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1 Quantization of radial functions

1.1 Basic formulas

In this section, we work in one dimension and consider a function F in the Schwartz class of R. We want

to calculate somewhat explicitly the Weyl quantization of F (x2 + ξ2) (see our Appendix A), denoted by

(F (x2 + ξ2))w,

and also extend that computation to the case where F is merely L∞(R). We have, say for F in the

Wiener algebra W(R) = Fourier(L1(R)),

(F (x2 + ξ2))w =

∫
R
F̂ (τ)(e2iπτ(x

2+ξ2))wdτ,

as an absolutely converging integral of a function defined on R (equipped with the Lebesgue measure)

valued in B(L2(R)) (bounded endomorphisms of L2(R)). In fact applying Mehler’s formula (B.2), we find

(e2iπτ(x
2+ξ2))w︸ ︷︷ ︸

operator with Weyl symbol

e2iπτ(x2+ξ2)

= cos(arctan τ) e2iπ(arctan τ)(x2+ξ2)w︸ ︷︷ ︸
exponential eiM ,

with M selfadjoint operator
=2π(arctan τ)(x2+ξ2)w

,

so that, using the spectral decomposition (A.22) of the harmonic oscillator

π(x2 + ξ2)w,
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we get

(F (x2 + ξ2))w =

∫
R
F̂ (τ)

∑
k>0

e2i(arctan τ)(k+ 1
2 )Pk

dτ√
1 + τ2

=
∑
k>0

∫
R
F̂ (τ)e2i(k+

1
2 ) arctan τ dτ√

1 + τ2
Pk,

where the use of Fubini’s theorem is justified by∫
R
|F̂ (τ)| dτ√

1 + τ2
< +∞, Pk > 0,

∑
k

Pk = Id .

We have∫
R
F̂ (τ)e2i(k+

1
2 ) arctan τ dτ√

1 + τ2
=

∫
R
F̂ (τ)(cos(arctan τ

)
+ i sin(arctan τ))2k+1 dτ√

1 + τ2
,

and, using Appendix A, we get∫
R
F̂ (τ)e2i(k+

1
2 ) arctan τ dτ√

1 + τ2
=

∫
R
F̂ (τ)(1 + iτ)2k+1 dτ

(1 + τ2)k+1
.

We have proved the following lemma.

Lemma 1.1. Let F be a tempered distribution on R such that F̂ is locally integrable and such that∫
R
|F̂ (τ)| dτ√

1 + τ2
< +∞. (1.1)

Then the operator (F (x2 + ξ2))w has the spectral decomposition

(F (x2 + ξ2))w =
∑
k>0

∫
R

F̂ (τ)(1 + iτ)2k+1

(1 + τ2)k+1
dτPk. (1.2)

We notice that the regularity requirement (1.1) is quite mild and is satisfied in particular when F =

1[a,b] with a, b being real numbers. Our first example of rough Hamiltonian is 1[a,b](x
2 + ξ2), which we

would like to quantize (by the Weyl formula). We know from the above lemma that the Weyl quantization

of that Hamiltonian is diagonal in the Hermite basis and we shall need only to calculate the integrals

occurring on the right-hand side of (1.2).

1.2 Indicatrix of a disc

Let us assume now that, with some a > 0,

F = 1[− a
2π , a

2π ], so that F (x2 + ξ2) = 1{2π(x2 + ξ2) 6 a}.

According to Appendix A, we have

F̂ (τ) =
sin aτ

πτ
,

so that (1.1) holds true. We find in this case,

(F (x2 + ξ2))w =
∑
k>0

Fk(a)Pk, Fk(a) =

∫
R

sin aτ

πτ

(1 + iτ)k

(1− iτ)k+1
dτ, (1.3)

so that (note that Fk(a) is real-valued since F is real-valued and thus the operator (F (x2 + ξ2))w is

selfadjoint) for a > 0, using the result (A.29), we obtain

F ′
k(a) =

1

π

∫
R
cos aτ

(1 + iτ)k

(1− iτ)k+1
dτ
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=
1

2π

∫
R
eiaτ

{
(1 + iτ)k

(1− iτ)k+1
+

(1− iτ)k

(1 + iτ)k+1

}
dτ

=
1

2π

∫
R
eiaτ

{
ik(τ − i)k

(−i)k+1(τ + i)k+1
+

(−i)k(τ + i)k

ik+1(τ − i)k+1

}
dτ

=
(−1)k

2iπ

∫
R
eiaτ

{
− (τ − i)k

(τ + i)k+1
+

(τ + i)k

(τ − i)k+1

}
dτ.

We shall now calculate explicitly both integrals above: let 1 < R be given and let us consider the

closed path (see Figure 1)

γR = [−R,R] ∪ {Reiθ}06θ6π︸ ︷︷ ︸
γ2;R

. (1.4)

We have

1

2iπ

∫
γR

eiaτ
{
− (τ − i)k

(τ + i)k+1
+

(τ + i)k

(τ − i)k+1

}
dτ = Res

(
eiaτ

(τ + i)k

(τ − i)k+1
; i

)
=

1

k!

(
d

dτ

)k

{eiaτ (τ + i)k}|τ=i,

and we note that, for a > 0,

lim
R→+∞

∫
γ2;R

eiaτ
{
− (τ − i)k

(τ + i)k+1
+

(τ + i)k

(τ − i)k+1

}
dτ = 0,

since for R > 2, ∫ π

0

|eiaReiθ |
∣∣∣∣− (Reiθ − i)k

(Reiθ + i)k+1
+

(Reiθ + i)k

(Reiθ − i)k+1

∣∣∣∣|iReiθ|dθ
6

∫ π

0

e−aR sin θ

∣∣∣∣− (eiθ − iR−1)k

(eiθ + iR−1)k+1
+

(eiθ + iR−1)k

(eiθ − iR−1)k+1

∣∣∣∣dθ
6

∫ π

0

e−aR sin θdθ sup
06ρ61/2

{
(1 + ρ)k

(1− ρ)k+1
+

(1 + ρ)k

(1− ρ)k+1

}
.

For a > 0, we obtain

lim
R→+∞

∫ π

0

e−aR sin θdθ = 0,
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Figure 1 (Color online) γR = [−R,R] ∪ {Reiθ}06θ6π
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by dominated convergence. As a result, we get

F ′
k(a) = (−1)k

1

k!

(
d

dτ

)k

{eiaτ (τ + i)k}|τ=i = (−1)k
1

k!

(
d
i
adϵ

)k{
e−a−ϵ

(
i + i

ϵ

a
+ i

)k}
|ϵ=0

,

i.e.,

F ′
k(a) =

(−1)k

k!
e−a

(
d

dϵ

)k

{e−ϵ(2a+ ϵ)k}|ϵ=0.

We note that F ′
k belongs to L1(R+) as the product of e−a by a polynomial. We have also that

lim
a→+∞

Fk(a) = 1 (see Appendix on page 1162), (1.5)

and this yields

Fk(a) = 1 +

∫ a

+∞
F ′
k(b)db = 1−

∫ +∞

a

(−1)k

k!
e−b

(
d

dϵ

)k

{e−ϵ(2b+ ϵ)k}|ϵ=0db,

so that

Fk(a) = 1− e−aPk(a) (1.6)

with

Pk(a) =
(−1)k

k!

∫ +∞

0

e−t

(
d

dϵ

)k

{e−2ϵ(a+ t+ ϵ)k}|ϵ=0dt

=
(−1)k

k!

∫ +∞

0

et
(
d

dϵ

)k

{e−2ϵ−2t(a+ t+ ϵ)k}|ϵ=0dt

=
(−1)k

k!

∫ +∞

0

et
(
d

dt

)k

{e−2t(a+ t)k}dt. (1.7)

We see that Pk is a polynomial with the leading monomial 2kak

k! (by a direct computation) and Pk(0) =

1 (since 0 = Fk(0) = 1 − Pk(0)) and moreover, using Laguerre polynomials (see, e.g., (C.1) in our

Appendix C), we obtain

Pk(a) =
(−1)k

k!

