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Abstract Wavelet and Gabor systems are based on translation-and-dilation and translation-and-modulation

operators, respectively, and have been studied extensively. However, dilation-and-modulation systems cannot

be derived from wavelet or Gabor systems. This study aims to investigate a class of dilation-and-modulation

systems in the causal signal space L2(R+). L2(R+) can be identified as a subspace of L2(R), which consists

of all L2(R)-functions supported on R+ but not closed under the Fourier transform. Therefore, the Fourier

transform method does not work in L2(R+). Herein, we introduce the notion of Θa-transform in L2(R+)

and characterize the dilation-and-modulation frames and dual frames in L2(R+) using the Θa-transform; and

present an explicit expression of all duals with the same structure for a general dilation-and-modulation frame

for L2(R+). Furthermore, it has been proven that an arbitrary frame of this form is always nonredundant

whenever the number of the generators is 1 and is always redundant whenever the number is greater than 1.

Finally, some examples are provided to illustrate the generality of our results.
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1 Introduction

It is well known that translation, modulation and dilation are fundamental operations in wavelet analysis.

The translation operator Tx0 , modulation operator Mx0 with x0 ∈ R, and dilation operator Dc with

0 < c ̸= 1 are defined by

Tx0f(·) = f(· − x0), Mx0f(·) = e2πix0·f(·) and Dcf(·) =
√
cf(c·)

for f ∈ L2(R), respectively. Given a finite subset Ψ of L2(R), Gabor frames of the form

{MmbTnaψ : m, n ∈ Z, ψ ∈ Ψ} (1.1)
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and wavelet frames of the form

{DajTbkψ : j, k ∈ Z, ψ ∈ Ψ} (1.2)

with a, b > 0 have been extensively studied (see [4, 13, 14, 22, 26–28]). However, dilation-and-modulation

frames of the form

{MmbDajψ : m, j ∈ Z, ψ ∈ Ψ} with a, b > 0 (1.3)

have not been studied sufficiently. It has been found that the Fourier transform of (1.3) which is

{TmbDaj ψ̂ : m, j ∈ Z, ψ ∈ Ψ} (1.4)

does not fall into the framework of the above wavelet and Gabor systems. Herein, our focus is on a class

of dilation-and-modulation frames for L2(R+) with R+ = (0,∞). L2(R+) can be considered as a closed

subspace of L2(R) comprising all functions in L2(R) that vanish outside R+ and can model a causal signal

space.

For more details on subspace Gabor and wavelet frames of the forms (1.1) and (1.2), respectively, see,

e.g., [2, 6–8, 15–18], [19, 23, 24, 31, 32, 36, 38, 39], [40, 44, 48, 50, 51] and the references therein. It is easy to

check that there exists no nonzero function ψ such that

Tncψ(·) = 0 on (−∞, 0)

for some c > 0 and for all n ∈ Z. This implies that L2(R+) admits no frame of the form (1.1), (1.2)

or (1.4). Therefore, constructing frames for L2(R+) with good structures is important. Two methods

are known for this purpose. The first is to construct frames for L2(R+) comprising a subsystem of (1.2)

and some inhomogeneous refinable function-based “boundary wavelets”. For more details, see, e.g.,

[3, 5, 29, 30, 35, 41, 46, 47] and the references therein. The other is to use the Cantor group operation and

Walsh series theory to introduce the notion of (frame) multiresolution analysis in L2(R+), and then derive

wavelet frames similar to the case of L2(R). For more details, see, e.g., [1, 10–12, 33, 34, 42, 43, 45] and

the references therein. In [20], numerical experiments were presented to establish that the nonnegative

integer shifts of the Gaussian function form a Riesz sequence in L2(R+), and in [21], a sufficient condition

was obtained to determine whether or not the nonnegative translations of a given function form a Riesz

sequence on L2(R+).

Given a > 1, a measurable function h defined on R+ is said to be a-dilation periodic if h(a·) = h(·)
a.e. on R+. Throughout this paper, we denote by {Λm}m∈Z the sequence of a-dilation periodic functions

defined by

Λm(·) = 1√
a− 1

e
2πim·
a−1 on [1, a) for each m ∈ Z. (1.5)

Motivated by the above works, herein, we aim to investigate the dilation-and-modulation systems in

L2(R+) of the form:

MD(Ψ, a) = {ΛmDajψl : m, j ∈ Z, 1 6 l 6 L} (1.6)

under the following general setup:

General setup. (i) a is a fixed positive number greater than 1.

(ii) Ψ = {ψ1, ψ2, . . . , ψL} is a finite subset of L2(R+) with cardinality L.

As in multi-window Gabor analysis, throughout this paper, we say a set Ψ = {ψ1, ψ2, . . . , ψL} is a

finite subset of L2(R+) with cardinality L, which means that it is a finite sequence in L2(R+) with L

terms, i.e., we do not require that ψ1, ψ2, . . . , ψL are pairwise different.

For Φ = {φ1, φ2, . . . , φL}, we define MD(Φ, a), as defined in (1.6). The system MD(Ψ, a) differs

from (1.3). The modulation factor e2πimb· in (1.1) is 1
bZ-periodic under addition, while Λm in (1.6) is a-

dilation periodic. The motivation of introducing MD(Ψ, a) in L2(R+) is from the group structure of R+.

