. ARTICLES .

December 2020 Vol. 63 No. 12: 2423–[2438](#page-15-0) <https://doi.org/10.1007/s11425-018-9468-8>

Multi-window dilation-and-modulation frames on the half real line

Yunzhang Li^{1,∗} & Wei Zhang^{1,2}

¹*College of Applied Sciences, Beijing University of Technology, Beijing* 100124*, China;* ²*School of Mathematics and Information Sciences, Henan University of Economics and Law, Zhengzhou* 450046*, China*

*Email: yzlee@bjut.edu.cn, zwfylhappy@*126*.com*

Received May 8, 2018; accepted September 26, 2018; published online June 18, 2020

Abstract Wavelet and Gabor systems are based on translation-and-dilation and translation-and-modulation operators, respectively, and have been studied extensively. However, dilation-and-modulation systems cannot be derived from wavelet or Gabor systems. This study aims to investigate a class of dilation-and-modulation systems in the causal signal space $L^2(\mathbb{R}_+)$. $L^2(\mathbb{R}_+)$ can be identified as a subspace of $L^2(\mathbb{R})$, which consists of all $L^2(\mathbb{R})$ -functions supported on \mathbb{R}_+ but not closed under the Fourier transform. Therefore, the Fourier transform method does not work in $L^2(\mathbb{R}_+)$. Herein, we introduce the notion of Θ_a -transform in $L^2(\mathbb{R}_+)$ and characterize the dilation-and-modulation frames and dual frames in $L^2(\mathbb{R}_+)$ using the Θ_a -transform; and present an explicit expression of all duals with the same structure for a general dilation-and-modulation frame for *L*² (R+). Furthermore, it has been proven that an arbitrary frame of this form is always nonredundant whenever the number of the generators is 1 and is always redundant whenever the number is greater than 1. Finally, some examples are provided to illustrate the generality of our results.

Keywords frame, wavelet frame, Gabor frame, dilation-and-modulation frame, multi-window dilation-andmodulation frame

MSC(2010) 42C40, 42C15

Citation: Li Y Z, Zhang W. Multi-window dilation-and-modulation frames on the half real line. Sci China Math, 2020, 63: 2423[–2438](#page-15-0),<https://doi.org/10.1007/s11425-018-9468-8>

1 Introduction

It is well known that translation, modulation and dilation are fundamental operations in wavelet analysis. The translation operator T_{x_0} , modulation operator M_{x_0} with $x_0 \in \mathbb{R}$, and dilation operator D_c with $0 < c \neq 1$ are defined by

$$
T_{x_0}f(\cdot) = f(\cdot - x_0), \quad M_{x_0}f(\cdot) = e^{2\pi ix_0 \cdot t}f(\cdot) \quad \text{and} \quad D_c f(\cdot) = \sqrt{c}f(c \cdot)
$$

for $f \in L^2(\mathbb{R})$, respectively. Given a finite subset Ψ of $L^2(\mathbb{R})$, Gabor frames of the form

$$
\{M_{mb}T_{na}\psi : m, n \in \mathbb{Z}, \psi \in \Psi\}
$$
\n
$$
(1.1)
$$

^{*} Corresponding author

*[⃝]*c Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 <math.scichina.com> [link.springer.com](springerlink.bibliotecabuap.elogim.com)

and wavelet frames of the form

$$
\{D_{a^j}T_{bk}\psi:j, k \in \mathbb{Z}, \psi \in \Psi\}
$$
\n
$$
(1.2)
$$

with $a, b > 0$ have been extensively studied (see [[4,](#page-14-0) [13,](#page-14-1) [14,](#page-14-2) [22,](#page-14-3) [26–](#page-14-4)[28\]](#page-14-5)). However, dilation-and-modulation frames of the form

$$
\{M_{mb}D_{a^j}\psi : m, j \in \mathbb{Z}, \psi \in \Psi\} \quad \text{with} \quad a, b > 0 \tag{1.3}
$$

have not been studied sufficiently. It has been found that the Fourier transform of (1.3) (1.3) which is

$$
\{T_{mb}D_{a^j}\hat{\psi}:m, j \in \mathbb{Z}, \psi \in \Psi\}
$$
\n(1.4)

does not fall into the framework of the above wavelet and Gabor systems. Herein, our focus is on a class of dilation-and-modulation frames for $L^2(\mathbb{R}_+)$ with $\mathbb{R}_+ = (0, \infty)$. $L^2(\mathbb{R}_+)$ can be considered as a closed subspace of $L^2(\mathbb{R})$ comprising all functions in $L^2(\mathbb{R})$ that vanish outside \mathbb{R}_+ and can model a causal signal space.

For more details on subspace Gabor and wavelet frames of the forms [\(1.1\)](#page-0-0) and ([1.2\)](#page-1-1), respectively, see, e.g., [[2,](#page-14-6) [6–](#page-14-7)[8,](#page-14-8) [15–](#page-14-9)[18\]](#page-14-10), [[19,](#page-14-11) [23,](#page-14-12) [24,](#page-14-13) [31,](#page-14-14) [32,](#page-14-15) [36,](#page-14-16) [38,](#page-14-17) [39\]](#page-14-18), [[40,](#page-14-19) [44,](#page-15-1) [48,](#page-15-2) [50,](#page-15-3) [51\]](#page-15-4) and the references therein. It is easy to check that there exists no nonzero function ψ such that

$$
T_{nc}\psi(\cdot) = 0 \quad \text{on} \quad (-\infty, 0)
$$

for some $c > 0$ and for all $n \in \mathbb{Z}$. This implies that $L^2(\mathbb{R}_+)$ admits no frame of the form (1.1) (1.1) , (1.2) (1.2) or ([1.4](#page-1-2)). Therefore, constructing frames for $L^2(\mathbb{R}_+)$ with good structures is important. Two methods are known for this purpose. The first is to construct frames for $L^2(\mathbb{R}_+)$ comprising a subsystem of ([1.2\)](#page-1-1) and some inhomogeneous refinable function-based "boundary wavelets". For more details, see, e.g., [[3,](#page-14-20) [5,](#page-14-21) [29,](#page-14-22) [30,](#page-14-23) [35,](#page-14-24) [41,](#page-14-25) [46](#page-15-5), [47](#page-15-6)] and the references therein. The other is to use the Cantor group operation and Walsh series theory to introduce the notion of (frame) multiresolution analysis in $L^2(\mathbb{R}_+)$, and then derive wavelet frames similar to the case of $L^2(\mathbb{R})$. For more details, see, e.g., [[1,](#page-13-0) [10–](#page-14-26)[12,](#page-14-27) [33](#page-14-28), [34,](#page-14-29) [42,](#page-15-7) [43](#page-15-8), [45\]](#page-15-9) and the references therein. In [[20\]](#page-14-30), numerical experiments were presented to establish that the nonnegative integer shifts of the Gaussian function form a Riesz sequence in $L^2(\mathbb{R}_+),$ and in [[21\]](#page-14-31), a sufficient condition was obtained to determine whether or not the nonnegative translations of a given function form a Riesz sequence on $L^2(\mathbb{R}_+).$

Given $a > 1$, a measurable function *h* defined on \mathbb{R}_+ is said to be *a-dilation periodic* if $h(a) = h(\cdot)$ a.e. on \mathbb{R}_+ . Throughout this paper, we denote by $\{\Lambda_m\}_{m\in\mathbb{Z}}$ the sequence of *a*-dilation periodic functions defined by

$$
\Lambda_m(\cdot) = \frac{1}{\sqrt{a-1}} e^{\frac{2\pi im\cdot}{a-1}} \quad \text{on} \quad [1, a) \quad \text{for each} \quad m \in \mathbb{Z}.
$$
 (1.5)

Motivated by the above works, herein, we aim to investigate the dilation-and-modulation systems in $L^2(\mathbb{R}_+)$ of the form:

$$
\mathcal{MD}(\Psi, a) = \{ \Lambda_m D_{a^j} \psi_l : m, j \in \mathbb{Z}, 1 \leq l \leq L \}
$$
\n
$$
(1.6)
$$

under the following general setup:

General setup. (i) *a* is a fixed positive number greater than 1.

(ii) $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ is a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*.

As in multi-window Gabor analysis, throughout this paper, we say a set $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ is a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*, which means that it is a finite sequence in $L^2(\mathbb{R}_+)$ with *L* terms, i.e., we do not require that $\psi_1, \psi_2, \dots, \psi_L$ are pairwise different.

