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Abstract In this paper, we first present a Gearhart-Prüss type theorem with a sharp bound for m-accretive

operators. Then we give two applications: (1) we give a simple proof of the result proved by Constantin et

al. on relaxation enhancement induced by incompressible flows; (2) we show that shear flows with a class of

Weierstrass functions obey logarithmically fast dissipation time-scales.
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1 Introduction

Let X be a complex Hilbert space. We denote by ∥ · ∥ the norm and by ⟨·, ·⟩ the inner product. Let H be

a linear operator in X with the domain D(H). The Hille-Yosida theorem gives a necessary and sufficient

condition so that H generates a strongly continuous semigroup S(t) = etH . We say that S(t) satisfies

P (M,ω) if

∥S(t)∥ 6Meωt, t > 0.

Theorem 1.1 (Hille-Yosida theorem). Let H be a linear operator in X with the domain D(H). Let

ω ∈ R,M > 0. Then H generates a strongly continuous semigroup S(t) = etH satisfying P (M,ω) if and

only if

1. H is closed and D(H) is dense in X;

2. for all λ > ω, λ belongs to the resolvent set ρ(H) of H, and for all positive integers n,

∥(λ−H)−n∥ 6 M

(λ− ω)n
.

However, it is not easy to check the second property for all powers of the resolvent. In the special case

of M = 1, ω = 0 (i.e., S(t) is a contraction semigroup), it is enough to check that for any λ > 0,

∥(λ−H)−1∥ 6 1

λ
.

Gearhart-Prüss theorem gives the semigroup bound via the resolvent estimate.
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Theorem 1.2 (Gearhart-Prüss theorem). Let H be a closed operator with a dense domain D(H)

generating a strongly continuous semigroup etH . Assume that ∥(z − H)−1∥ is uniformly bounded for

Re z > ω. Then there exists M > 0 so that etH satisfies P (M,ω).

Let us refer to [7] for more introductions.

Recently, Helffer and Sjöstrand [10] presented a quantitative version of Gearhart-Prüss theorem and

gave some interesting applications to the complex Airy operator, complex harmonic oscillator and Fokker-

Planck operator. Motivated by their work, we first present a Gearhart-Prüss type theorem with a sharp

bound for m-accretive operators. A closed operator H in a Hilbert space X is called m-accretive if the

left open half-plane is contained in the resolvent set ρ(H) with

(H + λ)−1 ∈ B(X), ∥(H + λ)−1∥ 6 (Reλ)−1 for Reλ > 0.

Here B(X) is the set of bounded linear operators on X. An m-accretive operator H is accretive and

densely defined (see [12, Section V-3.10]), i.e., D(H) is dense in X and Re⟨Hf, f⟩ > 0 for f ∈ D(H), and

−H is a generator of a semigroup e−tH . We denote

Ψ(H) = inf{∥(H − iλ)f∥ : f ∈ D(H), λ ∈ R, ∥f∥ = 1}.

Let us state the following Gearhart-Prüss type theorem for accretive operators.

Theorem 1.3. Let H be an m-accretive operator in a Hilbert space X. Then we have ∥e−tH∥ 6
e−tΨ(H)+π/2 for all t > 0.

We will give two applications of Theorem 1.3.

The first application of Theorem 1.3 is to give a simple proof of the result in [5] on relaxation enhance-

ment induced by incompressible flows. More precisely, we consider the passive scalar equation

ϕAt (x, t) +Au · ∇ϕA(x, t)−∆ϕA(x, t) = 0, ϕ(x, 0) = ϕ0(x), (1.1)

in a smooth compact d-dimensional Riemannian manifold M . Here ∆ is the Laplace-Beltrami operator

on M , and u is a divergence free vector field. Roughly speaking, a velocity field u is relaxation-enhancing

if by the diffusive time-scale O(1) arbitrarily much energy is already dissipated for A large enough.

The main result of [5] characterizes relaxation-enhancing flows in terms of the spectral properties of the

operator u · ∇. Precisely, u is relaxation-enhancing if and only if the operator u · ∇ has no nontrivial

eigenfunctions in Ḣ1(M). The proof of this result is based on the so-called RAGE theorem. Thanks to

Theorem 1.3, the proof of relaxation-enhancing can be reduced to the resolvent estimate of the operator

Au · ∇ −∆, avoiding the use of the RAGE theorem. See Section 3 for more details.

For A > 0, by time rescaling τ = At, (1.1) becomes

ϕτ + u · ∇ϕ− ν∆ϕ = 0, ϕ(x, 0) = ϕ0(x), (1.2)

with ν = 1/A. Our second application focuses on the case when M = T2 and u is a shear flow. More

precisely, we study the decay estimates in time of the linear evolution semigroup Sν(t) : L
2(T2) → L2(T2),

with ν > 0 a positive parameter, generated by the drift-diffusion scalar equation

∂tf − ν∆f + u(y)∂xf = 0, (x, y) ∈ T2, t > 0, (1.3)

and of its hypoelliptic counterpart Rν(t) : L
2(T2) → L2(T2), generated by

∂tf − ν∂2yf + u(y)∂xf = 0, (x, y) ∈ T2, t > 0. (1.4)

The case of general shear flows (u(y), 0) with a finite number of critical points was treated in [2], where the

enhanced dissipation time-scale was proved to be O(ν−p), for p = p(n0) =
n0+1
n0+3 > 1

3 , where n0 denotes

the maximal order of vanishing of u′ at the critical points. The proof there used the hypocoercivity

method in [15]. The reader may also see [4] for an interesting application of the enhanced dissipation

and related work [13].
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Our proof is based on Theorem 1.3. To this end, we study the resolvent estimate of H = −∂2y + iu(y)

with X = L2(T) and D(H) = H2(T) in Section 4. Set Ψ1(u) = Ψ(H) and

Ψ0(u) = inf{∥Hf∥L2 : f ∈ D(H), ∥f∥L2 = 1}.

