• ARTICLES •

December 2020 Vol.63 No.12: 2423–2438 https://doi.org/10.1007/s11425-018-9468-8

Multi-window dilation-and-modulation frames on the half real line

Yunzhang Li^{1,*} & Wei Zhang^{1,2}

¹College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; ²School of Mathematics and Information Sciences, Henan University of Economics and Law, Zhengzhou 450046, China

 $Email: \ yzlee @bjut.edu.cn, \ zwfylhappy @126.com$

Received May 8, 2018; accepted September 26, 2018; published online June 18, 2020

Abstract Wavelet and Gabor systems are based on translation-and-dilation and translation-and-modulation operators, respectively, and have been studied extensively. However, dilation-and-modulation systems cannot be derived from wavelet or Gabor systems. This study aims to investigate a class of dilation-and-modulation systems in the causal signal space $L^2(\mathbb{R}_+)$. $L^2(\mathbb{R}_+)$ can be identified as a subspace of $L^2(\mathbb{R})$, which consists of all $L^2(\mathbb{R})$ -functions supported on \mathbb{R}_+ but not closed under the Fourier transform. Therefore, the Fourier transform method does not work in $L^2(\mathbb{R}_+)$. Herein, we introduce the notion of Θ_a -transform in $L^2(\mathbb{R}_+)$ and characterize the dilation-and-modulation frames and dual frames in $L^2(\mathbb{R}_+)$ using the Θ_a -transform; and present an explicit expression of all duals with the same structure for a general dilation-and-modulation frame for $L^2(\mathbb{R}_+)$. Furthermore, it has been proven that an arbitrary frame of this form is always nonredundant whenever the number of the generators is 1 and is always redundant whenever the number is greater than 1. Finally, some examples are provided to illustrate the generality of our results.

Keywords frame, wavelet frame, Gabor frame, dilation-and-modulation frame, multi-window dilation-and-modulation frame

MSC(2010) 42C40, 42C15

Citation: Li Y Z, Zhang W. Multi-window dilation-and-modulation frames on the half real line. Sci China Math, 2020, 63: 2423–2438, https://doi.org/10.1007/s11425-018-9468-8

1 Introduction

It is well known that translation, modulation and dilation are fundamental operations in wavelet analysis. The translation operator T_{x_0} , modulation operator M_{x_0} with $x_0 \in \mathbb{R}$, and dilation operator D_c with $0 < c \neq 1$ are defined by

$$T_{x_0}f(\cdot) = f(\cdot - x_0), \quad M_{x_0}f(\cdot) = e^{2\pi i x_0 \cdot f(\cdot)} \text{ and } D_c f(\cdot) = \sqrt{c}f(c \cdot)$$

for $f \in L^2(\mathbb{R})$, respectively. Given a finite subset Ψ of $L^2(\mathbb{R})$, Gabor frames of the form

$$\{M_{mb}T_{na}\psi: m, n \in \mathbb{Z}, \psi \in \Psi\}$$
(1.1)

^{*} Corresponding author

[©] Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

and wavelet frames of the form

$$\{D_{a^j}T_{bk}\psi: j, k \in \mathbb{Z}, \psi \in \Psi\}$$

$$(1.2)$$

with a, b > 0 have been extensively studied (see [4, 13, 14, 22, 26–28]). However, dilation-and-modulation frames of the form

$$\{M_{mb}D_{a^j}\psi: m, j \in \mathbb{Z}, \psi \in \Psi\} \quad \text{with} \quad a, b > 0 \tag{1.3}$$

have not been studied sufficiently. It has been found that the Fourier transform of (1.3) which is

$$\{T_{mb}D_{a^j}\hat{\psi}: m, j \in \mathbb{Z}, \psi \in \Psi\}$$
(1.4)

does not fall into the framework of the above wavelet and Gabor systems. Herein, our focus is on a class of dilation-and-modulation frames for $L^2(\mathbb{R}_+)$ with $\mathbb{R}_+ = (0, \infty)$. $L^2(\mathbb{R}_+)$ can be considered as a closed subspace of $L^2(\mathbb{R})$ comprising all functions in $L^2(\mathbb{R})$ that vanish outside \mathbb{R}_+ and can model a causal signal space.

For more details on subspace Gabor and wavelet frames of the forms (1.1) and (1.2), respectively, see, e.g., [2, 6-8, 15-18], [19, 23, 24, 31, 32, 36, 38, 39], [40, 44, 48, 50, 51] and the references therein. It is easy to check that there exists no nonzero function ψ such that

$$T_{nc}\psi(\cdot) = 0$$
 on $(-\infty, 0)$

for some c > 0 and for all $n \in \mathbb{Z}$. This implies that $L^2(\mathbb{R}_+)$ admits no frame of the form (1.1), (1.2) or (1.4). Therefore, constructing frames for $L^2(\mathbb{R}_+)$ with good structures is important. Two methods are known for this purpose. The first is to construct frames for $L^2(\mathbb{R}_+)$ comprising a subsystem of (1.2) and some inhomogeneous refinable function-based "boundary wavelets". For more details, see, e.g., [3,5,29,30,35,41,46,47] and the references therein. The other is to use the Cantor group operation and Walsh series theory to introduce the notion of (frame) multiresolution analysis in $L^2(\mathbb{R}_+)$, and then derive wavelet frames similar to the case of $L^2(\mathbb{R})$. For more details, see, e.g., [1,10-12,33,34,42,43,45] and the references therein. In [20], numerical experiments were presented to establish that the nonnegative integer shifts of the Gaussian function form a Riesz sequence in $L^2(\mathbb{R}_+)$, and in [21], a sufficient condition was obtained to determine whether or not the nonnegative translations of a given function form a Riesz sequence on $L^2(\mathbb{R}_+)$.

Given a > 1, a measurable function h defined on \mathbb{R}_+ is said to be *a*-dilation periodic if $h(a \cdot) = h(\cdot)$ a.e. on \mathbb{R}_+ . Throughout this paper, we denote by $\{\Lambda_m\}_{m \in \mathbb{Z}}$ the sequence of *a*-dilation periodic functions defined by

$$\Lambda_m(\cdot) = \frac{1}{\sqrt{a-1}} e^{\frac{2\pi i m \cdot}{a-1}} \quad \text{on} \quad [1,a) \quad \text{for each} \quad m \in \mathbb{Z}.$$
(1.5)

Motivated by the above works, herein, we aim to investigate the dilation-and-modulation systems in $L^2(\mathbb{R}_+)$ of the form:

$$\mathcal{MD}(\Psi, a) = \{\Lambda_m D_{a^j} \psi_l : m, j \in \mathbb{Z}, 1 \leqslant l \leqslant L\}$$
(1.6)

under the following general setup:

General setup. (i) *a* is a fixed positive number greater than 1.

(ii) $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ is a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L.

As in multi-window Gabor analysis, throughout this paper, we say a set $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ is a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, which means that it is a finite sequence in $L^2(\mathbb{R}_+)$ with L terms, i.e., we do not require that $\psi_1, \psi_2, \dots, \psi_L$ are pairwise different.