For $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L}$, we define $MD(\Phi, a)$, as defined in ([1.6](#page-1-3)). The system $MD(\Psi, a)$ differs from [\(1.3](#page-1-0)). The modulation factor $e^{2\pi imb}$ ^{*·*} in ([1.1\)](#page-0-0) is $\frac{1}{b}\mathbb{Z}$ -periodic under addition, while Λ_m in ([1.6\)](#page-1-3) is *a*dilation periodic. The motivation of introducing $MD(\Psi, a)$ in $L^2(\mathbb{R}_+)$ is from the group structure of \mathbb{R}_+ . Since R is a group under addition, one chooses addition periodic prefactors *Mmb* to match shift-invariant systems, and obtain Gabor systems of the form (1.1) . However, \mathbb{R}_+ is a group under multiplication instead of addition. Therefore, we choose dilation periodic prefactors to match dilation-invariant systems and therefore, we study $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$ of the form [\(1.6\)](#page-1-3).

Let *a* be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*. The system $\mathcal{MD}(\Psi, a)$ is called a *frame* for $L^2(\mathbb{R}_+)$ if there exist $0 < C_1 \leqslant C_2 < \infty$ such that

$$
C_1 \|f\|_{L^2(\mathbb{R}_+)}^2 \leq \sum_{l=1}^L \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 \leq C_2 \|f\|_{L^2(\mathbb{R}_+)}^2 \quad \text{for} \quad f \in L^2(\mathbb{R}_+),\tag{1.7}
$$

where C_1 and C_2 are called *frame bounds*; it is called a *Bessel sequence* in $L^2(\mathbb{R}_+)$ if the right-hand side inequality in ([1.7\)](#page-2-0) holds, where *C*² is called a *Bessel bound*. Particularly, it is called a *Parseval frame* if in ([1.7\)](#page-2-0), $C_1 = C_2 = 1$. Given a frame $MD(\Psi, a)$ for $L^2(\mathbb{R}_+)$, a sequence $MD(\Phi, a)$ is called a *dual* (or an MD -*dual*) of $MD(\Psi, a)$ if it is a frame such that

$$
f = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \quad \text{for} \quad f \in L^2(\mathbb{R}_+). \tag{1.8}
$$

It is easy to check that $MD(\Psi, a)$ is also a dual of $MD(\Phi, a)$ if $MD(\Phi, a)$ is a dual of $MD(\Psi, a)$. Therefore, in this case, we say $MD(\Psi, a)$ and $MD(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. By the knowledge of frame theory, $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$ if they are Bessel sequences and satisfy (1.8) . The fundamentals of frames can be found in $[4, 9, 27, 49]$ $[4, 9, 27, 49]$ $[4, 9, 27, 49]$ $[4, 9, 27, 49]$ $[4, 9, 27, 49]$ $[4, 9, 27, 49]$. Observe that $L^2(\mathbb{R}_+)$ is the Fourier transform of the Hardy space $H^2(\mathbb{R})$ which is a reducing subspace of $L^2(\mathbb{R})$ defined by

$$
H^{2}(\mathbb{R}) = \{ f \in L^{2}(\mathbb{R}) : \hat{f}(\cdot) = 0 \text{ a.e. on } (-\infty, 0) \}.
$$

Wavelet frames in $H^2(\mathbb{R})$ of the form (1.2) (1.2) were studied in [\[28](#page-14-5), [44,](#page-15-1) [48\]](#page-15-2). By the Plancherel theorem, an $H^2(\mathbb{R})$ -frame, which is given by $\{D_{a^j}T_{bk}\psi : j, k \in \mathbb{Z}, \psi \in \Psi\}$, leads to an $L^2(\mathbb{R}_+)$ -frame given by

$$
\{e^{-2\pi i a^j k \cdot} \hat{\psi}(a^j \cdot) : j, k \in \mathbb{Z}, \psi \in \Psi\}.
$$
\n(1.9)

In [\(1.9](#page-2-2)), $e^{-2\pi i a^j k \cdot}$ is $a^{-j} \mathbb{Z}$ -periodic with respect to addition, and the period varies with *j*. However, Λ_m in (1.6) is *a*-dilation periodic, and is unrelated to *j*. Therefore, the system (1.6) (1.6) differs from (1.9) (1.9) , and it is of independent interest.

This study focuses on the theory of $L^2(\mathbb{R}_+)$ -frames of the form ([1.6\)](#page-1-3). It cannot be derived from the well-known wavelet and Gabor systems, and its operation is more intuitive when compared with the Cantor group and Walsh series-based systems in $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$ $[1, 10-12, 33, 34, 42, 43, 45]$. Also $L^2(\mathbb{R}_+)$ is not closed under the Fourier transform. In particular, the Fourier transform of a compactly supported nonzero function in $L^2(\mathbb{R}_+)$ lies outside this space. Therefore, the Fourier transform cannot be used in our setting and thus, it is desirable to find a new method.

The system ([1.6\)](#page-1-3) is related to a kind of function-valued frames in [[25\]](#page-14-34) by Hasankhani and Dehghan. They introduced the notion of function-valued frame as follows. Given $a > 1$ and $f, g \in L^2(\mathbb{R}_+)$, define the function-valued inner product $\langle f, g \rangle_a$ of f and g by

$$
\langle f, g \rangle_a(\cdot) = \sum_{j \in \mathbb{Z}} a^j f(a^j \cdot) \overline{g(a^j \cdot)}, \text{ and } ||f||_a(\cdot) = \sqrt{\langle f, f \rangle_a(\cdot)}.
$$

A sequence $\{f_j\}_{j\in\mathbb{Z}}$ in $L^2(\mathbb{R}_+)$ is called a function-valued frame for $L^2(\mathbb{R}_+)$ with respect to *a*, if there exist positive constants *A* and *B*, such that

$$
A||f||_a^2(\cdot) \le \sum_{j\in\mathbb{Z}} |\langle f, f_j \rangle_a(\cdot)|^2 \le B||f||_a^2(\cdot) \quad \text{a.e. on } [1, a]
$$

for $f \in L^2(\mathbb{R}_+)$. Take $f_j = D_{a^j}\psi$ for some $\psi \in L^2(\mathbb{R}_+)$. Then, applying [[25,](#page-14-34) Theorem 4.8], we have that ${D_a}$ *j* ${\psi}$ _{*j* ${\in}$} is a function-valued frame for $L^2(\mathbb{R}_+)$ with respect to *a* if and only if $\mathcal{MD}(\psi, a)$ (i.e., $L = 1$ in ([1.6](#page-1-3))) is a frame for $L^2(\mathbb{R}_+)$. We characterized frames of the form $\mathcal{MD}(\psi, a)$ in [[37](#page-14-35)] in terms of the bi-infinite matrix-valued function $\mathcal{G}(\psi, \cdot) = (\overline{D_{a^{j+l}} \psi(\cdot)})_{j,l \in \mathbb{Z}}$, where the notion of Θ_a -transform was not formally formulated. In this paper, we will introduce the Θ*a*-transform, and use the Θ*a*-transform method to study multi-window frames $MD(\Psi, a)$ of the form (1.6) and their duals. By Theorem 3.9 below, frames in [\[37](#page-14-35)] are all Riesz bases but frames in this paper are redundant ones if *L >* 1.

The rest of this paper is organized as follows. In Section 2, we introduce the notion of Θ_a -transform, and give a Θ_a -transform domain characterization for a dilation-and-modulation system $\mathcal{MD}(\Psi, a)$ to be complete, a Bessel sequence, and a frame in $L^2(\mathbb{R}_+)$, accordingly. In Section 3, using the Θ_a -transform we characterize dual frame pairs of the form $(MD(\Psi, a), MD(\Phi, a))$ and obtain an explicit expression of all *MD*-duals of a general frame $MD(\Psi, a)$ for $L^2(\mathbb{R}_+)$. We also prove that an arbitrary frame $MD(\Psi, a)$ is a Riesz basis if and only if $L = 1$. In Section 4, we give some examples of MD -dual frame pairs for $L^2(\mathbb{R}_+)$ to illustrate the generality of our results.

2 Θ*a***-transform domain frame characterization**

Let *a* be a fixed positive number greater than 1, and $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. In this section, by introducing the Θ_a -transform we give the conditions of completeness, Bessel sequence and frame of $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$, accordingly.

Definition 2.1. Let *a* be a fixed positive number greater than 1. For $f \in L^2(\mathbb{R}_+)$, we define

$$
\Theta_a f(x,\xi) = \sum_{l \in \mathbb{Z}} a^{\frac{l}{2}} f(a^l x) e^{-2\pi il\xi}
$$
\n(2.1)

for a.e. $(x,\xi) \in \mathbb{R}_+ \times \mathbb{R}$.

