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1 Introduction

Let II™ be the upper half of the complex plane, i.e., IIT := {z € C : Iz > 0}. Let u be a positive Borel
measure on II*T. For 0 < p < oo, let L?(u) denote the Lebesgue space on IIT with the measure y, i.e.,
LP (1) comprises all measurable complex functions f defined on II* for which the “norm”

1= { [ 1}

is finite. When 0 < p < 1, the space LP(u) is a complete metric space under the translation-invariant
metric (f,g) — || f — g|/5,. When 1 < p < oo, the space LP(u) is a Banach space. In particular, L?(u) is
a Hilbert space. For a > —1, let

dAq(2) = co(S2)¥dA(2),

where ¢, = M is a constant and dA is the Lebesgue area measure on II™. For 0 < p < oo, we denote

the standard weighted Bergman space by AP (IT1), which comprises holomorphic functions of LP(dA,).
It is known that each space AP (IIT) is a closed subspace of LP(dA,). For convenience, we use || f| 4z to
represent the norm of f € AP (II1).
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Let H(IT*T) and S(II*) be the sets of all holomorphic functions and holomorphic self-maps on I,
respectively. The composition operator C,, is defined by

Cof=fop, feH).

Extensive study of the theory of composition operators has been conducted during the past four decades
in various settings. For various aspects of the theory of composition operators acting on holomorphic
function spaces, see [11,21].

One of the most important problems in the study of composition operators is to characterize compact
differences of such operators (see [4,5,7,14,15,18,19,23]). In particular, in a study [18] on weighted
Bergman spaces over the unit disk, the compact difference of two composition operators is characterized
by a particular cancellation property of the inducing maps at every “bad” boundary point, which prevents
each composition operator in the difference from being compact. For general linear combinations of
composition operators, see [1,3,7,8,15,16,23].

It is known that in contrast to the unit disk case, some composition operators are not bounded
on AP (IIT), and no composition operator on AP (II1) is compact (see [12,22]). Recently, the notion
of the joint Carleson measure was introduced by Koo and Wang [14] for their study of differences of
composition operators over the ball. Choe et al. [6] used the joint Carleson measure to provide a char-
acterization of bounded and compact differences of composition operators on AP (II*) and showed that
there are several instances of distinct composition operators with compact differences.

Continuing along this line, we use Khinchine’s inequality and atom decomposition techniques, which
are quite different from the methods used in [6,20], to provide analogous joint Carleson measure charac-
terizations when the difference of composition operators is bounded or compact from standard weighted
Bergman spaces AP (IT1) to Lebesgue spaces L4 () for all index choices, including the much more delicate
case in which 0 < ¢ < p < 0.

The rest of this paper is organized as follows. Section 2 presents some necessary basic prerequisites
and technical lemmas. Section 3 is devoted to characterizations of boundedness and compactness of
differences of composition operators (see Theorem 3.1 and 3.2). For applications, we obtain direct analytic
characterizations of the bounded and compact differences of composition operators between such spaces
(see Theorems 3.3 and 3.4). In addition, we show that there are symbols ¢ and ¢ inducing bounded or
compact difference C, —Cy, acting from A? (IT') to A% (IT*) for any 0 < p,q < oo. Section 4 presents some
joint Carleson measure characterizations when the difference of composition operators is Hilbert-Schmidt
from A2 (IT") to L?(u) (see Theorem 4.1).

2 Preliminaries

In this section, we recall some basic facts about AP (IT*) and prove some technical lemmas that we will
need in the future.

Throughout the paper, we use the same letter C' to denote various positive constants that might
change at each occurrence. Variables indicating the dependency of constants C' will often be specified
in parentheses. We use the notation X <Y or Y 2 X for non-negative quantities X and Y so that
X < CY for some inessential constant C' > 0. Similarly, we use the notation X ~ Y if both X <Y and
Y < X hold.