For $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_L\}$, we define $\mathcal{MD}(\Phi, a)$, as defined in (1.6). The system $\mathcal{MD}(\Psi, a)$ differs from (1.3). The modulation factor $e^{2\pi i m b}$ in (1.1) is $\frac{1}{b}\mathbb{Z}$ -periodic under addition, while Λ_m in (1.6) is *a*dilation periodic. The motivation of introducing $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$ is from the group structure of \mathbb{R}_+ . Since \mathbb{R} is a group under addition, one chooses addition periodic prefactors M_{mb} to match shift-invariant systems, and obtain Gabor systems of the form (1.1). However, \mathbb{R}_+ is a group under multiplication instead of addition. Therefore, we choose dilation periodic prefactors to match dilation-invariant systems and therefore, we study $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$ of the form (1.6). Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. The system $\mathcal{MD}(\Psi, a)$ is called a *frame* for $L^2(\mathbb{R}_+)$ if there exist $0 < C_1 \leq C_2 < \infty$ such that

$$C_1 \|f\|_{L^2(\mathbb{R}_+)}^2 \leqslant \sum_{l=1}^L \sum_{m,j\in\mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 \leqslant C_2 \|f\|_{L^2(\mathbb{R}_+)}^2 \quad \text{for} \quad f \in L^2(\mathbb{R}_+),$$
(1.7)

where C_1 and C_2 are called *frame bounds*; it is called a *Bessel sequence* in $L^2(\mathbb{R}_+)$ if the right-hand side inequality in (1.7) holds, where C_2 is called a *Bessel bound*. Particularly, it is called a *Parseval frame* if in (1.7), $C_1 = C_2 = 1$. Given a frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$, a sequence $\mathcal{MD}(\Phi, a)$ is called a *dual* (or an \mathcal{MD} -*dual*) of $\mathcal{MD}(\Psi, a)$ if it is a frame such that

$$f = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \quad \text{for} \quad f \in L^2(\mathbb{R}_+).$$
(1.8)

It is easy to check that $\mathcal{MD}(\Psi, a)$ is also a dual of $\mathcal{MD}(\Phi, a)$ if $\mathcal{MD}(\Phi, a)$ is a dual of $\mathcal{MD}(\Psi, a)$. Therefore, in this case, we say $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. By the knowledge of frame theory, $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$ if they are Bessel sequences and satisfy (1.8). The fundamentals of frames can be found in [4, 9, 27, 49]. Observe that $L^2(\mathbb{R}_+)$ is the Fourier transform of the Hardy space $H^2(\mathbb{R})$ which is a reducing subspace of $L^2(\mathbb{R})$ defined by

$$H^{2}(\mathbb{R}) = \{ f \in L^{2}(\mathbb{R}) : \hat{f}(\cdot) = 0 \text{ a.e. on } (-\infty, 0) \}.$$

Wavelet frames in $H^2(\mathbb{R})$ of the form (1.2) were studied in [28, 44, 48]. By the Plancherel theorem, an $H^2(\mathbb{R})$ -frame, which is given by $\{D_{a^j}T_{bk}\psi: j, k \in \mathbb{Z}, \psi \in \Psi\}$, leads to an $L^2(\mathbb{R}_+)$ -frame given by

$$\{ e^{-2\pi i a^{j} k \cdot} \hat{\psi}(a^{j} \cdot) : j, k \in \mathbb{Z}, \psi \in \Psi \}.$$

$$(1.9)$$

In (1.9), $e^{-2\pi i a^j k}$ is $a^{-j}\mathbb{Z}$ -periodic with respect to addition, and the period varies with j. However, Λ_m in (1.6) is *a*-dilation periodic, and is unrelated to j. Therefore, the system (1.6) differs from (1.9), and it is of independent interest.

This study focuses on the theory of $L^2(\mathbb{R}_+)$ -frames of the form (1.6). It cannot be derived from the well-known wavelet and Gabor systems, and its operation is more intuitive when compared with the Cantor group and Walsh series-based systems in [1, 10-12, 33, 34, 42, 43, 45]. Also $L^2(\mathbb{R}_+)$ is not closed under the Fourier transform. In particular, the Fourier transform of a compactly supported nonzero function in $L^2(\mathbb{R}_+)$ lies outside this space. Therefore, the Fourier transform cannot be used in our setting and thus, it is desirable to find a new method.

The system (1.6) is related to a kind of function-valued frames in [25] by Hasankhani and Dehghan. They introduced the notion of function-valued frame as follows. Given a > 1 and $f, g \in L^2(\mathbb{R}_+)$, define the function-valued inner product $\langle f, g \rangle_a$ of f and g by

$$\langle f, g \rangle_a(\cdot) = \sum_{j \in \mathbb{Z}} a^j f(a^j \cdot) \overline{g(a^j \cdot)}, \text{ and } \|f\|_a(\cdot) = \sqrt{\langle f, f \rangle_a(\cdot)}.$$

A sequence $\{f_j\}_{j\in\mathbb{Z}}$ in $L^2(\mathbb{R}_+)$ is called a function-valued frame for $L^2(\mathbb{R}_+)$ with respect to a, if there exist positive constants A and B, such that

$$A\|f\|_a^2(\cdot) \leqslant \sum_{j \in \mathbb{Z}} |\langle f, f_j \rangle_a(\cdot)|^2 \leqslant B\|f\|_a^2(\cdot) \quad \text{a.e. on} \quad [1, a]$$

for $f \in L^2(\mathbb{R}_+)$. Take $f_j = D_{a^j}\psi$ for some $\psi \in L^2(\mathbb{R}_+)$. Then, applying [25, Theorem 4.8], we have that $\{D_{a^j}\psi\}_{j\in\mathbb{Z}}$ is a function-valued frame for $L^2(\mathbb{R}_+)$ with respect to a if and only if $\mathcal{MD}(\psi, a)$ (i.e., L = 1 in (1.6)) is a frame for $L^2(\mathbb{R}_+)$. We characterized frames of the form $\mathcal{MD}(\psi, a)$ in [37] in terms of the bi-infinite matrix-valued function $\mathcal{G}(\psi, \cdot) = (\overline{D_{a^{j+l}}\psi(\cdot)})_{j,l\in\mathbb{Z}}$, where the notion of Θ_a -transform was not formally formulated. In this paper, we will introduce the Θ_a -transform, and use the Θ_a -transform method to study multi-window frames $\mathcal{MD}(\Psi, a)$ of the form (1.6) and their duals. By Theorem 3.9 below, frames in [37] are all Riesz bases but frames in this paper are redundant ones if L > 1.

The rest of this paper is organized as follows. In Section 2, we introduce the notion of Θ_a -transform, and give a Θ_a -transform domain characterization for a dilation-and-modulation system $\mathcal{MD}(\Psi, a)$ to be complete, a Bessel sequence, and a frame in $L^2(\mathbb{R}_+)$, accordingly. In Section 3, using the Θ_a -transform we characterize dual frame pairs of the form $(\mathcal{MD}(\Psi, a), \mathcal{MD}(\Phi, a))$ and obtain an explicit expression of all \mathcal{MD} -duals of a general frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$. We also prove that an arbitrary frame $\mathcal{MD}(\Psi, a)$ is a Riesz basis if and only if L = 1. In Section 4, we give some examples of \mathcal{MD} -dual frame pairs for $L^2(\mathbb{R}_+)$ to illustrate the generality of our results.

2 Θ_a -transform domain frame characterization

Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. In this section, by introducing the Θ_a -transform we give the conditions of completeness, Bessel sequence and frame of $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$, accordingly.

Definition 2.1. Let a be a fixed positive number greater than 1. For $f \in L^2(\mathbb{R}_+)$, we define

$$\Theta_a f(x,\xi) = \sum_{l \in \mathbb{Z}} a^{\frac{l}{2}} f(a^l x) e^{-2\pi i l\xi}$$
(2.1)

for a.e. $(x,\xi) \in \mathbb{R}_+ \times \mathbb{R}$.

Remark 2.2. Observe that, given $f \in L^2(\mathbb{R}_+)$,

$$\int_{a^j}^{a^{j+1}} \sum_{l \in \mathbb{Z}} a^l |f(a^l x)|^2 dx = \|f\|_{L^2(\mathbb{R}_+)}^2 < \infty \quad \text{for} \quad j \in \mathbb{Z}.$$

This implies that $\sum_{l \in \mathbb{Z}} a^l |f(a^l \cdot)|^2 < \infty$ a.e. on \mathbb{R}_+ by the arbitrariness of j. Therefore, (2.1) is well defined.

