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1 Introduction

The simplest form of the Poincaré inequality in an open set B ⊂ Rn can be stated as follows: if 1 6 p < n

there exists C(B, p) > 0 such that for any (say) smooth function u on Rn there exists a constant cu such

that

∥u− cu∥Lq(B) 6 C(n, p) ∥∇u∥Lp(B)

provided 1
p−

1
q = 1

n . The Sobolev inequality is very similar, but in that case we are dealing with compactly

supported functions, so that the constant cu can be dropped. It is well known (see the Federer-Fleming

theorem [5]) that for p = 1 the Sobolev inequality is equivalent to the classical isoperimetric inequality

(whereas the Poincaré inequality corresponds to the classical relative isoperimetric inequality).

Let us restrict ourselves for a while to the case B = Rn, to investigate generalizations of these inequal-

ities to differential forms. It is easy to see that Sobolev and Poincaré inequalities are equivalent to the

following problem: we ask whether, given a closed differential 1-form ω in Lp(Rn), there exists a 0-form

ϕ in Lq(Rn) with 1
p − 1

q = 1
n such that

dϕ = ω and ∥ϕ∥q 6 C(n, p, h) ∥ω∥p. (1.1)
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Clearly, this problem can be formulated in general for h-forms ω in Lp(Rn) and we are led to look for

(h − 1)-forms ϕ in Lq(Rn) such that (1.1) holds. This is the problem we have in mind when we speak

about the Poincaré inequality for differential forms. When we speak about the Sobolev inequality, we

have in mind compactly supported differential forms.

The case p > 1 has been fully understood on bounded convex sets by Iwaniec and Lutoborski [10]. On

the other hand, in the full space Rn an easy proof consists in putting ϕ = d∗∆−1ω. Here, ∆−1 denotes

the inverse of the Hodge Laplacian ∆ = d∗d + dd∗ and d∗ is the formal L2-adjoint of d. The operator

d∗∆−1 is given by convolution with a homogeneous kernel of type 1 in the terminology of [6,7], and hence

it is bounded from Lp to Lq if p > 1. Unfortunately, this argument does not suffice for p = 1 since, by

[7, Theorem 6.10], d∗∆−1 maps L1 only into the weak Marcinkiewicz space Ln/(n−1),∞. Upgrading from

Ln/(n−1),∞ to Ln/(n−1) is possible for functions (see [8, 9, 13]), but the trick does not seem to generalize

to differential forms.

Since the case p = 1 is the most relevant from a geometric point of view, we focus on that case.

First of all, we notice that the Poincaré inequality with p = 1 fails in top degree unless a global integral

inequality is satisfied. Indeed for h = n forms belonging to L1 and with nonvanishing integrals cannot

be differentials of Ln/(n−1) forms1). In arbitrary degree, a similar integral obstruction takes the form∫
ω ∧ β = 0 for every constant coefficient form β of the complementary degree. Therefore we introduce

the subspace L1
0 of L1-differential forms satisfying these conditions. However, in degree n assuming that

the integral constraint is satisfied does not suffice, as we shall see in Section 4. On the other hand, for

example it follows from [4] that the Poincaré inequality holds in degree n− 1. We refer the reader to [2]

for a discussion, in particular in connection with Van Schaftingen’s [15] and Lanzani and Stein’s [12]

results.

We can state our main results. We have the following theorem.

Theorem 1.1 (Global Poincaré and Sobolev inequalities). Let h = 1, . . . , n− 1 and set q = n/(n− 1).

For every closed h-form α ∈ L1
0(Rn), there exists an (h− 1)-form ϕ ∈ Lq(Rn), such that

dϕ = α and ∥ϕ∥q 6 C ∥α∥1.

Furthermore, if α is compactly supported, so is ϕ.

We also prove a local version of this inequality.