Since R is a group under addition, one chooses addition periodic prefactors Mmb to match shift-invariant

systems, and obtain Gabor systems of the form (1.1). However, R+ is a group under multiplication

instead of addition. Therefore, we choose dilation periodic prefactors to match dilation-invariant systems

and therefore, we study MD(Ψ, a) in L2(R+) of the form (1.6).
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Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset of L2(R+)

with cardinality L. The system MD(Ψ, a) is called a frame for L2(R+) if there exist 0 < C1 6 C2 < ∞
such that

C1∥f∥2L2(R+) 6
L∑

l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 6 C2∥f∥2L2(R+) for f ∈ L2(R+), (1.7)

where C1 and C2 are called frame bounds; it is called a Bessel sequence in L2(R+) if the right-hand side

inequality in (1.7) holds, where C2 is called a Bessel bound. Particularly, it is called a Parseval frame if

in (1.7), C1 = C2 = 1. Given a frame MD(Ψ, a) for L2(R+), a sequence MD(Φ, a) is called a dual (or

an MD-dual ) of MD(Ψ, a) if it is a frame such that

f =

L∑
l=1

∑
m,j∈Z

⟨f, ΛmDajφl⟩L2(R+)ΛmDajψl for f ∈ L2(R+). (1.8)

It is easy to check that MD(Ψ, a) is also a dual of MD(Φ, a) if MD(Φ, a) is a dual of MD(Ψ, a).

Therefore, in this case, we say MD(Ψ, a) and MD(Φ, a) form a pair of dual frames for L2(R+). By the

knowledge of frame theory, MD(Ψ, a) and MD(Φ, a) form a pair of dual frames for L2(R+) if they are

Bessel sequences and satisfy (1.8). The fundamentals of frames can be found in [4, 9, 27, 49]. Observe

that L2(R+) is the Fourier transform of the Hardy space H2(R) which is a reducing subspace of L2(R)
defined by

H2(R) = {f ∈ L2(R) : f̂(·) = 0 a.e. on (−∞, 0)}.

Wavelet frames in H2(R) of the form (1.2) were studied in [28, 44, 48]. By the Plancherel theorem, an

H2(R)-frame, which is given by {DajTbkψ : j, k ∈ Z, ψ ∈ Ψ}, leads to an L2(R+)-frame given by

{e−2πiajk·ψ̂(aj ·) : j, k ∈ Z, ψ ∈ Ψ}. (1.9)

In (1.9), e−2πiajk· is a−jZ-periodic with respect to addition, and the period varies with j. However, Λm

in (1.6) is a-dilation periodic, and is unrelated to j. Therefore, the system (1.6) differs from (1.9), and it

is of independent interest.

This study focuses on the theory of L2(R+)-frames of the form (1.6). It cannot be derived from the

well-known wavelet and Gabor systems, and its operation is more intuitive when compared with the

Cantor group and Walsh series-based systems in [1, 10–12, 33, 34, 42, 43, 45]. Also L2(R+) is not closed

under the Fourier transform. In particular, the Fourier transform of a compactly supported nonzero

function in L2(R+) lies outside this space. Therefore, the Fourier transform cannot be used in our setting

and thus, it is desirable to find a new method.

The system (1.6) is related to a kind of function-valued frames in [25] by Hasankhani and Dehghan.

They introduced the notion of function-valued frame as follows. Given a > 1 and f , g ∈ L2(R+), define

the function-valued inner product ⟨f, g⟩a of f and g by

⟨f, g⟩a(·) =
∑
j∈Z

ajf(aj ·)g(aj ·), and ∥f∥a(·) =
√
⟨f, f⟩a(·).

A sequence {fj}j∈Z in L2(R+) is called a function-valued frame for L2(R+) with respect to a, if there

exist positive constants A and B, such that

A∥f∥2a(·) 6
∑
j∈Z

|⟨f, fj⟩a(·)|2 6 B∥f∥2a(·) a.e. on [1, a]

for f ∈ L2(R+). Take fj = Dajψ for some ψ ∈ L2(R+). Then, applying [25, Theorem 4.8], we have

that {Dajψ}j∈Z is a function-valued frame for L2(R+) with respect to a if and only if MD(ψ, a) (i.e.,

L = 1 in (1.6)) is a frame for L2(R+). We characterized frames of the form MD(ψ, a) in [37] in terms of

the bi-infinite matrix-valued function G(ψ, ·) = (Daj+lψ(·))j, l∈Z, where the notion of Θa-transform was
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not formally formulated. In this paper, we will introduce the Θa-transform, and use the Θa-transform

method to study multi-window frames MD(Ψ, a) of the form (1.6) and their duals. By Theorem 3.9

below, frames in [37] are all Riesz bases but frames in this paper are redundant ones if L > 1.

The rest of this paper is organized as follows. In Section 2, we introduce the notion of Θa-transform,

and give a Θa-transform domain characterization for a dilation-and-modulation system MD(Ψ, a) to be

complete, a Bessel sequence, and a frame in L2(R+), accordingly. In Section 3, using the Θa-transform we

characterize dual frame pairs of the form (MD(Ψ, a), MD(Φ, a)) and obtain an explicit expression of all

MD-duals of a general frame MD(Ψ, a) for L2(R+). We also prove that an arbitrary frame MD(Ψ, a)

is a Riesz basis if and only if L = 1. In Section 4, we give some examples of MD-dual frame pairs

for L2(R+) to illustrate the generality of our results.

2 Θa-transform domain frame characterization

Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset of L2(R+)

with cardinality L. In this section, by introducing the Θa-transform we give the conditions of complete-

ness, Bessel sequence and frame of MD(Ψ, a) in L2(R+), accordingly.

Definition 2.1. Let a be a fixed positive number greater than 1. For f ∈ L2(R+), we define

Θaf(x, ξ) =
∑
l∈Z

a
l
2 f(alx)e−2πilξ (2.1)

for a.e. (x, ξ) ∈ R+ × R.
Remark 2.2. Observe that, given f ∈ L2(R+),∫ aj+1

aj

∑
l∈Z

al|f(alx)|2dx = ∥f∥2L2(R+) <∞ for j ∈ Z.