Lemma 2.3. Let a be a fixed positive number greater than 1. For $m, j \in \mathbb{Z}$, define Λ_m as in (1.5), and $e_{m,j}$ by

$$e_{m,j}(x,\xi) = \Lambda_m(x) e^{2\pi i j \xi} \quad for \quad (x,\xi) \in \mathbb{R}_+ \times \mathbb{R}.$$

Then

(i) $\{\Lambda_m : m \in \mathbb{Z}\}\$ and $\{e_{m,j} : m, j \in \mathbb{Z}\}\$ are orthonormal bases for $L^2([1,a))\$ and $L^2([1,a) \times [0,1))$, respectively;

(ii) the Θ_a -transform has the following quasi-periodicity: given $f \in L^2(\mathbb{R}_+)$,

$$\Theta_a f(a^j x, \xi + m) = e^{2\pi i j \xi} a^{-\frac{j}{2}} \Theta_a f(x, \xi)$$

for $j, m \in \mathbb{Z}$ and a.e. $(x,\xi) \in \mathbb{R}_+ \times \mathbb{R};$ (iii) for $j, m \in \mathbb{Z}, f \in L^2(\mathbb{R}_+),$

$$\Theta_a(\Lambda_m D_{a^j} f)(x,\xi) = e_{m,j}(x,\xi)\Theta_a f(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in \mathbb{R}_+ \times \mathbb{R}_+$$

(iv) the Θ_a -transform is a unitary operator from $L^2(\mathbb{R}_+)$ onto $L^2([1, a) \times [0, 1))$; (v)

$$\int_{[1,a)\times[0,1)} |f(x,\xi)|^2 dx d\xi = \sum_{m,j\in\mathbb{Z}} \left| \int_{[1,a)\times[0,1)} f(x,\xi) \overline{e_{m,j}(x,\xi)} dx d\xi \right|^2$$
(2.2)

for $f \in L^1([1, a) \times [0, 1))$.

Proof. By a standard argument, we have (i)–(iii). Next, we prove (iv) and (v).

(iv) It is obvious that the Θ_a -transform is linear. We only need to prove that it is norm-preserving and onto. For $f \in L^2(\mathbb{R}_+)$, we have

$$\begin{split} \|\Theta_a f\|_{L^2([1,a)\times[0,1))}^2 &= \int_1^a dx \int_0^1 \left|\sum_{l\in\mathbb{Z}} a^{\frac{l}{2}} f(a^l x) e^{-2\pi i l\xi}\right|^2 d\xi \\ &= \int_1^a \sum_{l\in\mathbb{Z}} a^l |f(a^l x)|^2 dx \\ &= \|f\|_{L^2(\mathbb{R}_+)}^2. \end{split}$$

This implies that the Θ_a -transform is norm-preserving. Next, we prove that it is onto. Let $F \in L^2([1, a) \times [0, 1))$. Then there exists a unique $\{c_{m,j}\}_{m,j\in\mathbb{Z}} \in l^2(\mathbb{Z}^2)$ such that

$$F(x,\xi) = \sum_{m,j\in\mathbb{Z}} c_{m,j} e_{m,j}(x,\xi) = \sum_{j\in\mathbb{Z}} \left(\sum_{m\in\mathbb{Z}} c_{m,j}\Lambda_m(x)\right) e^{2\pi i j\xi}$$

for a.e. $(x,\xi) \in [1,a) \times [0,1)$ by (i). Define f on \mathbb{R}_+ by

$$f(a^j x) = a^{-\frac{j}{2}} \sum_{m \in \mathbb{Z}} c_{m, -j} \Lambda_m(x) \text{ for } j \in \mathbb{Z} \text{ and a.e. } x \in [1, a)$$

Then

$$\|f\|_{L^{2}(\mathbb{R}_{+})}^{2} = \sum_{j \in \mathbb{Z}} \int_{1}^{a} a^{j} |f(a^{j}x)|^{2} dx = \sum_{j \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} |c_{m,-j}|^{2} = \sum_{m,j \in \mathbb{Z}} |c_{m,j}|^{2} < \infty$$

by (i), and we have

 $\Theta_a f(x,\xi) = F(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1).$

Hence, the Θ_a -transform is onto.

(v) By (i), (2.2) holds if $f \in L^2([1, a) \times [0, 1))$. When $f \in L^1([1, a) \times [0, 1)) \setminus L^2([1, a) \times [0, 1))$, the left-hand side of (2.2) is infinite. Now we prove by contradiction that the right-hand side of (2.2) is also infinite. Suppose it is finite. Then the function

$$g = \sum_{m,j \in \mathbb{Z}} \left(\int_{[1,a) \times [0,1)} f(x,\xi) \overline{e_{m,j}(x,\xi)} dx d\xi \right) e_{m,j}$$

belongs to $L^2([1, a) \times [0, 1))$ by (i), and thus it belongs to $L^1([1, a) \times [0, 1))$. Since it has the same Fourier coefficients as f, by the uniqueness of Fourier coefficients, f = g. Thus $f \in L^2([1, a) \times [0, 1))$, which leads to a contradiction. The proof is completed.

Lemma 2.4. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi \quad for \ f \in L^2(\mathbb{R}_+).$$

Proof. Fix $f \in L^2(\mathbb{R}_+)$. By Lemmas 2.3(iii) and 2.3(iv), we have

$$\begin{split} \sum_{l=1}^{L} \sum_{m,j\in\mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 &= \sum_{l=1}^{L} \sum_{m,j\in\mathbb{Z}} |\langle \Theta_a f, \Theta_a \Lambda_m D_{a^j} \psi_l \rangle_{L^2([1,a)\times[0,1))}|^2 \\ &= \sum_{l=1}^{L} \sum_{m,j\in\mathbb{Z}} |\langle \Theta_a f, e_{m,j}\Theta_a \psi_l \rangle_{L^2([1,a)\times[0,1))}|^2 \\ &= \sum_{l=1}^{L} \sum_{m,j\in\mathbb{Z}} \left| \int_{[1,a)\times[0,1)} \overline{\Theta_a \psi_l(x,\xi)} \Theta_a f(x,\xi) \overline{e_{m,j}(x,\xi)} dx d\xi \right|^2. \end{split}$$

Again applying Lemma 2.3(v) to $\overline{\Theta_a \psi_l(x,\xi)} \Theta_a f(x,\xi)$ leads to

$$\begin{split} \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 &= \sum_{l=1}^{L} \int_{[1,a) \times [0,1)} |\overline{\Theta_a \psi_l(x,\xi)} \Theta_a f(x,\xi)|^2 dx d\xi \\ &= \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi. \end{split}$$

This completes the proof.

Theorem 2.5. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then $\mathcal{MD}(\Psi, a)$ is complete in $L^2(\mathbb{R}_+)$ if and only if

$$\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \neq 0 \quad for \ a.e. \quad (x,\xi) \in [1,a) \times [0,1).$$
(2.3)

Proof. By Lemma 2.4, for $f \in L^2(\mathbb{R}_+)$,

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = 0 \quad \text{a.e. on} \quad \mathbb{R}_+$$
(2.4)

if and only if

$$\left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2\right) |\Theta_a f(x,\xi)|^2 = 0 \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1).$$
(2.5)

Observe that $\mathcal{MD}(\Psi, a)$ is complete in $L^2(\mathbb{R}_+)$ if and only if f = 0 is the unique solution to (2.4) in $L^2(\mathbb{R}_+)$. It follows that the completeness of $\mathcal{MD}(\Psi, a)$ in $L^2(\mathbb{R}_+)$ is equivalent to f = 0 being the unique solution to (2.5) in $L^2(\mathbb{R}_+)$. This is in turn equivalent to the fact that $\Theta_a f = 0$ is the unique solution to (2.5) in $L^2(\mathbb{R}_+)$. Dynamically, which is as well equivalent to (2.3). This completes the proof.

Theorem 2.6. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound B if and only if

$$\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \leqslant B \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1).$$
(2.6)

Proof. By Lemmas 2.4 and 2.3(v), we have

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 = \int_{[1,a) \times [0,1)} \left(\sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \right) |\Theta_a f(x,\xi)|^2 dx d\xi,$$
(2.7)

and

$$\int_{[1,a)\times[0,1)} |\Theta_a f(x,\xi)|^2 dx d\xi = \|f\|_{L^2(\mathbb{R}_+,\mathbb{C}^L)}^2$$
(2.8)

for $f \in L^2(\mathbb{R}_+, \mathbb{C}^L)$. So by Lemma 2.3(iv), (2.6) implies that

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 \leqslant B ||f||^2_{L^2(\mathbb{R}_+, \mathbb{C}^L)}$$
(2.9)

for $f \in L^2(\mathbb{R}_+)$. Thus, $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound B.