Remark 2.2. Observe that, given $f \in L^2(\mathbb{R}_+),$

$$
\int_{a^j}^{a^{j+1}} \sum_{l \in \mathbb{Z}} a^l |f(a^l x)|^2 dx = ||f||^2_{L^2(\mathbb{R}_+)} < \infty \quad \text{for} \quad j \in \mathbb{Z}.
$$

This implies that $\sum_{l\in\mathbb{Z}} a^l |f(a^l\cdot)|^2 < \infty$ a.e. on \mathbb{R}_+ by the arbitrariness of *j*. Therefore, ([2.1](#page-3-0)) is well defined.

Lemma 2.3. *Let a be a fixed positive number greater than* 1*. For* $m, j \in \mathbb{Z}$ *, define* Λ_m *as in* ([1.5\)](#page-1-4)*, and em,j by*

$$
e_{m,j}(x,\xi) = \Lambda_m(x) e^{2\pi i j\xi} \quad \text{for} \quad (x,\xi) \in \mathbb{R}_+ \times \mathbb{R}.
$$

Then

(i) $\{\Lambda_m : m \in \mathbb{Z}\}\$ and $\{e_{m,j} : m, j \in \mathbb{Z}\}\$ are orthonormal bases for $L^2([1, a))$ and $L^2([1, a) \times [0, 1)),$ *respectively*;

(ii) the Θ_a -transform has the following quasi-periodicity: given $f \in L^2(\mathbb{R}_+),$

$$
\Theta_a f(a^j x, \xi + m) = e^{2\pi i j \xi} a^{-\frac{j}{2}} \Theta_a f(x, \xi)
$$

for j, $m \in \mathbb{Z}$ *and a.e.* $(x, \xi) \in \mathbb{R}_+ \times \mathbb{R}$;

(iii) *for* $j, m \in \mathbb{Z}, f \in L^2(\mathbb{R}_+),$

$$
\Theta_a(\Lambda_m D_{a^j}f)(x,\xi) = e_{m,j}(x,\xi)\Theta_a f(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in \mathbb{R}_+ \times \mathbb{R};
$$

(iv) the Θ_a -transform is a unitary operator from $L^2(\mathbb{R}_+)$ onto $L^2([1, a) \times [0, 1))$; (v)

$$
\int_{[1,a)\times[0,1)}|f(x,\xi)|^2dxd\xi = \sum_{m,j\in\mathbb{Z}}\left|\int_{[1,a)\times[0,1)}f(x,\xi)\overline{e_{m,j}(x,\xi)}dxd\xi\right|^2\tag{2.2}
$$

for $f \in L^1([1, a) \times [0, 1)).$

Proof. By a standard argument, we have (i)–(iii). Next, we prove (iv) and (v).

(iv) It is obvious that the Θ_a -transform is linear. We only need to prove that it is norm-preserving and onto. For $f \in L^2(\mathbb{R}_+),$ we have

$$
\|\Theta_a f\|_{L^2([1,a)\times[0,1))}^2 = \int_1^a dx \int_0^1 \left| \sum_{l\in\mathbb{Z}} a^{\frac{l}{2}} f(a^l x) e^{-2\pi il\xi} \right|^2 d\xi
$$

=
$$
\int_1^a \sum_{l\in\mathbb{Z}} a^l |f(a^l x)|^2 dx
$$

=
$$
||f||^2_{L^2(\mathbb{R}_+)}.
$$

This implies that the Θ_a -transform is norm-preserving. Next, we prove that it is onto. Let $F \in L^2([1, a)$ *×* $[0, 1)$). Then there exists a unique $\{c_{m,j}\}_{m,j\in\mathbb{Z}} \in l^2(\mathbb{Z}^2)$ such that

$$
F(x,\xi) = \sum_{m,j\in\mathbb{Z}} c_{m,j} e_{m,j}(x,\xi) = \sum_{j\in\mathbb{Z}} \left(\sum_{m\in\mathbb{Z}} c_{m,j} \Lambda_m(x)\right) e^{2\pi i j\xi}
$$

for a.e. $(x, \xi) \in [1, a) \times [0, 1)$ by (i). Define f on \mathbb{R}_+ by

$$
f(a^jx) = a^{-\frac{j}{2}} \sum_{m \in \mathbb{Z}} c_{m,-j} \Lambda_m(x) \quad \text{for} \quad j \in \mathbb{Z} \quad \text{and a.e.} \quad x \in [1, a).
$$

Then

$$
||f||_{L^{2}(\mathbb{R}_{+})}^{2} = \sum_{j \in \mathbb{Z}} \int_{1}^{a} a^{j} |f(a^{j}x)|^{2} dx = \sum_{j \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} |c_{m,-j}|^{2} = \sum_{m,j \in \mathbb{Z}} |c_{m,j}|^{2} < \infty
$$

by (i), and we have

$$
\Theta_a f(x,\xi) = F(x,\xi)
$$
 for a.e. $(x,\xi) \in [1,a) \times [0,1)$.

Hence, the Θ_a -transform is onto.

(v) By (i), ([2.2\)](#page-3-1) holds if $f \in L^2([1, a) \times [0, 1))$. When $f \in L^1([1, a) \times [0, 1)) \setminus L^2([1, a) \times [0, 1))$, the left-hand side of ([2.2](#page-3-1)) is infinite. Now we prove by contradiction that the right-hand side of ([2.2\)](#page-3-1) is also infinite. Suppose it is finite. Then the function

$$
g = \sum_{m,j \in \mathbb{Z}} \bigg(\int_{[1,a) \times [0,1)} f(x,\xi) \overline{e_{m,j}(x,\xi)} dx d\xi \bigg) e_{m,j}
$$

belongs to $L^2([1, a) \times [0, 1))$ by (i), and thus it belongs to $L^1([1, a) \times [0, 1))$. Since it has the same Fourier coefficients as f, by the uniqueness of Fourier coefficients, $f = g$. Thus $f \in L^2([1, a) \times [0, 1))$, which leads to a contradiction. The proof is completed. \Box

Lemma 2.4. *Let a be a fixed positive number greater than* 1*, and* $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ *be a finite* subset of $L^2(\mathbb{R}_+)$ *with cardinality L. Then*

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi \text{ for } f \in L^2(\mathbb{R}_+).
$$

Proof. Fix $f \in L^2(\mathbb{R}_+)$. By Lemmas [2.3\(](#page-3-2)iii) and [2.3](#page-3-2)(iv), we have

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle \Theta_a f, \Theta_a \Lambda_m D_{a^j} \psi_l \rangle_{L^2([1,a) \times [0,1))}|^2
$$

$$
= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle \Theta_a f, e_{m,j} \Theta_a \psi_l \rangle_{L^2([1,a) \times [0,1))}|^2
$$

$$
= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \left| \int_{[1,a) \times [0,1)} \overline{\Theta_a \psi_l(x,\xi)} \Theta_a f(x,\xi) e_{m,j}(x,\xi) dx d\xi \right|^2.
$$

Again applying Lemma [2.3\(](#page-3-2)v) to $\overline{\Theta_a \psi_l(x,\xi)} \Theta_a f(x,\xi)$ leads to

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \sum_{l=1}^{L} \int_{[1,a) \times [0,1)} |\overline{\Theta_a} \psi_l(x,\xi) \Theta_a f(x,\xi)|^2 dx d\xi
$$

$$
= \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi.
$$

This completes the proof.

Theorem 2.5. Let a be a fixed positive number greater than 1, and $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ be a finite *subset of* $L^2(\mathbb{R}_+)$ *with cardinality L. Then* $\mathcal{MD}(\Psi, a)$ *is complete in* $L^2(\mathbb{R}_+)$ *if and only if*

$$
\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \neq 0 \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1). \tag{2.3}
$$

Proof. By Lemma [2.4](#page-4-0), for $f \in L^2(\mathbb{R}_+),$

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = 0 \quad \text{a.e. on } \mathbb{R}_+ \tag{2.4}
$$

if and only if

$$
\left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2\right) |\Theta_a f(x,\xi)|^2 = 0 \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1). \tag{2.5}
$$

Observe that $MD(\Psi, a)$ is complete in $L^2(\mathbb{R}_+)$ if and only if $f = 0$ is the unique solution to ([2.4](#page-5-0)) in $L^2(\mathbb{R}_+)$. It follows that the completeness of $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$ is equivalent to $f = 0$ being the unique solution to ([2.5](#page-5-1)) in $L^2(\mathbb{R}_+)$. This is in turn equivalent to the fact that $\Theta_a f = 0$ is the unique solution to (2.5) in $L^2([1, a) \times [0, 1))$ by Lemma [2.3](#page-3-2)(iv), which is as well equivalent to (2.3) (2.3) . This completes the proof. \Box

Theorem 2.6. Let a be a fixed positive number greater than 1, and $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*. Then $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel *bound B if and only if*

$$
\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \leq B \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1). \tag{2.6}
$$

Proof. By Lemmas [2.4](#page-4-0) and [2.3](#page-3-2)(v), we have

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi, \tag{2.7}
$$

and

$$
\int_{[1,a)\times[0,1)} |\Theta_a f(x,\xi)|^2 dx d\xi = ||f||^2_{L^2(\mathbb{R}_+,\mathbb{C}^L)} \tag{2.8}
$$

for $f \in L^2(\mathbb{R}_+, \mathbb{C}^L)$. So by Lemma [2.3\(](#page-3-2)iv), [\(2.6\)](#page-5-3) implies that

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 \leq B \|f\|_{L^2(\mathbb{R}_+,\mathbb{C}^L)}^2 \tag{2.9}
$$

for $f \in L^2(\mathbb{R}_+)$. Thus, $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound *B*.