The pseudo-hyperbolic distance p : TIT x IIT — [0, 1) is

p(z,w) =

zZ—w
Z—Ww

For z € II™ and 0 < § < 1, let E5(z) denote the pseudo-hyperbolic disk centered at z with radius §. An

elementary calculation shows that Es(z) is actually a Euclidean disk centered at x + i%fgzy with radius

%y, where i2 = —1, £ = Rz, and y = Jz. Furthermore, for o > —1, a,z,w € ITt, and 0 < § < 1, the
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following inequalities hold:

(2, w)
— 2.1
T o) S Su S T ple,w) @1
T pzw) S w—a ST=pkw) |
1—p(z,w) z—w <1—|—p(z7w) 2.3)
1+ p(z,w) 23z 1—p(z,w)
and
A[Es(2)] = (32)2T2, (2.4)
The above facts can be found in [10].
We will use the submean value type inequality
C
FOP < s [ H@PdAa(w), zeTt (25)
($2)2%2 Jg (2
for all f € H(II™) and some constant C' = C(a, d) (see [10, Lemma 3.6]). In particular,
P ¢ p +
/(2] <W|‘f”,457 zell™. (2.6)

For a positive Borel measure p on IIT, we have the following submean value property with respect to the
pseudo-hyperbolic disk.

Proposition 2.1. Assume that o > —1 and 0 < 6 < 1, and p is a positive Borel measure on IIT.

Then,
C

W) < e | @A), = e

where C' = C(«,d) > 0 is a constant.
Proof.  Let z € It and 0 < § < 1. By Fubini’s theorem and (2.1),

/E Bl () = /E » /E A
- / / sty (w)d Ao (w)dja(u)
I+ JEs(z)

> dAq(w)du(u

/Es(Z) /EJ(Z)QEa(u) ( ) :“( )

~ (32)° / A[Es(2) N B (w)]dp(u)
Es(z)

> (32)°ulEs(2)] _inf | ALEN(:) 0 Es(u)

> C(S82)°2ulEs(2)),

where C = C'(«,6) > 0 is a constant. The last inequality holds because both Fs(z) and Es(u) are the

Euclidean disks and Su = Sz when u € Fs(z), and the above infimum is attained when
2
ug = Ru +1 Su
0 e

is on the boundary of Es(z). O

Given @ > —1, it follows from (2.6) that each point evaluation is a continuous linear function on
A2 (II*). Thus, for each z € II*, there exists a unique reproducing kernel K{* € A2(II*), i..,

1) = [ 5K w)ara(w)
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for f € A2(II*). The explicit formula of K s

KO = (- )+

w—z

Let II't = TITU{oo}. We consider lim,_ 5+ 9(2) = 0,if g(2) = 0as Sz — 0 and g(z) — O as |z| — co.
This is equivalent when Ve > 0, and there is a compact set K C IT* such that sup,cqy+\ i [9(2)] < €. Let

T (w) == w_5 PV eI,

throughout this paper. The following lemma is cited from [6, Lemma 2.5].

Lemma 2.2. Leta>—-1,s>0,2€Il", and 0 <p < oco. If ps > a+ 2, then
1

e AR(ITY), |72 = Gappra2’

and — 0 as z — OLIT uniformly on compact subsets of II+.

Tz
(751l ap,

For a > —1, 0 < p < 00, and a positive Borel measure p on IIT, p is an (a, p, q¢)-Carleson measure
if the embedding AP (II*) C L9(u) is continuous. In addition, if the embedding AP (ITT) C Li(u) is
compact, then p is evaluated as a compact (a,p,q)-Carleson measure. For ¢ € S(IIT), we define the
pullback measure po¢~! on ITt:

(no @™ E] = ple™"(E)]
for every Borel subset E of IIT. Then, the identity

| toon= [ fawoe

is valid for any Borel function f > 0 (see [13, p.163]).

Lemma 2.3 is widely known, which can be proved through the following equation. For s > 0 and
a > —1, define T by

(gw)s—a—2 n
Tsf(z) = ——— f(w)dAs(w), zelI, (2.7)
n+ |z —0[°

VfeLP(dAy).
Lemma 2.3. Suppose that s >0, a > —1, and 1l <p < oo. If s > 1+ O‘T'H, then Ty s bounded on
LP(dA,).
Proof. For 1 < p < o0, let g be the conjugate exponent of p. Let

s —

(A,B):(— atl HH)

Lo) aa (eo)= (-2

p p

Since s > 1+ O‘T‘fl and o > —1, (A, B)N(C, D) # 0. Let h(w) = (Sw)?, where t € (A, B) N (C, D). Since
t > —%, s — 2+ qt > —1. Thus, by Lemma 2.2,