Now we prove the converse implication by contradiction. Suppose $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound B, and $\sum_{l=1}^{L} |\Theta_a \psi(\cdot, \cdot)|^2 > B$ on some $E \subset [1, a) \times [0, 1)$ with |E| > 0. Define f by

$$\Theta_a f(\cdot, \cdot) = \chi_{_E}(\cdot, \cdot) \quad \text{on} \quad [1, a) \times [0, 1)$$

in (2.7), where χ_{E} denotes the characteristic function of E. Then f is well defined,

$$||f||^2_{L^2(\mathbb{R}_+)} = \int_{[1,a)\times[0,1)} |\Theta_a f(x,\xi)|^2 dx d\xi = |E|$$

by Lemma 2.3(iv), and

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)}|^2 > B|E| = B \|f\|_{L^2_{(\mathbb{R}_+)}}$$

This contradicts the fact that $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ with the Bessel bound *B*. This completes the proof.

By a similar argument to that in Theorem 2.6, we obtain the following theorem.

Theorem 2.7. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then $\mathcal{MD}(\Psi, a)$ is a frame in $L^2(\mathbb{R}_+)$ with frame bounds A and B if and only if

$$A \leqslant \sum_{l=1}^{L} |\Theta_a \psi_l(x,\xi)|^2 \leqslant B$$

for a.e. $(x,\xi) \in [1,a) \times [0,1)$.

3 Θ_a -transform domain expression of duals

In this section, we characterize and express \mathcal{MD} -duals of a general frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$ and also, we study the redundancy of a general frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$. Interestingly, we prove that an arbitrary frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$ is always nonredundant if L = 1, and is always redundant if L > 1(see Theorem 3.9 below).

For the ease and convenience, we write

$$\mathfrak{D} = \{ f \in L^2(\mathbb{R}_+) : \Theta_a f \in L^\infty([1,a) \times [0,1)) \}.$$
(3.1)

Then using Lemma 2.3(iv) and the fact that $L^{\infty}([1, a) \times [0, 1))$ is dense in $L^{2}([1, a) \times [0, 1))$, we have that \mathfrak{D} is dense in $L^{2}(\mathbb{R}_{+})$. This fact will be frequently used in what follows.

Let a be a fixed positive number greater than 1, $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, and $\mathcal{MD}(\Psi, a)$ be a Bessel sequence in $L^2(\mathbb{R}_+)$. We denote by S its frame operator, i.e.,

$$Sf = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \quad \text{for } f \in L^2(\mathbb{R}_+).$$

By a standard argument, we have the following lemma that shows that S commutes with the modulation and dilation operators.

Lemma 3.1. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Assume that $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$, and that S is its frame operator. Then

$$S\Lambda_m f = \Lambda_m S f, \quad SD_{a^j} f = D_{a^j} S f,$$

and thus $S\Lambda_m D_{a^j} f = \Lambda_m D_{a^j} Sf$ for $f \in L^2(\mathbb{R}_+)$ and $m, j \in \mathbb{Z}$.

Lemma 3.2. Let a be a fixed positive number greater than 1, $\Psi = \{\psi_1, \psi_2, \ldots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, and $\Phi = \{\varphi_1, \varphi_2, \ldots, \varphi_L\} \subset L^2(\mathbb{R}_+)$. Then

$$\sum_{l=1}^{L} \sum_{m,j\in\mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} = \int_{[1,a)\times[0,1)} \Omega(x,\xi) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dxd\xi \quad (3.2)$$

for $f, g \in \mathfrak{D}$, where

$$\Omega(x,\xi) = \sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)}.$$

Proof. Let $f, g \in \mathfrak{D}$ be fixed. Then by Lemma 2.4, we have

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle f, \Lambda_m D_{a^j} \psi_l \rangle|^2 < \infty, \quad \text{and} \quad \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} |\langle g, \Lambda_m D_{a^j} \varphi_l \rangle|^2 < \infty.$$

Thus, the series

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)}$$

is well defined and converges absolutely. By Lemmas 2.3(i), 2.3(iii) and 2.3(iv), we see that

$$\begin{split} &\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} \\ &= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle \Theta_a f, \Theta_a \Lambda_m D_{a^j} \psi_l \rangle_{L^2([1,a) \times [0,1))} \langle \Theta_a \Lambda_m D_{a^j} \varphi_l, \Theta_a g \rangle_{L^2([1,a) \times [0,1))} \\ &= \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle \overline{\Theta_a} \psi_l \Theta_a f, e_{m,j} \rangle_{L^2([1,a) \times [0,1))} \langle e_{m,j}, \overline{\Theta_a} \varphi_l \Theta_a g \rangle_{L^2([1,a) \times [0,1))} \\ &= \sum_{l=1}^{L} \langle \Theta_a f \overline{\Theta_a} \psi_l, \Theta_a g \overline{\Theta_a} \varphi_l \rangle_{L^2([1,a) \times [0,1))} \\ &= \int_{[1,a) \times [0,1)} \Omega(x,\xi) \Theta_a f(x,\xi) \overline{\Theta_a} g(x,\xi) dx d\xi. \end{split}$$

This completes the proof.

Lemma 3.3. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Assume that $\mathcal{MD}(\Psi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$, and that S is its frame operator. Then, for $f \in L^2(\mathbb{R}_+)$,

$$\Theta_a Sf(\cdot, \cdot) = \left(\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2\right) \Theta_a f(\cdot, \cdot)$$
(3.3)

a.e. on $[1, a) \times [0, 1)$.

Proof. By Lemma 3.2, we have

$$\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \int_{[1,a) \times [0,1)} \bigg(\sum_{l=1}^L |\Theta_a \psi_l(x,\xi)|^2 \bigg) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi$$

for $f, g \in \mathfrak{D}$. Since \mathfrak{D} is dense in $L^2(\mathbb{R}_+)$ and $\mathcal{MD}(\Psi, a)$ is a Bessel sequence, by Theorem 2.6 and a standard argument, it follows that

$$\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \left\langle \left(\sum_{l=1}^L |\Theta_a \psi_l(x,\xi)|^2 \right) \Theta_a f, \, \Theta_a g \right\rangle_{L^2([1,a) \times [0,1))}$$

for $f, g \in L^2(\mathbb{R}_+)$. Also observing that

$$\langle Sf, g \rangle_{L^2(\mathbb{R}_+)} = \langle \Theta_a Sf, \Theta_a g \rangle_{L^2([1,a) \times [0,1))}$$

by Lemma 2.3(iv), we have that

$$\langle \Theta_a Sf, \Theta_a g \rangle_{L^2([1,a) \times [0,1))} = \left\langle \left(\sum_{l=1}^L |\Theta_a \psi_l|^2 \right) \Theta_a f, \Theta_a g \right\rangle_{L^2([1,a) \times [0,1))}$$

for $f, g \in L^2(\mathbb{R}_+)$. This implies (3.3) by Lemma 2.3(iv). This completes the proof.

Lemma 3.4. Let a be a fixed positive number greater than 1, and $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L. Then $\mathcal{MD}(\Psi, a)$ cannot be a Riesz sequence in $L^2(\mathbb{R}_+)$ whenever L > 1.

Proof. We proceed by contradiction. Suppose L > 1 and $\mathcal{MD}(\Psi, a)$ is a Riesz sequence in $L^2(\mathbb{R}_+)$. Let S be its frame operator. Then by Lemma 3.1, it commutes with $\Lambda_m D_{a^j}$ for all $m, j \in \mathbb{Z}$. Since S is self-adjoint, invertible and bounded, it follows that

$$S^{-\frac{1}{2}}\Lambda_m D_{a^j}\psi_l = \Lambda_m D_{a^j}S^{-\frac{1}{2}}\psi_l \quad \text{for} \quad m, j \in \mathbb{Z} \quad \text{and} \quad 1 \leqslant l \leqslant L.$$

Hence, $\mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a)$ is an orthonormal system in $L^2(\mathbb{R}_+)$. Write $S^{-\frac{1}{2}}\psi_l = \varphi_l$ for $1 \leq l \leq L$. Then for $m_1, m_2, j_1, j_2 \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$, we have

$$\langle \Lambda_{m_1} D_{a^{j_1}} \varphi_{l_1}, \, \Lambda_{m_2} D_{a^{j_2}} \varphi_{l_2} \rangle_{L^2(\mathbb{R}_+)} = \delta_{m_1, m_2} \delta_{j_1, j_2} \delta_{l_1, l_2}.$$

where the Kronecker delta is defined by

$$\delta_{n,m} = \begin{cases} 1, & \text{if } n = m, \\ 0, & \text{if } n \neq m. \end{cases}$$