Corollary 1.2. For h = 1, . . . , n − 1, let q = n/(n − 1). Let B ⊂ Rn be a bounded open convex set,

and let B′ be an open set, B b B′. Then there exists C = C(n,B,B′) with the following property:

(1) The interior Poincaré inequality. For every closed h-form α in L1(B′), there exists an (h−1)-form

ϕ ∈ Lq(B), such that

dϕ = α |B and ∥ϕ∥Lq(B) 6 C ∥α∥L1(B′).

(2) The Sobolev inequality. For every closed h-form α ∈ L1 with support in B, there exists an (h− 1)-

form ϕ ∈ Lq, with support in B′, such that

dϕ = α and ∥ϕ∥Lq(B′) 6 C∥α∥L1(B).

We shall refer to the above inequality as the interior Poincaré and interior Sobolev inequalities, respec-

tively. The word “interior” is meant to stress the loss of the domain from B′ to B.

Remarkably, most of the techniques developed here can be adapted, in combination with other ad hoc

arguments to deal with Poincaré and Sobolev inequalities in the Rumin complex of Heisenberg groups

(see [2]).

2 Kernels

Throughout the present paper our setting will be the Euclidean space Rn with n > 2.

1) Pansu P, Tripaldi F. Averages and the ℓq,1-cohomology of Heisenberg groups. In preparation
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If f is a real function defined in Rn, we denote by vf the function defined by vf(p) := f(−p), and, if
T ∈ D′(Rn), then vT is the distribution defined by ⟨vT |ϕ⟩ := ⟨T | vϕ⟩ for any test function ϕ.

We remind also that the convolution f ∗ g is well-defined when f, g ∈ D′(Rn), provided at least one of

them has compact support. In this case the following identities hold:

⟨f ∗ g |ϕ⟩ = ⟨g | vf ∗ ϕ⟩ and ⟨f ∗ g |ϕ⟩ = ⟨f |ϕ ∗ vg⟩ (2.1)

for any test function ϕ.

Following [6, Definition 5.3], we recall now the notion of kernel of type µ and some properties stated

below in Proposition 2.2.

Definition 2.1. A kernel of type µ is a distribution K ∈ S ′(Rn), homogeneous of degree µ−n that is

smooth outside the origin.

The convolution operator with a kernel of type µ,

f → f ∗K,

is still called an operator of type µ.

Proposition 2.2. Let K ∈ S ′(Rr) be a kernel of type µ and let Dj denote the j-th partial derivative

in Rn.

(i) vK is again a kernel of type µ.

(ii) DjK and KDj are associated with kernels of type µ− 1 for j = 1, . . . , n.

(iii) If µ > 0, then K ∈ L1
loc(Rn).

Lemma 2.3. Let g be a kernel of type µ > 0, and let ψ ∈ D(Rn) be a test function. Then ψ ∗ g is

smooth on Rn.

If, in addition, R = R(D) is a homogeneous polynomial of degree ℓ > 0 in

D := (D1, . . . , Dn),

we have

R(ψ ∗ g)(p) = O(|p|µ−n−ℓ) as p→ ∞.

In particular, if ψ ∈ D(Rn), and K is a kernel of type µ < n, then both ψ ∗K and all its derivatives

belong to L∞(Rn).

Corollary 2.4. If K is a kernel of type µ ∈ (0, n), u ∈ L1(Rn) and ψ ∈ D(Rn), then

⟨u ∗K |ψ⟩ = ⟨u |ψ ∗ vK⟩. (2.2)

In this equation, the left-hand side is the action of a distribution on a test function (see Formula (3.5))

and the right-hand side is the inner product of an L1 vector-valued function with an L∞ vector-valued

function.

Remark 2.5. The conclusion of Corollary 2.4 still holds if we assume K ∈ L1
loc(Rn), provided u ∈

L1(Rn) is compactly supported.