This implies that
∑

l∈Z a
l|f(al·)|2 < ∞ a.e. on R+ by the arbitrariness of j. Therefore, (2.1) is well

defined.

Lemma 2.3. Let a be a fixed positive number greater than 1. For m, j ∈ Z, define Λm as in (1.5),

and em,j by

em,j(x, ξ) = Λm(x)e2πijξ for (x, ξ) ∈ R+ × R.

Then

(i) {Λm : m ∈ Z} and {em,j : m, j ∈ Z} are orthonormal bases for L2([1, a)) and L2([1, a) × [0, 1)),

respectively;

(ii) the Θa-transform has the following quasi-periodicity: given f ∈ L2(R+),

Θaf(a
jx, ξ +m) = e2πijξa−

j
2Θaf(x, ξ)

for j, m ∈ Z and a.e. (x, ξ) ∈ R+ × R;
(iii) for j,m ∈ Z, f ∈ L2(R+),

Θa(ΛmDajf)(x, ξ) = em,j(x, ξ)Θaf(x, ξ) for a.e. (x, ξ) ∈ R+ × R;

(iv) the Θa-transform is a unitary operator from L2(R+) onto L
2([1, a)× [0, 1));

(v) ∫
[1,a)×[0,1)

|f(x, ξ)|2dxdξ =
∑

m,j∈Z

∣∣∣∣ ∫
[1,a)×[0,1)

f(x, ξ)em,j(x, ξ)dxdξ

∣∣∣∣2 (2.2)

for f ∈ L1([1, a)× [0, 1)).
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Proof. By a standard argument, we have (i)–(iii). Next, we prove (iv) and (v).

(iv) It is obvious that the Θa-transform is linear. We only need to prove that it is norm-preserving

and onto. For f ∈ L2(R+), we have

∥Θaf∥2L2([1,a)×[0,1)) =

∫ a

1

dx

∫ 1

0

∣∣∣∣∑
l∈Z

a
l
2 f(alx)e−2πilξ

∣∣∣∣2dξ
=

∫ a

1

∑
l∈Z

al|f(alx)|2dx

= ∥f∥2L2(R+).

This implies that the Θa-transform is norm-preserving. Next, we prove that it is onto. Let F ∈ L2([1, a)

× [0, 1)). Then there exists a unique {cm,j}m,j∈Z ∈ l2(Z2) such that

F (x, ξ) =
∑

m,j∈Z

cm,jem,j(x, ξ) =
∑
j∈Z

( ∑
m∈Z

cm, jΛm(x)

)
e2πijξ

for a.e. (x, ξ) ∈ [1, a)× [0, 1) by (i). Define f on R+ by

f(ajx) = a−
j
2

∑
m∈Z

cm,−jΛm(x) for j ∈ Z and a.e. x ∈ [1, a).

Then

∥f∥2L2(R+) =
∑
j∈Z

∫ a

1

aj |f(ajx)|2dx =
∑
j∈Z

∑
m∈Z

|cm,−j |2 =
∑

m,j∈Z

|cm,j |2 <∞

by (i), and we have

Θaf(x, ξ) = F (x, ξ) for a.e. (x, ξ) ∈ [1, a)× [0, 1).

Hence, the Θa-transform is onto.

(v) By (i), (2.2) holds if f ∈ L2([1, a) × [0, 1)). When f ∈ L1([1, a) × [0, 1)) \ L2([1, a) × [0, 1)), the

left-hand side of (2.2) is infinite. Now we prove by contradiction that the right-hand side of (2.2) is also

infinite. Suppose it is finite. Then the function

g =
∑

m,j∈Z

(∫
[1,a)×[0,1)

f(x, ξ)em,j(x, ξ)dxdξ

)
em,j

belongs to L2([1, a)× [0, 1)) by (i), and thus it belongs to L1([1, a)× [0, 1)). Since it has the same Fourier

coefficients as f , by the uniqueness of Fourier coefficients, f = g. Thus f ∈ L2([1, a)× [0, 1)), which leads

to a contradiction. The proof is completed.

Lemma 2.4. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Then

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 =

∫
[1,a)×[0,1)

( L∑
l=1

|Θaψl(x, ξ)|2
)
|Θaf(x, ξ)|2dxdξ for f ∈ L2(R+).

Proof. Fix f ∈ L2(R+). By Lemmas 2.3(iii) and 2.3(iv), we have

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 =
L∑

l=1

∑
m,j∈Z

|⟨Θaf, ΘaΛmDajψl⟩L2([1,a)×[0,1))|2

=
L∑

l=1

∑
m,j∈Z

|⟨Θaf, em,jΘaψl⟩L2([1,a)×[0,1))|2

=

L∑
l=1

∑
m,j∈Z

∣∣∣∣ ∫
[1,a)×[0,1)

Θaψl(x, ξ)Θaf(x, ξ)em,j(x, ξ)dxdξ

∣∣∣∣2.
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Again applying Lemma 2.3(v) to Θaψl(x, ξ)Θaf(x, ξ) leads to

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 =

L∑
l=1

∫
[1,a)×[0,1)

|Θaψl(x, ξ)Θaf(x, ξ)|2dxdξ

=

∫
[1,a)×[0,1)

( L∑
l=1

|Θaψl(x, ξ)|2
)
|Θaf(x, ξ)|2dxdξ.

This completes the proof.