∫ +∞

0

e−te2t+2a

(
d

2dt

)k

{e−2t−2a(2a+ 2t)k}dt (1.8a)

= (−1)k
∫ +∞

0

e−tLk(2t+ 2a)dt, (1.8b)

and this gives in particular

P ′
k(a) = (−1)k

∫ +∞

0

e−t2L′
k(2t+ 2a)dt

= (−1)k
{
[e−tLk(2t+ 2a)]t=+∞

t=0 +

∫ +∞

0

e−tLk(2t+ 2a)dt

}
= (−1)k+1Lk(2a) + Pk(a). (1.9)

Moreover we have from (1.7), for k > 1,

P ′
k(a) =

(−1)k

k!

∫ +∞

0

et
(
d

dt

)k

{e−2tk(a+ t)k−1}dt

=
(−1)k

k!

∫ +∞

0

et
d

dt

(
d

dt

)k−1

{e−2tk(a+ t)k−1}dt

=
(−1)k

k!

{[
et
(
d

dt

)k−1

{e−2tk(a+ t)k−1}
]t=+∞

t=0

−
∫ +∞

0

et
(
d

dt

)k−1

{e−2tk(a+ t)k−1}dt
}
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=
(−1)k−1

(k − 1)!

(
d

dt

)k−1

{e−2t(a+ t)k−1}|t=0 +
(−1)k−1

(k − 1)!

∫ +∞

0

et
(
d

dt

)k−1

{e−2t(a+ t)k−1}dt

=
(−1)k−1

(k − 1)!
e2t+2a

(
d

2dt

)k−1

{e−2t−2a(2a+ 2t)k−1}|t=0

+
(−1)k−1

(k − 1)!

∫ +∞

0

et
(
d

dt

)k−1

{e−2t(a+ t)k−1}dt

= (−1)k−1Lk−1(2a) + Pk−1(a),

so that

∀ k > 1, P ′
k(a) = (−1)k−1Lk−1(2a) + Pk−1(a) = (−1)k+1Lk(2a) + Pk(a). (1.10)

This implies for N > 1,∑
16k6N

Pk(a)−
∑

16k6N

(−1)kLk(2a) =
∑

06k6N−1

Pk(a) +
∑

06k6N−1

(−1)kLk(2a),

yielding

PN (a)− P0(a)︸ ︷︷ ︸
=1=L0(a)

=
∑

16k6N

(−1)kLk(2a) +
∑

06k6N−1

(−1)kLk(2a),

and

PN (a) =
∑

06k6N

(−1)kLk(2a) +
∑

06k6N−1

(−1)kLk(2a). (1.11)

Note that the previous formula holds as well for N = 0, since P0 = 1 = L0.

Although the function R+ ∋ a 7→ Fk(a) has no monotonicity properties, we prove below that R+ ∋
a 7→ Pk(a) is indeed increasing. For that purpose, let us use (1.10), which implies

P ′
k(a) = (−1)k−1Lk−1(2a) + Pk−1(a), k > 1,

Pk−1(a) = Pk−2(a) + (−1)k−2Lk−2(2a) + (−1)k−1Lk−1(2a), k > 2,

P ′
k(a) = 2(−1)k−1Lk−1(2a) + (−1)k−2Lk−2(2a) + Pk−2(a), k > 2.

We claim that for k > 1,

P ′
k(a) = 2

∑
06l6k−1

(−1)lLl(2a). (1.12)

That property holds for k = 1 since P1(a) = 1 + 2a: we check P ′
1(a) = 2. Moreover we have

P ′
k+1(a) = (−1)kLk(2a) + Pk(a) (from the first equation in (1.10))

(using (1.11))
= (−1)kLk(2a) +

∑
06l6k

(−1)lLl(2a) +
∑

06l6k−1

(−1)lLl(2a)

= 2
∑

06l6k

(−1)lLl(2a).

As a byproduct we find from (C.3),

∀ a > 0, P ′
k(a) > 0, (1.13)

which implies that for a > 0, Pk(a) > Pk(0) = 1. We have proven the following lemma.

Lemma 1.2. The polynomial Pk(a) = ea(1− Fk(a)) is increasing on R+ and Pk(0) = 1.

Let us take a look at the first Pk: we have

P0(a) = 1,

P1(a) = 1 + 2a,

P2(a) = 1 + 2a2,
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P3(a) = 1 + 2a− 2a2 +
4a3

3
,

P4(a) = 1 + 4a2 − 8a3

3
+

2a4

3
,

P5(a) = 1 + 2a− 4a2 +
16a3

3
− 2a4 +

4a5

15
,

P6(a) = 1 + 6a2 − 8a3 +
14a4

3
− 16a5

15
+

4a6

45
,

P7(a) = 1 + 2a− 6a2 + 12a3 − 26a4

3
+

44a5

15
− 4a6

9
+

8a7

315
,

P8(a) = 1 + 8a2 − 16a3 +
44a4

3
− 32a5

5
+

64a6

45
− 16a7

105
+

2a8

315
,

P9(a) = 1 + 2a− 8a2 +
64a3

3
− 68a4

3
+

184a5

15
− 32a6

9
+

176a7

315
− 2a8

45
+

4a9

2835
,

P10(a) = 1 + 10a2 − 80a3

3
+

100a4

3
− 64a5

3
+

344a6

45
− 496a7

315
+

58a8

315
− 32a9

2835
+

4a10

14175
.

We note as well that

Pk(x) =
∑

06m6k

xm

m!

∑
m6l6k

2l(−1)k−l

(
k

l

)
, (1.14)

since from (1.7),

Pk(a) =
(−1)k

k!

∫ +∞

0

et
(
d

dt

)k

{e−2t(a+ t)k}dt

= (−1)k
∑

06m6k

∫ +∞

0

e−t (−2)k−m

(k −m)!

k!

(k −m)!m!
(a+ t)k−mdt

= (−1)k
∑

06m6k

∫ +∞

0

e−t (−2)k−m

(k −m)!

k!

(k −m)!m!

∑
06l6k−m

altk−l−m

(
k −m

l

)
dt

= (−1)k
∑

06m6k
06l6k−m

(−2)k−m

(k −m)!

k!

(k −m)!m!
al(k − l −m)!

(
k −m

l

)

=
∑

06l+m6k

(−1)m2k−m

(k −m)!

k!

m!
al

1

l!

=
∑

06l6k

al

l!

∑
l6m′6k

(−1)k−m′
2m

′
(
k

m′

)
.

Lemma 1.3. With the polynomial Pk defined by (1.8b), we have
Pk(a) = 2

∑
06l6k−1

(−1)lLl(2a) + (−1)kLk(2a),

P ′
k(a) = 2

∑
06l6k−1

(−1)lLl(2a).
(1.15)

Proof. We may use the already proved (1.11) and (1.12), but we may also prove this directly by

induction on k.

Proposition 1.4. Let Fk be given by (1.6) with Pk defined by (1.7). We have

Fk(a) = 1− e−aPk(a) 6 1− e−a = F0(a) for a > 0, (1.16)

F ′
k(a) = e−a(Pk(a)− P ′

k(a)) = e−a(−1)kLk(2a), (1.17)

F ′
k(0) = (−1)k, lim

a→+∞
F ′
k(a) = 0+, Fk(0) = 0, lim

a→+∞
Fk(a) = 1−. (1.18)
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Proof. We use (1.6), (1.12) and (1.11) for the three first equalities, and Lemma 1.2 for the first

inequality. The fourth equality follows from Lk(0) = 1, while the fifth is due to the fact that the leading

monomial of (−1)kLk(2a) is 2
kak/k!. The last two equalities are a consequence of the first line.

