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Abstract Multivariate longitudinal data arise frequently in a variety of applications, where multiple outcomes

are measured repeatedly from the same subject. In this paper, we first propose a two-stage weighted least square

estimation procedure for the regression coefficients when the random error follows an irregular autoregressive

(AR) process, and establish asymptotic normality properties for the resulting estimators. We then apply the

smoothly clipped absolute deviation (SCAD) variable selection approach to determine the order of the AR

error process. We further propose a test statistic to check whether multiple responses are correlated at the

same observation time, and derive the asymptotic distribution of the proposed test statistic. Several simulated

examples and real data analysis are presented to illustrate the finite-sample performance of the proposed method.
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1 Introduction

Longitudinal data arise frequently in several areas of scientific research, and a variety of statistical models

have been proposed in the last few decades for analyzing such data. However, most of these models are

confined to the analysis of univariate longitudinal data (see [3, 4, 7, 9]).

In practice, multivariate longitudinal data can arise when a set of different outcomes of the same unit is

measured repeatedly over time. For example, in a data set about the quality of paper making [12], several

physical characteristics of the paper, including the tensile index (ng/g), burst index (kPa m2/g), tear

index (nN m2/g), and drainability of pulp (Schopper-Riegler (SR) number) were repeatedly measured at

beating times of 5, 15, 30, 45 and 60 minutes for 48 batches of pine sulfate pulp. Instead of modeling each

longitudinal response variable separately, it is natural and important to model multivariate longitudinal

responses simultaneously. Practically, it provides a unique opportunity for one to study the joint evolution
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of various responses over time. Numerically, it may improve the estimation efficiency by incorporating

the correlation information between various responses.

The analysis of multivariate longitudinal data can be challenging compared with that of traditional

univariate longitudinal data, because (a) the error variances are likely to be different for different

responses, (b) the errors are likely to be correlated for the same response measured at different times,

and (c) the errors are also likely to be correlated among responses measured at the same time (see [8,17]

for a detailed description).

There are some previous studies on the statistical analysis of multivariate longitudinal data. However,

nearly all of these have assumed that the error term follows normal distribution (see, e.g., [2, 6, 10]).

When the model assumptions are valid, these methods should be effective. However, in practice, it is

difficult to obtain sufficient prior information to properly specify parametric models for the error term.

There have also been studies on parametric or nonparametric modeling of multivariate longitudinal data

(see [12, 15]). However, these methods require estimations of the covariance matrix of the error term,

which can be challenging when the number of observation times is large. To avoid the need to estimate

the covariance matrix, Bai et al. [1] proposed an irregular-time autoregressive (AR) model with the aim

of directly modeling the error process itself, where the informative correlation structure is fitted by the

time distance adaptive autoregressive process that can automatically accommodate irregular and possibly

subject-specific time points of longitudinal data.

In this paper, following the approach adopted by [1], we introduce a model that includes multivariate

longitudinal data with an auto-correlated error process. The model is given by

Yi,j,k = Xτ
i,jβk + εi,j,k, i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , q, (1.1)

where Yi,j,k denotes the k-th response observed at time tj of the i-th subject, Xij = (Xi,j,1, . . . , Xi,j,p)
τ

is a p-dimensional vector of covariates, βk = (βk,1, . . . , βk,p)
τ is a p-dimensional vector of regression

coefficients for the k-th response, εi,j,k represents a zero-mean stochastic process, and τ indicates the

matrix transpose. In this paper, we assume that the dimensions of p and q are smaller than n.

In practice, it is known that longitudinal data are collected over a period of time and are auto-

correlated. Motivated by [1], we can naturally generalize their idea from univariate longitudinal data to

multivariate longitudinal data by assuming that there are correlations between various responses at the

same observation time and that these correlations do not change with time.

Specifically, let di,j,s = ti,j − ti,j−s be the time distance between the j-th and (j − s)-th observations

for the i-th subject. We model εi,j,k as

εi,j,k =

dk∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k + ei,j,k, i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , q, (1.2)

where

{(ak,s, bk,s) : k = 1, . . . , q, s = 1, . . . , dk}

are unknown autoregressive parameters, and ei,j,k’s are random errors that satisfy E(ei,j) = 0 and

cov(ei,j) = V, where ei,j = (ei,j,1, . . . , ei,j,q)
τ .

Note that the model (1.2) is a natural generalization of the standard AR model. It comprises a

stationary part,
∑dk

s=1 ak,sεi,j−s,k and a non-stationary part,
∑dk

s=1 bk,sdi,j,sεi,j−s,k that can capture the

irregular and subject-specific characteristics of longitudinal data.

The remainder of this paper is organized as follows. In Section 2, we propose a two-stage weighted

least square estimation procedure for the regression coefficients, βk, and autoregressive coefficient vectors,

ak = (ak,1, . . . , ak,d)
τ and bk = (bk,1, . . . , bk,d)

τ , and then apply the SCAD variable selection approach [5]

to determine the order of the auto-correlated error process. In Section 3, we further propose a test statistic

to examine whether multiple responses are correlated at the same observation time. In Section 4, we study

the asymptotic properties of the proposed estimator and test statistic. Numerical simulations and an

analysis of real data are presented in Section 5 to illustrate the finite-sample performances of the proposed

approach. We give the conclusion in Section 6. The technical proofs are presented in Appendix A.
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2 Model estimation

2.1 Initial least square estimation

For convenience, we use the same autoregressive order, d for different εi,j,k (k = 1, . . . , q). There is,

however, no problem in allowing the errors to depend on different orders, dk.

To formulate the models (1.1) and (1.2) in the matrix forms, we introduce some notations:

yi,j = (yi,j,1, . . . , yi,j,q)
τ , yi = (yτ

i,1, . . . ,y
τ
i,mi

)τ , y = (yτ
1 , . . . ,y

τ
n)

τ ,

εi,j = (ϵi,j,1, . . . , ϵi,j,q)
τ , εi = (ετi,1, . . . , ε

τ
i,mi

)τ , ε = (ετ1 , . . . , ε
τ
n)

τ ,

ei,j = (ei,j,1, . . . , ei,j,q)
τ , ei = (eτi,d+1, . . . , e

τ
i,mi

)τ , e = (eτ1 , . . . , e
τ
n)

τ ,

Xi =


1 xi,1,1 . . . xi,1,p

...
...

. . .
...

1 xi,mi,1 . . . xi,mi,p


mi×(p+1)

, β0 =


β1,0 β1,1 . . . β1,p

...
...

. . .
...

βq,0 βq,1 . . . βq,p


q×(p+1)

.

Furthermore, we write X = (Xτ
1 , . . . , X

τ
n)

τ and β = vec(β0), where β is created by connecting all columns

of β0 one after another. Thus, we can rewrite the model (1.1) in the matrix form as

y = (X⊗ Iq)β + ε, (2.1)

where ⊗ denotes the Kronecker product, and Iq is a q × q identity matrix. Now, we aim to consistently

estimate the regression parameters β and the autoregressive coefficients {(ak,bk) : k = 1, . . . , q}. The

first-stage estimation procedure is shown as follows:

Assuming the errors εi,j,k are independent, we obtain an initial estimate of β using the ordinary least

square method

β̂ = [(X⊗ Iq)
τ (X⊗ Iq)]

−1(X⊗ Iq)
τy. (2.2)

Then, given the estimated error, ε̂i,j,k = yi,j,k −Xτ
i,jβ̂k, we can estimate ak and bk by minimizing

Q(ak,bk) =
n∑

i=1

mi∑
j=d+1

[
ε̂i,j,k −

d∑
s=1

(ak,s + bk,sdi,j,s)ε̂i,j−s,k

]2
, k = 1, . . . , q.

Note that the estimates of β̂, âk and b̂k are consistent but may not be efficient, and we therefore

propose a two-stage estimation approach to improve the efficiency.