Now we prove the converse implication by contradiction. Suppose *MD*(Ψ*, a*) is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound B, and $\sum_{l=1}^L |\Theta_a \psi(\cdot, \cdot)|^2 > B$ on some $E \subset [1, a) \times [0, 1)$ with $|E| > 0$. Define *f* by

$$
\Theta_a f(\cdot, \cdot) = \chi_E(\cdot, \cdot) \quad \text{on} \quad [1, a) \times [0, 1)
$$

in [\(2.7](#page-5-4)), where χ_E denotes the characteristic function of *E*. Then *f* is well defined,

$$
\|f\|_{L^2(\mathbb{R}_+)}^2=\int_{[1,a)\times [0,1)} |\Theta_a f(x,\xi)|^2 dx d\xi = |E|
$$

by Lemma [2.3](#page-3-2)(iv), and

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 > B|E| = B||f||_{L^2(\mathbb{R}_+)}
$$

This contradicts the fact that $MD(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound *B*. This completes the proof. □

By a similar argument to that in Theorem [2.6](#page-5-5), we obtain the following theorem.

Theorem 2.7. Let a be a fixed positive number greater than 1, and $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ be a finite *subset of* $L^2(\mathbb{R}_+)$ *with cardinality L. Then* $MD(\Psi, a)$ *is a frame in* $L^2(\mathbb{R}_+)$ *with frame bounds A and B if and only if*

$$
A \leqslant \sum_{l=1}^{L} |\Theta_a \psi_l(x, \xi)|^2 \leqslant B
$$

for a.e. $(x,\xi) \in [1,a) \times [0,1)$ *.*

3 Θ*a***-transform domain expression of duals**

In this section, we characterize and express MD -duals of a general frame $MD(\Psi, a)$ for $L^2(\mathbb{R}_+)$ and also, we study the redundancy of a general frame $MD(\Psi, a)$ for $L^2(\mathbb{R}_+)$. Interestingly, we prove that an arbitrary frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$ is always nonredundant if $L = 1$, and is always redundant if $L > 1$ (see Theorem [3.9](#page-10-0) below).

For the ease and convenience, we write

$$
\mathfrak{D} = \{ f \in L^2(\mathbb{R}_+) : \Theta_a f \in L^\infty([1, a) \times [0, 1)) \}. \tag{3.1}
$$

.

Then using Lemma [2.3](#page-3-2)(iv) and the fact that $L^{\infty}([1, a) \times [0, 1))$ is dense in $L^2([1, a) \times [0, 1))$, we have that $\mathfrak D$ is dense in $L^2(\mathbb{R}_+)$. This fact will be frequently used in what follows.

Let *a* be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*, and $MD(\Psi, a)$ be a Bessel sequence in $L^2(\mathbb{R}_+)$. We denote by *S* its frame operator, i.e.,

$$
Sf = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \quad \text{for } f \in L^2(\mathbb{R}_+).
$$

By a standard argument, we have the following lemma that shows that *S* commutes with the modulation and dilation operators.

Lemma 3.1. *Let a be a fixed positive number greater than* 1*, and* $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ *be a finite subset of* $L^2(\mathbb{R}_+)$ *with cardinality L.* Assume that $MD(\Psi, a)$ *is a Bessel sequence in* $L^2(\mathbb{R}_+)$ *, and that S is its frame operator. Then*

$$
S\Lambda_m f = \Lambda_m Sf, \quad SD_{a^j} f = D_{a^j} Sf,
$$

and thus $S\Lambda_m D_{a^j} f = \Lambda_m D_{a^j} Sf$ *for* $f \in L^2(\mathbb{R}_+)$ *and* $m, j \in \mathbb{Z}$ *.*

Lemma 3.2. Let a be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite subset *of* $L^2(\mathbb{R}_+)$ *with cardinality L, and* $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L} \subset L^2(\mathbb{R}_+)$ *. Then*

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} = \int_{[1,a) \times [0,1)} \Omega(x,\xi) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi \quad (3.2)
$$

for $f, g \in \mathfrak{D}$ *, where*

$$
\Omega(x,\xi) = \sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)}.
$$

Proof. Let $f, g \in \mathfrak{D}$ be fixed. Then by Lemma [2.4,](#page-4-0) we have

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle|^2 < \infty, \quad \text{and} \quad \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle g, \Lambda_m D_{a^j} \varphi_l \rangle|^2 < \infty.
$$

Thus, the series

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)}
$$

is well defined and converges absolutely. By Lemmas $2.3(i)$, $2.3(iii)$ and $2.3(iv)$, we see that

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} \n= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle \Theta_a f, \Theta_a \Lambda_m D_{a^j} \psi_l \rangle_{L^2([1,a) \times [0,1))} \langle \Theta_a \Lambda_m D_{a^j} \varphi_l, \Theta_a g \rangle_{L^2([1,a) \times [0,1))} \n= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle \overline{\Theta_a \psi_l} \Theta_a f, e_{m,j} \rangle_{L^2([1,a) \times [0,1))} \langle e_{m,j}, \overline{\Theta_a \varphi_l} \Theta_a g \rangle_{L^2([1,a) \times [0,1))} \n= \sum_{l=1}^{L} \langle \Theta_a f \overline{\Theta_a \psi_l}, \Theta_a g \overline{\Theta_a \varphi_l} \rangle_{L^2([1,a) \times [0,1))} \n= \int_{[1,a) \times [0,1)} \Omega(x,\xi) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi.
$$

This completes the proof.

Lemma 3.3. *Let a be a fixed positive number greater than* 1*, and* $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ *be a finite subset of* $L^2(\mathbb{R}_+)$ *with cardinality L.* Assume that $MD(\Psi, a)$ *is a Bessel sequence in* $L^2(\mathbb{R}_+)$ *, and that S is its frame operator. Then, for* $f \in L^2(\mathbb{R}_+),$

$$
\Theta_a S f(\cdot, \cdot) = \left(\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2\right) \Theta_a f(\cdot, \cdot) \tag{3.3}
$$

 \Box

a.e. on $[1, a) \times [0, 1)$ *.*

Proof. By Lemma [3.2](#page-6-0), we have

$$
\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \int_{[1,a)\times[0,1)} \left(\sum_{l=1}^L |\Theta_a \psi_l(x,\xi)|^2 \right) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi
$$

for $f, g \in \mathfrak{D}$. Since \mathfrak{D} is dense in $L^2(\mathbb{R}_+)$ and $\mathcal{MD}(\Psi, a)$ is a Bessel sequence, by Theorem [2.6](#page-5-5) and a standard argument, it follows that

$$
\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \left\langle \left(\sum_{l=1}^L |\Theta_a \psi_l(x, \xi)|^2 \right) \Theta_a f, \Theta_a g \right\rangle_{L^2([1, a) \times [0, 1))}
$$

for $f, g \in L^2(\mathbb{R}_+)$. Also observing that

$$
\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \langle \Theta_a Sf, \Theta_a g \rangle_{L^2([1, a) \times [0, 1))}
$$

by Lemma $2.3(iv)$, we have that

$$
\langle \Theta_a Sf, \Theta_a g \rangle_{L^2([1,a)\times[0,1))} = \left\langle \left(\sum_{l=1}^L |\Theta_a \psi_l|^2 \right) \Theta_a f, \Theta_a g \right\rangle_{L^2([1,a)\times[0,1))}
$$

for $f, g \in L^2(\mathbb{R}_+)$. This implies [\(3.3](#page-7-0)) by Lemma [2.3](#page-3-2)(iv). This completes the proof.

Lemma 3.4. *Let a be a fixed positive number greater than* 1*, and* $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ *be a finite* subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then $MD(\Psi, a)$ cannot be a Riesz sequence in $L^2(\mathbb{R}_+)$ whenever $L > 1$.