Remark 1.5. The zeros of F ′
k on the positive half-line are the positive zeros of the Laguerre polynomial

Lk divided by 2. When k is even (resp. odd) the function Fk is positive increasing (resp. negative

decreasing) near 0, and then oscillates with changes of monotonicity at each a such that Lk(2a) = 0 and

when 2a is larger than the largest zero of Lk, the function Fk is increasing, smaller than 1, with limit 1

at infinity.

Typically we have F2l(0) = 0, F ′
2l(0) = +1,

0 < a1,2l < a2,2l < · · · < a2l−1,2l < a2l,2l the zeros of L2l(2a), (1.19)

F2l vanishes simply at b0 = 0 and at bj ∈ (aj , aj+1) for 1 6 j 6 2l− 1, also at b2l > a2l: 2l+1 zeros with

a positive (resp. negative) derivative at b0, b2, . . . , b2l (resp. at b1, b3, . . . , b2l−1).

Moreover, we have F2l+1(0) = 0, F ′
2l+1(0) = −1,

0 < a1,2l+1 < a2,2l+1 < · · · < a2l,2l+1 < a2l+1,2l+1 the zeros of L2l+1(2a), (1.20)

F2l+1 vanishes simply at b0 = 0 and at bj ∈ (aj , aj+1) for 1 6 j 6 2l, also at b2l+1 > a2l+1: 2l + 2 zeros

with a positive (resp. negative) derivative at b1, b3, . . . , b2l+1 (resp. at b0, b2, . . . , b2l).

1.3 Curves

Let us display some curves of R+ ∋ a 7→ Fk(a) = 1− e−aPk(a) (see Figures 2 and 3).

We note as well that a consequence of the previous remark is that

min
a>0

F2l(a) = min
16j6l

{F2l(a2j,2l)}, (1.21)

min
a>0

F2l+1(a) = min
06j6l

{F2l+1(a2j+1,2l+1)}, (1.22)

where (ap,k)16p6k are defined in (1.19) and (1.20).

Theorem 1.6. Let a > 0 be given and let Da = {(x, ξ) ∈ R2, x2 + ξ2 6 a
2π}. Then we have

1w
Da

=
∑
k>0

Fk(a)Pk 6 1− e−a. (1.23)

Proof. It is an immediate consequence of (1.3) and (1.16). Note that the inequality in the above

theorem is due to Flandrin [4] (see also [5, 6]).

5 10 15
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Figure 2 (Color online) Functions F5 and F6
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Figure 3 (Color online) Functions Fk

2 The n-dimensional case

2.1 Basics

Lemma 2.1. Let F be a tempered distribution on R such that F̂ is locally integrable and such that∫
R
|F̂ (τ)| dτ

(1 + τ2)
n
2
< +∞. (2.1)

With |x|2 + |ξ|2 standing for the Euclidean norm on Rn
x × Rn

ξ , the operator

(F (|x|2 + |ξ|2))w is bounded on L2(Rn)

and has the spectral decomposition

(F (|x|2 + |ξ|2))w =
∑
k>0

∫
R

F̂ (τ)(1 + iτ)2k+n

(1 + τ2)k+n
dτPk, (2.2)

where Pk is the orthogonal projection onto Ek,n as defined by (A.23).

Proof. Using the n-dimensional Mehler’s formula (B.2), we find

(F (|x|2 + |ξ|2))w =

∫
R
F̂ (τ)

∑
k>0

e2i(arctan τ)(k+n
2 )Pk,n

dτ

(
√
1 + τ2)n

=
∑
k>0

∫
R
F̂ (τ)(1 + iτ)2k+n dτ

(1 + τ2)k+n
,

where the use of Fubini’s theorem is justified by∫
R
|F̂ (τ)| dτ

(1 + τ2)n/2
< +∞, Pk,n > 0,

∑
k

Pk,n = Id .

This completes the proof.

2.2 Indicatrix of a Euclidean ball

The following result displays an explicit spectral decomposition on the Hermite basis for the Weyl quan-

tization of the characteristic function of Euclidean balls.
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Theorem 2.2. Let a > 0 be given and let Qa,n = (1{2π(|x|2 + |ξ|2) 6 a})w be the Weyl quantization

of the characteristic function of the Euclidean ball of R2n with center 0 and radius
√
a/(2π). Then we

have

Qa,n =
∑
k>0

Fk,n(a)Pk,n, (2.3)

with

Pk,n =
∑

α∈Nn,|α|=k

Pα,

where Pα is the orthogonal projection onto Ψα (defined in (A.23)), with

|α| =
∑

16j6n

αj = k

and

Fk,n(a) =

∫
R

sin aτ

πτ

(1 + iτ)k

(1− iτ)k+n
dτ. (2.4)

The spectral decomposition of the previous theorem allows a simple recovery of the result of the

article [10] by Lieb and Ostrover.

Theorem 2.3. Let a > 0,Qa, Fk,n be defined above. Then we have

Fk,n(a) 6 1− 1

Γ(n)

∫ +∞

a

e−ttn−1dt = 1− Γ(n, a)

Γ(n)
, (2.5)

and thus we have

Qa 6 1− Γ(n, a)

Γ(n)
, (2.6)

where the incomplete Gamma function Γ(·, ·) is defined in (A.33).

Proofs of Theorems 2.2 and 2.3. We use the results of (the previous) Subsection 2.1: let us assume

now that, with some a > 0,

F = 1[− a
2π , a

2π ], so that F (|x|2 + |ξ|2) = 1{2π(x2 + ξ2) 6 a}.

According to Appendix A, we have

F̂ (τ) =
sin aτ

πτ
,

so that (1.1) holds true. We find in this case, following our calculations in Subsection 1.1,

(F (|x|2 + |ξ|2))w =
∑
k>0

Fk,n(a)Pk,n, Pk,n =
∑

α∈Nn,|α|=k

Pα, (2.7)

Fk,n(a) =

∫
R

sin aτ

πτ

(1 + iτ)k

(1− iτ)k+n
dτ, (2.8)

where Pα is the orthogonal projection onto Ψα (defined in (A.23)), with

|α| =
∑

16j6n

αj = k.

This completes the proof of Theorem 2.2. We have also the following result.

Lemma 2.4. Let (k, n) ∈ N× N∗. With Fk,n(a) given by (2.8), we have

Fk,n(a) = 1− e−aPk,n(a), where Pk,n is the polynomial, (2.9)

Pk,n(a) =
(−1)k+n−1

(k + n− 1)!

∫ +∞

0

e−t(t+ a)n−1

{
es
(
d

ds

)n+k−1

[ske−s]

}
|s=2t+2a

dt, (2.10)

Pk,n(a) =
(−1)k+n−1

(k + n− 1)!2n−1

∫ +∞

0

(t+ a)n−1et
(
d

dt

)n+k−1

{(t+ a)ke−2t}dt. (2.11)
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Proof. The lemma holds true for n = 1 from Proposition 1.4. We have for a > 0, n > 2,

F ′
k,n(a) =

1

π

∫
R
cos aτ

(1 + iτ)k

(1− iτ)k+n
dτ

=
1

2π

∫
R
eiaτ

(1 + iτ)k

(1− iτ)k+n
dτ +

1

2π

∫
R
eiaτ

(1− iτ)k

(1 + iτ)k+n
dτ

=
i

2iπ

∫
R
eiaτ

ik(τ − i)k

(−i)k+n(τ + i)k+n
dτ +

i

2iπ

∫
R
eiaτ

(−i)k(τ + i)k

ik+n(τ − i)k+n
dτ,

so that

F ′
k,n(a) = i1−n(−1)kRes

(
eiaτ

(τ + i)k

(τ − i)k+n
; i

)
=

i1−n(−1)k

(k + n− 1)!

(
d

dτ

)k+n−1

{eiaτ (τ + i)k}|τ=i

and thus

F ′
k,n(a) =

i1−n(−1)k

(k + n− 1)!