Lemma 2.6. Let K be a kernel of type α ∈ (0, n). Then for any f ∈ L1(Rn) such that∫
Rn

f(y) dy = 0,

we have

R−α

∫
B(0,2R)\B(0,R)

|K ∗ f |dx→ 0 as R→ ∞.
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Proof. If R > 1, then we have

R−α

∫
R<|x|<2R

|K ∗ f |dx = R−α

∫
R<|x|<2R

dx

∣∣∣∣ ∫ K(x− y)f(y)dy

∣∣∣∣
= R−α

∫
R<|x|<2R

dx

∣∣∣∣ ∫ [K(x− y)−K(x)]f(y)dy

∣∣∣∣
6 R−α

∫
|f(y)|

(∫
R<|x|<2R

|K(x− y)−K(x)|dx
)
dy

= R−α

∫
|y|< 1

2R

|f(y)|(· · · )dy +R−α

∫
4R>|y|> 1

2R

|f(y)|(· · · )dy

+R−α

∫
|y|>4R

|f(y)|(· · · )dy

=: R−αI1(R) +R−αI2(R) +R−αI3(R).

Consider first the third term above. By homogeneity we have

I3(R) 6 CK

∫
|y|>4R

|f(y)|
(∫

R<|x|<2R

(|x− y|−n+α + |x|−n+α)dx

)
dy.

Notice now that, if |y| > 4R and R < |x| < 2R, then

|x− y| > |y| − |x| > 4R−R > 3

2
|x|.

Therefore

|x− y|−n+α + |x|−n+α 6
{(

2

3

)n−α

+ 1

}
|x|−n+α,

and then ∫
R<|x|<2R

(|x− y|−n+α + |x|−n+α) dx 6 CαR
α.

Thus

R−αI3(R) 6 CK,α

∫
|y|>4R

|f(y)| dy → 0

as R→ ∞.

Consider now the second term. Again we have

I2(R) 6 CK

∫
1
2R<|y|<4R

|f(y)|
(∫

R<|x|<2R

(|x− y|−n+α + |x|−n+α) dx

)
dy.

Obviously, as above, ∫
R<|x|<2R

|x|−n+α dx 6 CRα.

Notice now that, if
1

2
R < |y| < 4R and R < |x| < 2R,

then

|x− y| 6 |x|+ |y| < 6R.

Hence ∫
1
2R<|y|<4R

|f(y)|
(∫

|x−y|<6R

|x− y|−n+α dx

)
dy 6 CRα.

Therefore

R−αI2(R) 6 CK

∫
1
2R<|y|<4R

|f(y)| dy → 0
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as R → ∞. Finally, if |y| < R
2 and R < |x| < 2R we have |y| < 1

2 |x| so that, by [7, Proposition 1.7 and

Corollary 1.16],

R−αI1(R) 6 CK

∫
|y|< 1

2R

|f(y)|
(∫

R<|x|<2R

|y|
|x|n−α+1

dx

)
dy

= CK

∫
Rn

|f(y)||y|χ[0, 12R](|y|)
(
R−α

∫
R<|x|<2R

1

|x|n−α+1
dx

)
dy

6 CK

∫
Rn

|f(y)||y|χ[0, 12R](|y|)R−1 dy =: CK

∫
Rn

|f(y)|HR(|y|) dy.

Obviously, for any fixed y ∈ Hn we have (|y|)HR(|y|) → 0 as R→ ∞. On the other hand,

|f(y)|HR(|y|) 6
1

2
|f(y)|,

so that, by the dominated convergence theorem,

R−αI1(R) → 0

as R→ ∞.

This completes the proof of the lemma.

Definition 2.7. Let f be a measurable function on Rn. If t > 0 we set

λf (t) = |{|f | > t}|.

If 1 6 p 6 ∞ and

sup
t>0

λpf (t) <∞,

we say that f ∈ Lp,∞(Rn).

Definition 2.8. Following [3, Definition A.1], if 1 < p <∞, we set

∥u∥Mp := inf

{
C > 0;

∫
K

|u| dx 6 C|K|1/p
′
for all L-measurable sets K ⊂ Rn

}
.