By Lemmas 2.3(iii) and 2.3(iv), it is equivalent to

$$\langle e_{m_1,j_1} \Theta_a \varphi_{l_1}, \, e_{m_2,j_2} \Theta_a \varphi_{l_2} \rangle_{L^2([1,a) \times [0,1))} = \delta_{m_1,m_2} \delta_{j_1,j_2} \delta_{l_1,l_2}$$

for $m_1, m_2, j_1, j_2 \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$, equivalently,

$$\frac{1}{\sqrt{a-1}} \int_{[1,a)\times[0,1)} \Theta_a \varphi_{l_1}(x,\xi) \overline{\Theta_a \varphi_{l_2}(x,\xi)} e_{m,j}(x,\xi) dx d\xi = \delta_{m,0} \delta_{j,0} \delta_{l_1,l_2}$$

for $m, j \in \mathbb{Z}$ and $1 \leq l_1, l_2 \leq L$. This in turn is equivalent to

$$\Theta_a \varphi_{l_1}(\cdot, \cdot) \overline{\Theta_a \varphi_{l_2}(\cdot, \cdot)} = \delta_{l_1, l_2} \quad \text{a.e. on} \quad [1, a) \times [0, 1)$$

for $1 \leq l_1, l_2 \leq L$ by the uniqueness of Fourier coefficients. In particular, it implies that

$$|\Theta_a\varphi_1(\cdot,\cdot)| = |\Theta_a\varphi_2(\cdot,\cdot)| = 1$$

and

$$\Theta_a \varphi_1(\cdot, \cdot) \overline{\Theta_a \varphi_2(\cdot, \cdot)} = 0$$

a.e. on $[1, a) \times [0, 1)$. This leads to a contradiction. Hence, this completes the proof.

The following lemma is extracted from [37, Corollary 3.1].

Lemma 3.5. Let a be a fixed positive number greater than 1, and Ψ be a singleton in $L^2(\mathbb{R}_+)$. Then $\mathcal{MD}(\Psi, a)$ is a Parseval frame for $L^2(\mathbb{R}_+)$ if and only if it is an orthonormal basis for $L^2(\mathbb{R}_+)$.

Theorem 3.6. Let a be a fixed positive number greater than 1, $\Psi = \{\psi_1, \psi_2, \ldots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, and $\Phi = \{\varphi_1, \varphi_2, \ldots, \varphi_L\} \subset L^2(\mathbb{R}_+)$. Assume that $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ are Bessel sequences in $L^2(\mathbb{R}_+)$. Then $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$ if and only if

$$\sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} = 1 \quad for \ a.e. \quad (x,\xi) \in [1,a) \times [0,1).$$
(3.4)

Proof. Since $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ are Bessel sequences in $L^2(\mathbb{R}_+)$, and \mathfrak{D} is dense in $L^2(\mathbb{R}_+)$, we have that $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$ if and only if

$$\sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \psi_l \rangle_{L^2(\mathbb{R}_+)} \langle \Lambda_m D_{a^j} \varphi_l, g \rangle_{L^2(\mathbb{R}_+)} = \langle f, g \rangle_{L^2(\mathbb{R}_+)}$$
(3.5)

for $f, g \in \mathfrak{D}$. By Lemmas 3.2 and 2.3(iv), (3.5) is equivalent to

$$\int_{[1,a)\times[0,1)} \left(\sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} \right) \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi$$
$$= \int_{[1,a)\times[0,1)} \Theta_a f(x,\xi) \overline{\Theta_a g(x,\xi)} dx d\xi$$
(3.6)

for $f, g \in \mathfrak{D}$. Obviously, (3.4) implies (3.6). Now we prove the converse implication to finish the proof. Suppose (3.6) holds. By Theorem 2.6 and the Cauchy-Schwarz inequality, we have

$$\sum_{l=1}^{L} \Theta_a \varphi_l \overline{\Theta_a \psi_l} \in L^{\infty}([1,a) \times (0,1)).$$

This implies that almost every point in $(1, a) \times (0, 1)$ is a Lebesgue point of $\sum_{l=1}^{L} \Theta_a \varphi_l \overline{\Theta_a \psi_l}$. Arbitrarily fix such a point $(x_0, \xi_0) \in (1, a) \times (0, 1)$, and take $f, g \in \mathfrak{D}$ in (3.6) such that

$$\Theta_a f = \Theta_a g = \frac{1}{\sqrt{|B((x_0,\xi_0),\varepsilon)|}} \chi_{B((x_0,\xi_0),\varepsilon)}$$

on $[1,a) \times [0,1)$ with $B((x_0,\xi_0),\varepsilon) \subset (1,a) \times (0,1)$ and $\varepsilon > 0$, where $B((x_0,\xi_0),\varepsilon)$ denotes the ε -neighborhood of (x_0,ξ_0) . Then by Lemma 2.3(iv), f and g are well defined and thus, we obtain that

$$\frac{1}{|B((x_0,\xi_0),\varepsilon)|} \int_{B((x_0,\xi_0),\varepsilon)} \sum_{l=1}^{L} \Theta_a \varphi_l(x,\xi) \overline{\Theta_a \psi_l(x,\xi)} dx d\xi = 1.$$
(3.7)

Letting $\varepsilon \to 0$ in (3.7) leads to

$$\sum_{l=1}^{L} \Theta_a \varphi_l(x_0, \xi_0) \overline{\Theta_a \psi_l(x_0, \xi_0)} = 1$$

This implies (3.4) by the arbitrariness of (x_0, ξ_0) . This completes the proof.

Now, we turn to the expression of \mathcal{MD} -duals. Let a be a fixed positive number greater than 1, $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, $\mathcal{MD}(\Psi, a)$ be a frame for $L^2(\mathbb{R}_+)$, and S be its frame operator. By Lemma 3.1, $S\Lambda_m D_{a^j} = \Lambda_m D_{a^j} S$, and thus $S^{-1}\Lambda_m D_{a^j} = \Lambda_m D_{a^j} S^{-1}$ for $m, j \in \mathbb{Z}$. So $\mathcal{MD}(\Psi, a)$ and its canonical dual $S^{-1}(\mathcal{MD}(\Psi, a))$ share the same dilation-and-modulation structure, i.e.,

$$S^{-1}(\mathcal{MD}(\Psi, a)) = \mathcal{MD}(S^{-1}(\Psi), a).$$

The following theorem gives its canonical dual window and all \mathcal{MD} -dual windows in the Θ_a transform domain.

Theorem 3.7. Let a be a fixed positive number greater than 1, $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, and $\mathcal{MD}(\Psi, a)$ be a frame for $L^2(\mathbb{R}_+)$. Then

(i) its canonical dual $\mathcal{MD}(S^{-1}(\Psi), a)$ is given by

$$\Theta_a S^{-1} \psi_l(\cdot, \cdot) = \frac{\Theta_a \psi_l(\cdot, \cdot)}{\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2} \quad a.e. \ on \ [1, a) \times [0, 1) \quad for \ 1 \leq l \leq L;$$

(ii) a dilation-and-modulation system $\mathcal{MD}(\Phi, a)$ with $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_L\}$ is a dual frame of $\mathcal{MD}(\Psi, a)$ if and only if Φ is defined by

$$\Theta_a \varphi_l(\cdot, \cdot) = \frac{\Theta_a \psi_l(\cdot, \cdot)(1 - \sum_{l=1}^L \overline{\Theta_a \psi_l(\cdot, \cdot)} X_l(\cdot, \cdot))}{\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2} + X_l(\cdot, \cdot) \quad a.e. \ on \ [1, a) \times [0, 1),$$
(3.8)

where $X_l \in L^{\infty}([1, a) \times [0, 1))$ with $1 \leq l \leq L$.

Proof. (i) Since S is an invertible and bounded operator on $L^2(\mathbb{R}_+)$, by Lemma 3.3, we have

$$\Theta_a f(\cdot, \cdot) = \left(\sum_{l=1}^L |\Theta_a \psi_l(\cdot, \cdot)|^2\right) \Theta_a S^{-1} f(\cdot, \cdot) \quad \text{for } f \in L^2(\mathbb{R}_+).$$
(3.9)

Replacing f by ψ_l in (3.9) with $1 \leq l \leq L$, we have (i).