(
d
i
adϵ

)k+n−1{
e−a−ϵ

(
i + i

ϵ

a
+ i

)k}
|ϵ=0

=
i1−n(−1)kan−1

in−1(k + n− 1)!

(
d

dϵ

)k+n−1

{e−a−ϵ(2a+ ϵ)k}|ϵ=0

= ea
(−1)k+n−1an−1

(k + n− 1)!

(
d

2dϵ

)k+n−1

{e−2a−2ϵ(2a+ 2ϵ)k}|ϵ=0,

i.e.,

F ′
k,n(t) =

(−1)k+n−1

(k + n− 1)!
ettn−1

(
d

ds

)k+n−1

{e−ssk}|s=2t

=
(−1)k+n−1

(k + n− 1)!2n−1
ettn−1

(
d

dt

)k+n−1

{e−2ttk}.

We have also that lima→+∞ Fk,n(a) = 1 (following the arguments of Subsection 1.2) and this yields

Fk,n(a) = 1− (−1)k+n−1

(k + n− 1)!2n−1

∫ +∞

a

ettn−1

(
d

dt

)k+n−1

{e−2ttk}dt

= 1− e−a (−1)k+n−1

(k + n− 1)!2n−1

∫ +∞

0

(t+ a)n−1et
(
d

dt

)k+n−1

{e−2t(t+ a)k}dt,

concluding the proof of the lemma.

Formulas (2.7)–(2.8) imply that for any α ∈ Nn, |α| = k, we have

Fk,n(a) = ⟨(F (|x|2 + |ξ|2))wΨα,Ψα⟩.

We may then choose

α = (k, 0, . . . , 0︸ ︷︷ ︸
n−1

),

and obtain

Fk,n(a) =

∫∫
{(x,ξ)∈Rn×Rn,2π(|x|2+|ξ|2)6a}

H(Ψα,Ψα)(x, ξ)dxdξ.

Since the Wigner functions respect the tensor product structure, we find that, with

(x, ξ) = (x1, x
′, ξ1, ξ

′) ∈ R× Rn−1 × R× Rn−1,
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Hn(Ψα,Ψα)(x, ξ) = H1(ψk, ψk)(x1, ξ1)Hn−1(Ψ(0),Ψ(0))(x
′, ξ′), (0) = (0, . . . , 0)︸ ︷︷ ︸

n−1

.

Using (A.17), we have

Hn−1(Ψ(0),Ψ(0))(x
′, ξ′) = 2n−1e−2π(|x′|2+|ξ′|2),

and consequently

Fk,n(a) =

∫∫
2π(|x′|2+|ξ′|2)6a

2n−1e−2π(|x′|2+|ξ′|2)
∫∫

2π(x2
1+ξ21)

6a−2π(|x′|2+|ξ′|2)

H1(ψk, ψk)(x1, ξ1)dx1dξ1dx
′dξ′.

This entails

Fk,n(a) =

∫∫
2π(|x′|2+|ξ′|2)6a

2n−1e−2π(|x′|2+|ξ′|2)

× {1− e−(a−2π(|x′|2+|ξ′|2))Pk,1(a− 2π(|x′|2 + |ξ′|2))}dx′dξ′,

and thus

Fk,n(a) = 2n−1|S2n−3|
∫ (a/2π)1/2

0

e−2πr2r2n−3dr

− 2n−1|S2n−3|e−a

∫ (a/2π)1/2

0

r2n−3Pk,1(a− 2πr2)dr.

We obtain that

2n−1|S2n−3|
∫ (a/2π)1/2

0

e−2πr2r2n−3dr

= 2n−1|S2n−3|
∫ +∞

0

e−2πr2r2n−3dr − 2n−1|S2n−3|
∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr

= 2n−1 2πn−1

Γ(n− 1)
(2−nπ−n+1Γ(n− 1))− 2n

πn−1

Γ(n− 1)

∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr

and thus

Fk,n(a) = 1− 2n
πn−1

Γ(n− 1)

{∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr

+ e−a

∫ (a/2π)1/2

0

r2n−3Pk,1(a− 2πr2)dr

}
. (2.12)

Since Pk,1(b) > Pk,1(0) = 1 for b > 0 from Lemma 1.2, we find that

Fk,n(a) 6 1− 2n
πn−1

Γ(n− 1)

{∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr + e−a

∫ (a/2π)1/2

0

r2n−3dr

}

= 1− 2n
πn−1

Γ(n− 1)

{∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr + e−a

∫ (a/2π)1/2

0

r2n−3dr

}
(r =

√
t/(2π) )

= 1− 2n
πn−1

Γ(n− 1)

{∫ +∞

a

e−ttn−3/2 1

2
t−1/2dt(2π)−n+3/2−1/2

+ e−a a
n−1(2π)−n+1

2n− 2

}
= 1− 1

Γ(n− 1)

(∫ +∞

a

e−ttn−2dt+
e−aan−1

n− 1

)
= 1− 1

Γ(n− 1)

(∫ +∞

a

e−t t
n−1

n− 1
dt+

[
e−t t

n−1

n− 1

]t=+∞

t=a

+
e−aan−1

n− 1

)
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= 1− 1

Γ(n)

∫ +∞

a

e−ttn−1dt

= 1− Γ(n, a)

Γ(n)
.

This completes the proof of Theorem 2.3.

Lemma 2.5. With Pk,n defined in Lemma 2.4, we have

∀ a > 0, P ′
k,n(a) >


e−aΓ(n− 2, a)

Γ(n− 2)
+

an−2

Γ(n− 1)
for n > 3,

1 for n = 2.

Proof. We have from (2.12),

Pk,n(a) = 2n
πn−1

Γ(n− 1)

{
ea

∫ +∞

(a/2π)1/2
e−2πr2r2n−3dr +

∫ (a/2π)1/2

0

r2n−3Pk,1(a− 2πr2)dr

}
,

i.e.,

Pk,n(a) =
1

Γ(n− 1)
ea

∫ +∞

a

e−ttn−3/2−1/2dt+
1

Γ(n− 1)

∫ a

0

Pk,1(a− t)tn−2dt,

i.e.,

Pk,n(a) =
1

Γ(n− 1)

(∫ +∞

0

e−t(t+ a)n−2dt+

∫ a

0

Pk,1(a− t)tn−2dt

)
, (2.13)

which implies for n > 2,

Γ(n− 1)P ′
k,n(a) =

∫ +∞

0

(n− 2)e−t(t+ a)n−3dt+

∫ a

0

P ′
k,1(a− t)tn−2dt+ Pk,1(0)a

n−2

and since P ′
k,1(b) > 0 for b > 0, we obtain

Γ(n− 1)P ′
k,n(a) > (n− 2)e−a

∫ +∞

a

e−ttn−3dt+ an−2,

i.e., for n > 3, a > 0,

P ′
k,n(a) >

e−aΓ(n− 2, a)

Γ(n− 2)
+

an−2

Γ(n− 1)
> 0, (2.14)

where the incomplete Gamma function Γ(n, x) is given by (A.33).

2.3 A monotonicity result

Theorem 2.6. Let F be as in Lemma 1.1. We have then for k ∈ N,∫
R

F̂ (τ)(1 + iτ)2k+1

(1 + τ2)k+1
dτ =

∫ +∞

0

F

(
t

2π

)
e−tdt+

∫ +∞

0

F ′
(
t

2π

)
1

2π
e−t(Pk(t)− 1)dt, (2.15)

where Pk is the polynomial defined by (1.8b).

