dt, t
−2) ∈ H × k× | t ∈ k×},

which fixes the element e and stabilizes the space vf .

By using the equality

v = [h, e]⊕ vf ,

we know that the map

(H × k×)× vf → v, (g, v) 7→ g · (v + e) (3.11)

is submersive at every point of (H × k×) × {0}, and (H × k×) × {0} is open in the inverse image of O
under the map (3.11). Thus the restriction map yields an injective linear map (see [16, Lemma 2.7] and

[24, Lemma 5.4])

C−ξ
(γ⊗γ−1)⊗η−1(v,O) → C−ξ

((γ⊗γ−1)⊗η−1) |T (v
f , {0}).

It is easy to see that the representation C−ξ(vf , {0}) of T is completely reducible and every eigenvalue

has the form

(Dt, t
−2) 7→ |t|tr((h−2) |

vf )κ(t−1), t ∈ k×,

where κ is a pseudo-algebraic character of k×. Thus the character ((γ−1 ⊗ γ) ⊗ η) |T has this form, or

equivalently,

γ
−tr(ĥ)
k · η−2 = | · |tr((h−2) |

vf ) · κ−1

for some pseudo-algebraic character κ of k×. This proves the lemma.

Note that v is a split symmetric bilinear space under the trace form, and the associated quadratic

form is

Q(x, y) := tr(x ◦ y) + tr(y ◦ x), (x, y) ∈ v = Hom(V1, V0)⊕Hom(V0, V1).

Denote by Z(Q) the zero locus of Q in v. Then Nv ⊂ Z(Q) ⊂ v. Recall the following homogeneity result

on tempered generalized functions (see [1, Theorem 5.1.7]).

Proposition 3.14. Let L be a non-zero subspace of C−ξ(v, Z(Q)) such that for every f ∈ L, one has

that F(f) ∈ L and (ψ ◦ Q) · f ∈ L for all unitary character ψ of k. Then L is a completely reducible

k×-subrepresentation of C−ξ(v), and it has an eigenvalue of the form

κ−1 · | · |dim v/2,

where κ is a pseudo-algebraic character of k×.



Chen F et al. Sci China Math January 2020 Vol. 63 No. 1 19

Now we are prepared to prove Proposition 3.9. Assume that γ is good as in Proposition 3.9. Denote

by Lγ the space of all tempered generalized functions f on v with the properties as in Proposition 3.9.

Assume by contradiction that Lγ is non-zero. Then by Propositions 3.13 and 3.14, there is an sl2-triple

{h, e,f} as in (3.9) such that

κ1 · γ−tr(ĥ)
k · | · |tr((2−h) |

vf ) = κ−2
2 · | · |dim v

for some pseudo-algebraic characters κ1 and κ2 of k×. Thus, by Lemmas 3.10 and 3.12, there exist

r ∈ {0,±2, . . . ,±2n} and m ∈ {1, 2, . . . , 2n2}

such that

γrk = κ · | · |m (3.12)

for some pseudo-algebraic character κ of k×. Note that the equality (3.12) does not hold for r = 0.

Thus γ is not a good character and we arrive at a contradiction. Then the space Lγ is zero and we finish

the proof of Proposition 3.9.

3.5 Proof of Theorem 3.1

In this subsection we finish the proof of the equality (3.2), and hence complete the proof of Theorem 3.1.

Note first that sdim(E) > 0 since E is assumed to be faithful as an A-module, and the equality holds only

when A is complex. Thus the equality (3.2) holds when sdim(E) = 0 by Proposition 3.5. Now assume

that sdim(E) > 0 and Theorem 3.1 holds when sdim(E) is smaller. Theorem 3.1 is easily reduced to the

case when A is simple. Together with Proposition 3.5, we may (and do) assume that A is simple and

real. Without loss of generality we further assume that A = k× k. Then it follows from Proposition 3.6

that every element of C−ξ
χ̆ (v(E)) has support in NE (the space v(A) in Proposition 3.6 is zero when A

is real). Together with Lemmas 2.28, 2.29, 3.3 and Proposition 3.9, this implies that every element of

C−ξ
χ̆ (v(E)) is zero, as required.

4 Proof of Theorem C

Let the group H̆(E) act on G(E) by

(δ, ğ, h̆) · x := (ğxh̆−1)δ, (δ, ğ, h̆) ∈ H̆(E), x ∈ G(E).

This section is devoted to a proof of the following theorem.

Theorem 4.1. Let ξ̆ be a character of H̆(E) which is doubly relevant and doubly good. Then the space

of ξ̆-equivariant generalized functions on G(E) is zero, in other words,

C−∞
ξ̆

(G(E)) = 0. (4.1)

If A = k× k is real and simple, then Theorem 4.1 is just a reformulation of Theorem C.

By [1, Theorem 3.1.1], Theorem 4.1 is implied by the following assertion:

C−∞
ξ̆

(N
G(E)
O ) = 0 for all closed H̆(E)-orbits O ⊂ G(E). (4.2)

Here

N
G(E)
O :=

⊔
x∈O

N
G(E)
O,x , N

G(E)
O,x := Tx(G(E))/TxO

is the normal bundle of O in G(E). It is naturally an H̆(E)-homogeneous vector bundle.