Proof. We proceed by contradiction. Suppose $L > 1$ and $\mathcal{MD}(\Psi, a)$ is a Riesz sequence in $L^2(\mathbb{R}_+).$ Let *S* be its frame operator. Then by Lemma [3.1,](#page-6-1) it commutes with $\Lambda_m D_{a^j}$ for all $m, j \in \mathbb{Z}$. Since *S* is self-adjoint, invertible and bounded, it follows that

$$
S^{-\frac{1}{2}}\Lambda_m D_{a^j}\psi_l = \Lambda_m D_{a^j} S^{-\frac{1}{2}}\psi_l \quad \text{for} \quad m, j \in \mathbb{Z} \quad \text{and} \quad 1 \leq l \leq L.
$$

Hence, $\mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a)$ is an orthonormal system in $L^2(\mathbb{R}_+)$. Write $S^{-\frac{1}{2}}\psi_l = \varphi_l$ for $1 \leq l \leq L$. Then for $m_1, m_2, j_1, j_2 \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$, we have

$$
\langle \Lambda_{m_1} D_{a^{j_1}} \varphi_{l_1}, \, \Lambda_{m_2} D_{a^{j_2}} \varphi_{l_2} \rangle_{L^2(\mathbb{R}_+)} = \delta_{m_1, m_2} \delta_{j_1, j_2} \delta_{l_1, l_2},
$$

where the Kronecker delta is defined by

$$
\delta_{n,m} = \begin{cases} 1, & \text{if } n = m, \\ 0, & \text{if } n \neq m. \end{cases}
$$

By Lemmas $2.3(iii)$ and $2.3(iv)$, it is equivalent to

$$
\langle e_{m_1,j_1} \Theta_a \varphi_{l_1}, e_{m_2,j_2} \Theta_a \varphi_{l_2} \rangle_{L^2([1,a)\times[0,1))} = \delta_{m_1,m_2} \delta_{j_1,j_2} \delta_{l_1,l_2}
$$

for $m_1, m_2, j_1, j_2 \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$, equivalently,

$$
\frac{1}{\sqrt{a-1}}\int_{[1,a)\times[0,1)} \Theta_a\varphi_{l_1}(x,\xi)\overline{\Theta_a\varphi_{l_2}(x,\xi)}e_{m,j}(x,\xi)dx d\xi = \delta_{m,0}\delta_{j,0}\delta_{l_1,l_2}
$$

for $m, j \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$. This in turn is equivalent to

$$
\Theta_a \varphi_{l_1}(\cdot, \cdot) \overline{\Theta_a \varphi_{l_2}(\cdot, \cdot)} = \delta_{l_1, l_2} \quad \text{a.e. on} \quad [1, a) \times [0, 1)
$$

for $1 \leq l_1, l_2 \leq L$ by the uniqueness of Fourier coefficients. In particular, it implies that

$$
|\Theta_a\varphi_1(\cdot,\cdot)| = |\Theta_a\varphi_2(\cdot,\cdot)| = 1
$$

and

$$
\Theta_a \varphi_1(\cdot,\cdot) \overline{\Theta_a \varphi_2(\cdot,\cdot)} = 0
$$

a.e. on $[1, a) \times [0, 1)$. This leads to a contradiction. Hence, this completes the proof.

The following lemma is extracted from [[37,](#page-14-35) Corollary 3.1].

Lemma 3.5. *Let a be a fixed positive number greater than* 1, and Ψ *be a singleton in* $L^2(\mathbb{R}_+)$ *. Then* $MD(\Psi, a)$ *is a Parseval frame for* $L^2(\mathbb{R}_+)$ *if and only if it is an orthonormal basis for* $L^2(\mathbb{R}_+)$ *.*

Theorem 3.6. Let a be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite *subset of* $L^2(\mathbb{R}_+)$ *with cardinality L, and* $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L} \subset L^2(\mathbb{R}_+)$ *. Assume that* $\mathcal{MD}(\Psi, a)$ *and* $MD(\Phi, a)$ are Bessel sequences in $L^2(\mathbb{R}_+)$. Then $MD(\Psi, a)$ and $MD(\Phi, a)$ form a pair of dual frames *for* $L^2(\mathbb{R}_+)$ *if and only if*

$$
\sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} = 1 \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1). \tag{3.4}
$$

 \Box

 \Box

Proof. Since $MD(\Psi, a)$ and $MD(\Phi, a)$ are Bessel sequences in $L^2(\mathbb{R}_+)$, and \mathfrak{D} is dense in $L^2(\mathbb{R}_+)$, we have that $MD(\Psi, a)$ and $MD(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$ if and only if

$$
\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} = \langle f, g \rangle_{L^2(\mathbb{R}_+)} \tag{3.5}
$$

for $f, g \in \mathfrak{D}$. By Lemmas [3.2](#page-6-0) and [2.3\(](#page-3-2)iv), [\(3.5](#page-9-0)) is equivalent to

$$
\int_{[1,a)\times[0,1)} \left(\sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} \right) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi
$$
\n
$$
= \int_{[1,a)\times[0,1)} \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi
$$
\n(3.6)

for $f, g \in \mathfrak{D}$. Obviously, [\(3.4\)](#page-8-0) implies [\(3.6\)](#page-9-1). Now we prove the converse implication to finish the proof. Suppose ([3.6\)](#page-9-1) holds. By Theorem [2.6](#page-5-5) and the Cauchy-Schwarz inequality, we have

$$
\sum_{l=1}^L \Theta_a \varphi_l \overline{\Theta_a \psi_l} \in L^\infty([1,a)\times (0,1)).
$$

This implies that almost every point in $(1, a) \times (0, 1)$ is a Lebesgue point of $\sum_{l=1}^{L} \Theta_a \varphi_l \overline{\Theta_a \psi_l}$. Arbitrarily fix such a point $(x_0, \xi_0) \in (1, a) \times (0, 1)$, and take $f, g \in \mathfrak{D}$ in ([3.6\)](#page-9-1) such that

$$
\Theta_a f = \Theta_a g = \frac{1}{\sqrt{|B((x_0,\xi_0),\varepsilon)|}} \chi_{B((x_0,\xi_0),\varepsilon)}
$$

on $[1, a) \times [0, 1)$ with $B((x_0, \xi_0), \varepsilon) \subset (1, a) \times (0, 1)$ and $\varepsilon > 0$, where $B((x_0, \xi_0), \varepsilon)$ denotes the ε neighborhood of (x_0, ξ_0) . Then by Lemma [2.3](#page-3-2)(iv), f and g are well defined and thus, we obtain that

$$
\frac{1}{|B((x_0,\xi_0),\varepsilon)|} \int_{B((x_0,\xi_0),\varepsilon)} \sum_{l=1}^L \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} dx d\xi = 1.
$$
 (3.7)

Letting $\varepsilon \to 0$ in ([3.7\)](#page-9-2) leads to

$$
\sum_{l=1}^{L} \Theta_a \varphi_l(x_0, \xi_0) \overline{\Theta_a \psi_l(x_0, \xi_0)} = 1.
$$

This implies [\(3.4](#page-8-0)) by the arbitrariness of (x_0, ξ_0) . This completes the proof.

Now, we turn to the expression of *MD*-duals. Let *a* be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality *L*, $\mathcal{MD}(\Psi, a)$ be a frame for $L^2(\mathbb{R}_+),$ and S be its frame operator. By Lemma [3.1,](#page-6-1) $S\Lambda_m D_{a^j} = \Lambda_m D_{a^j} S$, and thus $S^{-1}\Lambda_m D_{a^j} = \Lambda_m D_{a^j} S^{-1}$ for *m, j* ∈ Z. So $MD(\Psi, a)$ and its canonical dual $S^{-1}(MD(\Psi, a))$ share the same dilation-and-modulation structure, i.e.,

$$
S^{-1}(\mathcal{MD}(\Psi, a)) = \mathcal{MD}(S^{-1}(\Psi), a).
$$

The following theorem gives its canonical dual window and all *MD*-dual windows in the Θ*^a* transform domain.

Theorem 3.7. Let a be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite subset *of* $L^2(\mathbb{R}_+)$ *with cardinality L, and* $\mathcal{MD}(\Psi, a)$ *be a frame for* $L^2(\mathbb{R}_+)$ *. Then*

(i) *its canonical dual* $\mathcal{MD}(S^{-1}(\Psi), a)$ *is given by*

$$
\Theta_a S^{-1} \psi_l(\cdot, \cdot) = \frac{\Theta_a \psi_l(\cdot, \cdot)}{\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2} \quad a.e. \text{ on } [1, a) \times [0, 1) \quad \text{for} \quad 1 \leq l \leq L;
$$

 \Box

(ii) *a dilation-and-modulation system* $MD(\Phi, a)$ *with* $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L}$ *is a dual frame of MD*(Ψ*, a*) *if and only if* Φ *is defined by*

$$
\Theta_a \varphi_l(\cdot, \cdot) = \frac{\Theta_a \psi_l(\cdot, \cdot)(1 - \sum_{l=1}^L \overline{\Theta_a \psi_l(\cdot, \cdot)} X_l(\cdot, \cdot))}{\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2} + X_l(\cdot, \cdot) \quad a.e. \text{ on } [1, a) \times [0, 1), \tag{3.8}
$$

where $X_l \in L^\infty([1, a) \times [0, 1))$ *with* $1 \leq l \leq L$.