2.2 Two-stage weighted least square estimation

In the second stage, we improve the estimation efficiency for the regression parameters and autoregressive

coefficients by taking the correlation between responses into account. Denote

ηi,j = (ε̂i,j,1, . . . , ε̂i,j,q)
τ , ηi = (ητ

i,d+1, . . . ,η
τ
i,mi

)τ , η = (ητ
1 , . . . ,η

τ
n)

τ ,

δi,j = δτi,j,1 ⊕ · · · ⊕ δτi,j,q, δi = (δi,d+1, . . . , δi,mi
)τ , δ = (δτ1 , . . . , δ

τ
n)

τ ,

where ⊕ denotes the direct sum of vectors and δi,j,k = (ε̂i,j−1,k, di,j,1ε̂i,j−1,k, . . . , ε̂i,j−d,k, di,j,dε̂i,j−d,k)
τ .

We first improve the estimation efficiency for the autoregressive coefficients ak and bk by minimizing

(η − δ θ)τ Φ̂−1(η − δ θ),

where θ = (a1,1, b1,1, . . . , a1,d, b1,d, . . . , aq,1, bq,1, . . . , aq,d, bq,d)
τ , and Φ̂ = diag(Φ̂1, . . . , Φ̂n) is a weight

matrix. Furthermore,

Φ̂i = Imi−d ⊗ V̂, V̂ =
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

êij ê
τ
ij .



2120 Pei Y Q et al. Sci China Math October 2020 Vol. 63 No. 10

Note that Φi is an (mi − d)q × (mi − d)q block-diagonal matrix, where each submatrix describes the

correlation between the responses at the same observation time.

We then improve the estimation efficiency for the regression coefficients β by applying the difference-

based method to the models (1.1) and (1.2),

yi,j,k −
d∑

s=1

(ak,s + bk,sdi,j,s)(yi,j−s,k −Xτ
i,j−sβk) = Xτ

i,jβk + ei,j,k, j = d+ 1, . . . ,mi.

By the simple calculations, we have

yi,j,k −
d∑

s=1

(ak,s + bk,sdi,j,s)yi,j−s,k =

[
Xτ

i,j −
d∑

s=1

(ak,s + bk,sdi,j,s)X
τ
i,j−s

]
βk + ei,j,k. (2.3)

Let us denote

y∗i,j,k = yi,j,k −
d∑

s=1

(ak,s + bk,sdi,j,s)yi,j−s,k and X∗
i,j,k = Xi,j −

d∑
s=1

(ak,s + bk,sdi,j,s)Xi,j−s.

Since y∗i,j,k and X∗
i,j,k contain unknown parameters, ak,s and bk,s, we replace them with ỹi,j,k and X̃i,j,k,

respectively, where

ỹi,j,k = yi,j,k −
d∑

s=1

(âk,s + b̂k,sdi,j,s)yi,j−s,k, j = d+ 1, . . . ,mi,

X̃i,j,k = Xi,j −
d∑

s=1

(âk,s + b̂k,sdi,j,s)Xi,j−s, j = d+ 1, . . . ,mi.

Because the correlation structure of the first d observations cannot be estimated based on the model (2.2)

with a lag order of d, we define ỹi,j,k = yi,j,k. Denote

ỹi,j = (ỹi,j,1, . . . , ỹi,j,q)
τ , ỹi = (ỹτ

i,1, . . . , ỹ
τ
i,mi

)τ , ỹ = (ỹτ
1 , . . . , ỹ

τ
n)

τ ,

ẽi = (ετi,1, . . . , ε
τ
i,d, e

τ
i,d+1, . . . , e

τ
i,mi

)τ , ẽ = (ẽτ1 , . . . , ẽ
τ
n)

τ ,

X̃i,j =

{
Xi,j ⊗ Iq, if j = 1, . . . , d,

X̃i,j,1 ⊕ · · · ⊕ X̃i,j,q, if j = d+ 1, . . . ,mi,

X̃i = (X̃i,1, . . . , X̃i,mi)
τ , X̃ = (X̃τ

1 , . . . , X̃
τ
n)

τ .

Hence, the multivariate longitudinal data model (2.3) can then be rewritten as

ỹ = X̃β + ẽ. (2.4)

Using the weighted least square method, we can estimate β more efficiently using

β̃ = [X̃
τ
Σ̂−1X̃]−1X̃

τ
Σ̂−1ỹ, (2.5)

where Σ̂ = diag(Σ̂1, . . . , Σ̂n), and Σ̂i = Ŵ⊕ Φ̂i, i = 1, . . . , n. For the first dq elements of ẽi, the covari-

ance matrix can be estimated as Ŵ = 1
n

∑n
i=1 ε̂iε̂

τ
i , where ε̂i = (ε̂i,1,1, . . . , ε̂i,1,q, . . . , ε̂i,d,1, . . . , ε̂i,d,q)

τ .

2.3 Determination of AR order

In practice, the true AR order in the errors is not known, and misspecification of the lagged order will

result in less-efficient estimation and reduced precision of prediction. Therefore, the correct determination

of the lagged order for the AR error structure is a matter that demands our attention.

With reference to the model (1.2), we can start from a large-order AR model and establish an algorithm

to reduce the complexity of the model. We thus propose to simultaneously estimate the autoregressive
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coefficients ak and bk, and to determine the order of the k-th AR error process by minimizing the

following penalized least square function:

P(ak,bk)

=
1

2

n∑
i=1

mi∑
j=dk0+1

(
ε̂i,j,k −

dk0∑
s=1

(ak,s + bk,sdi,j,s)ε̂i,j−s,k

)2

+N

dk0∑
s=1

pλ(∥θk,s∥), k = 1, . . . , q, (2.6)

where dk0 is a pre-specified constant such that dk0 > d, λ is the tuning parameter, and pλ(·) is the

SCAD penalty function [5]. By minimizing the above objective function, we can specify the significant

ak,s and bk,s, and the corresponding autoregressive order.

Local quadratic approximation. We assume, without loss of generality, that dk0 ≡ d0, and then

the equivalent matrix form of (2.6) is

Q(θ) =
1

2
(η − δ θ)τ (η − δ θ) +Nq

2d0q∑
j=1

pλ(|θj |). (2.7)

It is difficult to minimize (2.7) directly because the objective function is irregular at the origin and does

not have the second derivative at some points. By local quadratic approximation to the SCAD penalty

function [5], given an estimate θ
(k)
j in the k-th iteration, we set θ̂j = 0 if |θ(k)j | is close to 0; otherwise,

the SCAD penalty is locally approximated by a quadratic function as

[pλ(|θj |)]′ = p′λ(|θj |) sgn(θj) ≈ p′λ(|θ
(k)
j |)/|θ(k)j |θj .

We can apply an iterative ridge regression to find the minimizer of (2.7):

θ(k+1) = [δτδ +Nq Σλ(θ
(k))]−1δτη, (2.8)

where Σλ(θ
(k)) = diag{p′λ(|θ

(k)
1 |)/|θ(k)1 |, . . . , p′λ(|θ

(k)
2d0q

|)/|θ(k)2d0q
|}.

Tuning parameter selection. We also need to select a proper tuning parameter λ for the SCAD

penalty function. Wang et al. [13] advocated using the Bayesian information criterion (BIC) tuning

parameter selector for linear regression, and showed that it yields an oracle estimator in an asymptotic

sense. Therefore, we propose a BIC tuning parameter selector by minimizing

BIC(λ) = log(RSS/Nq) + ŝ
log(Nq)

Nq
,

where RSS = ∥η − δ θ̂(λ)∥2 is the residual sum of squares (RSS) and ŝ is the number of the estimated

nonzero coefficients for a given λ.