%w s—a—2 S’UJ s—2+qt
/ B ) 7dAn (w) ~ / ™ 1 aw)
I+

|2 —wl° m |z -

1 q
~ / ———| dAs_2yqt(w)
o+ | (z — W)«
~ (h(z))4. (2.8)
In addition, since t > —2FL we have pt + o > —1. Thus, by Lemma 2.2,

P )

(Sz)Ptte

M 2))P 2) ~ (Sw s—a—2 \¥<) e
/m o M) dAa(z) = (Sw) /H+ > AE)
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1

~ (Sw s—a—2 .
(Sw) /H+ (z—w)r
~ (h(w))?. (2.9)

p

dAptta(z)

Now, from (2.8) and (2.9), we determine that T, is bounded on LP(dA,) by Schur’s test [25,
Theorem 3.6]. O

Furthermore, we recall some terminologies. When we consider 0 < § < 1 and Ej(z,) are pairwise
disjoint, a sequence {z,} C I is called §-separated. In addition, we say that {z,} C II" is separated
if it is d-separated for some §. A sequence {z,} C II" is called a d-lattice if it is g-separated and
It =2, Es(zn). A é-lattice can be explicitly constructed by using almost the same argument as that
in [25].

The following lemma is cited from [10, Lemma 4.2].

Lemma 2.4. Assume s >0 and 0 < < 1 with (s+1)d < 1. If {z,} is d-separated, then there exists

a positive integer N = N (s,d) such that no more than N of the balls Ess(z,) contain a common point.
The following lemmas are cited from [6, Lemma 3.2] and [6, Lemma 7.2], respectively.

Lemma 2.5. Leta>—-1,0<p<oo and0 < < < 1. There is a constant C = C(«,p,d,8") > 0

such that
zZ,w)

— ()P PPz, P
1= sl <o [ irpaa,

for all z,w € II'" with w € Es (z) and functions f holomorphic on Es(z).
Lemma 2.6.  Given that s is real and 0 < § < 1, there is a constant C = C(s,d) > 0 such that

(322 e

w—a

for a,z,w € II'" with p(z,w) < 4.
Using the above lemmas, we now prove the next lemma.

Lemma 2.7. Assume that 0 < p < o0, & > —1 and s > max{l,%} + "‘T'fl. Let {ay} C IIT be an
n-lattice with 0 < n < 1. Define T : AL (II'T) — H(ITT) by

o () (As—o[ By (an))) £ (an)
Tf(Z) - ; (ak _ Z)s !
Then, the following inequality holds:
-T < C n(%ak)sf% ( pdAa) v
16 - TII S L /| o

for any f € AP (ITT).

Proof. Let 0 <n < 1 s> max{1, %} + O‘TH, and {ax} C IIT be an n-lattice. Let 8 = s — 2. Then

B > —1. Performing the change-of-variable

A4z
’7(2)*11_,27

which maps D (the unit disk in the complex plane C) to IT*, we obtain

Thus, we get
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S e L W) fanldds(w)
k=1 n\@k
+3 e [ () - i)
Pt |z—ak\ Bylan) |\ 2 =W A
= 1+1II.

For w € E,(ay), by Lemma 2.5, there exists a constant C' > 0 such that

1

— 1 CpP(w,a) ) b
1< Wl (L et )

o] 1

n(Say </ > v

ST |fIPdAq )
Z |Z - a’k|s Ez,,(ak)

—
<y 1 /E o wlaase)

o~ )3_ a;2 1

1
() )
k=1 o ak Eon(ak)

o -Trals Y (] N P

k=1
This completes the proof. O

Thus, we get

Based on Lemmas 2.3, 2.4 and 2.7, we have the following atom decomposition theorem on A (IIT),
whose proof is similar to the argument of [24, Theorem 2.30] that is provided below.
Theorem 2.8.  Suppose that 0 < p < oo, > —1, and s > max{l, %} + O‘Tﬂ Then, there exists a
constant 0 < A < 1 such that for any §-lattice {wy,} C I, where 0 < § < A, the space AP (IIT) comprises
functions of the form

f= Z Yn__ e AP(ITT), (2.10)