Then Ψ1(u) = infλ∈R Ψ0(u−λ). We will give a lower bound of Ψ0(u) and Ψ1(u) in terms of the following

quantities:

ω0(δ, u) = inf
x,c∈R

∫ x+δ

x−δ

|ψ(y)− c|2dy,

ω1(δ, u) = inf
c∈R

ω0(δ, u− c) = inf
x,c1,c2∈R

∫ x+δ

x−δ

|ψ(y)− c1 − c2y|2dy.

Here u(y) = ψ′(y) and we identify a function on T with a 2π-periodic function on R. Notice that ψ(y)

may not be a periodic function. The quantities ω0 and ω1 are well defined since their values do not

change if ψ is added by a constant. We will give the dependence of p on u via the quantity ω1(δ, u). More

precisely, if ω1(δ, u) > C1δ
2α+3 for δ ∈ (0, 1) and some constants α > 0 and C1 > 0, then the enhanced

dissipation time-scale is O(ν−
α

α+2 ).

To show the effectiveness of this criterion, we will discuss the case when u(y) =
∑∞

n=1 an sin(3
ny) is a

Weierstrass function. Our result is stated as follows.

• If an ∈ R, 3−nα 6 |an| 6 C3−nα for some α ∈ (0, 1), and 1 6 |an|/|an+1| 6 3, then the enhanced

dissipation time-scale is O(ν−
α

α+2 ).

• If an ∈ R, n−α 6 |an| 6 Cn−α for some α ∈ (1, 2), and 1 6 |an|/|an+1| 6 3, then the enhanced

dissipation time-scale is O(| ln ν|α).
In fact the quantity ω1(δ, u) describes quantitatively the degeneracy of the critical point, and it is also

related with the regularity of the shear flow. If the shear flow is smooth, the best possible value should

be α = 1, and the rate can become worse depending on the order of the degeneracy of the critical point:

α = n0 + 1. The example of the Weierstrass function shows the stronger dissipation can be brought by

nonsmooth shear flows. A key point is that we can give the lower bound of ω1(δ, u) in terms of an, and

then the stronger dissipation follows from slower decay of an. See Section 5 for more details.

Recently, Coti Zelati et al. [6] proved the enhanced dissipation time-scale O(| ln ν|2) in (1.2) for all

contact Anosov flows on a smooth 2d + 1 dimensional connected compact Riemannian manifold. Their

proof is based on the knowledge of mixing decay rates. Our result shows that a similar phenomenon also

happens for a class of shear flows.

Let us also mention some important progress on the enhanced dissipation of the linearized Navier-

Stokes equations around shear flows such as Couette flow and Kolmogorov flow [1,3, 9, 11,14,16,17].

Throughout this paper, we denote by C a constant independent of A, ν, t, which may be different from

line to line.

2 Proof of Gearhart-Prüss type theorem

In this section, we prove Theorem 1.3. The proof is partially motivated by [10].

Proof of Theorem 1.3. Let Ψ = Ψ(H). Since D(H) is dense in X, we only need to prove that

∥e−tHf∥ 6 e−tΨ+π/2∥f∥, ∀ f ∈ D(H), t > 0. (2.1)

For f ∈ D(H), t > 0, let g(t) = ∥e−tHf∥2. Since H is accretive, g(t) is decreasing for t > 0, and we only

need to prove (2.1) for tΨ > π/2. In this case, Ψ > 0. We denote

t1 =
π

4Ψ
, t2 = t− π

4Ψ
, t3 = t+

π

4Ψ
, l = t+

π

2Ψ
.

For χ ∈ C1[0, l], χ(0) = χ(l) = 0, set f1(s) = χ(s)e−sHf and f2(s) = χ′(s)e−sHf . Then ∂tf1+Hf1 = f2
in [0, l]. Take Fourier transform in t: f̂j(λ) =

∫ l

0
fj(s)e

−iλsds, for j = 1, 2, λ ∈ R. Then f̂2(λ) =
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(iλ + H)f̂1(λ). By the definition of Ψ, we have ∥f̂2(λ)∥ > Ψ∥f̂1(λ)∥. We use Plancherel’s theorem to

conclude

∥f2∥L2([0,l],X) = (2π)−
1
2 ∥f̂2∥L2(R,X) > (2π)−

1
2Ψ∥f̂1∥L2(R,X) = Ψ∥f1∥L2([0,l],X).

By the definitions of f1, f2 and g, the above inequality becomes∫ l

0

χ′(s)2g(s)ds > Ψ2

∫ l

0

χ(s)2g(s)ds.

Now we choose χ as follows,

χ(s) =


sinΨs, 0 6 s 6 t1,

eΨs−π/4/
√
2, t1 6 s 6 t2,

eΨl−π sin(Ψ(l − s)), t2 6 s 6 l.

Set h(s) = χ′(s)2 −Ψ2χ(s)2. Then
∫ l

0
h(s)g(s)ds > 0, and

h(s) =


Ψ2 cos(2Ψs), 0 6 s 6 t1,

0, t1 6 s 6 t2,

Ψ2e2Ψl−2π cos(2Ψ(l − s)), t2 6 s 6 l.