3 Hypothesis testing

As discussed in the introduction, a number of approaches have been proposed for joint modeling of

multivariate longitudinal data. However, as [11] noted, the availability of multivariate longitudinal data

does not necessarily require the simultaneous construction of a joint model for all outcomes. If there are no

correlations among different responses, we can directly apply the commonly used univariate longitudinal

data models separately for each outcome. In this section, we are interested in examining whether multiple

responses are correlated at a given observation time, say the j-th time, or equivalently, where Σj =

Cov(ei,j) is a diagonal matrix, i.e.,

H0j : Σj = Cov(ei,j) = diag(σ2
11, . . . , σ

2
qq). (3.1)

Define ∆i,j,k1k2 = ei,j,k1 · ei,j,k2 , k1 < k2, and there are q(q− 1)/2 combinations of ∆i,j,k1k2 . Under the

null hypothesis that the elements in ei,j are independent, it is easy to know that ∆i,j,k1k2 is independent
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of ∆i,j,k3k4
given k1 ̸= k3 or k2 ̸= k4. In addition, as n → ∞, n−1/2

∑n
i=1 ∆i,j,k1k2

D−→ N(0, σ2
k1k1

σ2
k2k2

).

Then, it holds that

Λj = n−1/2
n∑

i=1

∆i,j
D−→ N(0,Γj) as n → ∞,

where ∆i,j = (∆i,j,12, . . . ,∆i,j,(q−1)q)
τ , Γj = diag(Γj,12, . . . ,Γj,(q−1)q), and Γj,k1k2 = σ2

k1k1
σ2
k2k2

. In

practice, ei,j,k is unobservable and can be replaced with êi,j,k = ε̂i,j,k −
∑d

s=1(âk,s + b̂ksdi,j,s)ε̂i,j−s,k. We

thus propose a test statistic, M̂j for the null hypothesis, H0j , M̂j = Λ̂τ
j Γ̂−1

j Λ̂j , where

Λ̂j = n−1/2
n∑

i=1

∆̂i,j , ∆̂i,j = (∆̂i,j,12, . . . , ∆̂i,j,(q−1)q)
τ , ∆̂i,j,k1k2 = êi,j,k1 · êi,j,k2 ,

and Γ̂j = diag(σ̂2
11σ̂

2
22, . . . , σ̂

2
(q−1)(q−1)σ̂

2
qq).

4 Asymptotic properties

We introduce the following regularity conditions to establish the asymptotic properties of the proposed

estimators. These assumptions are imposed for the brevity of our proofs and can be weakened.

(A1) The observation times ti,j are independent and identically distributed (i.i.d.) from an unknown

density function f(t) that is defined on the support of [0, T ] and is uniformly bounded away from infinity

and 0.

(A2) The number of measurements, mi (1 6 i 6 n) are i.i.d. with 0 < E(mi) < ∞.

(A3) The time series processes, Zi = {(Xi,j , εi,j) : 1 6 j 6 mi} are independent across i and indepen-

dent of ei,j . Moreover, we assume that the second moment of X exists, that is E[Xτ
i,jXi,j ] 6 C < ∞ for

some finite constant C.

Assumption (A1) is a standard assumption for modeling longitudinal data (see [4]). Under (A2), the

total sample size, N =
∑n

i=1 mi is of the same order as the number of subjects n. (A3) is a technical

assumption needed to establish the asymptotic properties of β̂. Note that the number of observation

times for every subject, mi is not required to be bounded and our simulation results in Section 5 can

verify this assumption.

Throughout this paper, we will use β̂ols and θ̂ols to denote the first-stage estimators, and β̂wls and θ̂wls

to denote the two-stage estimators.

4.1 Asymptotic properties when correlations among responses are ignored

We first introduce some notations. Let η(t) = (η1(t), . . . , ηp(t))
τ be defined by the equation

Xi,j = η(ti,j) + ζi,j , i = 1, . . . , n, j = 1, . . . ,mi,

where ζi,j = (ζi,j,1, . . . , ζi,j,p)
τ satisfies E(ζi,j | ti,j) = 0. Here, the conditional expectation is considered

componentwise. Denote

ζ̃
(k)
i,j = ζi,j −

dk∑
s=1

(ak,s + bk,sdi,j,s)ζi,j−s,

ζ̃i,j = ζ̃
(1)
i,j ⊕ · · · ⊕ ζ̃

(q)
i,j , δi,j = δi,j,1 ⊕ · · · ⊕ δi,j,q,

δi,j,k = (εi,j−1,k, di,j,1εi,j−1,k, . . . , εi,j−dk,k, di,j,dk
εi,j−dk,k)

τ .

We assume

1

Nq

n∑
i=1

[ d∑
j=1

(Xi,j ⊗ Iq)(Xi,j ⊗ Iq)
τ +

mi∑
j=d+1

X̃i,jX̃
τ
i,j

]
P−→ D, (4.1)
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1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δi,jδ
τ
i,j

P−→ Λ, (4.2)

1

Nq

n∑
i=1

{[ d∑
j=1

(Xi,j ⊗ Iq)εi,j

][ d∑
j=1

(Xi,j ⊗ Iq)εi,j

]τ
+ σ2

e

mi∑
j=d+1

X̃i,jX̃
τ
i,j

}
P−→ ∆. (4.3)

We then have the following asymptotic results for the ordinary least square estimators, β̂ols and θ̂ols
proposed in Subsection 2.1.

Theorem 4.1. Under regularity conditions (A1)–(A3) and (4.1)–(4.3), as n → ∞, we have

(i)
√
Nq (β̂ols − β)

D−→ N(0, D−1∆D−1), where D and ∆ are defined in (4.1) and (4.3), respectively;

(ii)
√
Nq − ndq (θ̂ols −θ)

D−→ N(0, σ2
eΛ

−1), where Λ is defined in (4.2) and σ2
e is the variance of ei,j,k.

The proofs of Theorem 4.1 and the results below can be found in Appendix A. We now consider the

estimations of the covariance matrices for the estimators, which involve estimations of σ2
e , D, ∆ and Λ.

First, we estimate σ2
e using

σ̂2
e =

1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

1

q

q∑
k=1

[
ε̂i,j,k −

dk∑
s=1

(âk,s + b̂k,sdi,j,s)ε̂i,j−s,k

]2
,

where ε̂i,j,k = yi,j,k −Xτ
i,jβ̂k, i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , q. Recall that

X̃i,j,k = Xi,j −
d∑

s=1

(âk,s + b̂k,sdi,j,s)Xi,j−s, X̃i,j = X̃i,j,1 ⊕ · · · ⊕ X̃i,j,q,

δ̂i,j,k = (ε̂i,j−1,k, di,j,1ε̂i,j−1,k, . . . , ε̂i,j−d,k, di,j,dε̂i,j−dk,k)
τ , δ̂i,j = δ̂i,j,1 ⊕ · · · ⊕ δ̂i,j,q.

We then estimate D, ∆ and Λ respectively using

D̂ =
1

Nq

n∑
i=1

[ d∑
j=1

(Xi,j ⊗ Iq)(Xi,j ⊗ Iq)
τ +

mi∑
j=d+1

X̃i,jX̃
τ
i,j

]
,

Λ̂ =
1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δ̂i,j δ̂
τ
i,j ,

∆̂ =
1

Nq

n∑
i=1

{[ d∑
j=1

(Xi,j ⊗ Iq)ε̂i,j

][ d∑
j=1

(Xi,j ⊗ Iq)ε̂i,j

]τ
+ σ̂2

e

mi∑
j=d+1

X̃i,jX̃
τ
i,j

}
.

Theorem 4.2. Under regularity conditions (A1)–(A3) and (4.1)–(4.3), as n → ∞, we have√
Nq − ndq (σ̂2

e − σ2
e)

D−→ N(0, var(e2i,j,k))

and

D̂
P−→ D, Λ̂

P−→ Λ, ∆̂
P−→ ∆.