Theorem 2.5. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Then MD(Ψ, a) is complete in L2(R+) if and only if

L∑
l=1

|Θaψl(x, ξ)|2 ̸= 0 for a.e. (x, ξ) ∈ [1, a)× [0, 1). (2.3)

Proof. By Lemma 2.4, for f ∈ L2(R+),

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 = 0 a.e. on R+ (2.4)

if and only if ( L∑
l=1

|Θaψl(x, ξ)|2
)
|Θaf(x, ξ)|2 = 0 for a.e. (x, ξ) ∈ [1, a)× [0, 1). (2.5)

Observe that MD(Ψ, a) is complete in L2(R+) if and only if f = 0 is the unique solution to (2.4) in

L2(R+). It follows that the completeness of MD(Ψ, a) in L2(R+) is equivalent to f = 0 being the unique

solution to (2.5) in L2(R+). This is in turn equivalent to the fact that Θaf = 0 is the unique solution

to (2.5) in L2([1, a) × [0, 1)) by Lemma 2.3(iv), which is as well equivalent to (2.3). This completes the

proof.

Theorem 2.6. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Then MD(Ψ, a) is a Bessel sequence in L2(R+) with the Bessel

bound B if and only if

L∑
l=1

|Θaψl(x, ξ)|2 6 B for a.e. (x, ξ) ∈ [1, a)× [0, 1). (2.6)

Proof. By Lemmas 2.4 and 2.3(v), we have

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 =

∫
[1,a)×[0,1)

( L∑
l=1

|Θaψl(x, ξ)|2
)
|Θaf(x, ξ)|2dxdξ, (2.7)

and ∫
[1,a)×[0,1)

|Θaf(x, ξ)|2dxdξ = ∥f∥2L2(R+,CL) (2.8)

for f ∈ L2(R+, CL). So by Lemma 2.3(iv), (2.6) implies that

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩L2(R+)|2 6 B∥f∥2L2(R+,CL) (2.9)

for f ∈ L2(R+). Thus, MD(Ψ, a) is a Bessel sequence in L2(R+) with the Bessel bound B.

Now we prove the converse implication by contradiction. Suppose MD(Ψ, a) is a Bessel sequence in

L2(R+) with the Bessel bound B, and
∑L

l=1 |Θaψ(·, ·)|2 > B on some E ⊂ [1, a) × [0, 1) with |E| > 0.

Define f by

Θaf(·, ·) = χ
E
(·, ·) on [1, a)× [0, 1)
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in (2.7), where χE denotes the characteristic function of E. Then f is well defined,

∥f∥2L2(R+) =

∫
[1,a)×[0,1)

|Θaf(x, ξ)|2dxdξ = |E|

by Lemma 2.3(iv), and

L∑
l=1

∑
m,j∈Z

|⟨f,ΛmDajψl⟩L2(R+)|2 > B|E| = B∥f∥L2
(R+)

.

This contradicts the fact that MD(Ψ, a) is a Bessel sequence in L2(R+) with the Bessel bound B. This

completes the proof.

By a similar argument to that in Theorem 2.6, we obtain the following theorem.

Theorem 2.7. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Then MD(Ψ, a) is a frame in L2(R+) with frame bounds A and B

if and only if

A 6
L∑

l=1

|Θaψl(x, ξ)|2 6 B

for a.e. (x, ξ) ∈ [1, a)× [0, 1).

3 Θa-transform domain expression of duals

In this section, we characterize and express MD-duals of a general frame MD(Ψ, a) for L2(R+) and

also, we study the redundancy of a general frame MD(Ψ, a) for L2(R+). Interestingly, we prove that an

arbitrary frame MD(Ψ, a) for L2(R+) is always nonredundant if L = 1, and is always redundant if L > 1

(see Theorem 3.9 below).

For the ease and convenience, we write

D = {f ∈ L2(R+) : Θaf ∈ L∞([1, a)× [0, 1))}. (3.1)

Then using Lemma 2.3(iv) and the fact that L∞([1, a)× [0, 1)) is dense in L2([1, a)× [0, 1)), we have that

D is dense in L2(R+). This fact will be frequently used in what follows.

Let a be a fixed positive number greater than 1, Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset of L2(R+)

with cardinality L, and MD(Ψ, a) be a Bessel sequence in L2(R+). We denote by S its frame operator,

i.e.,

Sf =

L∑
l=1

∑
m,j∈Z

⟨f, ΛmDajψl⟩L2(R+)ΛmDajψl for f ∈ L2(R+).

By a standard argument, we have the following lemma that shows that S commutes with the modulation

and dilation operators.

Lemma 3.1. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Assume that MD(Ψ, a) is a Bessel sequence in L2(R+), and that S

is its frame operator. Then

SΛmf = ΛmSf, SDajf = DajSf,

and thus SΛmDajf = ΛmDajSf for f ∈ L2(R+) and m, j ∈ Z.
Lemma 3.2. Let a be a fixed positive number greater than 1, Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset

of L2(R+) with cardinality L, and Φ = {φ1, φ2, . . . , φL} ⊂ L2(R+). Then

L∑
l=1

∑
m,j∈Z

⟨f, ΛmDajψl⟩L2(R+)⟨ΛmDajφl, g⟩L2(R+) =

∫
[1,a)×[0,1)

Ω(x, ξ)Θaf(x, ξ)Θag(x, ξ)dxdξ (3.2)
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for f, g ∈ D, where

Ω(x, ξ) =

L∑
l=1

Θaφl(x, ξ)Θaψl(x, ξ).

Proof. Let f, g ∈ D be fixed. Then by Lemma 2.4, we have

L∑
l=1

∑
m,j∈Z

|⟨f, ΛmDajψl⟩|2 <∞, and
L∑

l=1

∑
m,j∈Z

|⟨g, ΛmDajφl⟩|2 <∞.