Proof. (i) Since *S* is an invertible and bounded operator on $L^2(\mathbb{R}_+)$, by Lemma [3.3,](#page-7-1) we have

$$
\Theta_a f(\cdot, \cdot) = \left(\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2\right) \Theta_a S^{-1} f(\cdot, \cdot) \quad \text{for } f \in L^2(\mathbb{R}_+). \tag{3.9}
$$

Replacing *f* by ψ_l in ([3.9](#page-10-1)) with $1 \leq l \leq L$, we have (i).

(ii) For sufficiency, suppose Φ is given by [\(3.8\)](#page-10-2). Then by Theorem [2.6,](#page-5-5) $\mathcal{MD}(\Phi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$. By a simple computation, we obtain

$$
\sum_{l=1}^{L} \Theta_a \varphi_l(\cdot, \cdot) \overline{\Theta_a \psi_l(\cdot, \cdot)} = 1 \quad \text{a.e. on} \quad [1, a) \times [0, 1).
$$

It follows by Theorem [3.6](#page-8-1) that $\mathcal{MD}(\Phi, a)$ is a dual frame of $\mathcal{MD}(\Psi, a)$.

For necessity, suppose $MD(\Phi, a)$ is a dual frame of $MD(\Psi, a)$. Then by Theorem [3.6](#page-8-1), we have

$$
\sum_{l=1}^{L} \overline{\Theta_a \psi_l(\cdot, \cdot)} \Theta_a \varphi_l(\cdot, \cdot) = 1 \quad \text{a.e. on} \quad [1, a) \times [0, 1),
$$

and $\Theta_a \varphi_l \in L^\infty([1, a) \times [0, 1])$. So we have ([3.8](#page-10-2)) with $X_l = \Theta_a \varphi_l, 1 \leqslant i \leqslant L$. This completes the proof. \Box

Remark 3.8. Theorem [3.7](#page-9-3) gives us much flexibility in constructing *MD*-duals. For example, suppose $MD(\Psi, a)$ is a Parseval frame for $L^2(\mathbb{R}_+)$. Take X_l as a fixed function X in $L^\infty([1, a) \times [0, 1))$ for all $1 \leq$ $l \leq L$. Then, by Theorems [2.7](#page-6-2) and [3.7\(](#page-9-3)ii), we obtain a dual frame $\mathcal{MD}(\Phi, a)$ with $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L}$

$$
\Theta_a \varphi_l(\cdot, \cdot) = \Theta_a \psi_l(\cdot, \cdot) \left(1 - X(\cdot, \cdot) \sum_{l=1}^L \overline{\Theta_a \psi_l(\cdot, \cdot)} \right) + X(\cdot, \cdot) \quad \text{a.e. on } [1, a) \times [0, 1). \tag{3.10}
$$

We can obtain Φ with properties similar to Ψ by choosing good X. Section 4 will focus on some other examples.

The following theorem shows that the cardinality *L* of Ψ determines whether or not a frame $\mathcal{MD}(\Psi, a)$ is redundant. If $L = 1$, there exists no redundant frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$. If $L > 1$, there exists no nonredundant frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+).$

Theorem 3.9. Let a be a fixed positive number greater than 1, $\Psi = {\psi_1, \psi_2, \ldots, \psi_L}$ be a finite subset *of* $L^2(\mathbb{R}_+)$ *with cardinality L, and* $\mathcal{MD}(\Psi, a)$ *be a frame for* $L^2(\mathbb{R}_+)$ *. Then* $\mathcal{MD}(\Psi, a)$ *is a Riesz basis* for $L^2(\mathbb{R}_+)$ *if and only if* $L = 1$ *.*

Proof. The necessity is an immediate consequence of Lemma [3.4.](#page-8-2) Now we show the sufficiency. Suppose $L = 1$. From the proof of Lemma [3.4](#page-8-2), we have

$$
S^{-\frac{1}{2}}(\mathcal{M}\mathcal{D}(\Psi,a)) = \mathcal{M}\mathcal{D}(S^{-\frac{1}{2}}(\Psi),a).
$$

So $MD(S^{-\frac{1}{2}}(\Psi), a)$ is a Parseval frame for $L^2(\mathbb{R}_+)$ since $MD(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$. This implies by Lemma [3.5](#page-8-3) that $\mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a)$ is an orthonormal basis. This is equivalent to the fact that $\mathcal{MD}(\Psi, a)$ is a Riesz basis for $L^2(\mathbb{R}_+)$. Hence, this completes the proof. \Box

Now we conclude this section with the following remark on fast-converging series expansion associated with *MD*-frames.

Remark 3.10. Let $MD(\Psi, a)$ and $MD(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. Then

$$
f = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l,
$$
(3.11)

and

$$
\left\|f - \sum_{l=1}^{L} \sum_{|m|,|j| \leqslant N} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \right\|^2 \leqslant B \sum_{l=1}^{L} \sum_{|m| \text{ or } |j| > N} |\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)}|^2 \qquad (3.12)
$$

for $f \in L^2(\mathbb{R}_+)$, where *B* is the Bessel bound of $\mathcal{MD}(\Psi, a)$. So the fast-converging series expansion reduces to a fast decay of $\{\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)}\}_{m,j \in \mathbb{Z}}$ with $1 \leq l \leq L$. By Lemmas [2.3\(](#page-3-2)i) and [2.3](#page-3-2)(iv), we can understand the functions in $L^2(\mathbb{R}_+)$ in the Θ_a -transform domain, and every $f \in L^2(\mathbb{R}_+)$ corresponds to the unique representation

$$
\Theta_a f(x,\xi) = \sum_{m,j \in \mathbb{Z}} c_{m,j} e_{m,j}(x,\xi) \quad \text{for a.e. } (x,\xi) \in [1,a) \times [0,1)
$$
 (3.13)

with $c \in l^2(\mathbb{Z}^2)$. Suppose

$$
\Theta_a \varphi_l(x,\xi) = \sum_{m,j \in \mathbb{Z}} d_{l,m,j} e_{m,j}(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1)
$$
 (3.14)

with $d_l \in l^2(\mathbb{Z}^2)$. Again using Lemma [2.3](#page-3-2)(iii), we obtain that

$$
\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} = \langle \Theta_a f, e_{m,j} \Theta_a \varphi_l \rangle_{L^2([1,a) \times [0,1))} = \sum_{n, k \in \mathbb{Z}} c_{n,k} \overline{d_{l,n-m,k-j}}.
$$

It is the convolution of c and $\{\overline{d_{l,-m,-j}}\}_{m,j\in\mathbb{Z}}$. This implies that $\{\langle f,\Lambda_mD_{a^j}\varphi_l\rangle_{L^2(\mathbb{R}_+)}\}_{m,j\in\mathbb{Z}}$ with $1\leq$ $l \leq L$ have rapid decay if *c* and d_l with $1 \leq l \leq L$ have rapid decay. Therefore, we conclude that, if d_l with $1 \leq l \leq L$ in [\(3.14](#page-11-0)) have rapid decay, then the series expansion ([3.11](#page-11-1)) has fast convergence for $f \in L^2(\mathbb{R}_+)$ satisfying [\(3.13](#page-11-2)) with *c* having rapid decay.

4 Some examples

Theorems [2.6](#page-5-5), [2.7](#page-6-2) and [3.7](#page-9-3) provide us with an easy method to construct MD -dual frame pairs for $L^2(\mathbb{R}_+)$. They show that we can construct MD -dual frame pairs for $L^2(\mathbb{R}_+)$ with good properties such as dual windows having bounded supports and certain smoothness. This section focuses on presenting some examples.