By [3, Lemma A.2], we obtain the following lemma.

Lemma 2.9. If 1 < p <∞, then

(p− 1)p

pp+1
∥u∥pMp 6 sup

λ>0
{λp|{|u| > λ}| } 6 ∥u∥pMp .

In particular, if 1 < p <∞, then Mp = Lp,∞(Rn).

Corollary 2.10. If 1 6 s < p, then Mp ⊂ Ls
loc(Rn) ⊂ L1

loc(Rn).

Proof. If u ∈Mp then |u|s ∈Mp/s, and we can conclude thanks to Definition 2.8.

Lemma 2.11. Let E be a kernel of type α ∈ (0, n). Then for all f ∈ L1(Rn) we have f ∗E ∈Mn/(n−α)

and there exists C > 0 such that

∥f ∗ E∥Mn/(n−α) 6 C∥f∥L1(Rn)

for all f ∈ L1(Rn). In particular, by Corollary 2.10, f ∗ E ∈ L1
loc.

As in [1, Lemma 4.4 and Remark 4.5], we have the following remark.

Remark 2.12. Suppose 0 < α < n. If K is a kernel of type α and ψ ∈ D(Rn), ψ ≡ 1 in a neighborhood

of the origin, then the statements of Lemma 2.11 still hold if we replace K by (1− ψ)K or by ψK.
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3 Differential forms and currents

Let (dx1, . . . , dxn) be the canonical basis of (Rn)∗ and indicate as ⟨·, ·⟩ the inner product in (Rn)∗ that

makes (dx1, . . . , dxn) an orthonormal basis. We put
∧0

(Rn) := R and, for 1 6 h 6 n,

h∧
(Rn) := span{dxi1 ∧ · · · ∧ dxih : 1 6 i1 < · · · < ih 6 n}

the linear space of the alternating h-forms on Rn. If I := (i1, . . . , ih) with 1 6 i1 < · · · < ih 6 n, we set

|I| := h and

dxI := dxi1 ∧ · · · ∧ dxih .

We indicate as ⟨·, ·⟩ also the inner product in
∧h

(Rn) that makes (dx1, . . . , dxn) an orthonormal basis.

By translation,
∧h

(Rn) defines a fibre bundle over Rn, still denoted by
∧h

(Rn). A differential form

on Rn is a section of this fibre bundle.

Through this paper, if 0 6 h 6 n and U ⊂ Rn is an open set, we denote by Ωh(U) the space of

differential h-forms on U , and by d : Ωh(U) → Ωh+1(U) the exterior differential. Thus (Ω•(U), d) is the

de Rham complex in U and any u ∈ Ωh can be written as

u =
∑
|I|=h

uIdx
I .

Definition 3.1. If U ⊂ Rn is an open set and 0 6 h 6 n, we say that T is an h-current on U
if T is a continuous linear functional on D(U ,

∧h
(Rn)) endowed with the usual topology. We write

T ∈ D′(U ,
∧h

(Rn)). If u ∈ L1
loc(U ,

∧h
(Rn)), then u can be identified canonically with an h-current Tu

through the formula

⟨Tu |φ⟩ :=
∫
U
u ∧ ∗φ =

∫
U
⟨u, φ⟩ dx

for any φ ∈ D(U ,
∧h

(Rn)).

From now on, if there is no way of misunderstandings, and u ∈ L1
loc(U ,

∧h
(Rn)), we shall write u

instead of Tu.

Suppose now u is sufficiently smooth (take for example u ∈ C∞(Rn,
∧h

(Rn)). If ϕ ∈ D(Rn,
∧h

(Rn)),

then by the Green formula, ∫
Rn

⟨du, ϕ⟩ dx =

∫
Rn

⟨u, d∗ϕ⟩ dx.