Proof. Using Plancherel’s formula and (C.4)–(C.5), we have∫
R

F̂ (τ)(1 + iτ)2k+1

(1 + τ2)k+1
dτ =

∫
R
F̂ (τ)Ĝk(−τ/(2π))dτ =

∫
R
F (t)Gk(2πt)dt2π

= 2π

∫ +∞

0

F (t)e−2πt((−1)kLk(4πt)− 1)dt+

∫ +∞

0

F

(
t

2π

)
e−tdt

=

∫ +∞

0

F

(
t

2π

)
e−tdt+

∫ +∞

0

F

(
t

2π

)
︸ ︷︷ ︸

u(t)

e−t((−1)kLk(2t)− 1)︸ ︷︷ ︸
v′
k(t)

dt,



Lerner N Sci China Math June 2019 Vol. 62 No. 6 1155

with

vk(t) =

∫ t

0

e−s((−1)kLk(2s)− 1)ds.

We note that vk(0) = 0 and according to (1.8a), (1.8b) and Lemma 1.2,

vk(+∞) =

∫ +∞

0

e−t(−1)kLk(2t)dt−
∫ +∞

0

e−sds = Pk(0)− 1 = 0,

− vk(t) =

∫ 0

t

e−s(−1)kLk(2s)ds− e−t + 1

=

∫ +∞

t

e−s(−1)kLk(2s)ds+

∫ 0

+∞
e−s(−1)kLk(2s)ds− e−t + 1

= e−t

∫ +∞

0

e−s(−1)kLk(2s+ 2t)ds− Pk(0)− e−t + 1

= e−t(Pk(t)− 1).

This implies that∫
R

F̂ (τ)(1 + iτ)2k+1

(1 + τ2)k+1
dτ =

∫ +∞

0

F

(
t

2π

)
e−tdt−

∫ +∞

0

F ′
(
t

2π

)
1

2π
vk(t)dt,

and thus ∫
R

F̂ (τ)(1 + iτ)2k+1

(1 + τ2)k+1
dτ =

∫ +∞

0

F

(
t

2π

)
e−tdt+

∫ +∞

0

F ′
(
t

2π

)
1

2π
e−t(Pk(t)− 1)dt.

This completes the proof.

Corollary 2.7 (See [1]). Let F as in Lemma 1.1 be real-valued and non-decreasing. Then the operator

with Weyl symbol F (x2 + ξ2) is selfadjoint and such that

(F (x2 + ξ2))w >
∫ +∞

0

F

(
t

2π

)
e−tdt.

Proof. From Lemma 1.2, we find that for t > 0, Pk(t)−1 > 0, thus (2.15) and (1.2) imply the result.

Remark 2.8. The normalization in the article [1] is not the same as ours. Take a symbol a and their

Weyl quantization is defined as aw̃ with

aw̃u(x) =

∫∫
ei(x−y)·ξa

(
x+ y

2
, ξ

)
u(y)dydξ(2π)−n

=

∫∫
ei2π(x−y)·ξa

(
x+ y

2
, 2πξ

)
u(y)dydξ = (a(x, 2πξ))wu,

an operator which is unitarily equivalent to (a(x
√
2π, ξ

√
2π))w. As a result, we have

(Φ(x2 + ξ2))w̃ ≡ (Φ(2π(x2 + ξ2)))w = (F (x2 + ξ2))w,

with F (s) = Φ(2πs). The lower bound obtained in Corollary 2.7 is thus∫ +∞

0

e−tΦ(t)dt,

the same as in [1].

Remark 2.9. In higher dimensions it is possible to use Mehler’s formula to tackle for example,

{(x, ξ) ∈ R4, x21 + ξ21 + (x22 + ξ22)
2 6 a}.
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In fact we have for a function F defined on Rn,

F (x21 + ξ21 , . . . , x
2
n + ξ2n) =

∫
Rn

e2iπ
∑

16j6n(x
2
j+ξ2j )τj F̂ (τ)dτ,

and Weyl-quantifying that identity, we find an expression of

(F (x21 + ξ21 , . . . , x
2
n + ξ2n))

Weyl =

∫
Rn

F̂ (τ)
∏

16j6n

(1 + iτj)
2kj+1

(1 + τ2j )
kj+1

Pkj ,1;jdτ,

and thus an explicit spectral decomposition for the operator under scope.

Some remarks on ellipsoids. We provide below a couple of remarks on ellipsoids in higher dimen-

sions. Let us first recall a particular case of [8, Theorem 21.5.3].

Theorem 2.10 (Symplectic reduction of quadratic forms). Let q be a positive definite quadratic form

on Rn × Rn equipped with the canonical symplectic form. Then there exist S in the symplectic group

of R2n and µ1, . . . , µn positive such that for all X = (x, ξ) ∈ Rn × Rn,

q(SX) =
∑

16j6n

µj(x
2
j + ξ2j ). (2.16)

Note that an interesting consequence of this theorem is that, considering a general ellipsoid in R2n,

E = {X ∈ R2n, q(X) 6 1},

where q is a positive definite quadratic form, we are able to find symplectic coordinates such that q is

given by (2.16). Note however that no further simplification is possible and that the µj are symplectic

invariants of E. In particular the volume of E is given by

|E|2n =
πn

n!µ1 · · ·µn
.

Spectral decomposition for the quantization of the characteristic function of the ellipsoid.

Let a1, . . . , an be positive numbers. We consider the ellipsoid E(a1, . . . , an) given by

E(a) = E(a1, . . . , an) =

{
(x, ξ) ∈ Rn × Rn, 2π

∑
16j6n

x2j + ξ2j
aj

6 1

}
.

We define the function

F (X1, . . . , Xn) = 1[−1,1]

(
2π

a1
X1 + · · ·+ 2π

an
Xn

)
and we have

(1E(a))
w = (F (x21 + ξ21 , . . . , x

2
n + ξ2n))

w =

∫
Rn

F̂ (τ)(e2iπ
∑

j τj(x
2
j+ξ2j ))wdτ

=
∑
α∈Nn

∫
Rn

F̂ (τ)
∏

16j6n

(1 + iτj)
2αj+1

(1 + τ2j )
αj+1

dτPα,n

=
∑
α∈Nn

∫
Rn

F̂ (τ)
∏

16j6n

(1 + iτj)
αj

(1− iτj)αj+1
dτPα,n,

where Pα,n is defined in (A.26). On the other hand we have

F̂ (τ) =

∫
e−2iπτ ·x1[−1,1]

(
2π

a1
x1 + · · ·+ 2π

an
xn

)
dx1 · · · dxn

= a1 · · · an(2π)−n

∫
e−i

∑
j τjajyj1[−1,1]

(∑
yj

)
dy,
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so that, with Pα = Pα,n,

(1E(a))
w = a1 · · · an

∑
α∈Nn

∫∫
Rn×Rn

e−i2π
∑

j τjajyj1[−1,1]

(∑
yj

)
dy

∏
16j6n

(1 + i2πτj)
αj

(1− i2πτj)αj+1
dτPα

= a1 · · · an
∑
α∈Nn

∫
Rn

∫
Rn

e−i2π
∑

j τjajyj1[−1,1]

(∑
yj

)
dy

∏
16j6n

Ĝαj (τj)dτPα

= a1 · · · an
∫
Rn

1[−1,1]

(∑
yj

) ∏
16j6n

Gαj (ajyj)dyPα

=

∫
Rn

1[−1,1]

(∑
tj/aj

) ∏
16j6n

(−1)αjH(tj)e
−tjLαj (2tj)dtPα,

with

Fα(a) =

∫
Rn

(
1− 1[1,+∞]

(∑
tj/aj

)) ∏
16j6n

(−1)αjH(tj)e
−tjLαj (2tj)dt

= 1−
∫
Rn

1[1,+∞]

(∑
tj/aj

) ∏
16j6n

(−1)αjH(tj)e
−tjLαj (2tj)dt,

so that setting

Kα(a) =

∫
∑

tj/aj>1
tj>0

e−(t1+···+tn)
∏

16j6n

(−1)αjLαj (2tj)dt,

we have Fα(a) = 1−Kα(a). The domain of integration is{
t1
a1

+ · · ·+ tn−1

an−1
> 1− tn

an
, tj > 0, 0 6 tn

an
6 1

}
∪
{
tn
an

> 1, tj > 0, 1 6 j 6 n− 1

}
,

so that

Kα1,...,αn(a1, . . . , an) = e−anPαn(an)

+

∫ an

0

(−1)αnLαn
(2tn)e

−tnKα1,...,αn−1
(a1(1− tn/an), . . . , an−1(1− tn/an))dtn

= e−anPαn(an)

+

∫ 1

0

(−1)αnLαn(2anθ)e
−θanKα1,...,αn−1(a1(1− θ), . . . , an−1(1− θ))dθan.