Therefore, h(s) > 0 for 0 6 s 6 t1 or t3 6 s 6 l, h(s) 6 0 for t2 6 s 6 t3. Since g is decreasing, we have

h(s)g(s) 6 h(s)g(0) for 0 6 s 6 t1, h(s)g(s) 6 h(s)g(t) for t2 6 s 6 t, h(s)g(s) 6 h(s)g(t3) for t 6 s 6 l,

and

0 6
∫ l

0

h(s)g(s)ds =

∫ t1

0

h(s)g(s)ds+

∫ l

t2

h(s)g(s)ds

6
∫ t1

0

h(s)g(0)ds+

∫ t

t2

h(s)g(t)ds+

∫ l

t

h(s)g(t3)ds

=
Ψ

2
g(0)− Ψ

2
e2Ψl−2πg(t) + 0.

Therefore, g(t) 6 e−2Ψl+2πg(0), which implies that

∥e−tHf∥ 6 e−Ψl+π∥f∥ = e−Ψt+π/2∥f∥.

This completes the proof.

3 Diffusion and mixing in fluid flows

Let us recall the following definition from [5].

Definition 3.1. Let M be a smooth compact Riemannian manifold. The incompressible flow u on

M is called relaxation-enhancing if for every τ > 0 and δ > 0, there exists A(τ, δ) such that for any

A > A(τ, δ) and any ϕ0 ∈ L2(M), ∥ϕ0∥L2(M) = 1,

∥ϕA(·, τ)− ϕ∥L2(M) < δ,

where ϕA(x, t) is the solution of (1.1) and ϕ the average of ϕ0.

We take X = {f ∈ L2(M) :
∫
M
f = 0} to be the subspace of mean zero functions, and H = HA =

−∆+Au · ∇ with D(H) = H2(M) ∩X. Set Ψ2(A) = Ψ(HA). Our result is as follows.

Theorem 3.2. Let M be a smooth compact Riemannian manifold. A continuous incompressible flow

u is relaxation-enhancing if and only if the operator u · ∇ has no eigenfunctions in H1(M), other than

the constant function.
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Proof. The proof of the first part is the same as that in [5]. First of all, we have

∂t∥ϕA(t)∥2L2 = ⟨ϕAt , ϕA⟩+ ⟨ϕA, ϕAt ⟩ = −2∥∇ϕA(t)∥2L2 .

If u·∇ has nonconstant eigenfunctions inH1(M), then u·∇ has nonconstant eigenfunctions inH1(M)∩X.
Assume that the initial datum ϕ0 ∈ H1(M) ∩X for (1.1) is an eigenvector of u · ∇ corresponding to an

eigenvalue iλ, normalized so that ∥ϕ0∥L2 = 1, and then ϕ = 0, λ ∈ R. Taking the inner product of (1.1)

with ϕ0, we arrive at

∂t⟨ϕA(t), ϕ0⟩ = −iAλ⟨ϕA(t), ϕ0⟩+ ⟨∆ϕA(t), ϕ0⟩.

This along with the assumption ϕ0 ∈ H1(M) leads to

|∂t(eiAλt⟨ϕA(t), ϕ0⟩)| = |⟨∇ϕA(t),∇ϕ0⟩| 6
1

2
(∥∇ϕA(t)∥2L2 + ∥∇ϕ0∥2L2).

Note that
∫ τ

0
∥∇ϕA(t)∥2L2dt = (∥ϕ0∥2L2 − ∥ϕA(t)∥2L2)/2 6 1/2. Then for 0 < t 6 τ = (2∥∇ϕ0∥2L2)−1, we

have |⟨ϕA(t), ϕ0⟩| > 1/2. Thus, ∥ϕA(τ)∥L2 > 1/2 uniformly in A, and u is not relaxation-enhancing.

Now we prove the converse, we first claim that limA→+∞ Ψ2(A) = +∞ implies relaxation-enhancing.

In fact, since ϕA(·, τ)− ϕ ∈ X and ϕA(·, τ)− ϕ = e−τHA(ϕ0 − ϕ), by Theorem 1.3, we have

∥ϕA(·, τ)− ϕ∥L2(M) 6 e−τΨ2(A)+π/2∥ϕ0 − ϕ∥L2(M) 6 e−τΨ2(A)+π/2.

If limA→+∞ Ψ2(A) = +∞, then we can find A(τ, δ) such that for any A > A(τ, δ), we have Ψ2(A) >

(π/2− ln δ)/τ, and thus ∥ϕA(·, τ)− ϕ∥L2(M) < δ.

Next, we claim that lim infA→+∞ Ψ2(A) < +∞ implies that u · ∇ has a nonzero eigenfunction in

H1(M) ∩X. In fact, in this case, there exist An → +∞ and C0 ∈ R such that Ψ2(An) < C0 and there

exist λn ∈ R and fn ∈ X such that ∥fn∥L2(M) = 1 and ∥(HAn − iλn)fn∥L2(M) < C0. Then

∥∇fn∥2L2(M) = Re⟨fn, gn⟩ 6 ∥fn∥L2(M)∥gn∥L2(M) < C0,

where gn = (HAn − iλn)fn. Thus, the sequence {fn} is bounded in H1(M) and there exist a subsequence

of {fn} (still denoted by {fn}) and f0 ∈ H1(M), such that fn → f0 strongly in L2(M). Therefore,