(ii) For sufficiency, suppose Φ is given by (3.8). Then by Theorem 2.6, $\mathcal{MD}(\Phi, a)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$. By a simple computation, we obtain

$$\sum_{l=1}^{L} \Theta_a \varphi_l(\cdot, \cdot) \overline{\Theta_a \psi_l(\cdot, \cdot)} = 1 \quad \text{a.e. on} \quad [1, a) \times [0, 1).$$

It follows by Theorem 3.6 that $\mathcal{MD}(\Phi, a)$ is a dual frame of $\mathcal{MD}(\Psi, a)$.

For necessity, suppose $\mathcal{MD}(\Phi, a)$ is a dual frame of $\mathcal{MD}(\Psi, a)$. Then by Theorem 3.6, we have

$$\sum_{l=1}^{L} \overline{\Theta_a \psi_l(\cdot, \cdot)} \Theta_a \varphi_l(\cdot, \cdot) = 1 \quad \text{a.e. on} \quad [1, a) \times [0, 1),$$

and $\Theta_a \varphi_l \in L^{\infty}([1, a) \times [0, 1))$. So we have (3.8) with $X_l = \Theta_a \varphi_l, 1 \leq i \leq L$. This completes the proof.

Remark 3.8. Theorem 3.7 gives us much flexibility in constructing \mathcal{MD} -duals. For example, suppose $\mathcal{MD}(\Psi, a)$ is a Parseval frame for $L^2(\mathbb{R}_+)$. Take X_l as a fixed function X in $L^{\infty}([1, a) \times [0, 1))$ for all $1 \leq l \leq L$. Then, by Theorems 2.7 and 3.7(ii), we obtain a dual frame $\mathcal{MD}(\Phi, a)$ with $\Phi = \{\varphi_1, \varphi_2, \ldots, \varphi_L\}$,

$$\Theta_a \varphi_l(\cdot, \cdot) = \Theta_a \psi_l(\cdot, \cdot) \left(1 - X(\cdot, \cdot) \sum_{l=1}^L \overline{\Theta_a \psi_l(\cdot, \cdot)} \right) + X(\cdot, \cdot) \quad \text{a.e. on} \quad [1, a) \times [0, 1).$$
(3.10)

We can obtain Φ with properties similar to Ψ by choosing good X. Section 4 will focus on some other examples.

The following theorem shows that the cardinality L of Ψ determines whether or not a frame $\mathcal{MD}(\Psi, a)$ is redundant. If L = 1, there exists no redundant frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$. If L > 1, there exists no nonredundant frame $\mathcal{MD}(\Psi, a)$ for $L^2(\mathbb{R}_+)$.

Theorem 3.9. Let a be a fixed positive number greater than $1, \Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$ with cardinality L, and $\mathcal{MD}(\Psi, a)$ be a frame for $L^2(\mathbb{R}_+)$. Then $\mathcal{MD}(\Psi, a)$ is a Riesz basis for $L^2(\mathbb{R}_+)$ if and only if L = 1.

Proof. The necessity is an immediate consequence of Lemma 3.4. Now we show the sufficiency. Suppose L = 1. From the proof of Lemma 3.4, we have

$$S^{-\frac{1}{2}}(\mathcal{MD}(\Psi, a)) = \mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a).$$

So $\mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a)$ is a Parseval frame for $L^2(\mathbb{R}_+)$ since $\mathcal{MD}(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$. This implies by Lemma 3.5 that $\mathcal{MD}(S^{-\frac{1}{2}}(\Psi), a)$ is an orthonormal basis. This is equivalent to the fact that $\mathcal{MD}(\Psi, a)$ is a Riesz basis for $L^2(\mathbb{R}_+)$. Hence, this completes the proof.

Now we conclude this section with the following remark on fast-converging series expansion associated with \mathcal{MD} -frames.

Remark 3.10. Let $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. Then

$$f = \sum_{l=1}^{L} \sum_{m,j \in \mathbb{Z}} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l, \qquad (3.11)$$

and

$$\left\|f - \sum_{l=1}^{L} \sum_{|m|,|j| \leq N} \langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} \Lambda_m D_{a^j} \psi_l \right\|^2 \leq B \sum_{l=1}^{L} \sum_{|m| \text{ or } |j| > N} |\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)}|^2$$
(3.12)

for $f \in L^2(\mathbb{R}_+)$, where *B* is the Bessel bound of $\mathcal{MD}(\Psi, a)$. So the fast-converging series expansion reduces to a fast decay of $\{\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)}\}_{m,j \in \mathbb{Z}}$ with $1 \leq l \leq L$. By Lemmas 2.3(i) and 2.3(iv), we can understand the functions in $L^2(\mathbb{R}_+)$ in the Θ_a -transform domain, and every $f \in L^2(\mathbb{R}_+)$ corresponds to the unique representation

$$\Theta_a f(x,\xi) = \sum_{m,j \in \mathbb{Z}} c_{m,j} e_{m,j}(x,\xi) \quad \text{for a.e.} \ (x,\xi) \in [1,a) \times [0,1)$$
(3.13)

with $c \in l^2(\mathbb{Z}^2)$. Suppose

$$\Theta_a \varphi_l(x,\xi) = \sum_{m,j \in \mathbb{Z}} d_{l,m,j} e_{m,j}(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1)$$
(3.14)

with $d_l \in l^2(\mathbb{Z}^2)$. Again using Lemma 2.3(iii), we obtain that

$$\langle f, \Lambda_m D_{a^j} \varphi_l \rangle_{L^2(\mathbb{R}_+)} = \langle \Theta_a f, e_{m,j} \Theta_a \varphi_l \rangle_{L^2([1,a) \times [0,1))} = \sum_{n, k \in \mathbb{Z}} c_{n,k} \overline{d_{l,n-m,k-j}}.$$

It is the convolution of c and $\{\overline{d_{l,-m,-j}}\}_{m,j\in\mathbb{Z}}$. This implies that $\{\langle f, \Lambda_m D_{a^j}\varphi_l \rangle_{L^2(\mathbb{R}_+)}\}_{m,j\in\mathbb{Z}}$ with $1 \leq l \leq L$ have rapid decay if c and d_l with $1 \leq l \leq L$ have rapid decay. Therefore, we conclude that, if d_l with $1 \leq l \leq L$ in (3.14) have rapid decay, then the series expansion (3.11) has fast convergence for $f \in L^2(\mathbb{R}_+)$ satisfying (3.13) with c having rapid decay.

4 Some examples

Theorems 2.6, 2.7 and 3.7 provide us with an easy method to construct \mathcal{MD} -dual frame pairs for $L^2(\mathbb{R}_+)$. They show that we can construct \mathcal{MD} -dual frame pairs for $L^2(\mathbb{R}_+)$ with good properties such as dual windows having bounded supports and certain smoothness. This section focuses on presenting some examples.

Example 4.1. Let c be a finitely supported sequence defined on \mathbb{Z} such that its Fourier transform

$$\hat{c}(\xi) = \sum_{l \in \mathbb{Z}} c_l \mathrm{e}^{-2\pi \mathrm{i} l \xi}$$

has no zero on [0, 1). Define $\psi \in L^2(\mathbb{R}_+)$ by

$$\Theta_a \psi(x,\xi) = \hat{c}(\xi) \quad \text{for} \quad (x,\xi) \in [1,a) \times [0,1).$$

Then by the definition of Θ_a , we have that ψ is a step function and of bounded support and by Theorems 2.7 and 3.9, we also have that $\mathcal{MD}(\psi, a)$ is a Riesz basis for $L^2(\mathbb{R}_+)$. It follows by Theorems 3.7 and 3.9 that $\mathcal{MD}(\psi, a)$ has the unique \mathcal{MD} -dual window $S^{-1}\psi$ defined by

$$\Theta_a S^{-1} \psi(x,\xi) = \frac{1}{\sum_{l \in \mathbb{Z}} \overline{c_l} e^{2\pi i l\xi}} \quad \text{for} \quad (x,\xi) \in [1,a) \times [0,1).$$

Observe that, if at least two c_l 's are nonzero, we have

$$\frac{1}{\sum_{l\in\mathbb{Z}}\overline{c_l}\mathrm{e}^{2\pi\mathrm{i}l\xi}} = \sum_{l\in\mathbb{Z}} d_l \mathrm{e}^{-2\pi\mathrm{i}l\xi}$$

with d being infinitely supported. Although ψ is of bounded support, it follows by the definition of Θ_a that the dual window $S^{-1}\psi$ is of unbounded support.