Thus, the series
L∑

l=1

∑
m,j∈Z

⟨f, ΛmDajψl⟩L2(R+)⟨ΛmDajφl, g⟩L2(R+)

is well defined and converges absolutely. By Lemmas 2.3(i), 2.3(iii) and 2.3(iv), we see that

L∑
l=1

∑
m,j∈Z

⟨f, ΛmDajψl⟩L2(R+)⟨ΛmDajφl, g⟩L2(R+)

=
L∑

l=1

∑
m,j∈Z

⟨Θaf, ΘaΛmDajψl⟩L2([1,a)×[0,1))⟨ΘaΛmDajφl, Θag⟩L2([1,a)×[0,1))

=

L∑
l=1

∑
m,j∈Z

⟨ΘaψlΘaf, em,j⟩L2([1,a)×[0,1))⟨em,j , ΘaφlΘag⟩L2([1,a)×[0,1))

=
L∑

l=1

⟨ΘafΘaψl, ΘagΘaφl⟩L2([1,a)×[0,1))

=

∫
[1,a)×[0,1)

Ω(x, ξ)Θaf(x, ξ)Θag(x, ξ)dxdξ.

This completes the proof.

Lemma 3.3. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Assume that MD(Ψ, a) is a Bessel sequence in L2(R+), and that S

is its frame operator. Then, for f ∈ L2(R+),

ΘaSf(·, ·) =
( L∑

l=1

|Θaψl(·, ·)|2
)
Θaf(·, ·) (3.3)

a.e. on [1, a)× [0, 1).

Proof. By Lemma 3.2, we have

⟨Sf, g⟩L2(R+) =

∫
[1,a)×[0,1)

( L∑
l=1

|Θaψl(x, ξ)|2
)
Θaf(x, ξ)Θag(x, ξ)dxdξ

for f, g ∈ D. Since D is dense in L2(R+) and MD(Ψ, a) is a Bessel sequence, by Theorem 2.6 and a

standard argument, it follows that

⟨Sf, g⟩L2(R+) =

⟨( L∑
l=1

|Θaψl(x, ξ)|2
)
Θaf, Θag

⟩
L2([1,a)×[0,1))

for f, g ∈ L2(R+). Also observing that

⟨Sf, g⟩L2(R+) = ⟨ΘaSf, Θag⟩L2([1,a)×[0,1))
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by Lemma 2.3(iv), we have that

⟨ΘaSf,Θag⟩L2([1,a)×[0,1)) =

⟨( L∑
l=1

|Θaψl|2
)
Θaf,Θag

⟩
L2([1,a)×[0,1))

for f, g ∈ L2(R+). This implies (3.3) by Lemma 2.3(iv). This completes the proof.

Lemma 3.4. Let a be a fixed positive number greater than 1, and Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L. Then MD(Ψ, a) cannot be a Riesz sequence in L2(R+) whenever

L > 1.

Proof. We proceed by contradiction. Suppose L > 1 and MD(Ψ, a) is a Riesz sequence in L2(R+).

Let S be its frame operator. Then by Lemma 3.1, it commutes with ΛmDaj for all m, j ∈ Z. Since S is

self-adjoint, invertible and bounded, it follows that

S− 1
2ΛmDajψl = ΛmDajS− 1

2ψl for m, j ∈ Z and 1 6 l 6 L.

Hence, MD(S− 1
2 (Ψ), a) is an orthonormal system in L2(R+). Write S− 1

2ψl = φl for 1 6 l 6 L. Then

for m1, m2, j1, j2 ∈ Z and 1 6 l1, l2 6 L, we have

⟨Λm1Daj1φl1 , Λm2Daj2φl2⟩L2(R+) = δm1,m2δj1,j2δl1,l2 ,

where the Kronecker delta is defined by

δn,m =

{
1, if n = m,

0, if n ̸= m.

By Lemmas 2.3(iii) and 2.3(iv), it is equivalent to

⟨em1,j1Θaφl1 , em2,j2Θaφl2⟩L2([1,a)×[0,1)) = δm1,m2δj1,j2δl1,l2

for m1, m2, j1, j2 ∈ Z and 1 6 l1, l2 6 L, equivalently,

1√
a− 1

∫
[1,a)×[0,1)

Θaφl1(x, ξ)Θaφl2(x, ξ)em,j(x, ξ)dxdξ = δm,0δj,0δl1,l2

for m, j ∈ Z and 1 6 l1, l2 6 L. This in turn is equivalent to

Θaφl1(·, ·)Θaφl2(·, ·) = δl1,l2 a.e. on [1, a)× [0, 1)

for 1 6 l1, l2 6 L by the uniqueness of Fourier coefficients. In particular, it implies that

|Θaφ1(·, ·)| = |Θaφ2(·, ·)| = 1

and

Θaφ1(·, ·)Θaφ2(·, ·) = 0

a.e. on [1, a)× [0, 1). This leads to a contradiction. Hence, this completes the proof.

The following lemma is extracted from [37, Corollary 3.1].

Lemma 3.5. Let a be a fixed positive number greater than 1, and Ψ be a singleton in L2(R+). Then

MD(Ψ, a) is a Parseval frame for L2(R+) if and only if it is an orthonormal basis for L2(R+).

Theorem 3.6. Let a be a fixed positive number greater than 1, Ψ = {ψ1, ψ2, . . . , ψL} be a finite

subset of L2(R+) with cardinality L, and Φ = {φ1, φ2, . . . , φL} ⊂ L2(R+). Assume that MD(Ψ, a) and

MD(Φ, a) are Bessel sequences in L2(R+). Then MD(Ψ, a) and MD(Φ, a) form a pair of dual frames

for L2(R+) if and only if

L∑
l=1

Θaφl(x, ξ)Θaψl(x, ξ) = 1 for a.e. (x, ξ) ∈ [1, a)× [0, 1). (3.4)
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Proof. Since MD(Ψ, a) and MD(Φ, a) are Bessel sequences in L2(R+), and D is dense in L2(R+),

we have that MD(Ψ, a) and MD(Φ, a) form a pair of dual frames for L2(R+) if and only if

L∑
l=1

∑
m,j∈Z

⟨f, ΛmDajψl⟩L2(R+)⟨ΛmDajφl, g⟩L2(R+) = ⟨f, g⟩L2(R+) (3.5)

for f, g ∈ D. By Lemmas 3.2 and 2.3(iv), (3.5) is equivalent to

∫
[1,a)×[0,1)

( L∑
l=1

Θaφl(x, ξ)Θaψl(x, ξ)

)
Θaf(x, ξ)Θag(x, ξ)dxdξ

=

∫
[1,a)×[0,1)

Θaf(x, ξ)Θag(x, ξ)dxdξ (3.6)

for f, g ∈ D. Obviously, (3.4) implies (3.6). Now we prove the converse implication to finish the proof.