Thus, if T ∈ D′(Rn,
∧h

(Rn)), it is natural to set

⟨dT |ϕ⟩ = ⟨T | d∗ϕ⟩

for any ϕ ∈ D(Rn,
∧h+1

(Rn)).

Analogously, if T ∈ D′(Rn,
∧h

(Rn)), we set

⟨d∗T |ϕ⟩ = ⟨T | dϕ⟩

for any ϕ ∈ D(Rn,
∧h−1

(Rn)).

Notice that, if u ∈ L1
loc(Rn,

∧h
(Rn)),

⟨u | d∗ϕ⟩ =
∫
Rn

u ∧ ∗d∗φ = (−1)h+1

∫
Rn

u ∧ d∗(∗φ).

A straightforward approximation argument yields the following identity.

Lemma 3.2. Let u ∈ L1(Rn,
∧h+1

(Rn)) be a closed form, and let K be a kernel of type µ ∈ (0, n). If

ψ ∈ D(Rn,Ωh), then ∫
⟨u, d∗(ψ ∗K)⟩ dx = 0. (3.1)
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Definition 3.3. In Rn, we define the Laplace-Beltrami operator ∆h on Ωh by

∆h = dd∗ + d∗d.

Notice that

−∆0 =
2n∑
j=1

∂2j

is the usual Laplacian of Rn.

Proposition 3.4 (See [11, (2.1.28)]). If u =
∑

|I|=h uIdx
I , then

∆u = −
∑
|I|=h

(∆uI)dx
I .

For the sake of simplicity, since a basis of
∧h

(Rn) is fixed, the operator ∆h can be identified with a

diagonal matrix-valued map, still denoted by ∆h,

∆h = −(δij∆)i,j=1,...,dim
∧h(Rn) : D

′
(
Rn,

h∧
(Rn)

)
→ D′

(
Rn,

h∧
(Rn)

)
, (3.2)

where D′(Rn,
∧h

(Rn)) is the space of vector-valued distributions on Rn.

If we denote by ∆−1 the matrix valued kernel

∆−1
h = −(δij∆

−1)i,j=1,...,dim
∧h(Rn) : D

′
(
Rn,

h∧
(Rn)

)
→ D′

(
Rn,

h∧
(Rn)

)
, (3.3)

then ∆−1
h is a matrix-valued kernel of type 2 and

∆−1
h ∆hα = ∆h∆

−1
h α = α for all α ∈ D

(
Rn,

h∧
(Rn)

)
.

We notice that, if n > 1, since ∆−1
h is associated with a kernel of type 2, ∆−1

h f is well-defined when

f ∈ L1(Hn, Eh
0 ). More precisely, by Lemma 2.11 we have the following lemma.

Lemma 3.5. If 1 6 h < n, and R = R(D) is a homogeneous polynomial of degree ℓ = 1 in D1, . . . , Dn,

we have

∥f ∗R(D)∆−1
h ∥Mn/(n−1) 6 C∥f∥L1(Rn)

for all f ∈ L1(Rn,
∧h

(Rn)).

By Corollary 2.10, in both cases,

f ∗R(D)∆−1
h ∈ L1

loc

(
Rn,

h∧
(Rn)

)
.

In particular, the map

∆−1
h : L1

(
Rn,

h∧
(Rn)

)
→ L1

loc

(
Rn,

h∧
(Rn)

)
(3.4)

is continuous.

Remark 3.6. By Corollary 2.4, if u ∈ L1(Rn,
∧h+1

(Rn)) and ψ ∈ D(Rn,
∧h

(Rn)), then

⟨∆−1
h u |ψ⟩ = ⟨u |∆−1

h ψ⟩. (3.5)

In this equation, the left-hand side is the action of a matrix-valued distribution on a vector-valued test

function (see (3.3)), whereas the right-hand side is the inner product of an L1 vector-valued function with

an L∞ vector-valued function.