The following example shows that it is possible for us to obtain multi-window \mathcal{MD} -dual frame pairs for $L^2(\mathbb{R}_+)$ with each window of bounded support.

Example 4.2. For L > 1, let m_1, m_2, \ldots, m_L be trigonometric polynomials satisfying

$$|m_1(\xi)|^2 + |m_2(\xi)|^2 + \dots + |m_L(\xi)|^2 = 1$$
 for $\xi \in [0, 1)$.

Define $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ by

$$\Theta_a \psi_l(x,\xi) = m_l(\xi) \text{ for } (x,\xi) \in [1,a) \times [0,1).$$

Then $\mathcal{MD}(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$, and every ψ_l is of bounded support by an argument similar to that of Example 4.1. Define $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_L\}$ by

$$\Theta_a \phi_l(x,\xi) = m_l(\xi) \left(1 - \sum_{l=1}^L \overline{m_l(\xi)} X_l(x,\xi) \right) + X_l(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1) \tag{4.1}$$

with $X_l \in L^{\infty}([1, a) \times [0, 1))$. Then by Theorem 3.7, $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. Let

$$X_{l}(x,\xi) = \sum_{j \in \mathbb{Z}} d_{l,j}(x) e^{-2\pi i j\xi} \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1).$$
(4.2)

If, in addition, we require that every $\{d_{l,j}(\cdot)\}_{j\in\mathbb{Z}}$ with $1 \leq l \leq L$ is a finitely supported sequence of functions on [1, a), then each φ_l with $1 \leq l \leq L$ is of bounded support by (4.1) and the definition of Θ_a . **Example 4.3.** For $L \geq 1$, let $\Psi = \{\psi_1, \psi_2, \dots, \psi_L\}$ be a finite subset of $L^2(\mathbb{R}_+)$, and $\operatorname{supp}(\psi_l) \subset [1, a)$. Assume that

$$\sum_{l=1}^{L} |\psi_l(x)|^2 = 1 \text{ for a.e. } x \in [1, a).$$

Define $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_L\}$ by

$$\Theta_a \varphi_l(x,\xi) = \psi_l(x) \left(1 - \sum_{l=1}^L \overline{\psi_l(x)} X_l(x,\xi) \right) + X_l(x,\xi) \quad \text{for a.e.} \quad (x,\xi) \in [1,a) \times [0,1) \tag{4.3}$$

with $X_l \in L^{\infty}([1, a) \times [0, 1))$. Then by Theorem 3.7, $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. In particular, if every X_l with $1 \leq l \leq L$ is as in (4.2) with $\{d_{l,j}(\cdot)\}_{j \in \mathbb{Z}}$ being a finitely supported sequence of functions on [1, a), then each φ_l with $1 \leq l \leq L$ is of bounded support.

In Examples 4.2 and 4.3, $\Theta_a \psi_l$, $1 \leq l \leq L$, are defined by univariate functions. Next, we give a more general example.

Example 4.4. Assume that $c_0(x)$ and $c_1(x)$ are two real-valued measurable functions defined on [1, a], and that there exist two positive constants A and B such that

$$A \leq |c_0(x)| + |c_1(x)| \leq B$$
 for $x \in [1, a]$.

Define $\Psi = \{\psi_1, \psi_2\} \subset L^2(\mathbb{R}_+)$ by

$$\Theta_a \psi_1(x,\xi) = c_0(x) + c_1(x) \mathrm{e}^{-4\pi \mathrm{i}\xi},$$

Li Y Z et al. Sci China Math December 2020 Vol. 63 No. 12

$$\Theta_a \psi_2(x,\xi) = \begin{cases} 2i\sqrt{c_0(x)c_1(x)}\sin 2\pi\xi, & \text{if } c_0(x)c_1(x) \ge 0, \\ 2\sqrt{-c_0(x)c_1(x)}\cos 2\pi\xi, & \text{if } c_0(x)c_1(x) < 0 \end{cases}$$

for $(x,\xi) \in [1, a] \times [0, 1)$. Then by simple computation and the definition of Θ_a , we have

$$\psi_1(x) = \begin{cases} c_0(x), & \text{if } 1 \leqslant x \leqslant a, \\ a^{-1}c_1(a^{-2}x), & \text{if } a^2 \leqslant x \leqslant a^3, \\ 0, & \text{otherwise,} \end{cases}$$
$$\psi_2(x) = \begin{cases} a^{\frac{1}{2}}\sqrt{c_0(ax)c_1(ax)}, & \text{if } a^{-1} \leqslant x \leqslant 1, \\ -a^{-\frac{1}{2}}\sqrt{c_0(a^{-1}x)c_1(a^{-1}x)}, & \text{if } a \leqslant x \leqslant a^2 \text{ and } c_0(a^{-1}x)c_1(a^{-1}x) \geqslant 0, \\ a^{-\frac{1}{2}}\sqrt{-c_0(a^{-1}x)c_1(a^{-1}x)}, & \text{if } a \leqslant x \leqslant a^2 \text{ and } c_0(a^{-1}x)c_1(a^{-1}x) < 0, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\Theta_a \psi_1(x,\xi)|^2 + |\Theta_a \psi_2(x,\xi)|^2 = (|c_0(x)| + |c_1(x)|)^2.$$

It follows that

$$A^2 \leqslant |\Theta_a \psi_1(x,\xi)|^2 + |\Theta_a \psi_2(x,\xi)|^2 \leqslant B^2$$

$$\tag{4.4}$$

for a.e. $(x,\xi) \in [1, a] \times [0,1)$ and thus by Theorem 2.7, we have that $\mathcal{MD}(\Psi, a)$ is a frame for $L^2(\mathbb{R}_+)$. Obviously, ψ_1 and ψ_2 are real-valued and of bounded support.

Now we check the \mathcal{MD} -duals of $\mathcal{MD}(\Psi, a)$. Define $\Phi = \{\varphi_1, \varphi_2\}$ by

$$\Theta_a \varphi_l(x,\xi) = \frac{\Theta_a \psi_l(x,\xi)(1 - \overline{\Theta_a \psi_1(x,\xi)} X_1(x,\xi) - \overline{\Theta_a \psi_2(x,\xi)} X_2(x,\xi))}{(|c_0(x)| + |c_1(x)|)^2} + X_l(x,\xi)$$

for $1 \leq l \leq 2$ and a.e. $(x,\xi) \in [1,a] \times [0,1)$ with $X_1, X_2 \in L^{\infty}([1,a] \times [0,1))$. Then by Theorem 3.7, we have that $\mathcal{MD}(\Psi, a)$ and $\mathcal{MD}(\Phi, a)$ form a pair of dual frames for $L^2(\mathbb{R}_+)$. If every X_l with $1 \leq l \leq 2$ is as in (4.2) with $\{d_{l,j}(\cdot)\}_{j\in\mathbb{Z}}$ being a finitely supported sequence of real-valued functions on [1,a], then φ_1 and φ_2 are also real-valued and of bounded support. Also we can obtain Φ with good smoothness by choosing good X_1 and X_2 . For example, let us make further assumption that $c_0(x), c_1(x)$ and $\sqrt{|c_0(x)c_1(x)|}$ are k-th continuously differentiable on (1,a), and that $c_0(1)c_1(1) = c_0(a)c_1(a) = 0$, $c_0(x)c_1(x) > 0$ for $x \in (1,a)$. Then ψ_1 and ψ_2 are continuous on \mathbb{R}_+ and k-th continuously differentiable on $(1,a) \cup (a^2, a^3)$ and $(a^{-1}, 1) \cup (a, a^2)$, respectively. In this case, if we further require that $|c_0(x)| + |c_1(x)|$ is a constant on [1, a], and $X_1(x, \xi)$ and $X_2(x, \xi)$ satisfy

$$X_1(x,\xi) = \sum_{j \in \mathbb{Z}} d_{1,j} \mathrm{e}^{-2\pi \mathrm{i} j\xi}$$

and

$$X_2(x,\xi) = \sum_{j \in \mathbb{Z}} d_{2,j} \mathrm{e}^{-2\pi \mathrm{i} j\xi},$$

respectively, for $\xi \in [0, 1)$ with $\{d_{1,j}\}_{j \in \mathbb{Z}}$ and $\{d_{2,j}\}_{j \in \mathbb{Z}}$ being two finitely supported real number sequences. Then φ_1 and φ_2 are real-valued and of bounded support, and have the same continuity and differentiability as ψ_1 and ψ_2 .