4.2 Asymptotic properties when correlations among responses are taken into account

We define

cov{(ei,j,1, . . . , ei,j,q) | ti,d+1, . . . , ti,mi} = V, cov{(εi,j,1, . . . , εi,j,q) | ti,d+1, . . . , ti,mi} = W,

and assume that

1

Nq

n∑
i=1

[ d∑
j=1

(Xi,j ⊗ Iq)W (Xi,j ⊗ Iq)
τ +

mi∑
j=d+1

X̃i,jV X̃τ
i,j

]
P−→ C, (4.4)
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1

Nq

n∑
i=1

{[ d∑
j=1

(Xi,j ⊗ Iq)εi,j

][ d∑
j=1

(Xi,j ⊗ Iq)εi,j

]τ

+

( mi∑
j=d+1

X̃i,jei,j

)( mi∑
j=d+1

X̃i,jei,j

)τ}
P−→ Θ, (4.5)

1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δi,jV δτi,j
P−→ A, (4.6)

1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δi,jV ei,j
P−→ B. (4.7)

Subsequently, we have the following asymptotic results for the two-stage weighted least square estimators,

β̂wls and θ̂wls proposed in Subsection 2.2.

Theorem 4.3. Under regularity conditions (A1)–(A3) and (4.4)–(4.7), as n → ∞, we have

(i)
√
Nq (β̂wls − β)

D−→ N(0, C−1ΘC−1), where C and Θ are defined in (4.4) and (4.5), respectively;

(ii)
√
Nq − ndq (θ̂wls − θ)

D−→ N(0, A−1BA−1), where A and B are defined in (4.6) and (4.7), respec-

tively.

The proofs of Theorem 4.3 and the results below can be found in Appendix A. We now consider the

estimations of the covariance matrices for the estimators, which involve estimations of V , W , C, Θ, A

and B. First, we estimate V and W using

V̂ =
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

êij ê
τ
ij , Ŵ =

1

n

n∑
i=1

1

d

d∑
j=1

ε̂ij ε̂
τ
ij ,

where

ε̂ij = (ε̂i,j,1, . . . , ε̂i,j,q)
τ , êij = (êi,j,1, . . . , êi,j,q)

τ , êi,j,k = ε̂i,j,k −
dk∑
s=1

(âk,s + b̂k,sdi,j,s)ε̂i,j−s,k.

We then estimate C, Θ, A and B using

Ĉ =
1

Nq

n∑
i=1

[ d∑
j=1

(Xi,j ⊗ Iq)Ŵ (Xi,j ⊗ Iq)
τ +

mi∑
j=d+1

X̃i,j V̂ X̃τ
i,j

]
,

Θ̂ =
1

Nq

n∑
i=1

{[ d∑
j=1

(Xi,j ⊗ Iq)ε̂i,j

][ d∑
j=1

(Xi,j ⊗ Iq)ε̂i,j

]τ
+

( mi∑
j=d+1

X̃i,j êi,j

)( mi∑
j=d+1

X̃i,j êi,j

)τ}
,

Â =
1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δ̂i,j V̂ δ̂τi,j , B̂ =
1

Nq − ndq

n∑
i=1

mi∑
j=d+1

δ̂i,j V̂ êi,j .

Theorem 4.4. Under regularity conditions (A1)–(A3) and (4.4)–(4.7), as n → ∞, we have
√
N − nd [vech(V̂ )− vech(V )]

D−→ N(0, Lq cov(ei,j ⊗ ei,j)L
τ
q ),

where vech is a column stacking operator that stacks only the elements on or below the main diagonal of

the matrix, Lq is the 1
2q(q + 1)× q2 elimination matrix, and ei,j = (ei,j,1, . . . , ei,j,q)

τ .

Theorem 4.5. Under regularity conditions (A1)–(A3) and the null hypothesis, H0j, as n → ∞, we

have M̂j
D−→ χ2

q(q−1)/2, j = 1, . . . ,mi.

5 Numerical studies

5.1 Simulations

We conduct several simulation studies to examine the finite-sample performance of our proposed methods.

We first consider a dataset-generating procedure in the case where the true AR order is known.
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Example 5.1. The simulated data are generated from the linear model with AR(1) error processes

yi,j,k = Xτ
i,jβk + εi,j,k,

εi,j,k = [ak + bk(ti,j − ti,j−1)]εi,j−1,k + ei,j,k,

whereXij = sin(tij)+ϱij , and ϱij follows a standard normal distribution. The observation time tij follows

a uniform distribution on (0, 1), and the random error ei,j,k follows a multivariate normal distribution

with a zero mean vector and a compound symmetric covariance matrix with ones on its main diagonal

and ρ on its off-diagonal entries.

We consider three choices of ρ = 0.9, ρ = 0.6 and ρ = 0.3, corresponding to strongly, moderately

and weakly correlated errors, respectively. The regression coefficients β1 = (0.5, 0.8), β2 = (1.0, 2.0)

and β3 = (1.2, 1.5), and the autoregressive coefficients (a1, b1) = (0.6,−0.3), (a2, b2) = (0.3,−0.4) and

(a3, b3) = (−0.5, 0.3). The sample size, n = 50, n = 100 and n = 200, and the number of within-subject

observations, mi = m = 5, mi = m = 10 and mi = m = 15 for each subject. We run the simulation 100

times for each setting.

We compare our proposed method with the univariate method of [1] that ignores correlations between

the multiple responses and model them separately. Let us denote the proposed weighted least square

estimator by β̂ and the ordinary least square estimator proposed by [1] β̌, respectively. The average bias

(Bias), and average empirical standard deviation (SD) of both estimates calculated on the basis of 100

simulations, are summarized in Table 1.

Table 1 Average bias (Bias) and average empirical standard deviation (SD) of the estimates for regression coefficients