∥f0∥L2(M) = 1, f0 ∈ X. For f ∈ H1(M), we have

⟨gn, f⟩ = ⟨∇fn,∇f⟩+An⟨u · ∇fn, f⟩ − iλn⟨fn, f⟩,

and

⟨u · ∇fn, f⟩ − i
λn
An

⟨fn, f⟩ =
⟨gn, f⟩ − ⟨∇fn,∇f⟩

An
→ 0,

as n→ +∞, where we used An → +∞ and

|⟨gn, f⟩ − ⟨∇fn,∇f⟩| 6 ∥gn∥L2(M)∥f∥L2(M) + ∥∇fn∥L2(M)∥∇f∥L2(M)

6 C0∥f∥L2(M) + C
1
2
0 ∥∇f∥L2(M).

Moreover,

⟨u · ∇fn, f⟩ = −⟨fn, u · ∇f⟩ → −⟨f0, u · ∇f⟩ = ⟨u · ∇f0, f⟩,

and ⟨fn, f⟩ → ⟨f0, f⟩ as n→ +∞. Therefore,

lim
n→+∞

i
λn
An

⟨fn, f⟩ = ⟨u · ∇f0, f⟩.

If we take f = f0 then we have ⟨fn, f⟩ → ⟨f0, f⟩ = ⟨f0, f0⟩ = 1 ̸= 0 and i λn

An
→ ⟨u · ∇f0, f0⟩

def
= iλ, as

n→ +∞. Therefore, for every f ∈ H1(M), we have

iλ⟨f0, f⟩ = lim
n→+∞

i
λn
An

⟨fn, f⟩ = ⟨u · ∇f0, f⟩.

Since H1(M) is dense in L2(M), we have iλf0 = u · ∇f0, f0 ̸= 0. This proves our claim.

With the above two claims, we prove the converse part.
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Compared with [5], we do not need to assume u to be Lipschitz continuous and our proof is easier. As

in [5], with a slight modification, we can prove a more general result. Let Γ be a self-adjoint, positive,

unbounded operator with a discrete spectrum on a separable Hilbert space H: Let 0 < λ1 6 λ2 6 · · ·
be the eigenvalues of Γ, and ej the corresponding orthonormal eigenvectors forming a basis in H. The

(homogeneous) Sobolev space Hm(Γ) associated with Γ is formed by all vectors ψ =
∑

j cjej such

that ∥ψ∥2m =
∑

j λ
m
j |cj |2 < +∞. Note that H2(Γ) = D(Γ). Let L be a symmetric operator such that

H1(Γ) ⊆ D(L) and ∥Lψ∥0 6 C∥ψ∥1 for ψ ∈ H1(Γ). Consider a solution ϕA(t) of the Bochner differential

equation

∂tϕ
A(t) = iALϕA(t)− ΓϕA(t), ϕA(0) = ϕ0. (3.1)

Theorem 3.3. For Γ and L satisfying the above conditions, the following two statements are equivalent:

• For every τ > 0 and δ > 0, there exists A(τ, δ) such that for any A > A(τ, δ) and any ϕ0 ∈
H, ∥ϕ0∥0 = 1, the solution ϕA(t) of the equation (3.1) satisfies ∥ϕA(τ)∥0 < δ.

• The operator L has no eigenvectors lying in H1(Γ).

Here we do not assume that ∥eiLtψ∥1 6 B(t)∥ψ∥1. Therefore, our result is applicable to the example

given in [5]: H = L2(0, 1), Γf(x) =
∑

n e
n2

f̂(n)e2πinx, and Lf(x) = xf(x).

4 The resolvent estimate for the shear flows

In this section, we give the resolvent estimate of the operator H = H(u) = −∂2y + iu(y). We start with a

few basic observations concerning the operator H(u). As is well known, the operator H(0) = −∂2y is self-

adjoint in L2(T) with a compact resolvent, and its spectrum is a sequence of eigenvalues {λ0n}n∈N, where

λ00 = 0, λ02n = λ02n−1 = n2. By the classical perturbation theory [12], it follows that H(u) has a compact

resolvent for any u ∈ C(T,R), and that its spectrum is again a sequence of eigenvalues {λ(u)n }n∈N, with

Re(λ
(u)
n ) → +∞ as n→ +∞.

Since Re⟨Hf, f⟩L2 = ∥∂yf∥2L2 > 0 for f ∈ D(H) = H2(T), H is accretive, Re(λ
(u)
n ) > 0, and

∥(H + λ)u∥L2∥u∥L2 > Re⟨(H + λ)u, u⟩L2 > Re⟨λu, u⟩L2 = (Reλ)∥u∥2L2 , ∥(H + λ)u∥L2 > (Reλ)∥u∥L2 for

Reλ > 0, which implies that H is m-accretive.

For λ ∈ R, H − iλ is invertible if and only if

inf{∥(H − iλ)f∥L2 : f ∈ D(H), ∥f∥L2 = 1} > 0.

If Ψ(H) > 0, then H − iλ is invertible for all λ ∈ R, and

Ψ(H) =
(
sup
λ∈R

∥(H − iλ)−1∥
)−1

= inf{∥(H − iλ)f∥L2 : f ∈ D(H), λ ∈ R, ∥f∥L2 = 1}.

Thus, our definition of Ψ(H) is the same as that in [8]. We first give a lower bound of Ψ0(u) in terms of

ω0(δ, u). Then the lower bound of Ψ1(u) follows by minimizing λ. Recall that

Ψ0(u) = inf{∥Hf∥L2 : f ∈ D(H), ∥f∥L2 = 1}.

The following lemma shows the existence of the minimizer.

Lemma 4.1. If µ = Ψ0(u), then there exists 0 ̸= f ∈ D(H) so that Hf = µf .