"7, wnHA"

where {cp} € 1P, and

|| fllaz = inf{[[{cn}lir : {cn} satisfies (2.10)}.
Proof.  Let s > max{1, } + ‘”1 ,and 0 < 6 < 1. Consider a function f defined by (2.10), where {w,}
is a ¢-lattice and {c,} € lp If 0 < p < 1, then || f|l a2 < |[{cn}]lir- When 1 < p < o0, let

oo

F(2) = ) leal(AalBs(wn)]) ™ X b () (2).

n=1
It clearly shows that ||F|zr < [[{cn}]ir- Then, by (2.1), (2.2) and Lemma 2.2,

Cx )s—a—Q

=S lealChalmsto) e [ S ) 2 1)

Since s > 1+ O‘T'fl, by Lemma 2.3, we conclude that f € AZ(IIT) and || f]|az < [[{cn}lir-

To show that every function f € AZ(IT*) admits a representation of the form given in (2.10), we fix a
d-lattice {wy}, where 0 < § < 1/4. Furthermore, by Lemmas 2.4 and 2.7, and the first part of this proof,
there exists a constant C' > 0 such that

[ 11G) - TP < 0 [ |fE)dAL ()
I+

I+
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If 6 is sufficiently small to ensure that C'é? < 1, then the operator I —T on AP (II'") has norm less than 1,
where [ is the identity operator. It follows from standard functional analysis that the operator T is
invertible on AE (IT*). Therefore, every f € AP (II*) admits the following representation:

Fe) =Y ep el

i |
p
”Twn AF,

where
cn = (i*) (As—a[Bs(wn))) 175, [laz 9 (wn)

and ¢ = T7'f. Then, by (2.1), (2.4), (2.5), Lemmas 2.2 and 2.4, |[{c,}|w < | f]laz. The proof is
completed when we substitute A = 4. O

The complicated part of our principal results also requires Khinchine’s inequality. Therefore, the
Rademacher functions 7, : [0,1] — [—1, 1] are defined as

rn(t) := sgn(sin(2"7t)).

Khinchine’s inequality says that for 0 < p < oo, there are constants 0 < 4, < B, < oo such that

m g 11 m P m g
AP(Z|cn|2> g/o > enrn(t) dthp(Z|cn2> (2.11)
n=1 n=1 n=1

for all natural numbers m and all complex numbers cy, ..., Cp.

In addition, we define some notations that will be used in the sequel for brevity. For z € II't, 0 < § < 1,
a > —1, and a positive Borel measure p on IIT, let

HEs(2)] _ H[Es(2)]

FeEs) and Ga,p5(2) =

Ha,u,5(z) = W (%Z)thZ .

(2.12)

By definition, a positive Borel measure p is locally finite when p(K) < oo for any compact set K C II.

Remark 2.9. If sup,cp+ Hap5(2) < 00, then p is locally finite. In particular, for any compact set
K C IIT, we have

sup Hy ,5(2) < sup Hq ps(2) < oo.

z€K z€Ilt
Note that sup,cx Sz S 1. Then sup, i u[Es5(2)] S 1. Since K can be covered by finitely many Es(z),
is locally finite.

To characterize an (a,p, ¢)-Carleson measure for 0 < ¢ < p < oo, we use an idea of Luecking [17].

First, we need the following lemma.

Lemma 2.10. Assume that 0 < g < p < o0, and p is a positive Borel measure on IIT. If p is an
(a, p, q)-Carleson measure, then there exists a constant 0 < A < % such that for any d-lattice {w,} C I,

where 0 < 0 < A, the sequence {Hq 1 25(Wn)}n 45 in =

Proof.  Let s > max{1, %} + O‘T‘fl. Considering a sequence {c,} € I? and ¢ € [0,1], by the definition of
the Rademacher functions r,, we have

{enrn ()}l = [I{en -

By Theorem 2.8, there exists a constant 0 < A < 1 such that for any d-lattice {w,} C IIT, where
0<d <A,

[eS) 7_5)
fri= Y eara(t)"— € AR(ITY) and || fillag S [{en} -
n=1

73, I az

n
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Generally, we can assume that 0 < A < i. Since p is an (o, p, q)-Carleson measure, we deduce that

n=1 H wn a
Then, by Khinchine’s inequality and Fubini’s theorem,

q

dp(2) S 1 felllyr, < I{en G- (2.13)

o0

L. {;"ﬂllﬁnl } Au(z)

chrn (=) dtd w(z)
m+ H IIAP
(2) |*
enTn(t du(z)dt
<A, / /n Z Tro Tz | ¢
S Hen i (2.14)
By (2.3),
oo
Z |Cn|quz,u,26(wn)
n=1
:Z|Cn| Wdﬂ(z)
n=1 Eas(wn) (Swy,)™ »
- (Swy,)* 1 ]q
=~ w ) (2)]en|? — - du(z
foo o xmtan @t |2 |

=M.