calculated from 100 simulations

ρ = 0.9 β̂
m 5 10 15

n 50 100 200 50 100 200 50 100 200

First response

β̂1,0 Bias 0.0063 −0.0020 0.0023 −0.0139 0.0094 −0.0036 0.0059 −0.0068 0.0015

SD 0.0810 0.0585 0.0336 0.0677 0.0463 0.0368 0.0618 0.0464 0.0294

β̌1,0 Bias 0.0093 −0.0020 0.0042 −0.0112 0.0091 −0.0044 0.0018 −0.0065 0.0014

SD 0.0956 0.0717 0.0405 0.0752 0.0544 0.0389 0.0742 0.0521 0.0326

β̂1,1 Bias −0.0036 0.0003 −0.0012 0.0003 −0.0009 −0.0007 0.0023 −0.0005 −0.0004

SD 0.0351 0.0189 0.0148 0.0221 0.0140 0.0105 0.0168 0.0110 0.0086

β̌1,1 Bias −0.0032 −0.0018 −0.0016 0.0014 −0.0016 −0.0002 0.0038 −0.0032 0.0026

SD 0.0522 0.0372 0.0279 0.0355 0.0265 0.0184 0.0311 0.0232 0.0150

Second response

β̂2,0 Bias 0.0053 −0.0027 0.0028 −0.0039 0.0067 −0.0004 −0.0009 0.0007 0.0002

SD 0.0600 0.0396 0.0234 0.0429 0.0287 0.0212 0.0397 0.0304 0.0188

β̌2,0 Bias 0.0050 −0.0076 0.0049 −0.0016 0.0083 −0.0009 −0.0059 0.0008 −0.0011

SD 0.0795 0.0500 0.0320 0.0588 0.0349 0.0271 0.0483 0.0375 0.0207

β̂2,1 Bias −0.0041 0.0010 −0.0005 −0.0002 −0.0028 −0.0013 0.0033 −0.0014 0.0001

SD 0.0318 0.0219 0.0172 0.0245 0.0162 0.0130 0.0183 0.0131 0.0089

β̌2,1 Bias −0.0021 0.0019 −0.0010 −0.0001 −0.0048 −0.0010 0.0056 −0.0032 0.0034

SD 0.0540 0.0374 0.0293 0.0429 0.0261 0.0218 0.0369 0.0268 0.0157

Third response

β̂3,0 Bias −0.0015 0.0009 0.0002 −0.0056 0.0020 −0.0001 0.0026 0.0002 0.0016

SD 0.0439 0.0305 0.0178 0.0303 0.0181 0.0137 0.0228 0.0163 0.0116

β̌3,0 Bias −0.0069 0.0010 0.0045 −0.0028 0.0030 0.0004 −0.0035 −0.0006 0.0021

SD 0.0571 0.0411 0.0262 0.0437 0.0279 0.0178 0.0322 0.0243 0.0148

β̂3,1 Bias 0.0004 0.0019 −0.0010 0.0021 −0.0002 −0.0005 0.0011 −0.0015 −0.0007

SD 0.0346 0.0207 0.0169 0.0197 0.0138 0.0112 0.0158 0.0111 0.0083

β̌3,1 Bias 0.0083 −0.0014 −0.0045 0.0004 0.0005 −0.0019 0.0052 −0.0009 −0.0003

SD 0.0560 0.0359 0.0276 0.0392 0.0252 0.0192 0.0294 0.0252 0.0166

Note. β̂ represents the proposed weighted least square estimator and β̌ represents the naive ordinary least square estimator.
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Table 2 Average bias (Bias) and average empirical standard deviation (SD) of the estimates for relatively large observation

time m calculated from 100 simulations

ρ = 0.9 β̂
m 15 30 60

n 30 40 50 30 40 50 30 40 50

First response

β̂1,0
Bias −0.0088 0.0048 0.0059 −0.0093 0.0027 0.0021 −0.0036 0.0043 0.0009

SD 0.0713 0.0664 0.0618 0.0570 0.0521 0.0454 0.0493 0.0383 0.0335

β̂1,1
Bias 0.0019 −0.0019 0.0023 −0.0006 −0.0001 −0.0001 0.0007 −0.0006 0.0006

SD 0.0242 0.0190 0.0168 0.0157 0.0131 0.0117 0.0102 0.0091 0.0079

Second response

β̂2,0
Bias −0.0009 0.0027 −0.0009 −0.0020 0.0005 0.0003 −0.0007 0.0038 0.0017

SD 0.0481 0.0397 0.0365 0.0383 0.0325 0.0281 0.0280 0.0253 0.0201

β̂2,1
Bias −0.0015 −0.0007 0.0033 −0.0007 −0.0009 −0.0005 0.0008 −0.0006 −0.0001

SD 0.0281 0.0183 0.0180 0.0161 0.0156 0.0145 0.0111 0.0103 0.0092

Third response

β̂3,0
Bias −0.0002 0.0009 0.0026 -0.0007 0.0018 0.0005 −0.0003 0.0012 0.0010

SD 0.0283 0.0260 0.0228 0.0207 0.0183 0.0166 0.0143 0.0135 0.0117

β̂3,1
Bias −0.0007 −0.0020 0.0011 −0.0009 −0.0027 −0.0008 −0.0004 −0.0001 −0.0003

SD 0.0234 0.0193 0.0158 0.0140 0.0120 0.0120 0.0098 0.0081 0.0080

Note. n is the number of subjects and m is the number of observation times for each subject. βj,0 (k = 1, 2, 3) represents

the estimated regression coefficients of the intercept for the k-th response and βk,1 (k = 1, 2, 3) denotes the estimated

regression coefficients of the slope for the k-th response.

Table 3 Average bias (Bias) and average empirical standard deviation (SD) of the estimates for autoregressive coefficients

calculated from 100 simulations

ρ = 0.9
m 5 10 15

n 50 100 200 50 100 200 50 100 200

â1 Bias −0.0103 −0.0031 −0.0002 0.0002 0.0012 −0.0015 −0.0012 −0.0052 −0.0023

SD 0.0572 0.0364 0.0248 0.0296 0.0207 0.0140 0.0241 0.0160 0.0115

ǎ1 Bias −0.0196 0.0064 0.0111 −0.0011 −0.0063 −0.0012 −0.0080 −0.0074 −0.0011

SD 0.1258 0.0809 0.0548 0.0703 0.0479 0.0290 0.0460 0.0363 0.0240

b̂1 Bias 0.0024 −0.0016 −0.0023 −0.0111 −0.0109 −0.0009 −0.0052 0.0097 0.0031

SD 0.0879 0.0577 0.0363 0.0571 0.0372 0.0286 0.0527 0.0351 0.0271

b̌1 Bias 0.0060 −0.0142 −0.0257 −0.0236 −0.0048 −0.0045 −0.0011 0.0161 0.0019

SD 0.1869 0.1412 0.0886 0.1384 0.0939 0.0573 0.1110 0.0792 0.0543

â2 Bias −0.0031 −0.0020 −0.0023 −0.0019 0.0009 0.0006 −0.0046 −0.0031 −0.0011

SD 0.0595 0.0402 0.0250 0.0368 0.0221 0.0178 0.0267 0.0191 0.0122

ǎ2 Bias −0.0012 0.0057 0.0049 −0.0076 −0.0041 0.0030 −0.0097 −0.0055 −0.0002

SD 0.1482 0.0925 0.0567 0.0770 0.0535 0.0389 0.0516 0.0384 0.0277

b̂2 Bias −0.0090 −0.0020 0.0005 −0.0013 −0.0060 −0.0023 −0.0031 −0.0004 0.0017

SD 0.0903 0.0580 0.0354 0.0705 0.0424 0.0356 0.0608 0.0438 0.0269

b̌2 Bias −0.0187 −0.0052 −0.0154 −0.0017 −0.0001 −0.0047 0.0014 0.0068 0.0006

SD 0.2237 0.1416 0.0901 0.1578 0.0958 0.0401 0.1192 0.0928 0.0516

â3 Bias −0.0063 −0.0025 −0.0040 −0.0049 0.0005 −0.0004 0.0012 −0.0043 −0.0015

SD 0.0650 0.0395 0.0264 0.0330 0.0213 0.0401 0.0237 0.0186 0.0126

ǎ3 Bias −0.0057 0.0035 0.0044 −0.0044 −0.0068 −0.0015 −0.0046 −0.0060 −0.0026

SD 0.1325 0.0876 0.0489 0.0757 0.0451 0.0338 0.0495 0.0360 0.0274

b̂3 Bias 0.0027 −0.0029 0.0006 0.0036 0.0005 −0.0045 −0.0091 0.0071 0.0033

SD 0.0907 0.0619 0.0415 0.0658 0.0368 0.0285 0.0537 0.0393 0.0294

b̌3 Bias −0.0071 −0.0096 −0.0088 −0.0062 0.0204 −0.0024 -0.0012 0.0194 0.0041

SD 0.2025 0.1308 0.0760 0.1572 0.0940 0.0663 0.1142 0.0899 0.0612

Note. â and b̂ represent the proposed weighted least square estimator while ǎ and b̌ represent the naive ordinary least

square estimator.
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Figure 1 (Color online) Estimated power curves with α = 0.05 for different observation times

It indicates that our proposed estimation method for the regression coefficients performs well with

finite samples. The SD of our proposed estimator decreases as either the sample size n or the number of

replicated observations m increases. Moreover, when correlations between different responses are taken

into account, the estimated regression coefficients have smaller empirical standard deviations than in the

case where correlations among responses are ignored. We omit the results for ρ = 0.6 and ρ = 0.3, which

are similar.

Moreover, we also conducted additional simulation studies to illustrate that mi can be large. The

simulation settings are exactly the same as in Example 5.1 and the results are presented in Table 2. The

results indicate that our proposed estimation method for regression coefficients performs well for relatively

large n and m. The standard deviation of our proposed estimator decreases as either the sample size n

or the number of replicated observations m increases.

Similarly, the average bias and average empirical standard deviation of estimates for the autoregressive

coefficients are presented in Table 3. They show simulation results similar to those in Table 1. We again

omit the results for ρ = 0.6 and ρ = 0.3, which are similar.