Proof. By the definition of µ = Ψ0(u), we have ∥Hg∥L2 > µ∥g∥L2 for all g ∈ D(H), and we can take

fn ∈ D(H) and ∥fn∥L2 = 1 such that ∥Hfn∥L2 → µ as n → ∞. Then the sequence {fn} is bounded in

H2(T), and there exist a subsequence of {fn} (still denoted by {fn}) and f0 ∈ D(H), such that fn → f0
strongly in L2(T) and Hfn ⇀ Hf0 weakly in L2(T) as n→ ∞. Therefore, ∥f0∥L2 = 1, ∥Hf0∥L2 6 µ. If

µ = 0, then we can take f = f0. If µ > 0, we have for all g ∈ D(H), t ∈ R, ∥Hf0+tHg∥L2 > µ∥f0+tg∥L2 ,

and the equality holds at t = 0, therefore,

0 =
d

dt

∣∣∣∣
t=0

(∥Hf0 + tHg∥2L2 − µ2∥f0 + tg∥2L2) = 2Re⟨Hf0,Hg⟩ − 2µ2Re⟨f0, g⟩,
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and we also have 0 = 2Re⟨Hf0, iHg⟩ − 2µ2Re⟨f0, ig⟩. Thus, 2⟨Hf0,Hg⟩ = 2µ2⟨f0, g⟩. Set Hf0 = µg0,

and then ⟨g0,Hg⟩ = µ⟨f0, g⟩ for all g ∈ D(H). This implies that g0 ∈ D(H∗), and H∗g0 = µf0. Here

H∗ = −∂2y − iu(y) and D(H∗) = H2(T). Therefore, g0 ∈ D(H) and Hg0 = µf0. Since f0 + g0 ̸= 0 or

f0 − g0 ̸= 0, we can take f = f0 + g0 or i(f0 − g0).

Now we need to study the equation Hf = µf . Set u(y) = ψ′(y) and ψ(y) ∈ R for y ∈ R. Now we can

define ω0(δ, u) and ω1(δ, u) as in Section 1. Recall that

ω0(δ, u) = inf
x,c∈R

∫ x+δ

x−δ

|ψ(y)− c|2dy.

Lemma 4.2. If 0 ̸= f ∈ D(H), Hf = µf, µ > 0, δ > 0, then
√
µ > π

2δ
or 36

√
µ tan(

√
µδ) > ω0(δ, u).

Proof. If µ = 0, then 0 = Re⟨Hf, f⟩L2 = ∥∂yf∥2L2 , f is constant, u ≡ 0, ψ is a constant, ω0(δ, u) = 0,

and the result is true. Now we assume µ > 0.

In this case, we have f ∈ C2(T). We can normalize ∥f∥L∞ = 1, and assume |f(y0)| = 1 for some y0 ∈ R.
Set a = sup{y : f(y) = 0, y < y0} and b = inf{y : f(y) = 0, y > y0}. Then −∞ 6 a < y0 < b 6 +∞ and

f ̸= 0 in (a, b), f(a) = 0 if a > −∞, f(b) = 0 if b < +∞. Now we can find g ∈ C2(a, b) such that f = eg

in (a, b), and then Hf = (−g′′ − g′2 + iu)f . Set g = ρ+ iθ, ρ, θ ∈ R. Then f = e−2iθf and the equation

Hf = µf in (a, b) can be written as −g′′ − g′2 + iu = µe−2iθ or

−ρ′′ − ρ′2 + θ′2 = µ cos 2θ, −θ′′ − 2ρ′θ′ + u = −µ sin 2θ.

As ∥f∥L∞ = 1, |f(y0)| = 1, we have ρ 6 0 in (a, b), ρ(y0) = 0, and ρ′(y0) = 0.

We first give the lower bounds of y0 − a and b− y0. By the standard theory of ODEs, if a > −∞, then

limy→a+ ρ(y) = −∞, while if b < +∞, then limy→b− ρ(y) = −∞.

Since ρ′′ + ρ′2 + µ = θ′2 + 2µ(sin θ)2 > 0, setting ρ1 = arctan ρ′
√
µ , we have ρ1(y0) = 0,

ρ′
1√
µ + 1 =

ρ′′

ρ′2+µ + 1 > 0, and ρ1(z) > ρ1(y) + (y − z)
√
µ for a < y < z < b.

For y ∈ (a, b), if b < y + (ρ1(y) + π/2)/
√
µ, then

inf
(y,b)

ρ1 > ρ1(y) + (y − b)
√
µ > −π

2
, inf

(y,b)
ρ′ > −∞, inf

(y,b)
ρ > −∞,

a contradiction. Therefore b > y+(ρ1(y)+π/2)/
√
µ. Similarly, a 6 y+(ρ1(y)−π/2)/

√
µ. In particular,

a 6 y0 −
π

2
√
µ
< y0 +

π

2
√
µ

6 b.

Now we estimate |ρ′(y)|. For y ∈ (a, b), we have y1 = y + ρ1(y)/
√
µ ∈ (a, b),

ρ(y1)− ρ(y) =

∫ y1

y

ρ′(z)dz =

∫ y1

y

√
µ tan ρ1(z)dz

>
∫ y1

y

√
µ tan(ρ1(y) + (y − z)

√
µ)dz

= ln
1

cos ρ1(y)
.