By Lemma 2.4, there exists a positive integer N that does not belong to more than N sets Eos(wy,,) with
some n; < ng < --- < ny for any z € II'". Thus,

= (Swp)® 1 1
> xE%(wn)(zncnw( Tun) -

|Z wn|s (%wn) P

B )
XE Cn; J— o
1 25(wn ) " |Z - w?’bi|s (%w"]«i)( 22)

§<§: |2| (||)|2> (2.15)

Then, by (2.14),

s [ (P )gdmz) < el

which implies that

o]
> lenl Hapzs (wn) S [{en -

n=1

For any {b,} € 14, {(bn)%} € IP. Thus, for any {b,} € 17,

S bl o pzs(wa) < {0} 2

n=1
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Thus, we deduce that
{Hap26(wn)}n € (I

This completes the proof. O

The (o, p, q)-Carleson measures for AP (IT") can be characterized in the following manners.

Theorem 2.11.  Suppose that o > —1 and p is a positive Borel measure on IIt. Then the following
statements hold:

(1) If 0 < p < g < o0, then p is an (o, p,q)-Carleson measure if and only if sup, e+ Ha p,s(2) < 00
for some (or all) 0 < § < 1.

(2) If 0 < p < ¢ < oo, then p is a compact («,p, q)-Carleson measure if and only if p is locally finite
and im__, o5, Hy 5(2) =0 for some (or all) 0 <0 < 1.

(3) If 0 < g < p < o0, then the following statements are equivalent:

(a) p is an («, p, q)-Carleson measure;

(b) w is a compact (c, p, q)-Carleson measure;

(c) there exists 0 < A < i such that {Hq uos(wn)}tn € =] for all 0 < 0 < X and any d-lattice
{wn} C I,

(d) there exists 0 < & < % such that {Hq 126(wn)}n € 1553 for some §-lattice {w,} C IIT;

(e) there emists 0 < & < § such that Ga,u.s € Lﬁ(dAa),
where Hq ;5 and Go 5 are defined in (2.12). Moreover, if p is an («, p, q)-Carleson measure, then p is
locally finite.

Proof.  Since (1) is much easier than (2), whose proof is omitted to the reader, we only provide proofs
for (2) and (3). Suppose 0 < p < ¢ < co. To prove sufficiency, assume

lim Hg,,s(2)=0

z—OII+

for some ¢, and p is locally finite. Then, Ve > 0, there exists a compact set K C IIT such that

sup Hap6(2) <e.
z€IIT\K

Let {f,} be a sequence in A? (IIT) that converges to 0 uniformly on compact subsets of II'", and || f,, | a2
< M for some positive constant M. By (2.1), (2.5) and Fubini’s theorem,

/H+ | fn(2)|%dp(z) S /+ [(%z;w /Eé(z | fn(w )|4dAa(w)} du(2)
/ [ » X’i;wiw (z)}fnw)wdAa(w)
< [ Gups(lfu(w)dAa(w). (2.16)

Again,
/ G5 (1) fo (1) 7 A /Gaw ()] ()| A ()

# [ Gl )
= 1(fn) + II(fn). (2.17)

Since p is locally finite, we present an argument in one line to see that I(f,) — 0 as n — oo. It follows
from (2.6) that

((q p)(a+2)

B < [ Hopstw)Sw) )12 ) A ()
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Selfl? [ Ualw)Pddato) < elfallyy < M,
I\ K
Thus,

n—oo

timsup [ [, (2)"duz) S e
I+

Due to the arbitrariness of €, we determine that f, — 0 in L?(u), as desired.
For necessity, assume that p is a compact («, p, ¢)-Carleson measure. Then, y is locally finite from (1).