Example 4.1. Let *c* be a finitely supported sequence defined on Z such that its Fourier transform

$$
\hat{c}(\xi) = \sum_{l \in \mathbb{Z}} c_l e^{-2\pi i l \xi}
$$

has no zero on [0, 1). Define $\psi \in L^2(\mathbb{R}_+)$ by

$$
\Theta_a \psi(x,\xi) = \hat{c}(\xi) \quad \text{for} \quad (x,\xi) \in [1,a) \times [0,1).
$$

Then by the definition of Θ_a , we have that ψ is a step function and of bounded support and by Theo-rems [2.7](#page-6-2) and [3.9](#page-10-0), we also have that $MD(\psi, a)$ is a Riesz basis for $L^2(\mathbb{R}_+)$. It follows by Theorems [3.7](#page-9-3) and [3.9](#page-10-0) that *MD*(*ψ, a*) has the unique *MD*-dual window *S [−]*¹*ψ* defined by

$$
\Theta_a S^{-1} \psi(x,\xi) = \frac{1}{\sum_{l \in \mathbb{Z}} \overline{c_l} e^{2\pi i l \xi}} \quad \text{for} \ \ (x,\xi) \in [1,a) \times [0,1).
$$

Observe that, if at least two c_l 's are nonzero, we have

$$
\frac{1}{\sum_{l\in\mathbb{Z}}\overline{c_l}\mathrm{e}^{2\pi\mathrm{i}l\xi}}=\sum_{l\in\mathbb{Z}}d_l\mathrm{e}^{-2\pi\mathrm{i}l\xi}
$$

with *d* being infinitely supported. Although ψ is of bounded support, it follows by the definition of Θ_a that the dual window $S^{-1}\psi$ is of unbounded support.

The following example shows that it is possible for us to obtain multi-window *MD*-dual frame pairs for $L^2(\mathbb{R}_+)$ with each window of bounded support.

Example 4.2. For $L > 1$, let m_1, m_2, \ldots, m_L be trigonometric polynomials satisfying

$$
|m_1(\xi)|^2 + |m_2(\xi)|^2 + \cdots + |m_L(\xi)|^2 = 1 \text{ for } \xi \in [0,1).
$$

Define $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ by

$$
\Theta_a \psi_l(x, \xi) = m_l(\xi)
$$
 for $(x, \xi) \in [1, a) \times [0, 1)$.

Then $MD(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$, and every ψ_l is of bounded support by an argument similar to that of Example [4.1](#page-11-3). Define $\Phi = {\varphi_1, \varphi_2, \ldots, \varphi_L}$ by

$$
\Theta_a \phi_l(x,\xi) = m_l(\xi) \left(1 - \sum_{l=1}^L \overline{m_l(\xi)} X_l(x,\xi) \right) + X_l(x,\xi) \quad \text{for a.e. } (x,\xi) \in [1,a) \times [0,1) \tag{4.1}
$$

with $X_l \in L^\infty([1, a) \times [0, 1])$. Then by Theorem [3.7,](#page-9-3) $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. Let

$$
X_l(x,\xi) = \sum_{j \in \mathbb{Z}} d_{l,j}(x) e^{-2\pi i j \xi} \quad \text{for a.e. } (x,\xi) \in [1,a) \times [0,1). \tag{4.2}
$$

If, in addition, we require that every $\{d_{l,j}(\cdot)\}_{j\in\mathbb{Z}}$ with $1 \leq l \leq L$ is a finitely supported sequence of functions on [1, a), then each φ_l with $1 \leq l \leq L$ is of bounded support by [\(4.1\)](#page-12-0) and the definition of Θ_a . **Example 4.3.** For $L \ge 1$, let $\Psi = {\psi_1, \psi_2, \dots, \psi_L}$ be a finite subset of $L^2(\mathbb{R}_+),$ and supp $(\psi_l) \subset [1, a)$. Assume that

$$
\sum_{l=1}^{L} |\psi_l(x)|^2 = 1 \text{ for a.e. } x \in [1, a).
$$

Define $\Phi = {\varphi_1, \varphi_2, \dots, \varphi_L}$ by

$$
\Theta_a \varphi_l(x,\xi) = \psi_l(x) \left(1 - \sum_{l=1}^L \overline{\psi_l(x)} X_l(x,\xi) \right) + X_l(x,\xi) \quad \text{for a.e. } (x,\xi) \in [1,a) \times [0,1) \tag{4.3}
$$

with $X_l \in L^\infty([1, a) \times [0, 1])$. Then by Theorem [3.7,](#page-9-3) $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. In particular, if every X_l with $1 \leq l \leq L$ is as in (4.2) with $\{d_{l,j}(\cdot)\}_{j\in\mathbb{Z}}$ being a finitely supported sequence of functions on [1, *a*), then each φ_l with $1 \leq l \leq L$ is of bounded support.

In Examples [4.2](#page-12-2) and [4.3,](#page-12-3) $\Theta_a \psi_l, 1 \leq l \leq L$, are defined by univariate functions. Next, we give a more general example.

Example 4.4. Assume that $c_0(x)$ and $c_1(x)$ are two real-valued measurable functions defined on [1, a], and that there exist two positive constants *A* and *B* such that

$$
A \leq |c_0(x)| + |c_1(x)| \leq B
$$
 for $x \in [1, a]$.

Define $\Psi = {\psi_1, \psi_2} \subset L^2(\mathbb{R}_+)$ by

$$
\Theta_a \psi_1(x,\xi) = c_0(x) + c_1(x) e^{-4\pi i \xi},
$$

2436 Li Y Z *et al. Sci China Math* December 2020 Vol. 63 No. 12

$$
\Theta_a \psi_2(x,\xi) = \begin{cases} 2i\sqrt{c_0(x)c_1(x)} \sin 2\pi \xi, & \text{if } c_0(x)c_1(x) \ge 0, \\ 2\sqrt{-c_0(x)c_1(x)} \cos 2\pi \xi, & \text{if } c_0(x)c_1(x) < 0 \end{cases}
$$

for $(x,\xi) \in [1, a] \times [0,1)$. Then by simple computation and the definition of Θ_a , we have

$$
\psi_1(x) = \begin{cases}\nc_0(x), & \text{if } 1 \leq x \leq a, \\
a^{-1}c_1(a^{-2}x), & \text{if } a^2 \leq x \leq a^3, \\
0, & \text{otherwise,} \\
-a^{-\frac{1}{2}}\sqrt{c_0(ax)c_1(ax)}, & \text{if } a^{-1} \leq x \leq 1, \\
-a^{-\frac{1}{2}}\sqrt{c_0(a^{-1}x)c_1(a^{-1}x)}, & \text{if } a \leq x \leq a^2 \text{ and } c_0(a^{-1}x)c_1(a^{-1}x) \geq 0, \\
a^{-\frac{1}{2}}\sqrt{-c_0(a^{-1}x)c_1(a^{-1}x)}, & \text{if } a \leq x \leq a^2 \text{ and } c_0(a^{-1}x)c_1(a^{-1}x) < 0, \\
0, & \text{otherwise,}\n\end{cases}
$$

and

$$
|\Theta_a \psi_1(x,\xi)|^2 + |\Theta_a \psi_2(x,\xi)|^2 = (|c_0(x)| + |c_1(x)|)^2.
$$

It follows that

$$
A2 \le |\Theta_a \psi_1(x,\xi)|^2 + |\Theta_a \psi_2(x,\xi)|^2 \le B2
$$
\n(4.4)

for a.e. $(x,\xi) \in [1, a] \times [0,1)$ and thus by Theorem [2.7,](#page-6-2) we have that $\mathcal{MD}(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$. Obviously, ψ_1 and ψ_2 are real-valued and of bounded support.

Now we check the *MD*-duals of $MD(\Psi, a)$. Define $\Phi = {\varphi_1, \varphi_2}$ by

$$
\Theta_a \varphi_l(x,\xi) = \frac{\Theta_a \psi_l(x,\xi)(1 - \overline{\Theta_a \psi_1(x,\xi)} X_1(x,\xi) - \overline{\Theta_a \psi_2(x,\xi)} X_2(x,\xi))}{(|c_0(x)| + |c_1(x)|)^2} + X_l(x,\xi)
$$

for $1 \leq l \leq 2$ and a.e. $(x, \xi) \in [1, a] \times [0, 1)$ with $X_1, X_2 \in L^\infty([1, a] \times [0, 1))$. Then by Theorem [3.7,](#page-9-3) we have that $MD(\Psi, a)$ and $MD(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. If every X_l with $1 \leq$ *l* ≤ 2 is as in ([4.2\)](#page-12-1) with $\{d_{l,j}(\cdot)\}_{j\in\mathbb{Z}}$ being a finitely supported sequence of real-valued functions on [1, a], then φ_1 and φ_2 are also real-valued and of bounded support. Also we can obtain Φ with good smoothness by choosing good X_1 and X_2 . For example, let us make further assumption that $c_0(x)$, $c_1(x)$ and $\sqrt{|c_0(x)c_1(x)|}$ are *k*-th continuously differentiable on $(1, a)$, and that $c_0(1)c_1(1) = c_0(a)c_1(a) = 0$, $c_0(x)c_1(x) > 0$ for $x \in (1, a)$. Then ψ_1 and ψ_2 are continuous on \mathbb{R}_+ and *k*-th continuously differentiable on $(1, a) \cup (a^2, a^3)$ and $(a^{-1}, 1) \cup (a, a^2)$, respectively. In this case, if we further require that $|c_0(x)| + |c_1(x)|$ is a constant on [1, a], and $X_1(x,\xi)$ and $X_2(x,\xi)$ satisfy

$$
X_1(x,\xi) = \sum_{j\in\mathbb{Z}} d_{1,j} e^{-2\pi i j\xi}
$$

and

$$
X_2(x,\xi) = \sum_{j\in\mathbb{Z}} d_{2,j} e^{-2\pi i j\xi},
$$

respectively, for $\xi \in [0, 1)$ with $\{d_{1,j}\}_{j \in \mathbb{Z}}$ and $\{d_{2,j}\}_{j \in \mathbb{Z}}$ being two finitely supported real number sequences. Then φ_1 and φ_2 are real-valued and of bounded support, and have the same continuity and differentiability as ψ_1 and ψ_2 .