Since ρ(y1) 6 0, we have eρ(y) 6 cos ρ1(y). On the other hand, if |y − y0| < π
2
√
µ , then

ρ(y0)− ρ(y) =

∫ y0

y

ρ′(z)dz =

∫ y0

y

√
µ tan ρ1(z)dz

6
∫ y0

y

√
µ tan(ρ1(y0) + (y0 − z)

√
µ)dz

= ln
1

cos((y − y0)
√
µ)
.
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Here we used ρ1(y0) = ρ(y0) = 0. Therefore, cos((y−y0)
√
µ) 6 eρ(y) 6 cos ρ1(y). Since (y−y0)

√
µ, ρ1(y) ∈

(−π/2, π/2), we have |y − y0|
√
µ > |ρ1(y)| and |ρ′(y)| = √

µ tan |ρ1(y)| 6
√
µ tan(|y − y0|

√
µ). Now if

√
µ < π

2δ , then δ <
π

2
√
µ and∫ y0+δ

y0−δ

|θ′(z)|2dz 6
∫ y0+δ

y0−δ

(ρ′′ + ρ′2 + µ)dz

6 ρ′|y0+δ
y0−δ +

∫ y0+δ

y0−δ

(µ tan2(|z − y0|
√
µ) + µ)dz

6 2
√
µ tan(δ

√
µ) + 2

√
µ tan(δ

√
µ)

= 4
√
µ tan(δ

√
µ).

Here we used |ρ′(y)| 6 √
µ tan(|y − y0|

√
µ) =

√
µ tan(δ

√
µ) for y = y0 ± δ.

Now we estimate ω0(δ, u). Since u(y) = ψ′(y), we have

−θ′′ − 2ρ′θ′ + ψ′ = −µ sin 2θ and ψ(y)− θ′(y)− c =

∫ y

y0

(2ρ′θ′ − µ sin 2θ)dz

for c = ψ(y0)− θ′(y0). If y0 < y < y0 + δ, then

|ψ(y)− θ′(y)− c| 6
∫ y

y0

2ρ′2 + θ′2 + 2µ√
2

dz 6
∫ y

y0

2ρ′2 + (ρ′′ + ρ′2 + µ) + 2µ√
2

dz

=
ρ′|yy0√

2
+

3√
2

∫ y

y0

(ρ′2 + µ)dz 6 ρ′(y)√
2

+
3√
2

∫ y

y0

(µ tan2(|z − y0|
√
µ) + µ)dz

6
√
µ/2 tan((y − y0)

√
µ) + 3

√
µ/2 tan((y − y0)

√
µ)

= 2
√
2µ tan((y − y0)

√
µ).

Similarly, if y0 − δ < y < y0, then |ψ(y)− θ′(y)− c| 6 2
√
2µ tan(|y − y0|

√
µ). Therefore,

ω0(δ, u) 6
∫ y0+δ

y0−δ

|ψ(y)− c|2dy 6 3

∫ y0+δ

y0−δ

|θ′(z)|2dz + 3

2

∫ y0+δ

y0−δ

|ψ(y)− θ′(y)− c|2dy

6 3 · 4√µ tan(δ√µ) + 3

2

∫ y0+δ

y0−δ

8µ tan2(|y − y0|
√
µ)dy

= 12
√
µ tan(δ

√
µ) + 24(

√
µ tan(δ

√
µ)− µδ)

6 36
√
µ tan(δ

√
µ).

This completes the proof.

Set φ : [0, π/2) → [0,+∞), φ(x) = 36x tanx. Then φ is a one-to-one increasing function and we

denote φ−1 : [0,+∞) → [0, π/2) to be the inverse function.

Lemma 4.3. For δ > 0, we have

Ψ0(u) > (φ−1(δω0(δ, u))/δ)
2, Ψ1(u) > (φ−1(δω1(δ, u))/δ)

2.

Proof. Let µ = Ψ0(u). By Lemma 4.1, there exists 0 ̸= f ∈ D(H) such that Hf = µf . By Lemma 4.2,

we have
√
µ > π

2δ or 36
√
µ tan(

√
µδ) > ω0(δ, u). Therefore,

√
µδ > π

2 or φ(
√
µδ) = 36

√
µδ tan(

√
µδ) >

δω0(δ, u).

Since φ(x) = 36x tanx is a one-to-one increasing function, we have
√
µδ > π

2 or
√
µδ > φ−1(δω0(δ, u)).

As φ−1(δω0(δ, u)) < π/2,
√
µδ > φ−1(δω0(δ, u)) is always true, and

√
µ > φ−1(δω0(δ, u))/δ, Ψ0(u) =

(
√
µ)2 > (φ−1(δω0(δ, u))/δ)

2. Now we have

Ψ1(u) = inf
λ∈R

Ψ0(u− λ) > inf
λ∈R

(φ−1(δω0(δ, u− λ))/δ)2

=
(
φ−1

(
δ inf
λ∈R

ω0(δ, u− λ)
)
/δ
)2

= (φ−1(δω1(δ, u))/δ)
2.

This completes the proof.
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5 Enhanced dissipation for shear flows

As in [2], let Lk,ν = iku− ν(∂2y − |k|2) and Rk,ν = iku− ν∂2y be the linear operators associated with the

k-th Fourier projections of (1.3) and (1.4), associated with the linear semigroups

e−tLk,ν = Sν(t)Pk, e−tRk,ν = Rν(t)Pk.

For fixed ν and k, Lk,ν and Rk,ν are m-accretive. Notice that Rk,ν = νH(ku/ν) and Lk,ν = Rk,ν + ν|k|2.
By Theorem 1.3, we have

∥e−tLk,ν∥L2→L2 = ∥e−ν|k|2te−tRk,ν∥L2→L2 6 ∥e−tRk,ν∥L2→L2 = ∥e−tνH(ku/ν)∥L2→L2

6 e−tνΨ(H(ku/ν))+π/2 = e−tνΨ1(ku/ν)+π/2, ∀ t > 0.