Let f, = ﬁ7 where s > QTP’Z € 1. For any 0 < § < 1, from (2.3) and Lemma 2.2,
lim Hyps(z) = lim | (w)[*dp(w)
z—OIl+ z—= 0t J Es(2)
< tim [ few)dp(w)
z—0Il+ JII+
= ()7
as desired.

For the proof of (3), suppose 0 < ¢ < p < oo. (a) < (b) is proved in [9, Theorem 5.4] for the
unweighted harmonic Bergman space on II™ when 1 < ¢ < p < oo. However, it still holds for a weighted
holomorphic Bergman space on IIT and 0 < ¢ < p < oo. Since (¢) = (d) is trivial and (a) = (c) follows
from Lemma 2.10, it sufficiently proves (d) = (e) = (a).

(d) = (e). Suppose that there exists a constant 0 < § < i such that {H u25(wn)}n € lﬁ, where
{w,} C II'" is a d&-lattice. Let 0 < &' < 6-%2' Then, we have Es (z) C Eas(wy) and Sz = Sw, for
z € Es(wy,) from (2.1). By (2.4) and Lemma 2.4,

oo

Z /E ( )[Ga,u,é’ (Z)]ﬁdAa(z)

n=1

oo
S 2 Gapas )] 55 (S) ™2

/ (G (2)] 77 dAn(2) <
I+

= Z am26(Wn)] 77 < 00, (2.18)
as desired.
In the above case, for any z € IIT, z belongs to at most N of the sets Es(w,) from Lemma 2.4.
Therefore, we assume z € Es(wy;), where j = 1,2,..., N. Since Es (2) C Eas(wy,;) and Sz = Swy,,

Hap51(2) S Houpu,26(wny) < {Hap,26 (wWn) Il o2

Thus, sup, e+ Ha,pu,o(2) < 0o. Hence, p is locally finite from Remark 2.9.
(e) = (a). Suppose that there exists 0 < § < I such that Go 5 € L773(dAy). For any f € AP (II1),
by an argument similar to (2.16),

/m” [ (z) / o s ()] f(w)|dAq (w).

By Holder’s inequality,

pP—gq

| sera < ([ GopstwlFianaw) " s,
as desired. 0

The following lemma provides an estimate of the difference of our test functions in terms of the pseudo-
hyperbolic distance.
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Lemma 2.12.  Given s >0 and 0 < § < 1, there exists a constant C = C(9,s) > 0 such that
|7a(w) = 73 (2)| = Clrg (w)|p(z, w)

for all a,z € It and w € Es(a).
Proof. Let s>0and 0< ¢ < 1. From (2.2),

0

7o (W)

Z—w

= p(z,w) P ‘ = p(z,w) (2.19)

for a,z € II" and w € Es(a). Thus, by the triangle inequality,

S

Ta(2) <M

Ta(w)

for some M > 1 depending only on § and s. If R(Z=EL)s > 1, let

To (W)

>~ =

K:{£€C:|f|<Mand8%§>

b

hE) = (©F and g ::(T“(Z))S.

Ta(w)

Then, K is a nonempty compact subset of C. Let

Thus, by the mean value property,

Ta(2)
Ta(w)

-

= |h(1) — h(&)] < |1 — &l sup [A/(€)]
(eEK
- §|1 — &o| max{4'~F, M1,

ie.,

Thus,

Conversely, if %(%)é < %, then

REOINE GO
Thus,
’1— ::((;)) <1+ TT:((;)) <21+ M1 <;((Z))> .

Therefore, there exists a constant C > 0 depending on ¢ and s such that

r2t) = 722 = Il - (8))‘
)

Ta(z

> Clrg (w)| |1

Ta(w)

~ | (w)]p(z, w).

This completes the proof. O
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For a > —1, let
(%Z)a+2 n
Hz(w):m, z,w €11

throughout this paper and

pnlEs(2)]

(Cjz)a—i-Q :

Lemma 2.13.  Suppose that « > —1, 0 < g < p < 00, 0 < § < 1, and p is a positive Borel measure
on IIT. Then, Go s € Lﬁ(dAa) if and only if the function

Ga-,u,é(z) =

F(z) = /H L @)du(w), et

is in L7a (dAg).
Proof.  For sufficiency, suppose that 0 < § < 1 and F € Lr)%(dAa). Since

Gusl?) % [ (i) < [ Hwldptw) = Fe), = e

Gaps € L771(dAy).
For necessity, suppose Gq, 6 € L7 (dAy). Since 2(a+2) > a+ 2, H, € AL(IIT) from Lemma 2.2.
It follows from (2.5) that

\H, (w)] < Sz a+2/ L aa (u), wellt
Sw Es(w) |u — §|2(a+2) al\t), .