Example 5.2. In this example, we aim to show the performance of our proposed testing method. The

simulation settings are as presented in Example 5.1, except that the covariance matrix of ei,j,k has 1 + ρ

on the diagonal and ρ on the off-diagonal entries.

We consider different values of ρ being equal to 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. The larger the ρ value,

the stronger the correlation between the responses. For each setting, we run the simulation 200 times.

The nominal significance level is α = 0.05, and the estimated power curves are shown in Figure 1. We

can see that under the null hypothesis, the actual size is close to the nominal size, 0.05, and the power

approaches 1 rapidly as ρ or the sample size increases.

Example 5.3. In this example, the simulation settings are again as presented in Example 5.1, except

that the orders of autoregressive processes are unknown. Specifically, the error processes are generated

as follows:

εi,j,k =

6∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k + ei,j,k,

where (a1, b1) = (0.6,−0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)τ , (a2, b2) = (0.3,−0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)τ and

(a3, b3) = (−0.5, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)τ . We run the simulation 200 times, and apply the proposed

SCAD variable selection method to simultaneously determine the orders of the AR processes and estimate

the autoregressive coefficients. We evaluate the performance of the SCAD penalization procedure using

the following three criteria:

(1) Model size: the number of θ̂j estimated as nonzero. The true model size is 6.

(2) False positives: the number of θ̂j falsely estimated as nonzero, i.e., |{θ̂j ̸= 0, θj = 0}|. The

maximum number of false positives is 30.

(3) False negatives: the number of θ̂j falsely estimated as zero, i.e., |{θ̂j = 0, θj ̸= 0}|. The maximum

number of false positives is 6.
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Table 4 Results of the order determination for the AR error process

m 10 15

n 50 100 150 50 100 150

Model size 4.36 4.52 5.31 4.87 5.38 5.96

False positives 1.49 1.12 1.40 1.14 0.97 0.96

False negatives 3.13 2.60 2.09 2.28 1.59 1.06

Table 5 Standard deviations of the predicted values for the multivariate longitudinal data model versus three univariate

longitudinal data models using 100 simulations

ρ = 0.9
m 5 10 15

n 50 100 200 50 100 200 50 100 200

Univariate1 0.1208 0.0631 0.0534 0.1006 0.0602 0.0423 0.0708 0.0527 0.0374

Multivariate1 0.1006 0.0537 0.0475 0.0893 0.0525 0.0370 0.0624 0.0467 0.0314

Univariate2 0.1028 0.0805 0.0502 0.0790 0.0496 0.0322 0.0586 0.0432 0.0311

Multivariate2 0.0895 0.0642 0.0435 0.0733 0.0447 0.0301 0.0559 0.0383 0.0250

Univariate3 0.0826 0.0747 0.0377 0.0567 0.0323 0.0237 0.0399 0.0284 0.0200

Multivariate3 0.0673 0.0645 0.0292 0.0526 0.0292 0.0210 0.0363 0.0250 0.0164

Note. Univariatek (k = 1, 2, 3) denotes the standard deviation of predicted values based on the k-th univariate longitudinal

data modeling, while Multivariatek denotes the standard deviation of predicted values for the k-th response based on

multivariate modeling.

1.0 1.01.0

n = 50, m = 5 n = 100, m = 5 n = 200, m = 5

Figure 2 (Color online) Boxplots of the standard deviations for the first response’s predicted values using different sample

sizes

We summarize the simulation results in Table 4. The table shows that as either the sample size n or

the number of replicated observations m increases, the selected model size becomes closer to the true

model size, and the false positives and false negatives decrease.

Example 5.4. In this example, the simulation settings are the same as presented in Example 5.1.

We want to illustrate the superiority of the multivariate longitudinal data model over several univariate
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longitudinal data models in terms of prediction accuracy.

In particular, we randomly split the data into a training set and a testing set at a proportion of 80%

and 20%. We use the training data set to estimate the regression parameters, and then use the testing

data set to evaluate the prediction accuracy. For different sample sizes, N = n×m, we run the simulation

100 times. For each simulation, we can obtain N1 predicted values of ŷi (i = 1, . . . , N1), where N1 is

the sample size of the testing data, and then take the average of these N1 predicted values. Finally, we

calculate the standard deviation of the predicted values using 100 simulations. Note that the smaller

the standard deviation, the better the prediction performance. Table 5 shows the standard deviation of

the predicted values for the multivariate longitudinal data model and three univariate longitudinal data

models under different scenarios.

From Table 5, we can see that if correlation exists among different responses, the standard deviation

of the predicted values based on the multivariate longitudinal data model is always smaller than several

univariate longitudinal data models. It is easy to see that an increase in sample size, n, or the number

of observation time, m, results in a decrease in the standard deviation for both models.

Furthermore, Figure 2 depicts the standard deviations for the predicted values of the first response

with different sample sizes, showing that the multivariate longitudinal data model always performs better

than the univariate longitudinal data model. This is intuitive, because we can borrow information from

other univariate models. We do not present the results here for other similar cases.

5.2 Real data analysis

We apply our proposed method to the paper making data described in the introduction. These data

have also been analyzed by [12]. We are interested in four quality response variables, i.e., the tensile

index (ng/g), the burst index (kPa m2/g), the tear index (nN m2/g), and the drainability of pulp (SR

number). We denote them as {Y··k, k = 1, 2, 3, 4}, respectively. These q = 4 response variables are

repeatedly measured at m = 5 beating times of 5, 15, 30, 45 and 60 minutes for n = 48 batches of pine

sulfate pulp. The final quality of the paper may also be affected by characteristics of the pulp, such

as the International Standards Organization (ISO) brightness (%), the electrical conductivity (mS/m),

and its pH. We consider these three characteristics as model covariates, and respectively denote them as

{X1··, X2··, X3··}. Moreover, we plot the logarithm of the four response variables against beating times

in Figure 3, showing a nonlinear time trend for each response. Viroli [12] characterized the nonlinear

trends using a function of the form λ0 + λ1t+ λ2log(t), where t is the beating time. Thus, we model the

multivariate longitudinal data as follows:

log(yi,j,k) = Xτ
i,jβk + λ0 + λ1t+ λ2 log t+ εi,j,k, i = 1, . . . , 46, j = 1, . . . , 5, k = 1, . . . , 4. (5.1)

We first assume that the error process for each response follows an AR(4) model,

εi,j,k =
4∑

s=1

(ak,s + bk,sdi,j,s)εi,j−s,k + ei,j,k, k = 1, 2, 3, 4. (5.2)

The estimated regression coefficients with corresponding p-values in parentheses are listed in Table 5,

where “Independency” denotes the results obtained by the initial least square estimation method, “Pro-

posed” denotes the results obtained by the proposed weighted least square estimation method and “Viroli

(2012)” denotes the results obtained by [12]. From Table 6, we can conclude that, the effects of covari-

ates brightness and electric conductivity are not significant to the drainability index using our proposed

method and [12]; the effect of the covariate brightness is not significant to the tensile index, and the

covariate pH is also not significant to the drainability index following the result obtained in [12].