We have Kα1(a1) = e−a1Pα1(a1) and thus if n = 2, we get using Lemma 1.3,

Kα1,α2(a1, a2) = e−a2Pα2(a2) +

∫ 1

0

(−1)α2Lα2(2a2θ)e
−θa2Pα1(a1(1− θ))e−a1(1−θ)dθa2

= e−a2Pα2(a2) + a2e
−a1

∫ 1

0

(−1)α2Lα2(2a2θ)e
−θ(a2−a1)Pα1(a1(1− θ))dθ.

Question. It is not difficult to calculate explicitly Kα1,α2 when min(α1, α2) 6 1, but a general “ex-

plicit ” formula for Kα1,...,αn(a1, . . . , an) would be interesting as well as the proof of

Kα1,...,αn(a1, . . . , an) > e−min16j6n aj . (2.17)
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Appendix A The Fourier transform, Weyl quantization, harmonic oscillator

The Fourier transform. We use in this paper the following normalization for the Fourier transform and

inversion formula: for u ∈ S (Rn),

û(ξ) =

∫
Rn

e−2iπx·ξu(x)dx, u(x) =

∫
Rn

e2iπx·ξû(ξ)dξ, (A.1)

a formula that can be extended to u ∈ S ′(Rn), with defining the distribution û by the duality bracket

⟨û, ϕ⟩S ′(Rn),S (Rn) = ⟨u, ϕ̂⟩S ′(Rn),S (Rn). (A.2)

Checking (A.1) for u ∈ S ′(Rn) is then easy, i.e.,

ˇ̂
û = u, (A.3)

where the distribution ǔ is defined by

⟨ǔ, ϕ⟩S ′(Rn),S (Rn) = ⟨u, ϕ̌⟩S ′(Rn),S (Rn), with ϕ̌(x) = ϕ(−x). (A.4)

It is useful to notice that for u ∈ S ′(Rn),
ˇ̂u = ˆ̌u. (A.5)

This normalization yields simple formulas for the Fourier transform of Gaussian functions: for A a real-

valued symmetric positive definite n× n matrix, we define the function vA in the Schwartz space by

vA(x) = e−π⟨Ax,x⟩, and we have v̂A(ξ) = (detA)−1/2e−π⟨A−1ξ,ξ⟩. (A.6)

Similarly when B is a real-valued symmetric non-singular n× n matrix, the function wB defined by

wB(x) = eiπ⟨Bx,x⟩

is in L∞(Rn) and thus a tempered distribution and we have

ŵB(ξ) = | detB|−1/2e
iπ
4 signBe−iπ⟨B−1ξ,ξ⟩, (A.7)

where signB stands for the signature of B, i.e., with E the set of eigenvalues of B (which are real and

non-zero),

signB = Card(E ∩ R+)− Card(E ∩ R−). (A.8)

With H standing for the characteristic function of R+, we have

1 = H + Ȟ, δ0 = Ĥ + ˆ̌H,
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D sign =
δ0
iπ
, D̂ sign =

1

iπ
, ξŝign =

1

iπ
, ŝign =

1

iπ
pv

1

ξ
, (principal value)

the latter formula following from the fact that

ξ

(
ŝign− pv

1

iπξ

)
= 0, which implies ŝign− pv

1

iπξ
= cδ0 = 0,

since ŝign− 1
iπξ is odd. We infer from that

Ĥ − ̂̌H = ŝign = pv
1

iπξ
,

and

Ĥ =
δ0
2

+ pv
1

2iπξ
. (A.9)

The Weyl quantization. Let a ∈ S ′(R2n). We define the operator aw, continuous from S (Rn) into

S ′(Rn), given by the formula

(awu)(x) =

∫∫
e2iπ(x−y)·ξa

(
x+ y

2
, ξ

)
u(y)dydξ, (A.10)

to be understood weakly as

⟨awu, v̄⟩S ′(Rn),S (Rn) = ⟨a,H(u, v)⟩S ′(R2n),S (R2n), (A.11)

where the so-called Wigner function H(u, v) is defined for u, v ∈ S (Rn) by

H(u, v)(x, ξ) =

∫
e−2iπz·ξu

(
x+

z

2

)
v̄

(
x− z

2

)
dz. (A.12)

We note that the sesquilinear mapping

S (Rn)× S (Rn) ∋ (u, v) 7→ H(u, v) ∈ S (R2n)

is continuous so that the above bracket of the duality

⟨a,H(u, v)⟩S ′(R2n),S (R2n),

makes sense. We note as well that a tempered distribution a ∈ S ′(R2n) gets quantized by a continuous

operator aw from S (Rn) into S ′(Rn). Moreover, for a ∈ S ′(R2n) and b a polynomial in C[x, ξ], we have
the composition formula,

awbw = (a♯b)w, (A.13)

(a♯b)(x, ξ) =
∑
k>0

1

(4iπ)k

∑
|α|+|β|=k

(−1)|β|

α!β!
(∂αξ ∂

β
xa)(x, ξ)(∂

α
x ∂

β
ξ b)(x, ξ), (A.14)

which involves here a finite sum. This follows from [9, (2.1.26)] where several generalizations can be

found.

Also, we find that H(u, u) is real-valued since

H(u, u)(x, ξ) =

∫
e2iπz·ξū

(
x+

z

2

)
u

(
x− z

2

)
dz =

∫
e−2iπz·ξū

(
x− z

2

)
u

(
x+

z

2

)
dz = H(u, u)(x, ξ).

A particular case of Segal’s formula (see, e.g., [9, Theorem 2.1.2]) is with F standing for the Fourier

transformation,

F ∗awF = a(ξ,−x)w. (A.15)
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Some explicit computations. We may also calculate with

ua(x) = (2a)1/4e−πax2

, a > 0, (A.16)

H(ua, ua)(x, ξ) = (2a)1/2
∫

e−2iπz·ξe−πa|x− z
2 |

2

e−πa|x+ z
2 |

2

dz

= (2a)1/2
∫

e−2iπz·ξe−2πax2

e−πaz2/2dz

= (2a)1/2e−2πax2

21/2a−1/2e−π 2
a ξ2

= 2e−2π(ax2+a−1ξ2), (A.17)

which is also a Gaussian function on the phase space (and the positive function). The calculation of

H(u′a, u
′
a)(x, ξ) is interesting since we have

4π2⟨Dxb
wDxua, ūa⟩S ′(Rn),S (Rn) = ⟨bwu′a, ū′a⟩S ′(Rn),S (Rn) = ⟨b,H(u′a, u

′
a)⟩S ′(R2n),S (R2n),

and for b(x, ξ) real-valued we have

ξ♯b♯ξ =

(
ξb+

b′x
4iπ

)
♯ξ = ξ2b+

b′xξ

4iπ
− ∂x

4iπ

(
ξb+

b′x
4iπ

)
= ξ2b+

b′′xx
16π2

,

so that

4π2

∫∫
2e−2π(ax2+a−1ξ2)

(
ξ2b+

b′′xx
16π2

)
dxdξ = ⟨b,H(u′a, u

′
a)⟩,

proving that

H(u′a, u
′
a)(x, ξ) = 2e−2π(ax2+a−1ξ2)4π2ξ2 +

1

4
2∂2x(e

−2π(ax2+a−1ξ2))

= 2e−2π(ax2+a−1ξ2)

(
4π2ξ2 +

1

4
((−4πax)2 − 4πa)

)
= 8π2e−2π(ax2+a−1ξ2)a

(
a−1ξ2 + ax2 − 1

4π

)
.