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 11271037). The authors thank the referees for their valuable comments.

References

1 Albeverio S, Evdokimov S, Skopina M. *p*-adic multiresolution analysis and wavelet frames. J Fourier Anal Appl, 2010, 16: 693–714

- 2 Casazza P G, Christensen O. Weyl-Heisenberg frames for subspaces of *L*² (R). Proc Amer Math Soc, 2001, 129: 145–154
- 3 Chen Z Y, Micchelli C A, Xu Y S. A construction of interpolating wavelets on invariant sets. Math Comp, 1999, 68: 1569–1587
- 4 Christensen O. An Introduction to Frames and Riesz Bases, 2nd ed. Basel: Birkhäuser, 2016
- 5 Dahmen W, Han B, Jia R Q, et al. Biorthogonal multiwavelets on the interval: Cubic Hermite splines. Constr Approx, 2000, 16: 221–259
- 6 Dai X, Diao Y, Gu Q. Subspaces with normalized tight frame wavelets in R. Proc Amer Math Soc, 2001, 130: 1661–1667
- 7 Dai X, Diao Y, Gu Q, et al. Frame wavelets in subspaces of *L*² (R*d*). Proc Amer Math Soc, 2002, 130: 3259–3267
- 8 Dai X, Diao Y, Gu Q, et al. The existence of subspace wavelet sets. J Comput Appl Math, 2003, 155: 83–90
- 9 Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72: 341–366
- 10 Evdokimov S, Skopina M. On orthogonal *p*-adic wavelet bases. J Math Anal Appl, 2015, 424: 952–965
- 11 Farkov Y A. On wavelets related to the Walsh series. J Approx Theory, 2009, 161: 259–279
- 12 Farkov Y A, Maksimov A Y, Stroganov S A. On biorthogonal wavelets related to the Walsh functions. Int J Wavelets Multiresolut Inf Process, 2011, 9: 485–499
- 13 Feichtinger H G, Strohmer T. Gabor Analysis and Algorithms, Theory and Applications. Boston: Birkhäuser, 1998
- 14 Feichtinger H G, Strohmer T. Advances in Gabor Analysis. Boston: Birkhäuser, 2003
- 15 Gabardo J P, Han D. Subspace Weyl-Heisenberg frames. J Fourier Anal Appl, 2001, 7: 419–433
- 16 Gabardo J P, Han D. Balian-Low phenomenon for subspace Gabor frames. J Math Phys, 2004, 45: 3362–3378
- 17 Gabardo J P, Han D. The uniqueness of the dual of Weyl-Heisenberg subspace frames. Appl Comput Harmon Anal, 2004, 17: 226–240
- 18 Gabardo J P, Han D, Li Y Z. Lattice tiling and density conditions for subspace Gabor frames. J Funct Anal, 2013, 265: 1170–1189
- 19 Gabardo J P, Li Y Z. Rational time-frequency Gabor frames associated with periodic subsets of the real line. Int J Wavelets Multiresolut Inf Process, 2014, 12: 1450013
- 20 Goodman T N T, Micchelli C A, Rodriguez G, et al. On the limiting profile arising from orthonormalizing shifts of exponentially decaying functions. IMA J Numer Anal, 1998, 18: 331–354
- 21 Goodman T N T, Micchelli C A, Shen Z. Riesz bases in subspaces of *L*2(R+). Constr Approx, 2001, 17: 39–46
- 22 Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001
- 23 Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces. Appl Comput Harmon Anal, 2009, 27: 47–54
- 24 Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces II: The structure of affine subspaces. J Funct Anal, 2011, 260: 1615–1636
- 25 Hasankhani M A, Dehghan M A. A new function-valued inner product and corresponding function-valued frame in *L*2(0*, ∞*). Linear Multilinear Algebra, 2014, 8: 995–1009
- 26 Heil C. History and evolution of the density theorem for Gabor frames. J Fourier Anal Appl, 2007, 13: 113–166
- 27 Heil C. A Basis Theory Primer: Expanded Edition. New York: Birkhäuser, 2011
- 28 Hern´andez E, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
- 29 Jia R Q, Jiang Q, Shen Z. Distributional solutions of nonhomogeneous discrete and continuous refinement equations. SIAM J Math Anal, 2000, 32: 420–434
- 30 Jia R Q, Jiang Q, Shen Z. Convergence of cascade algorithms associated with nonhomogeneous refinement equations. Proc Amer Math Soc, 2001, 129: 415–427
- 31 Jia H F, Li Y Z. Refinable function-based construction of weak (quasi-)affine bi-frames. J Fourier Anal Appl, 2014, 20: 1145–1170
- 32 Jia H F, Li Y Z. Weak (quasi-)affine bi-frames for reducing subspaces of $L^2(\mathbb{R}^d)$. Sci China Math, 2015, 58: 1005–1022
- 33 Lang W C. Orthogonal wavelets on the Cantor dyadic group. SIAM J Math Anal, 1996, 27: 305–312
- 34 Lang W C. Wavelet analysis on the Cantor dyadic group. Houston J Math, 1998, 24: 533–544
- 35 Li S. Convergence of cascade algorithms in Sobolev spaces associated with inhomogeneous refinement equations. J Approx Theory, 2000, 104: 153–163
- 36 Li Y Z, Jia H F. Weak Gabor bi-frames on periodic subsets of the real line. Int J Wavelets Multiresolut Inf Process, 2015, 13: 1550046
- 37 Li Y Z, Zhang W. Dilation-and-modulation systems on the half real line. J Inequal Appl, 2016, 1: 186
- 38 Li Y Z, Zhang Y. Rational time-frequency vector-valued subspace Gabor frames and Balian-Low theorem. Int J Wavelets Multiresolut Inf Process, 2013, 11: 1350013
- 39 Li Y Z, Zhang Y. Vector-valued Gabor frames associated with periodic subsets of the real line. Appl Math Comput, 2015, 253: 102–115
- 40 Li Y Z, Zhou F Y. GMRA-based construction of framelets in reducing subspaces of $L^2(\mathbb{R}^d)$. Int J Wavelets Multiresolut Inf Process, 2011, 9: 237–268
- 41 Micchelli C A, Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl

Comput Harmon Anal, 1994, 1: 391–401

- 42 Nielsen M. Walsh-type wavelet packet expansions. Appl Comput Harmon Anal, 2000, 9: 265–285
- 43 Nielsen M. Nonseparable Walsh-type functions on R*d*. Glas Mat Ser III, 2004, 39: 111–138
- 44 Seip K. Regular sets of sampling and interpolation for weighted Bergman spaces. Proc Amer Math Soc, 1993, 117: 213–220
- 45 Shah F A. On some properties of *p*-wavelet packets via the Walsh-Fourier transform. J Nonlinear Anal Optim, 2012, 3: 185–193
- 46 Strang G, Zhou D X. Inhomogeneous refinement equations. J Fourier Anal Appl, 1998, 4: 733–747
- 47 Sun Q. Homogeneous and nonhomogeneous refinable distributions in $F^{q,γ}$. In: Wavelet Analysis and Applications, vol. 25. Providence: Amer Math Soc, 2002, 235–244
- 48 Volkmer H. Frames of wavelets in Hardy space. Analysis, 1995, 15: 405–421
- 49 Young R M. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980
- 50 Zhang Y, Li Y Z. Rational time-frequency multi-window subspace Gabor frames and their Gabor duals. Sci China Math, 2014, 57: 145–160
- 51 Zhou F Y, Li Y Z. Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of $L^2(\mathbb{R}^d)$. Kyoto J Math, 2010, 50: 83–99