We also apply the SCAD penalized method proposed in Subsection 2.3 to simultaneously determine

the orders of the error processes and to estimate the autoregressive coefficients. AR models with lag

orders of 1, 1, 1 and 2 were selected for the four responses. The results of fitting based on the selected

model are shown in Table 7. The estimated âk’s are positive and significant while b̂k’s are zero, which

may be due to the fact that the data were balanced.
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Figure 3 (Color online) Scatter plots for four paper quality variables versus the beating time

Table 6 Estimated regression coefficients and associated p-values (in brackets)

Method Parameter Tensile index Burst index Tear index Drainability

Independence β1 −0.0182 (0.000) −0.0501 (0.000) −0.0497 (0.000) −0.0055 (0.373)

β2 −0.0095 (0.313) 0.0331 (0.001) −0.0429 (0.000) 0.0117 (0.359)

β3 0.0465 (0.004) 0.1223 (0.000) 0.0544 (0.006) 0.0651 (0.003)

λ0 4.5579 (0.000) 4.2048 (0.000) 7.8328 (0.000) 2.9489 (0.000)

λ1 −0.0061 (0.000) −0.0086 (0.000) 0.0045 (0.000) 0.0279 (0.000)

λ2 0.4670 (0.000) 0.5652 (0.000) −0.3864 (0.000) −0.0807 (0.000)

Proposed β1 −0.0149 (0.000) −0.0452 (0.000) −0.0534 (0.000) −0.0034 (0.4900)

β2 −0.0207 (0.001) −0.0020 (0.862) −0.0474 (0.000) 0.0068 (0.0508)

β3 0.0238 (0.021) 0.0560 (0.002) 0.0413 (0.031) 0.0571 (0.0010)

λ0 4.3746 (0.000) 4.1048 (0.000) 8.2325 (0.000) 2.8083 (0.0000)

λ1 −0.0061 (0.000) −0.0086 (0.000) 0.0045 (0.000) 0.0279 (0.0000)

λ2 0.4672 (0.000) 0.5650 (0.000) −0.3864 (0.000) −0.0814 (0.0000)

Viroli (2012) β1 −0.0169 (0.000) −0.0470 (0.000) −0.0529 (0.000) −0.0022 (0.971)

β2 −0.0074 (0.425) 0.0249 (0.030) −0.0342 (0.030) 0.0192 (0.266)

β3 0.0374 (0.000) 0.0937 (0.000) 0.0443 (0.000) 0.0492 (0.078)

λ0 4.1620 (0.000) 3.6922 (0.000) 8.1458 (0.000) 2.1086 (0.000)

λ1 −0.0061 (0.000) −0.0086 (0.000) 0.0044 (0.000) 0.0283 (0.000)

λ2 0.4669 (0.000) 0.5668 (0.000) −0.3817 (0.000) −0.0897 (0.000)

Table 7 Estimated autoregressive coefficients and the corresponding standard errors (SE) and associated 95% confidence

intervals (CI)

Coefficients Estimate SE CI

â1,1 0.5094 0.0481 [0.4116, 0.6043]

â2,1 0.5626 0.0388 [0.4860, 0.6392]

â3,1 0.7237 0.0508 [0.6236, 0.8238]

â4,1 0.6571 0.0801 [0.4986, 0.8155]

â4,2 0.3657 0.1027 [0.1627, 0.5687]
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6 Conclusion

In this article, we developed a two-stage weighted least square method to analyze multivariate longitudinal

data with auto-correlated error processes. Our method not only captures the potential correlations

among different responses, which may improve the efficiency of our proposed estimators, but also avoids

estimating large covariance matrices so as to reduce computational complexity. Moreover, the test statistic

proposed in this paper can detect the potential correlations among different responses. Both Monte Carlo

simulations and real data analysis demonstrate favorable empirical performances compared with existing

methods for modeling univariate longitudinal data.

For future study, we may consider nonparametric or semiparametric models in the cases where the

linear model is invalid, e.g., the partial linear model,

Yi,j,k = Xτ
i,j βk + g(ti,j) + εi,j,k, i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , q.

In addition, we may also investigate models involving high-dimensional regressors. Wei et al. [14] have

studied variable selection and estimation of the varying coefficient model for univariate longitudinal data

under the high-dimensional setting. However, they ignored the with-subject correlation. It is impor-

tant to investigate how to incorporate such correlation into inference for high-dimensional multivariate

longitudinal data.
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Appendix A

Proof of Theorem 4.1. We first give a detailed proof for the first part of Theorem 4.1.

• Denote

D = E[(Xi ⊗ Iq)
τ (Xi ⊗ Iq)], ∆ = E[(Xi ⊗ Iq)

τεiε
τ
i (Xi ⊗ Iq)].

We have √
Nq(β̂ols − β) =

√
Nq{[(X⊗ Iq)

τ (X⊗ Iq)]
−1(X⊗ Iq)

τ [(X⊗ Iq)β + ε]− β}

=
√
Nq{[(X⊗ Iq)

τ (X⊗ Iq)]
−1(X⊗ Iq)

τε}

=

{
1

Nq
[(X⊗ Iq)

τ (X⊗ Iq)]

}−1{
1√
Nq

(X⊗ Iq)
τε

}
=

{
1

Nq

n∑
i=1

[(Xi ⊗ Iq)
τ (Xi ⊗ Iq)]

}−1{
1√
Nq

n∑
i=1

(Xi ⊗ Iq)
τεi

}
.

By the law of large numbers,

1

Nq

n∑
i=1

[(Xi ⊗ Iq)
τ (Xi ⊗ Iq)]

P−→ E[(Xi ⊗ Iq)
τ (Xi ⊗ Iq)].

By the central limit theorem,

1√
Nq

n∑
i=1

(Xi ⊗ Iq)
τεi

D−→ N(0,E[(Xi ⊗ Iq)
τεiε

τ
i (Xi ⊗ Iq)]).

Therefore, by Slutsky’s lemma, √
Nq(β̂ols − β)

D−→ N(0, D−1∆D−1).

Next, we give a detailed proof for the second part of Theorem 4.1.

• Recall that √
Nq(θ̂ols − θ) =

√
Nq − ndq[(δτδ)−1δτ (δθ + ẽ)− θ]

=
√
Nq − ndq[(δτδ)−1δτ ẽ]

=

(
1

Nq − ndq
δτδ

)−1(
1√

Nq − ndq
δτ ẽ

)
=

(
1

Nq − ndq

n∑
i=1

δτi δi

)−1(
1√

Nq − ndq

n∑
i=1

δτi ẽi

)
.

By the law of large numbers,

1

Nq − ndq

n∑
i=1

δτi δi
P−→ E(δτi δi).

By the central limit theorem,

1√
Nq − ndq

n∑
i=1

δτi ẽi
D−→ N(0, σ2

eE(δ
τ
i δi)).
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Therefore, by Slutsky’s lemma, √
Nq − ndq(θ̂ols − θ)

D−→ N(0, σ2
eΛ

−1).

This completes the proof.

Proof of Theorem 4.2. It is obvious that

âk,s + b̂k,sdi,j,s = ak,s + bk,sdi,j,s − (ak,s − âk,s)− (bk,s − b̂k,s)di,j,s.

By the definition of σ̂2
e in Section 4, we have

σ̂2
e =

1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

1

q

q∑
k=1

{
εi,j,k −

dk∑
s=1

(âk,s + b̂k,sdi,j,s)εi,j−s,k

}2

+ op

(
1√
N

)

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

1

q

q∑
k=1

{
εi,j,k −

dk∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k

}2

+ op

(
1√
N

)

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

1

q

q∑
k=1

e2i,j,k + op

(
1√
N

)
.

Since e2i,j,k are i.i.d. random variables with mean σ2
e and variance Ee4i,j,k − σ4

e , the first claim of

Theorem 4.2 follows from the central limit theorem and Slutsky’s lemma. The remaining claims of

Theorem 4.2 follow from Theorem 4.1, the law of large numbers and Slutsky’s lemma.

Proof of Theorem 4.3. We first give a detailed proof for the first part of Theorem 4.3.

• Assume the true covariance matrix of ẽi is Σi, and denote

C = E(X̃τ
i Σ

−1
i X̃i), Θ = E(X̃τ

i Σ
−1
i ẽiẽ

τ
i Σ

−1
i X̃i).

We have √
Nq(β̂wls − β) =

√
Nq[(X̃τΣ−1X̃)−1X̃τΣ−1(X̃β + ẽ)− β]

=
√
Nq[(X̃τΣ−1X̃)−1X̃τΣ−1ẽ]

=

(
1

Nq
X̃τΣ−1X̃

)−1(
1√
Nq

X̃τΣ−1ẽ

)
=

(
1

Nq

n∑
i=1

X̃τ
i Σ

−1
i X̃i

)−1(
1√
Nq

n∑
i=1

X̃τ
i Σ

−1
i ẽi

)
.