We obtain that the function H(u′a, u
′
a) is negative on

a−1ξ2 + ax2 <
1

4π
,

which has area 1/4. We may note as well for consistency that for ua given by (A.16), we have

u′a = (2a)1/4(−2πax)e−πax2

, ∥u′a∥2L2 = πa,

and ∫∫
H(u′a, u

′
a)(x, ξ)dxdξ = 8π2a

∫∫
e−2π(y2+η2)

(
y2 + η2 − 1

4π

)
dydη =

8π2a

8π
= πa = ∥u′a∥2L2 .

For λ > 0 and a ∈ S ′(R2n), we define

aλ(x, ξ) = a(λ−1x, λξ), (A.18)

and we find that

(aλ)
w = U∗

λa
wUλ, (A.19)

for f ∈ S (Rn), (Uλf)(x) = f(λx)λn/2, U∗
λ = Uλ−1 = (Uλ)

−1. (A.20)

We note that the above formula is a particular case of Segal’s formula (see, e.g., [9, Theorem 2.1.2]).
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The harmonic oscillator. The harmonic oscillator Hn in n dimensions is defined as the operator with

Weyl symbol π(|x|2 + |ξ|2) and thus from (A.19), we find that

H = U√
2π

1

2
(|x|2 + 4π2|ξ|2)wU∗√

2π
= U√

2π

1

2
(−∆+ |x|2)U∗√

2π
.

We shall define in one dimension the Hermite function of level k ∈ N, by

ψk(x) =
(−1)k

2k
√
k!
21/4eπx

2

(
d√
πdx

)k

(e−2πx2

), (A.21)

and we find that (ψk)k∈N is a Hilbertian orthonormal basis on L2(R). The one-dimensional harmonic

oscillator can be written as

H =
∑
k>0

(
1

2
+ k

)
Pk, (A.22)

where Pk is the orthogonal projection onto ψk.

In n dimensions, we consider a multi-index (α1, . . . , αn) = α ∈ Nn and we define on Rn, using the

one-dimensional (A.21),

Ψα(x) =
∏

16j6n

ψαj (xj), Ek = Vect{Ψα}α∈Nn,|α|=k, |α| =
∑

16j6n

αj . (A.23)

We note that

the dimension of Ek,n is

(
k + n− 1

n− 1

)
(A.24)

and that (A.22) holds with Pk,n standing for the orthogonal projection onto Ek,n; the lowest eigenvalue

of H is n/2 and the corresponding eigenspace is one-dimensional in all dimensions, although in two and

more dimensions, the eigenspaces corresponding to the eigenvalue n
2 + k, k > 1 are multi-dimensional

with dimension (
k + n− 1

n− 1

)
.

The n-dimensional harmonic oscillator can be written as

Hn =
∑
k>0

(
n

2
+ k

)
Pk,n, (A.25)

where Pk,n stands for the orthogonal projection onto Ek,n defined above. We have in particular

Pk,n =
∑

α∈Nn,|α|=k

Pα,n, where Pα,n is the orthogonal projection onto Ψα. (A.26)

Some elementary formulas. We define for τ ∈ R,

arctan τ =

∫ τ

0

dt

1 + t2
, (A.27)

and we note that arctan τ ∈ (−π/2, π/2),

∀ τ ∈ R, tan(arctan τ) = τ, ∀ θ ∈ (−π/2, π/2), arctan(tan θ) = θ.

Moreover we have for τ ∈ R,
ei arctan τ =

1√
1 + τ2

(1 + iτ), (A.28)

since for θ ∈ (−π/2, π/2), τ = tan θ, we have 1 + τ2 = 1
cos2 θ and thus

cos θ > 0 ⇒ cos θ =
1√

1 + τ2
⇒ −sin θ = −1

2
(1 + τ2)−3/22τ(1 + τ2),
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so that

eiθ =
1√

1 + τ2
(1 + iτ).

Some Fourier transform. Let a ∈ R+ be given. The Fourier transform of 1[−a,a] is∫ a

−a

e−2iπxξdx = 2

∫ a

0

cos(2πxξ)dx =
2

2πξ
[sin(2πxξ)]x=a

x=0 =
sin(2πaξ)

πξ
.

Taking the derivative of Fk on R+. We have, using a parity argument,

Fk(a) =

∫
R

sin aτ

πτ

(1 + iτ)2k+1

(1 + τ2)k+1
dτ =

∑
062l62k

∫
R

sin aτ

πτ

(
2k+1
2l

)
(−1)lτ2l

(1 + τ2)k+1
dτ.

We see also that

1 + 2k + 2− 2l = 2k + 3− 2l > 3

so that we can take the derivative of Fk and get

F ′
k(a) =

∑
062l62k

∫
R

cos aτ

π

(
2k+1
2l

)
(−1)lτ2l

(1 + τ2)k+1
dτ =

1

π

∫
R
(cos aτ)Re

(
(1 + iτ)k

(1− iτ)k+1

)
dτ,

with absolutely converging integrals. For a > 0, we have

F ′
k(a) =

1

π

∫
R
(cos aτ)

(1 + iτ)k

(1− iτ)k+1
dτ, (A.29)

since

lim
λ→+∞

∫ λ

−λ

τ j cos(aτ)

(1 + τ2)k+1
dτ makes sense for j 6 2k + 1 (and vanishes for j odd). (A.30)

Proof of the weak limit (1.5). We have for u ∈ S (Rn), according to (A.11),

⟨(1{2π(x2 + ξ2) 6 a})wu, u⟩ =
∫∫

2π(x2+ξ2)6a

H(u, u)(x, ξ)dxdξ,

so that (1.3) implies ∑
k>0

Fk(a)⟨Pku, u⟩L2(Rn) =

∫∫
2π(x2+ξ2)6a

H(u, u)(x, ξ)dxdξ.

Choosing now u = uk as a normalized eigenfunction of the harmonic oscillator with eigenvalue k + 1/2,

we obtain

Fk(a) =

∫∫
2π(x2+ξ2)6a

H(uk, uk)(x, ξ)dxdξ.

Since the function (x, ξ) 7→ H(uk, uk)(x, ξ) belongs to the Schwartz class of R2n, we find that

lim
a→+∞

Fk(a) =

∫∫
R2n

H(uk, uk)(x, ξ)dxdξ = ∥uk∥2L2(Rn) = 1. �

A different normalization for the Wigner function. The paper [10] is using a different normalization for

the Wigner distribution in n dimensions with

W(u, v)(x, ξ) = (2π)−n

∫
Rn

u

(
x+

z

2

)
v̄

(
x− z

2

)
e−iz·ξdz. (A.31)

The relationship with our definition (A.12) is

W(u, v)(x, ξ) = H(u, v)

(
x,

ξ

2π

)
(2π)−n. (A.32)
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As a result, we find that

Elo(B2n(R)) = sup
∥u∥L2(Rn)=1

∫∫
|x|2+|ξ|26R2

W(u, u)(x, ξ)dxdξ

is equal to

sup
∥u∥L2(Rn)=1

∫∫
|x|2+4π2|ξ|26R2

H(u, u)(x, ξ)dxdξ = sup
∥u∥L2(Rn)=1

∫∫
2π(|x|2+|ξ|2)6R2

H(u, u)(x, ξ)dxdξ

and we have proven here that for u ∈ L2(Rn) with norm 1,∫∫
|x|2+|ξ|26 a

2π=R2

2π

H(u, u)(x, ξ)dxdξ 6 1− 1

(n− 1)!