Thus, from (2.1) and Fubini’s theorem,

F(z) = / | (w) [dps(w)

a+2
z 1
———dA, d
( w> B (w) u _§|2(a+2) (U)] p(w)
1

. Ea( 1
B /n+ n+ (Sw) °‘+2 (w)} |lu — z|o+2 dAa(u)
_ [ ulBstu 1
~ . oo mgtAet)
Toz+2( o, 5)( )

where Ty, 12 is defined in (2.7). Note that

a+1 — (o 2p —q
Oé+2—<1—|—p/(p_q))—( +1) » > 0. (220)

Furthermore, by Lemma 2.3, the operator T is bounded on L7 (dAg). Thus, F € L7 (dA,). O

3 Boundedness and compactness of difference

In this section, we characterize bounded and compact differences of composition operators by means of
joint measures. We define some notations used in the rest of this paper. For ¢,1 € S(ITT) and 0 < § < 1,
we let

(2) = 0p4(2) = p(0(2),9(2))
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and
Qs ={zel" :0(z) <6} (3.1)

Given a > —1 and 0 < ¢ < 0o, we define the joint pullback measure w, 4 as

Wyq(E) z/ aqdu—i—/ oldpy
e H(E) Y= H(E)

for any Borel set E C II*. Then, w, , is actually the sum of two pullback measures, (0%dp) o ¢~
(o9dp) oyt
Our principal result regarding the bounded difference of composition operators is the following

I and

characterization.

Theorem 3.1.  Suppose 0 < p,q < oo, and o > —1. Let p,9p € S(IIT) and p be a positive Borel
measure on II*. Then, Cy, — Cy is bounded from AE(II*) to Li(w) if and only if w4 is an (o, p,q)-
Carleson measure.

Proof.  For sufficiency, assume that w, q is an (a,p, q)-Carleson measure. Let 0 < 0 < 1. For f €
AL (1),

/ (C— Cy) |7y = / (Cp = ) g + / (C, — Cy) fltd
1+

Qs I+\Qs
2

2

S [ UG- Coridu [ IR+ )
Q% H+\Q%
= I(f)+1I(f). (3.2)
The second term of the above equation is easily handled. In particular, for z € II*\ Q 55 % < #. Thus,

21 q g1
nn<g | s I 170

< [ s + 1l
= / |9, g (3-3)
I+

Since wy,,q is an (o, p, q)-Carleson measure, IT(f) < ||f[%» -
Furthermore, we estimate the first term of (3.2) by Lemma 2.5 and Fubini’s theorem,

70(1(2) w)|? w z
105 [ Gme o o, A )

- 2 _ @) Al 9dA (w
e [/Qémplma(w)] A0 Vs 64

From (2.4) and (2.1), we have
AalBs(0(2))] = (Sp(2))* T = (Sw)**?

for all 2 € ¢~ ![Es(w)]. The same estimate holds when the roles of ¢ and v are interchanged. Thus,
from (3.4),

I % [ Gopslwl fw)'dAs (). (35)
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If 0 < ¢ < p < 00, by Hélder’s inequality,

/ G5 (W) [ F()|7d A ()
I+

< (] st Fednnw) " sl (3.6)
If 0 < p < ¢ < oo, by (2.6), then

[ Gon st (@) dAa(w
< (s Hoy o) [ (@)D ) )P A )

wellt

S (s Ha,,s(w) 1157 /m |f (w)[PdAq(w)

wellt

= (sup Haw,,, s(0) 1711 (3.7)

well
Therefore, by Theorem 2.11, (3.6) and (3.7), it is always the case that
[ €= cofiran < 11,
I+
This proves the sufficiency.
For necessity, assume that C, — Cy is bounded from AE(IIT) to L9(p). If 0 < ¢ < p < o0, let

s > max{l, %} + O‘T‘fl. Taking {cx} € 7, t € [0,1], and the Rademacher functions r by the atom
decomposition theorem (see Theorem 2.8), there exists a constant 0 < A < 1 such that