A standard argument yields the following identities.
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Lemma 3.7 (See [1, Lemma 4.11]). If α ∈ D(Rn,
∧h

(Rn)), then

(i) d∆−1
h α = ∆−1

h+1dα, h = 0, 1, . . . , n− 1;

(ii) d∗∆−1
R,hα = ∆−1

R,h−1d
∗α, h = 1, . . . , n.

Lemma 3.8. If α ∈ L1(Rn,
∧h

(Rn)), then ∆−1
h α is well-defined and belongs to L1

loc(Rn,
∧h

(Rn)). If

in addition dα = 0 in the distributional sense, then the following result holds:

d∆−1
h α = 0.

Proof. Let ϕ ∈ D(Rn,
∧h

(Rn)) be arbitrarily given. By Lemma 3.7, d∆−1
h ϕ = ∆−1

h dϕ. Thus

Remark 3.6 and Lemma 3.2 yield

⟨d∆−1
h α |ϕ⟩ = ⟨∆−1

h α | dϕ⟩ = ⟨α |∆−1
h dϕ⟩ = ⟨α | d∆−1

h ϕ⟩ = 0.

This completes the proof.

4 n-parabolicity

Recall that a noncompact Riemannian manifoldM is p-parabolic if for every compact subset K and every

ϵ > 0, there exists a smooth compactly supported function χ on M such that χ > 1 on K and∫
M

|dχ|p < ϵ.

It is well known that the Euclidean n-space is n-parabolic (the relevant functions χ can be taken to be

piecewise affine functions of log r, where r is the distance to the origin). It follows that the Sobolev

inequality in Ln cannot hold, and, as we saw in Section 1, that the Poincaré inequality on n-forms fails

as well.

Here, we explain another consequence of n-parabolicity.

Proposition 4.1. Let ω be a k-form in L1(Rn). Assume that ω = dϕ where ϕ ∈ Ln/(n−1)(Rn). Then,

for every constant coefficient (n− k)-form β,∫
Rn

ω ∧ β = 0.

Proof. Let χR be a smooth compactly supported function on Rn such that χR = 1 on B(R) and∫
|dχR|n 6 1

R
.

Let ωR = d(χRϕ). Then, since χRϕ ∧ β is compactly supported,∫
Rn

ωR ∧ β =

∫
Rn

d(χRϕ ∧ β) = 0.

Write

ωR = dχR ∧ ϕ+ χRω.

Since ∣∣∣∣ ∫
Rn

dχR ∧ ϕ ∧ β
∣∣∣∣ 6 ∥dχR∥n∥ϕ∥n/(n−1)∥β∥∞ 6 C

R1/n

tends to 0, ∫
Rn

ω ∧ β = lim
R→∞

∫
Rn

χRω ∧ β

= − lim
R→∞

∫
Rn

ωR ∧ β = 0.

This completes the proof.

In other words, the vanishing of all integrals
∫
ω ∧ β is a necessary condition for an L1 k-form to be

the differential of an Ln/(n−1)(k − 1)-form.



Baldi A et al. Sci China Math June 2019 Vol. 62 No. 6 1037

5 Main results

The following estimate provides primitives for globally defined closed L1-forms, and can be derived from

the Lanzani-Stein inequality [12], approximating closed forms in L1
0((Rn),

∧h
(Rn)) by means of closed

compactly supported smooth forms. The convergence of the approximation is guaranteed by Lemma 2.6.

Proposition 5.1. Denote by L1
0((Rn),

∧h
(Rn)) the subspace of L1(Rn,

∧h
(Rn)) of forms with vanish-

ing average, and by H1(Rn) the classic real Hardy space (see [14, Chapter 3]). We have

(i) if h < n, then

∥d∗∆−1
h u∥Ln/(n−1)(Rn) 6 C∥u∥L1(Rn) for all u ∈ L1

0(Rn,
∧h

(Rn)) ∩ ker d;

(ii) if h = n, then

∥d∗∆−1
n u∥Ln/(n−1)(Rn) 6 C∥u∥H1(Rn) for all u ∈ H1(Rn) ∩ ker d.