Let us first give the decay rate in terms of ω1(δ, u).

Theorem 5.1. For α > 0, u ∈ C(T,R), assume that ω1(δ, u) > C1δ
2α+3 for δ ∈ (0, 1). Here C1 is a

positive constant. Then there exist positive constants ε and C such that for every ν > 0 and every integer

k ̸= 0 satisfying ν|k|−1 6 1/2,

∥Sν(t)Pk∥L2→L2 6 Ce−ελ̃ν,kt, ∥Rν(t)Pk∥L2→L2 6 Ce−ελ̃ν,kt, ∀ t > 0, (5.1)

where Pk denotes the projection to the k-th Fourier mode in x and λ̃ν,k = ν
α

α+2 |k|
2

α+2 is the decay rate.

Proof. By the definition, we have ω1(δ, u) > 0 is increasing with respect to δ and homogeneous of degree

2 with respect to u, i.e., ω1(δ,Au) = A2ω1(δ, u) for every constant A ∈ R. Since λ̃ν,k = ν
α

α+2 |k|
2

α+2 , we

take δ = (ν/λ̃ν,k)
1/2 = (ν/|k|)

1
α+2 ∈ (0, 1). Then

δω1(δ, ku/ν) = δ(|k|/ν)2ω1(δ, u) = δδ−2(α+2)ω1(δ, u) = ω1(δ, u)/δ
2α+3 > C1.

By Lemma 4.3, for δ = (ν/λ̃ν,k)
1/2 > 0, we have Ψ1(ku/ν) > (φ−1(δω1(δ, ku/ν))/δ)

2, and

νΨ1(ku/ν) > ν(φ−1(δω1(δ, ku/ν))/δ)
2 > ν(φ−1(C1)/δ)

2

= ν(φ−1(C1))
2/((ν/λ̃ν,k)

1/2)2 = (φ−1(C1))
2λ̃ν,k.

Thus,

∥Sν(t)Pk∥L2→L2 = ∥e−tLk,ν∥L2→L2 6 ∥Rν(t)Pk∥L2→L2 = ∥e−tRk,ν∥L2→L2

6 e−tνΨ1(ku/ν)+π/2 6 e−ελ̃ν,kt+π/2, ∀ t > 0,

where ε = (φ−1(C1))
2 > 0 is a constant.

The following lemma gives the lower bound of ω1(δ, u) when u(y) is a Weierstrass function.

Lemma 5.2. If u(y) =
∑∞

n=1 an sin(3
ny) is a Weierstrass function, an ∈ R\{0}, and 1 6 |an|/|an+1| 6

3, m ∈ Z, m > 0, then ω1(3
−mπ, u) > C−13−3ma2m.

Proof. We can take ψ(y) = −
∑∞

n=1
an

3n cos(3ny) such that u(y) = ψ′(y). We introduce the difference

operator △hf(y) = f(y) − f(y + h) satisfying △3
hf(y) = f(y) − 3f(y + h) + 3f(y + 2h) − f(y + 3h).

Noticing that △3
h(e

iny) = einy(1 − einh)3 = iein(y+
3
2h)(2 sin nh

2 )3, we have △3
h cos(ny) = − sin(n(y +

3
2h))(2 sin

nh
2 )3, △3

hψ(y) =
∑∞

n=1
an

3n sin(3n(y + 3
2h))(2 sin

3nh
2 )3. Note that for x, c1, c2 ∈ R, h > 0, we

have △3
h(ψ(y)− c1 − c2y) = △3

hψ(y),∫ x

x−3h

(△3
hψ(y))

2dy =

∫ x

x−3h

(△3
h(ψ(y)− c1 − c2y))

2dy 6 C

∫ x+3h

x−3h

(ψ(y)− c1 − c2y)
2dy,

and thus, infx∈R
∫ x

x−3h
(△3

hψ(y))
2dy 6 Cω1(3h, u). Now we take h = 3−m−1π. Then we can write

△3
hψ(y) = f1(y) + f2(y) with f1(y) =

∑m−1
n=1

an

3n sin(3n(y + 3
2h))(2 sin

3nh
2 )3 and

f2(y) =
+∞∑
n=m

an
3n

sin

(
3n

(
y +

3

2
h

))(
2 sin

3nh

2

)3
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=
+∞∑
n=m

an
3n

sin

(
3ny +

3n−mπ

2

)(
2 sin

3n−m−1π

2

)3

=
am
3m

cos(3my)−
+∞∑

n=m+1

8an
3n

cos(3ny).

Thanks to 1 6 |an|/|an+1| 6 3, we have |an| 6 |am|3m−n for 1 6 n < m and

|f1(y)| 6
m−1∑
n=1

|an|
3n

∣∣∣∣2 sin 3nh

2

∣∣∣∣3 6
m−1∑
n=1

|an|
3n

|3nh|3 6
m−1∑
n=1

|am|3m−n

3n
|3nh|3

= |am|3m
m−1∑
n=1

3nh3 6 |am|3m 3mh3

2
= |am|32m (3−m−1π)3

2
=

|am|
3m

π3

54
.