Suppose (3.6) holds. By Theorem 2.6 and the Cauchy-Schwarz inequality, we have

L∑
l=1

ΘaφlΘaψl ∈ L∞([1, a)× (0, 1)).

This implies that almost every point in (1, a)× (0, 1) is a Lebesgue point of
∑L

l=1 ΘaφlΘaψl. Arbitrarily

fix such a point (x0, ξ0) ∈ (1, a)× (0, 1), and take f, g ∈ D in (3.6) such that

Θaf = Θag =
1√

|B((x0, ξ0), ε)|
χ

B((x0,ξ0),ε)

on [1, a) × [0, 1) with B((x0, ξ0), ε) ⊂ (1, a) × (0, 1) and ε > 0, where B((x0, ξ0), ε) denotes the ε-

neighborhood of (x0, ξ0). Then by Lemma 2.3(iv), f and g are well defined and thus, we obtain that

1

|B((x0, ξ0), ε)|

∫
B((x0,ξ0),ε)

L∑
l=1

Θaφl(x, ξ)Θaψl(x, ξ)dxdξ = 1. (3.7)

Letting ε→ 0 in (3.7) leads to
L∑

l=1

Θaφl(x0, ξ0)Θaψl(x0, ξ0) = 1.

This implies (3.4) by the arbitrariness of (x0, ξ0). This completes the proof.

Now, we turn to the expression of MD-duals. Let a be a fixed positive number greater than 1,

Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset of L2(R+) with cardinality L, MD(Ψ, a) be a frame for L2(R+),

and S be its frame operator. By Lemma 3.1, SΛmDaj = ΛmDajS, and thus S−1ΛmDaj = ΛmDajS−1 for

m, j ∈ Z. So MD(Ψ, a) and its canonical dual S−1(MD(Ψ, a)) share the same dilation-and-modulation

structure, i.e.,

S−1(MD(Ψ, a)) = MD(S−1(Ψ), a).

The following theorem gives its canonical dual window and all MD-dual windows in the Θa transform

domain.

Theorem 3.7. Let a be a fixed positive number greater than 1, Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset

of L2(R+) with cardinality L, and MD(Ψ, a) be a frame for L2(R+). Then

(i) its canonical dual MD(S−1(Ψ), a) is given by

ΘaS
−1ψl(·, ·) =

Θaψl(·, ·)∑L
l=1 |Θaψl(·, ·)|2

a.e. on [1, a)× [0, 1) for 1 6 l 6 L;
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(ii) a dilation-and-modulation system MD(Φ, a) with Φ = {φ1, φ2, . . . , φL} is a dual frame of

MD(Ψ, a) if and only if Φ is defined by

Θaφl(·, ·) =
Θaψl(·, ·)(1−

∑L
l=1 Θaψl(·, ·)Xl(·, ·))∑L

l=1 |Θaψl(·, ·)|2
+Xl(·, ·) a.e. on [1, a)× [0, 1), (3.8)

where Xl ∈ L∞([1, a)× [0, 1)) with 1 6 l 6 L.

Proof. (i) Since S is an invertible and bounded operator on L2(R+), by Lemma 3.3, we have

Θaf(·, ·) =
( L∑

l=1

|Θaψl(·, ·)|2
)
ΘaS

−1f(·, ·) for f ∈ L2(R+). (3.9)

Replacing f by ψl in (3.9) with 1 6 l 6 L, we have (i).

(ii) For sufficiency, suppose Φ is given by (3.8). Then by Theorem 2.6, MD(Φ, a) is a Bessel sequence

in L2(R+). By a simple computation, we obtain

L∑
l=1

Θaφl(·, ·)Θaψl(·, ·) = 1 a.e. on [1, a)× [0, 1).

It follows by Theorem 3.6 that MD(Φ, a) is a dual frame of MD(Ψ, a).

For necessity, suppose MD(Φ, a) is a dual frame of MD(Ψ, a). Then by Theorem 3.6, we have

L∑
l=1

Θaψl(·, ·)Θaφl(·, ·) = 1 a.e. on [1, a)× [0, 1),

and Θaφl ∈ L∞([1, a) × [0, 1)). So we have (3.8) with Xl = Θaφl, 1 6 i 6 L. This completes the

proof.

Remark 3.8. Theorem 3.7 gives us much flexibility in constructing MD-duals. For example, suppose

MD(Ψ, a) is a Parseval frame for L2(R+). Take Xl as a fixed function X in L∞([1, a)× [0, 1)) for all 1 6
l 6 L. Then, by Theorems 2.7 and 3.7(ii), we obtain a dual frame MD(Φ, a) with Φ = {φ1, φ2, . . . , φL},

Θaφl(·, ·) = Θaψl(·, ·)
(
1−X(·, ·)

L∑
l=1

Θaψl(·, ·)
)
+X(·, ·) a.e. on [1, a)× [0, 1). (3.10)

We can obtain Φ with properties similar to Ψ by choosing good X. Section 4 will focus on some other

examples.