Lemma 4.2. For every closed H̆(E)-orbit O ⊂ G(E), there is an element x ∈ O which is normal in

the sense that x and x̄ commute with each other.
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Proof. By [1, Corollary 7.7.4] and its proof, we know that the symmetric pair (G(E),H(E)) is “good”

in the sense that every closed double H(E)-coset in G(E) is stable under the map y 7→ ȳ−1. Therefore

the lemma follows from [1, Lemma 7.4.7].

Let O ⊂ G(E) be a closed H̆(E)-orbit, and let x ∈ O be a normal element so that xx̄ = x̄x. By

Frobenious reciprocity (see [5, Theorems 3.3 and 3.4]), (4.2) is equivalent to

C−∞
ξ̆x

(N
G(E)
O,x ) = 0. (4.3)

Here, ξ̆x is the restriction of ξ̆ to the stabilizer H̆x ⊂ H̆(E) of x.

Put

s := xx̄−1 ∈ G(E).

Since the orbit O is assumed to be closed, [1, Proposition 7.2.1] implies that s is semisimple. Recall the

homomorphism

ȷx : H̆s(Es) → H̆(E)

from (2.19). This homomorphism is clearly injective and it is routine to check that its image equals the

stabilizer group H̆x. We identify H̆x with H̆s(Es) via this homomorphism.

Identify the tangent space Tx(G(E)) with g(E) = T1(G(E)) through the left translation. Then the

isotropic representation of H̆x on Tx(G(E)) is identified with the following representation of H̆s(Es)

on g(E):

(g, δ) · y = δgyg−1, (g, δ) ∈ H̆s(Es), y ∈ g(E).

This representation preserves the non-degenerate bilinear form ⟨·, ·⟩g(E) (see (3.3)).

Lemma 4.3. One has a decomposition

g(E) = (h(E) + Adx−1(h(E)))⊕ v(Es)

of representations of H̆s(Es).

Proof. Note that

g(E) = h(E)⊕ v(E)

is an orthogonal decomposition with respect to the bilinear form ⟨·, ·⟩g(E). Thus an element y ∈ g(E) is

perpendicular to h(E) + Adx−1(h(E)) if and only if both y and Adxy belong to v(E), i.e.,

ȳ = −y and x̄ȳx̄−1 = −xyx−1.

This is equivalent to saying that y ∈ v(Es). The lemma then follows as the space v(Es) is non-degenerate.

The proof is completed.

Note that the tangent space

TxO = h(E) + Adx−1(h(E)) ⊂ g(E) = Tx(G(E)).

Hence by Lemma 4.3, the normal space

N
G(E)
O,x =

g(E)

g(E) + Adx−1(g(E))
∼= v(Es)

as a k-linear representation of H̆s(Es). Thus, in view of Proposition 2.34, (4.3) follows by Theorem 3.1,

and consequently, Theorem 4.1 is proved.
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5 Proof of Theorem A

This short section is devoted to a proof of Theorem A. The proof is similar to that in [3, 9, 15], but

the consideration of meromorphic continuation is avoided due to the proof of Theorem B. Let π be an

irreducible admissible smooth representation of GL2n(k) as in Theorem A, and let λ ∈ HomSn(k)(π, ψSn)

(see (1.3)). For every v ∈ π, let ϕλ,v denote the following function on GLn(k):

ϕλ,v : GLn(k) → C, g 7→ λ

([
g 0

0 1

]
.v

)
.

As in [9], consider the following integral:

Zλ(v, s) :=

∫
GLn(k)

ϕλ,v(g) · |det(g)|s−
1
2 dg, s ∈ C,

where dg is a fixed Haar measure.

Lemma 5.1. When the real part of s ∈ C is sufficiently large, the integral Zλ(v, s) is absolutely

convergent for all v ∈ π, and the resulting linear functional

π → C, v 7→ Zλ(v, s) (5.1)

is nonzero whenever λ is nonzero. Moreover, the linear functional (5.1) is continuous when k is

archimedean.

Proof. When ψSn has trivial restriction to Dn(k) (see (1.4)), this is proved in the consequence below

[15, Lemma 6.1] in the non-archimedean case, and is proved in [3, Theorem 3.1] in the archimedean case.

But their proofs also work for arbitrary ψSn .

Now we are ready to prove Theorem A. Let L be a finite dimensional subspace of HomSn(k)(π, ψSn). By

Lemma 5.1, for all s ∈ C whose real part is sufficiently large, we have a well-defined injective linear map

L → HomGLn(k)×GLn(k)(π, χs), λ 7→ Zλ(·, s), (5.2)

where χs is the character of GLn(k)×GLn(k) defined by

χs

([
a 0

0 b

])
= ψSn

([
b 0

0 b

])
·
∣∣det(ba−1)

∣∣s− 1
2 , a, b ∈ GLn(k).

Then Theorem B implies that the space L is at most one dimensional. This proves Theorem A.
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