We stress that the vanishing average assumption is necessary (see Proposition 4.1).

A standard approximation argument (akin to that of the classical Meyers-Serrin theorem) yields the

following density result.

Lemma 5.2. Let B ⊂ Rn be an open set. If 0 6 h 6 n, we set

(L1 ∩ d−1L1)

(
B,

h∧
(Rn)

)
:=

{
α ∈ L1

(
B,

h∧
(Rn)

)
; dα ∈ L1

(
B,

h+1∧
(Rn)

)}
,

endowed with the graph norm. Then C∞(B,
∧h

(Rn)) is dense in (L1 ∩ d−1L1)(B,
∧h

(Rn)).

Again through an approximation argument we can prove the following two lemmas.

Lemma 5.3. If K = d∗∆−1
c , then

• K is a kernel of type 1;

• if χ is a smooth function with compact support in B, then the identity

χ = dKχ+Kdχ

holds on the space (L1 ∩ d−1L1)(B,
∧•

(Rn)).

Lemma 5.4. If 1 6 h < n, let ψ ∈ L1(Rn,
∧h

(Rn)) be a compactly supported form with dψ ∈
L1(Rn,

∧h+1
(Rn)), and let ξ ∈

∧2n−h
be a constant coefficient form. Then∫

Rn

dψ ∧ ξ = 0.

We are now able to prove the following (approximate) homotopy formula for closed forms.

Proposition 5.5. Let B b B′ be open sets in Rn. For h = 1, . . . , n − 1, take q = n/(n − 1). Then

there exists a smoothing operator

S : L1

(
B′,

h∧
(Rn)

)
→W s,q

(
B,

h∧
(Rn)

)
for every s ∈ N, and a bounded operator

T : L1

(
B′,

h∧
(Rn)

)
→ Lq

(
B,

h−1∧
(Rn)

)
such that, for closed L1-forms α on B′,

α = dTα+ Sα on B. (5.1)

In particular, Sα is closed.

Furthermore, T and S merely enlarge by a small amount the support of compactly supported differential

forms.
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Proof. Le us fix two open sets B0 and B1 with

B b B0 b B1 b B′,

and a cut-off function χ ∈ D(B1), χ ≡ 1 on B0. If α ∈ (L1 ∩ d−1)(B′,
∧•

(Rn)), we set α0 = χα,

continued by zero outside B1. Denote by k the kernel associated with K in Lemma 5.3. We consider

a cut-off function ψR supported in an R-neighborhood of the origin, such that ψR ≡ 1 near the origin.

Then we can write k = kψR +(1−ψR)k. Thus, let us denote by KR the convolution operator associated

with ψRk. By Lemma 5.3,

α0 = dKα0 +Kdα0 = dKRα0 +KRdα0 + Sα0, (5.2)

where S0 is defined by

Sα0 := d((1− ψR)k ∗ α0) + (1− ψR)k ∗ dα0.

We set

T1α := KRα0, S1α := Sα0.

If β ∈ L1(B1,
∧h

(Rn)), we set

T1β := KR(χβ) |B , S1α := Sα0 |B .

We notice that, provided R > 0 is small enough, the values of T1β do not depend on the continuation

of β outside B1. Moreover,

KRdα0 |B = KRd(χα) |B = KR(χdα) |B = T1(dα),

since d(χα) ≡ χdα on B0. Thus, by (5.2),

α = dT1α+ T1dα+ S1α in B.

Assume now that dα = 0. Then

α = dT1α+ S1α in B.

Write ϕ = T1α ∈ L1(B0,
∧h−1

(Rn)). By difference,

dϕ = α− S1α ∈ L1

(
B0,

h−1∧
(Rn)

)
.