The following theorem shows that the cardinality L of Ψ determines whether or not a frame MD(Ψ, a)

is redundant. If L = 1, there exists no redundant frame MD(Ψ, a) for L2(R+). If L > 1, there exists no

nonredundant frame MD(Ψ, a) for L2(R+).

Theorem 3.9. Let a be a fixed positive number greater than 1, Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset

of L2(R+) with cardinality L, and MD(Ψ, a) be a frame for L2(R+). Then MD(Ψ, a) is a Riesz basis

for L2(R+) if and only if L = 1.

Proof. The necessity is an immediate consequence of Lemma 3.4. Now we show the sufficiency. Suppose

L = 1. From the proof of Lemma 3.4, we have

S− 1
2 (MD(Ψ, a)) = MD(S− 1

2 (Ψ), a).

SoMD(S− 1
2 (Ψ), a) is a Parseval frame for L2(R+) sinceMD(Ψ, a) is a frame for L2(R+). This implies by

Lemma 3.5 that MD(S− 1
2 (Ψ), a) is an orthonormal basis. This is equivalent to the fact that MD(Ψ, a)

is a Riesz basis for L2(R+). Hence, this completes the proof.

Now we conclude this section with the following remark on fast-converging series expansion associated

with MD-frames.
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Remark 3.10. Let MD(Ψ, a) and MD(Φ, a) form a pair of dual frames for L2(R+). Then

f =
L∑

l=1

∑
m,j∈Z

⟨f, ΛmDajφl⟩L2(R+)ΛmDajψl, (3.11)

and∥∥∥∥f −
L∑

l=1

∑
|m|,|j|6N

⟨f, ΛmDajφl⟩L2(R+)ΛmDajψl

∥∥∥∥2 6 B
L∑

l=1

∑
|m| or |j|>N

|⟨f, ΛmDajφl⟩L2(R+)|2 (3.12)

for f ∈ L2(R+), where B is the Bessel bound of MD(Ψ, a). So the fast-converging series expansion

reduces to a fast decay of {⟨f,ΛmDajφl⟩L2(R+)}m,j∈Z with 1 6 l 6 L. By Lemmas 2.3(i) and 2.3(iv), we

can understand the functions in L2(R+) in the Θa-transform domain, and every f ∈ L2(R+) corresponds

to the unique representation

Θaf(x, ξ) =
∑

m, j∈Z
cm,jem,j(x, ξ) for a.e. (x, ξ) ∈ [1, a)× [0, 1) (3.13)

with c ∈ l2(Z2). Suppose

Θaφl(x, ξ) =
∑

m, j∈Z
dl,m,jem,j(x, ξ) for a.e. (x, ξ) ∈ [1, a)× [0, 1) (3.14)

with dl ∈ l2(Z2). Again using Lemma 2.3(iii), we obtain that

⟨f, ΛmDajφl⟩L2(R+) = ⟨Θaf, em,jΘaφl⟩L2([1,a)×[0,1)) =
∑

n, k∈Z

cn,kdl,n−m,k−j .

It is the convolution of c and {dl,−m,−j}m,j∈Z. This implies that {⟨f,ΛmDajφl⟩L2(R+)}m,j∈Z with 1 6
l 6 L have rapid decay if c and dl with 1 6 l 6 L have rapid decay. Therefore, we conclude that, if dl
with 1 6 l 6 L in (3.14) have rapid decay, then the series expansion (3.11) has fast convergence for

f ∈ L2(R+) satisfying (3.13) with c having rapid decay.

4 Some examples

Theorems 2.6, 2.7 and 3.7 provide us with an easy method to construct MD-dual frame pairs for L2(R+).

They show that we can construct MD-dual frame pairs for L2(R+) with good properties such as dual

windows having bounded supports and certain smoothness. This section focuses on presenting some

examples.

Example 4.1. Let c be a finitely supported sequence defined on Z such that its Fourier transform

ĉ(ξ) =
∑
l∈Z

cle
−2πilξ

has no zero on [0, 1). Define ψ ∈ L2(R+) by

Θaψ(x, ξ) = ĉ(ξ) for (x, ξ) ∈ [1, a)× [0, 1).

Then by the definition of Θa, we have that ψ is a step function and of bounded support and by Theo-

rems 2.7 and 3.9, we also have that MD(ψ, a) is a Riesz basis for L2(R+). It follows by Theorems 3.7

and 3.9 that MD(ψ, a) has the unique MD-dual window S−1ψ defined by

ΘaS
−1ψ(x, ξ) =

1∑
l∈Z cle

2πilξ
for (x, ξ) ∈ [1, a)× [0, 1).
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Observe that, if at least two cl’s are nonzero, we have

1∑
l∈Z

cle2πilξ
=

∑
l∈Z

dle
−2πilξ

with d being infinitely supported. Although ψ is of bounded support, it follows by the definition of Θa

that the dual window S−1ψ is of unbounded support.

The following example shows that it is possible for us to obtain multi-window MD-dual frame pairs

for L2(R+) with each window of bounded support.

Example 4.2. For L > 1, let m1,m2, . . . ,mL be trigonometric polynomials satisfying

|m1(ξ)|2 + |m2(ξ)|2 + · · ·+ |mL(ξ)|2 = 1 for ξ ∈ [0, 1).

Define Ψ = {ψ1, ψ2, . . . , ψL} by

Θaψl(x, ξ) = ml(ξ) for (x, ξ) ∈ [1, a)× [0, 1).