By the law of large numbers,

1

Nq

n∑
i=1

X̃τ
i Σ

−1
i X̃i

P−→ E(X̃τ
i Σ

−1
i X̃i).

By the central limit theorem,

1√
Nq

n∑
i=1

X̃τ
i Σ

−1
i ẽi

D−→ N(0,E(X̃τ
i Σ

−1
i ẽiẽ

τ
i Σ

−1
i X̃i)).

Therefore, by Slutsky’s lemma, √
Nq(β̂wls − β)

D−→ N(0, C−1ΘC−1).

• The proof of the second part is similar to the first part. Denote

A = E(δτi Σ
−1
i δi), B = E(δτi Σ

−1
i ẽiẽ

τ
i Σ

−1
i δi).
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We have √
Nq − ndq(θ̂wls − θ) =

√
Nq − ndq[(δτΣ−1δ)−1δτΣ−1(δθ + ẽ)− θ]

=
√
Nq − ndq[(δτΣ−1δ)−1δτΣ−1ẽ]

=

(
1

Nq − ndq
δτΣ−1δ

)−1(
1√

Nq − ndq
δτΣ−1ẽ

)
=

(
1

Nq − ndq

n∑
i=1

δτi Σ
−1
i δi

)−1(
1√

Nq − ndq

n∑
i=1

δτi Σ
−1
i ẽi

)
.

By the law of large numbers,

1

Nq − ndq

n∑
i=1

δτi Σ
−1
i δi

P−→ E(δτi Σ
−1
i δi).

By the central limit theorem,

1√
Nq − ndq

n∑
i=1

δτi Σ
−1
i ẽi

D−→ N(0,E(δτi Σ
−1
i ẽiẽ

τ
i Σ

−1
i δi)).

Therefore, by Slutsky’s lemma,√
Nq − ndq(θ̂wls − θ)

D−→ N(0, A−1BA−1).

This completes the proof.

Proof of Theorem 4.4. According to the definition of V̂ = (σ̂2
k1,k2

) and Theorem 4.3, we can show that

σ̂2
k1,k2

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

êi,j,k1 êi,j,k2

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

{
εi,j,k1 −

d∑
s=1

(âk,s + b̂k,sdi,j,s)εi,j−s,k1

}

×
{
εi,j,k1 −

d∑
s=1

(âk,s + b̂k,sdi,j,s)εi,j−s,k1

}
+ op

(
1√
N

)

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

{
εi,j,k1 −

d∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k1

}

×
{
εi,j,k1 −

d∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k1

}
+ op

(
1√
N

)

=
1

n

n∑
i=1

1

mi − d

mi∑
j=d+1

ei,j,k1ei,j,k2 + op

(
1√
N

)
.

The theorem can be proven by applying the central limit theorem and Slutsky’s lemma.

Proof of Theorem 4.5. By the definition of M̂j ,

M̂j = Λ̂τ
j Γ̂

−1
j Λ̂j =

(
n−1/2

n∑
i=1

∆̂τ
i,j

)
Γ̂−1
j

(
n−1/2

n∑
i=1

∆̂i,j

)

=

(∑n
i=1 êi,j,1êi,j,2√
nσ11σ22

)2

+

(∑n
i=1 êi,j,1êi,j,3√
nσ11σ33

)2

+ · · ·+
(∑n

i=1 êi,j,q−1êi,j,q√
nσq−1,q−1σqq

)2

=

(∑n
i=1 ei,j,1ei,j,2√
nσ11σ22

)2

+

(∑n
i=1 ei,j,1ei,j,3√
nσ11σ33

)2

+ · · ·+
(∑n

i=1 ei,j,q−1ei,j,q√
nσq−1,q−1σqq

)2

+ oP

(
1√
N

)
.
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Under the null hypothesis using the central limit theorem and Slutsky’s lemma, we can easily show that

the limit distribution of M̂j follows χ2
q(q−1)/2 distribution, where q(q− 1)/2 is the degree of freedom.

Discussions about the efficiency of multivariate and univariate longitudinal data models.

Keep in mind that if there is no correlation among different responses, the multivariate longitudinal data

model is equivalent to several univariate longitudinal data models. However, if this is not the case, the

multivariate longitudinal data model will perform better in estimation efficiency. We will discuss this

problem in the following steps.

Note that our proposed estimation method for the multivariate longitudinal data model,

Yi,j,k = Xτ
i,jβk + εi,j,k, i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , q, (A.1)

εi,j,k =

dk∑
s=1

(ak,s + bk,sdi,j,s)εi,j−s,k + ei,j,k (A.2)

can be transformed into the following model (A.3) using some difference-based approaches:

ỹ = X̃β + ẽ, (A.3)

where the definitions of ỹ, X̃ and ẽ are given in Subsection 2.2, and the estimator β is given by

β̃ = [X̃
τ
Σ−1X̃]−1X̃

τ
Σ−1ỹ,

where Σ = V ⊗ IN , and V is a q × q covariance matrix of different responses, e.g.,

V =


σ11 σ12 . . . σ1q

σ21 σ22 . . . σ2q

...
...

. . .
...

σq1 σq2 . . . σqq


and IN is an identity matrix of dimension N = n×m. The variance-covariance matrix of the estimator β̃

is easily shown to be (X̃
τ
Σ−1X̃)−1. For convenience, we consider a simple case with a disturbance

covariance matrix such that σkk = σ2 and σk,l = ρσ2 for k ̸= l, and then by some elementary calculation,

we can arrive at

V = σ2[(1− ρ)Iq + ρ1q1
⊤
q ],

where Iq is an identity matrix of size q × q and 1q is a q × 1 vector of 1’s. V −1 = αIq − γ1q1
⊤
q with

α = 1/σ2(1− ρ) and γ = αρ/[1 + (q − 1)ρ]. Then, for the covariance matrix of the estimator β̃, we have

Var(β̃) = [X̃
τ
(V −1 ⊗ IN )X̃]−1

=


(α− γ)X̃τ

1 X̃1 −γX̃τ
1 X̃2 . . . −γX̃τ

1 X̃q

−γX̃τ
2 X̃1 (α− γ)X̃τ

2 X̃2 . . . −γX̃τ
2 X̃q

...
...

. . .
...

−γX̃τ
q X̃1 −γX̃τ

q X̃2 . . . (α− γ)X̃τ
q X̃q


−1

,

where X̃k (k = 1, . . . , q) is an N × p matrix with rank p. For the two-dimensional case (q = 2), the

covariance matrix of the coefficient vector estimator for the first response is given by

Var(β̃1) =

[
(α− γ)X̃τ

1 X̃1 −
γ2

α− γ
X̃τ

1 X̃2(X̃
τ
2 X̃2)

−1X̃τ
2 X̃1

]−1

. (A.4)

From [16], we can immediately arrive at

Var(β̃1) =
(1− ρ2)p∏p

j=1(1− ρ2r2j )
σ2(X̃τ

1 X̃1)
−1, (A.5)
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where p is the rank of the matrix X̃k and rj is the j-th canonical correlation coefficient associated with

the sets of variables in X̃1 and X̃2. From (A.5), we can draw the following conclusions:

• Since 0 6 r2j 6 1, it is clear that the variance of β̃1 will be smaller than or equal to |σ2(X̃τ
1 X̃1)

−1|,
which is the variance of the first univariate longitudinal data model.

• If ρ = 0, the multivariate longitudinal data model is equivalent to several univariate longitudinal

data models.

• If ρ ̸= 0, the larger the ρ, the more efficiency can be gained from the multivariate longitudinal data

model compared with several univariate longitudinal data models.
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