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 11271037). The authors thank the referees for their valuable comments.

References

 Albeverio S, Evdokimov S, Skopina M. p-adic multiresolution analysis and wavelet frames. J Fourier Anal Appl, 2010, 16: 693–714

- 2 Casazza P G, Christensen O. Weyl-Heisenberg frames for subspaces of $L^2(\mathbb{R})$. Proc Amer Math Soc, 2001, 129: 145–154
- 3 Chen Z Y, Micchelli C A, Xu Y S. A construction of interpolating wavelets on invariant sets. Math Comp, 1999, 68: 1569–1587
- 4 Christensen O. An Introduction to Frames and Riesz Bases, 2nd ed. Basel: Birkhäuser, 2016
- 5 Dahmen W, Han B, Jia R Q, et al. Biorthogonal multiwavelets on the interval: Cubic Hermite splines. Constr Approx, 2000, 16: 221–259
- $6 \quad \text{Dai X, Diao Y, Gu Q. Subspaces with normalized tight frame wavelets in } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-1667} \text{ and 100 } \mathbb{R}. \text{ Proc Amer Math Soc, 2001, 130: 1661-$
- 7 Dai X, Diao Y, Gu Q, et al. Frame wavelets in subspaces of $L^2(\mathbb{R}^d)$. Proc Amer Math Soc, 2002, 130: 3259–3267
- 8 Dai X, Diao Y, Gu Q, et al. The existence of subspace wavelet sets. J Comput Appl Math, 2003, 155: 83–90
- 9 Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72: 341–366
- 10 Evdokimov S, Skopina M. On orthogonal p-adic wavelet bases. J Math Anal Appl, 2015, 424: 952-965
- 11 Farkov Y A. On wavelets related to the Walsh series. J Approx Theory, 2009, 161: 259–279
- 12 Farkov Y A, Maksimov A Y, Stroganov S A. On biorthogonal wavelets related to the Walsh functions. Int J Wavelets Multiresolut Inf Process, 2011, 9: 485–499
- 13 Feichtinger H G, Strohmer T. Gabor Analysis and Algorithms, Theory and Applications. Boston: Birkhäuser, 1998
- 14 Feichtinger H G, Strohmer T. Advances in Gabor Analysis. Boston: Birkhäuser, 2003
- 15 Gabardo J P, Han D. Subspace Weyl-Heisenberg frames. J Fourier Anal Appl, 2001, 7: 419–433
- 16 Gabardo J P, Han D. Balian-Low phenomenon for subspace Gabor frames. J Math Phys, 2004, 45: 3362–3378
- 17 Gabardo J P, Han D. The uniqueness of the dual of Weyl-Heisenberg subspace frames. Appl Comput Harmon Anal, 2004, 17: 226–240
- 18 Gabardo J P, Han D, Li Y Z. Lattice tiling and density conditions for subspace Gabor frames. J Funct Anal, 2013, 265: 1170–1189
- 19 Gabardo J P, Li Y Z. Rational time-frequency Gabor frames associated with periodic subsets of the real line. Int J Wavelets Multiresolut Inf Process, 2014, 12: 1450013
- 20 Goodman T N T, Micchelli C A, Rodriguez G, et al. On the limiting profile arising from orthonormalizing shifts of exponentially decaying functions. IMA J Numer Anal, 1998, 18: 331–354
- 21 Goodman T N T, Micchelli C A, Shen Z. Riesz bases in subspaces of $L_2(\mathbb{R}_+)$. Constr Approx, 2001, 17: 39–46
- 22 Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001
- 23 Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces. Appl Comput Harmon Anal, 2009, 27: 47–54
- 24 Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces II: The structure of affine subspaces. J Funct Anal, 2011, 260: 1615–1636
- 25 Hasankhani M A, Dehghan M A. A new function-valued inner product and corresponding function-valued frame in $L_2(0,\infty)$. Linear Multilinear Algebra, 2014, 8: 995–1009
- 26 Heil C. History and evolution of the density theorem for Gabor frames. J Fourier Anal Appl, 2007, 13: 113–166
- 27 Heil C. A Basis Theory Primer: Expanded Edition. New York: Birkhäuser, 2011
- 28 Hernández E, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
- 29 Jia R Q, Jiang Q, Shen Z. Distributional solutions of nonhomogeneous discrete and continuous refinement equations. SIAM J Math Anal, 2000, 32: 420–434
- 30 Jia R Q, Jiang Q, Shen Z. Convergence of cascade algorithms associated with nonhomogeneous refinement equations. Proc Amer Math Soc, 2001, 129: 415–427
- 31 Jia H F, Li Y Z. Refinable function-based construction of weak (quasi-)affine bi-frames. J Fourier Anal Appl, 2014, 20: 1145–1170
- 32 Jia H F, Li Y Z. Weak (quasi-)affine bi-frames for reducing subspaces of $L^2(\mathbb{R}^d)$. Sci China Math, 2015, 58: 1005–1022
- 33 Lang W C. Orthogonal wavelets on the Cantor dyadic group. SIAM J Math Anal, 1996, 27: 305-312
- 34 Lang W C. Wavelet analysis on the Cantor dyadic group. Houston J Math, 1998, 24: 533-544
- 35 Li S. Convergence of cascade algorithms in Sobolev spaces associated with inhomogeneous refinement equations. J Approx Theory, 2000, 104: 153–163
- 36 Li Y Z, Jia H F. Weak Gabor bi-frames on periodic subsets of the real line. Int J Wavelets Multiresolut Inf Process, 2015, 13: 1550046
- 37 Li Y Z, Zhang W. Dilation-and-modulation systems on the half real line. J Inequal Appl, 2016, 1: 186
- 38 Li Y Z, Zhang Y. Rational time-frequency vector-valued subspace Gabor frames and Balian-Low theorem. Int J Wavelets Multiresolut Inf Process, 2013, 11: 1350013
- 39 Li Y Z, Zhang Y. Vector-valued Gabor frames associated with periodic subsets of the real line. Appl Math Comput, 2015, 253: 102–115
- 40 Li Y Z, Zhou F Y. GMRA-based construction of framelets in reducing subspaces of L²(R^d). Int J Wavelets Multiresolut Inf Process, 2011, 9: 237–268
- 41 Micchelli C A, Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl

Comput Harmon Anal, 1994, 1: 391–401

- 42 Nielsen M. Walsh-type wavelet packet expansions. Appl Comput Harmon Anal, 2000, 9: 265–285
- 43 Nielsen M. Nonseparable Walsh-type functions on \mathbb{R}^d . Glas Mat Ser III, 2004, 39: 111–138
- 44 Seip K. Regular sets of sampling and interpolation for weighted Bergman spaces. Proc Amer Math Soc, 1993, 117: 213–220
- 45 Shah F A. On some properties of p-wavelet packets via the Walsh-Fourier transform. J Nonlinear Anal Optim, 2012,
 3: 185–193
- 46 Strang G, Zhou D X. Inhomogeneous refinement equations. J Fourier Anal Appl, 1998, 4: 733-747
- 47 Sun Q. Homogeneous and nonhomogeneous refinable distributions in $F^{q,\gamma}$. In: Wavelet Analysis and Applications, vol. 25. Providence: Amer Math Soc, 2002, 235–244
- 48 Volkmer H. Frames of wavelets in Hardy space. Analysis, 1995, 15: 405-421
- 49 Young R M. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980
- 50 Zhang Y, Li Y Z. Rational time-frequency multi-window subspace Gabor frames and their Gabor duals. Sci China Math, 2014, 57: 145–160
- 51 Zhou F Y, Li Y Z. Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of $L^2(\mathbb{R}^d)$. Kyoto J Math, 2010, 50: 83–99