Then MD(Ψ, a) is a frame for L2(R+), and every ψl is of bounded support by an argument similar to

that of Example 4.1. Define Φ = {φ1, φ2, . . . , φL} by

Θaϕl(x, ξ) = ml(ξ)

(
1−

L∑
l=1

ml(ξ)Xl(x, ξ)

)
+Xl(x, ξ) for a.e. (x, ξ) ∈ [1, a)× [0, 1) (4.1)

with Xl ∈ L∞([1, a)× [0, 1)). Then by Theorem 3.7, MD(Ψ, a) and MD(Φ, a) form a pair of dual frames

for L2(R+). Let

Xl(x, ξ) =
∑
j∈Z

dl,j(x)e
−2πijξ for a.e. (x, ξ) ∈ [1, a)× [0, 1). (4.2)

If, in addition, we require that every {dl,j(·)}j∈Z with 1 6 l 6 L is a finitely supported sequence of

functions on [1, a), then each φl with 1 6 l 6 L is of bounded support by (4.1) and the definition of Θa.

Example 4.3. For L > 1, let Ψ = {ψ1, ψ2, . . . , ψL} be a finite subset of L2(R+), and supp(ψl) ⊂ [1, a).

Assume that
L∑

l=1

|ψl(x)|2 = 1 for a.e. x ∈ [1, a).

Define Φ = {φ1, φ2, . . . , φL} by

Θaφl(x, ξ) = ψl(x)

(
1−

L∑
l=1

ψl(x)Xl(x, ξ)

)
+Xl(x, ξ) for a.e. (x, ξ) ∈ [1, a)× [0, 1) (4.3)

with Xl ∈ L∞([1, a)× [0, 1)). Then by Theorem 3.7, MD(Ψ, a) and MD(Φ, a) form a pair of dual frames

for L2(R+). In particular, if every Xl with 1 6 l 6 L is as in (4.2) with {dl,j(·)}j∈Z being a finitely

supported sequence of functions on [1, a), then each φl with 1 6 l 6 L is of bounded support.

In Examples 4.2 and 4.3, Θaψl, 1 6 l 6 L, are defined by univariate functions. Next, we give a more

general example.

Example 4.4. Assume that c0(x) and c1(x) are two real-valued measurable functions defined on [1, a],

and that there exist two positive constants A and B such that

A 6 |c0(x)|+ |c1(x)| 6 B for x ∈ [1, a].

Define Ψ = {ψ1, ψ2} ⊂ L2(R+) by

Θaψ1(x, ξ) = c0(x) + c1(x)e
−4πiξ,
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Θaψ2(x, ξ) =

{
2i
√
c0(x)c1(x) sin 2πξ, if c0(x)c1(x) > 0,

2
√

−c0(x)c1(x) cos 2πξ, if c0(x)c1(x) < 0

for (x, ξ) ∈ [1, a]× [0, 1). Then by simple computation and the definition of Θa, we have

ψ1(x) =


c0(x), if 1 6 x 6 a,

a−1c1(a
−2x), if a2 6 x 6 a3,

0, otherwise,

ψ2(x) =


a

1
2

√
c0(ax)c1(ax), if a−1 6 x 6 1,

−a− 1
2

√
c0(a−1x)c1(a−1x), if a 6 x 6 a2 and c0(a

−1x)c1(a
−1x) > 0,

a−
1
2

√
−c0(a−1x)c1(a−1x), if a 6 x 6 a2 and c0(a

−1x)c1(a
−1x) < 0,

0, otherwise,

and

|Θaψ1(x, ξ)|2 + |Θaψ2(x, ξ)|2 = (|c0(x)|+ |c1(x)|)2.

It follows that

A2 6 |Θaψ1(x, ξ)|2 + |Θaψ2(x, ξ)|2 6 B2 (4.4)

for a.e. (x, ξ) ∈ [1, a] × [0, 1) and thus by Theorem 2.7, we have that MD(Ψ, a) is a frame for L2(R+).

Obviously, ψ1 and ψ2 are real-valued and of bounded support.

Now we check the MD-duals of MD(Ψ, a). Define Φ = {φ1, φ2} by

Θaφl(x, ξ) =
Θaψl(x, ξ)(1−Θaψ1(x, ξ)X1(x, ξ)−Θaψ2(x, ξ)X2(x, ξ))

(|c0(x)|+ |c1(x)|)2
+Xl(x, ξ)

for 1 6 l 6 2 and a.e. (x, ξ) ∈ [1, a] × [0, 1) with X1, X2 ∈ L∞([1, a] × [0, 1)). Then by Theorem 3.7,

we have that MD(Ψ, a) and MD(Φ, a) form a pair of dual frames for L2(R+). If every Xl with 1 6
l 6 2 is as in (4.2) with {dl,j(·)}j∈Z being a finitely supported sequence of real-valued functions on

[1, a], then φ1 and φ2 are also real-valued and of bounded support. Also we can obtain Φ with good

smoothness by choosing good X1 and X2. For example, let us make further assumption that c0(x), c1(x)

and
√
|c0(x)c1(x)| are k-th continuously differentiable on (1, a), and that c0(1)c1(1) = c0(a)c1(a) = 0,

c0(x)c1(x) > 0 for x ∈ (1, a). Then ψ1 and ψ2 are continuous on R+ and k-th continuously differentiable

on (1, a)∪(a2, a3) and (a−1, 1)∪(a, a2), respectively. In this case, if we further require that |c0(x)|+|c1(x)|
is a constant on [1, a], and X1(x, ξ) and X2(x, ξ) satisfy

X1(x, ξ) =
∑
j∈Z

d1,je
−2πijξ

and

X2(x, ξ) =
∑
j∈Z

d2,je
−2πijξ,

respectively, for ξ ∈ [0, 1) with {d1,j}j∈Z and {d2,j}j∈Z being two finitely supported real number sequences.

Then φ1 and φ2 are real-valued and of bounded support, and have the same continuity and differentiability

as ψ1 and ψ2.
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