∫ +∞

a

e−ttn−1dt = 1− Γ(n,R2)

Γ(n)
,

where the upper incomplete Gamma function Γ(z, x) is given by

Γ(z, x) =

∫ +∞

x

tz−1e−tdt. (A.33)

This is indeed the result of [10, Theorem 1].

Appendix B Mehler’s formula

We provide first a proof of a particular case of the results of [7].

Lemma B.1. For Re t > 0, t /∈ iπ(2Z+ 1), we have in n dimensions,

(cosh(t/2))n exp−tπ(|x|2 + |ξ|2)w = (e−2 tanh( t
2 )π(x

2+ξ2))w. (B.1)

Proof. By tensorisation, it is enough to prove that formula for n = 1, which we assume from now on.

To prove that formula, we need only to consider the one-dimensional case. We define

L = ξ + ix, L̄ = ξ − ix, M(t) = β(t)(e−α(t)πLL̄)w,

where α and β are smooth functions of t to be chosen below. Assuming β(0) = 1, α(0) = 0, we find that

M(0) = Id and

Ṁ + π(|L|2)wM = (β̇e−απ|L|2 − βα̇π|L|2e−απ|L|2 + π(|L|2)♯βe−απ|L|2)w.

We have from (A.14), since ∂x∂ξ|L|2 = 0,

|L|2♯e−απ|L|2 = |L|2e−απ|L|2 +
1

4iπ

=0︷ ︸︸ ︷
{|L|2, e−απ|L|2}

+
1

(4iπ)2
1

2
(∂2ξ (|L|2)∂2xe−απ|L|2 + ∂2x(|L|2)∂2ξ e−απ|L|2)

= |L|2e−απ|L|2 +
1

(4iπ)2
1

2
e−απ|L|2(2((−2απx)2 − 2απ) + 2((−2απξ)2 − 2απ))

= |L|2e−απ|L|2
(
1− 4α2π2

16π2

)
+
απ

4π2
e−απ|L|2 ,

so that

Ṁ + π(|L|2)wM

=

(
β̇e−απ|L|2 − βα̇π|L|2e−απ|L|2 + πβ|L|2e−απ|L|2

(
1− 4α2π2

16π2

)
+
απβ

4π
e−απ|L|2

)w
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=

(
e−απ|L|2

{
|L|2

(
− πα̇β + πβ

(
1− α2

4

))
+ β̇ +

αβ

4

})w

.

We solve now

α̇ = 1− α2

4
, α(0) = 0 ⇔ α(t) = 2 tanh(t/2),

and

4β̇ + αβ = 0, β(0) = 1 ⇔ β(t) =
1

cosh(t/2)
.

We obtain that

Ṁ + π(|L|2)wM = 0, M(0) = Id,

and this implies

β(t)(e−α(t)πLL̄)w =M(t) = exp−tπ(|L|2)w,

which proves (B.1).

In particular, for t = −2is, s ∈ R, s /∈ π
2 (1 + 2Z), we have in n dimensions,

(cos s)n exp(2iπs(|x|2 + |ξ|2)w) = (e2iπ tan s(|x|2+|ξ|2))w. (B.2)

Lemma B.2. For any z ∈ C,Re z > 0, we have in n dimensions,

[exp−(2zπ(|ξ|2 + |x|2))]w =
1

(1 + z)n

∑
k>0

(
1− z

1 + z

)k

Pk,n, (B.3)

where Pk,n is defined in Appendix A and the equality holds between L2(Rn)-bounded operators.

Proof. Starting from (B.2), we get for τ ∈ R, in n dimensions,

(cos(arctan τ))n exp(2iπ arctan τ(|x|2 + |ξ|2)w) = (e2iπτ(|x|
2+|ξ|2))w,

so that using the spectral decomposition of the (n-dimensional) harmonic oscillator and (A.28), we get

(1 + τ2)−n/2
∑
k>0

e2i(arctan τ)(k+n
2 )Pk,n = (e2iπτ(|x|

2+|ξ|2))w,

which implies

(1 + τ2)−n/2
∑
k>0

(1 + iτ)2k+n

(1 + τ2)k+
n
2
Pk,n = (e2iπτ(|x|

2+|ξ|2))w,

entailing ∑
k>0

(1 + iτ)k

(1− iτ)k+n
Pk,n = (e2iπτ(|x|

2+|ξ|2))w,

proving the lemma by analytic continuation (we may refer the reader as well to [11, pp. 204–205] and

note that for any z ∈ C, Re z > 0, we have | 1−z
1+z | 6 1).

Appendix C Laguerre polynomials

The Laguerre polynomials {Lk}k∈N are defined by

Lk(x) =
∑

06l6k

(−1)l

l!

(
k

l

)
xl = ex

1

k!

(
d

dx

)k

{xke−x} =

(
d

dx
− 1

)k{
xk

k!

}
, (C.1)

and we have

L0 = 1,
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L1 = −X + 1,

L2 =
1

2
(X2 − 4X + 2),

L3 =
1

6
(−X3 + 9X2 − 18X + 6),

L4 =
1

24
(X4 − 16X3 + 72X2 − 96X + 24),

L5 =
1

120
(−X5 + 25X4 − 200X3 + 600X2 − 600X + 120),

L6 =
1

720
(X6 − 36X5 + 450X4 − 2400X3 + 5400X2 − 4320X + 720),

L7 =
−X7 + 49X6 − 882X5 + 7350X4 − 29400X3 + 52920X2 − 35280X + 5040

5040
.

We get also easily from the above definition that

L′
k+1 = L′

k − Lk, (C.2)

since with T = d/dX − 1,

L′
k − Lk = TLk = T k+1

(
Xk

k!

)
= T k+1

(
d

dX

Xk+1

(k + 1)!

)
=

d

dX
Lk+1.

Formula (6.8) and Theorem 12 in [2] provided the inequalities

∀ k ∈ N, ∀x > 0,
∑

06l6k

(−1)lLl(x) > 0. (C.3)

This result follows as well from [3, (73)] in 1940 by Feldheim.

Let us calculate the Fourier transform of the Laguerre polynomials: we have

Lk(x) =

(
d

dx
− 1

)k{
xk

k!

}
,

so that

L̂k(ξ) = (2iπξ − 1)k
(
−1

2iπ

)k
δ
(k)
0

k!
=

(−1)k

k!

(
ξ − 1

2iπ

)k

δ
(k)
0 (ξ).

As a result, defining for k ∈ N, t ∈ R,

Gk(t) = (−1)kH(t)e−tLk(2t), H = 1R+ , (C.4)

we find, using the homogeneity of degree −k − 1 of δ
(k)
0 ,

Ĝk(τ) =
1

2

(−1)k

k!

(
τ

2
− 1

2iπ

)k

δ
(k)
0

(
τ

2

)
∗ (−1)k

1 + 2iπτ

= (−1)k
(
d

dσ

)k{ (σ − 1
iπ )

k/k!

1 + 2iπ(τ − σ)

}
|σ=0

,

Ĝk(τ) =
∑
l

(−1)k
(
k

l

)
(σ − 1

iπ )
k−l

(k − l)!

(k − l)!(2iπ)k−l

(1 + 2iπ(τ − σ))1+k−l
|σ=0

=
∑
l

(−1)k
(
k

l

)
(−2)k−l

(1 + 2iπτ)1+k−l

=
(−1)k

(1 + 2iπτ)

∑
l

(
k

l

)
(−2)k−l

(1 + 2iπτ)k−l
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=
(−1)k

(1 + 2iπτ)

(
1− 2

(1 + 2iπτ)

)k

=
(−1)k

(1 + 2iπτ)

(
−1 + 2iπτ

1 + 2iπτ

)k

=
1

(1 + 2iπτ)

(
1− 2iπτ

1 + 2iπτ

)k

so that

Ĝk(τ) =
(1− 2iπτ)k

(1 + 2iπτ)k+1
=

(1− 2iπτ)2k+1

(1 + 4π2τ2)k+1
. (C.5)
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