The next step will consist of proving that ϕ ∈ Lq((B0),
∧h−1

(Rn)), “iterating” the previous argument.

Let us sketch how this iteration will work: let ζ be a cut-off function supported in B0, identically equal

to 1 in a neighborhood U of B, and set ω = d(ζϕ). Obviously, the form ζϕ (and therefore also ω) is

defined on all Rn and is compactly supported in B0. In addition, ω is closed. Suppose for a while we are

able to prove that

(a) ω ∈ L1(Rn,
∧h

(Rn));

(b) ∥K0ω∥Lq(Rn,
∧h(Rn)) 6 C∥α∥L1(B′,

∧h(Rn)), and let us show how the argument can be carried out.

First we stress that, if R is small enough, then when x ∈ B, KRω(x) depends only on the restriction

of dϕ to U , so that the map

α→ KRω |B

is linear.

In addition, notice that ω = χω, so that, by (5.2),

d(ζϕ) = ω = dKRω + Sω.

Therefore in B,

α− S1α = dϕ = d(ζϕ) = dKRω + S0ω,
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and then in B,

α = d(KRω |B) + S1α |B + Sω |B
=: d(KR(χω) |B) + Sα = dTα+ Sα.

First notice that the map α → ω = ω(α) is linear, and hence T and S are linear maps. In addition,

by (b),

∥Tα∥Lq(B,
∧h−1(Rn)) 6 ∥KR(χω)∥Lq(Rn,

∧h(Rn)) = ∥KR(ω)∥Lq(Rn,
∧h(Rn)) 6 C ∥α∥L1(B′,

∧h(Rn)).

As for the map α→ Sα we just point out that, when x ∈ B, Sα(x) can be written as the convolution

of α0 with a smooth kernel with bounded derivatives of any order, the proof is completed.

Interior Poincaré and Sobolev inequalities follow now from the approximate homotopy formula for the

closed forms (5.1).

Corollary 5.6 (Interior Poincaré and Sobolev inequalities). Let B b B′ be open sets in Rn, and as-

sume B is convex. For h = 1, . . . , n−1, let q = n/(n−1). Then for every closed form α ∈ L1(B′,
∧h

(Rn)),

there exists an (h− 1)-form ϕ ∈ Lq(B,
∧h−1

(Rn)), such that

dϕ = α |B and ∥ϕ∥Lq(B,
∧h−1(Rn)) 6 C ∥α∥L1(B′,

∧h(Rn)).

Furthermore, if α is compactly supported, so is ϕ.

Proof. By Proposition 5.5, the h-form Sα defined in (5.1) is closed and belongs to Lq(B,
∧h

(Rn)),

with the norm controlled by the L1-norm of α. Thus we can apply Iwaniec-Lutoborski’s homotopy

[10, Proposition 4.1] to obtain a differential (h − 1)-form γ on B with the norm in W 1,q(B,
∧h−1

(Rn))

controlled by the Lq-norm of Sα and therefore from the L1-norm of α. Set ϕ := Tα+ γ. Clearly,

dϕ = dTα+ dγ = dTα+ Sα = α.

Then, by Proposition 5.5,

∥ϕ∥Lq(B,
∧h−1(Rn)) 6 C(∥α∥L1(B,

∧h(Rn)) + ∥Sα∥Lq(B,
∧h(Rn))) 6 C∥α∥L1(B,

∧h(Rn)).

This completes the proof.
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(Ministero dell’Istruzione dell’Università e della Ricerca), Italy. The third author was supported by MAnET Marie

Curie Initial Training Network, Agence Nationale de la Recherche (Grant Nos. ANR-10-BLAN 116-01 GGAA

and ANR-15-CE40-0018 SRGI), and thanks the hospitality of Isaac Newton Institute, of EPSRC (Engineering

and Physical Sciences Research Council) (Grant No. EP/K032208/1) and Simons Foundation.

References
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