Notice that the functions {cos(3ny)}n∈Z,n>m are orthogonal in L2(x−3h, x) = L2(x−3−mπ, x) for every

x ∈ R, and |an| > |am|3m−n for n > m. Then we have

∥f2∥2L2(x−3h,x) =
|am|2

32m
∥ cos(3my)∥2L2(x−3h,x) +

+∞∑
n=m+1

(8|an|)2

32n
∥ cos(3ny)∥2L2(x−3h,x)

=
|am|2

32m
3h

2
+

+∞∑
n=m+1

(8|an|)2

32n
3h

2
> |am|2

32m
3h

2
+

+∞∑
n=m+1

(8|am|3m−n)2

32n
3h

2

=
|am|2

32m
3h

2

(
1 +

+∞∑
n=m+1

82

34(n−m)

)
=

|am|2

32m
3h

2

9

5
.

Therefore,

∥△3
hψ∥L2(x−3h,x) > ∥f2∥L2(x−3h,x) − ∥f1∥L2(x−3h,x)

>
(
|am|2

32m
3h

2

9

5

) 1
2

−
∥∥∥∥ |am|
3m

π3

54

∥∥∥∥
L2(x−3h,x)

=
|am|
3m

(
3h

2

9

5

) 1
2

− |am|
3m

π3

54
(3h)

1
2

=
|am|
3m

((
9

10

) 1
2

− π3

54

)
(3h)

1
2

> |am|
3m

3

10
(3h)

1
2 .

Here we used ( 9
10 )

1
2 − π3

54 > 9
10 − 32

54 > 9
10 − 6

10 = 3
10 . Therefore,

inf
x∈R

∥△3
hψ∥2L2(x−3h,x) >

(
|am|
3m

3

10

)2

(3h) =

(
|am|
3m

3

10

)2

3−mπ > |am|2

C33m
,

and

ω1(3
−mπ, u) = ω1(3h, u) > C−1 inf

x∈R
∥△3

hψ∥2L2(x−3h,x) > C−13−3m|am|2.

This completes the proof.

Now we are in a position to give some examples of shear flows that induce an enhanced dissipation

time-scale faster than O(ν−1/3).

Lemma 5.3. If u(y) =
∑∞

n=1 an sin(3
ny) is a Weierstrass function, an ∈ R, 3−nα 6 |an| 6 C03

−nα

for some constants α ∈ (0, 1), C0 > 1 and 1 6 |an|/|an+1| 6 3, then there exist positive constants

ε and C such that for every ν > 0 and every integer k ̸= 0 satisfying ν|k|−1 6 1/2, (5.1) holds for

λ̃ν,k = ν
α

α+2 |k|
2

α+2 .
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Proof. For every δ ∈ (0, 1), there exists m ∈ Z, m > 0, such that 3−mπ 6 δ < 3−m+1π. As

|am| > 3−mα, by Lemma 5.2, we have ω1(δ, u) > ω1(3
−mπ, u) > C−13−3m|am|2 > C−13−3m|3−mα|2 =

C−13−(3+2α)m > C−1(δ/(3π))3+2α > C−1δ3+2α. Now the result follows from Theorem 5.1.

Lemma 5.4. If u(y) =
∑∞

n=1 an sin(3
ny) is a Weierstrass function, an ∈ R, n−α 6 |an| 6 C0n

−α

for some constants α ∈ (1, 2), C0 > 1 and 1 6 |an|/|an+1| 6 3, then there exist positive constants

ε and C such that for every ν > 0 and every integer k ̸= 0 satisfying ν|k|−1 6 1/2, (5.1) holds for

λ̃ν,k = |k|(ln(|k|/ν))−α.

Proof. For every δ ∈ (0, 1), there exists m ∈ Z, m > 0, such that 3−mπ 6 δ < 3−m+1π, and thus

m 6 log3(π/δ) + 1 6 C(1 − ln δ). As |am| > m−α, by Lemma 5.2, we have ω1(δ, u) > ω1(3
−mπ, u) >

C−13−3m|am|2 > C−13−3mm−2α > C−1δ3(1− ln δ)−2α. Since λ̃ν,k = |k|(ln(|k|/ν))−α, taking

δ = (ν/λ̃ν,k)
1/2 = (ν/|k|) 1

2 (ln(|k|/ν))α
2 ∈ (0, 1),

we have

δω1(δ, ku/ν) = δ(|k|/ν)2ω1(δ, u) = δ(δ−2(ln(|k|/ν))α)2ω1(δ, u)

> C−1δ(δ−2(ln(|k|/ν))α)2δ3(1− ln δ)−2α

= C−1(ln(|k|/ν))2α(1− ln δ)−2α.

We also have δ > C−1(ν/|k|) 1
2 , ln δ > (1/2) ln(ν/|k|) − C and 1 − ln δ 6 C − (1/2) ln(ν/|k|) = C +

(1/2) ln(|k|/ν) 6 C ln(|k|/ν), which imply that δω1(δ, ku/ν) > C1 for an absolute constant C1 > 0.

By Lemma 4.3, for δ = (ν/λ̃ν,k)
1/2 > 0, we have

Ψ1(ku/ν) > (φ−1(δω1(δ, ku/ν))/δ)
2,

and

νΨ1(ku/ν) > ν(φ−1(δω1(δ, ku/ν))/δ)
2 > ν(φ−1(C1)/δ)

2

= ν(φ−1(C1))
2/((ν/λ̃ν,k)

1/2)2 = (φ−1(C1))
2λ̃ν,k.

Thus,

∥Sν(t)Pk∥L2→L2 = ∥e−tLk,ν∥L2→L2 6 ∥Rν(t)Pk∥L2→L2 = ∥e−tRk,ν∥L2→L2

6 e−tνΨ1(ku/ν)+π/2 6 e−ελ̃ν,kt+π/2, ∀ t > 0,

where ε = (φ−1(C1))
2 > 0 is a constant. This completes the proof.
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