Ji = chrk

where {wy,} C IIT is a §-lattice and 0 < § < A. Without loss of generality, we can assume 0 < A < 1.
Since C, — Cy is bounded from AP (IT*) to L9(u),
Cp — Cy)7i, (2)

S (
JDITICE = v
| 75 | a2

Then, by an argument similar to that of (2.14),

< AZ() and | fellaz < [Her e,

(17 lLaz. wk\

q

dp(2) S 1fellyn < 1w}l

> C, — O (2)?17
[ [ tartCer Sem O ) < e (38)
np3 e, e
y (3.8) and Lemma 2.12,
> lealHozstn) = 3 lenlt [ 7))
k=1 k=1 ¢~ (Bas(wr)) (Swy)™ 7
al(z)
/ Zl%l X1 (Eas (wi)) (2) —qazzy d1i(2)
I+ = Swg)” »

(Cp = Cy)7a, (2) |
’S/ Z |Ck|qX<P71(E25(wk))(z) - k du(z)
I+ e |

T |l a2

= M.
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By Lemma 2.4, there exists a positive integer N such that for any 2 € IT", ¢(2) does not belong to more
than N sets Eos(wy,). By an argument similar to that of (2.15),

/{Zw = ) (Z)'Tduw
<. [Z""’“'Q T )T (Z)'ngﬂ<z>~

By this and (3.8),

oo

> lerl Haw s (wi) S I{ex IR

k=1

The same estimate holds when we replace ¢ by 1. Thus, we deduce

oo
> lerl*Haw, o 20(wi) < I{e}llf-

k=1

Thus, for any {by} € 17,

o

D bkl How, 25 (wr) S {0} 2,
k=1
which implies that
{He o,y 25(wn)}n € (19)* = 1773,
Then, by Theorem 2.11, w,, 4 is an (o, p, ¢)-Carleson measure.
fo<p<g<oo,let s> O‘Tﬁ. For any 0 < ¢ < 1, by (2.2) and Lemma 2.12,

Q

[(Cp = Cy)7(2)|7 Z 0%(2) |7 ((2))|

where 2 € ¢~ ![Es(w)]. Thus,

[ 1€ - com@paut) > [ (Cp — Co)ri (=) ()
I+ e~ (Es(w))

! 9(z z
~ S / A CLZC! (3.9)

The same estimate holds when the roles of ¢ and v are interchanged. Then, we deduce

cC. —-C s |4
I [ : w)TwHL‘I > How, . s(w). (3.10)
ol o

Since C, — Cy is bounded from AP (IT1) to L9(u),

(G = Cy)
Il %e

Thus, w4 is an (a, p, ¢)-Carleson measure due to Theorem 2.11. O

w”Lq <1

Our principal result regarding the compact difference of composition operators is the following char-
acterization.

Theorem 3.2.  Suppose 0 < p,q < oo, and o > —1. Let p,9p € S(IIT), and u be a positive Borel
measure on IIT. Then, C, — Cy is compact from AP (IIT) to LI(u) if and only if w, 4 is a compact
(e, p, q)-Carleson measure. Moreover, if 0 < ¢ < p < 0o, then C,, —Cy, is compact from AP (II) to L9(p)
if and only if it is bounded.
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Proof. ~ We use the same notation as in the proof of Theorem 3.1. Note that C, — Cy is compact
from AP (II*) to L(p) if and only if (Cy — Cy) fr, = 0 in L9(p) for any bounded sequence { f,,} in A2 (ITT)
satisfying f, — 0 uniformly on compact subsets of II*. This can be proved by modifying the argument
in [11, Proposition 3.11].

For sufficiency, assume w,, 4 is a compact (a, p, ¢)-Carleson measure. Then w, 4 is locally finite from
Theorem 2.11. Let f, be a sequence in AP (ITT) that converges to 0 uniformly on compact subsets of I,
and || fn||az < M for some positive constants M. Then, lim, o II(f,) =0 by (3.3).

If 0 < g < p < o0, by Theorem 2.11, there exists 0 < § < 1 such that Gow, .6 € Lﬁ(dAa). For
€ >0, let

1
Kez{z€H+:|z—ei<and%z>e}
€

and
Qe = H+ \Ke

By (3.5) and Holder’s inequality,
I(fn) S /I'H Ga,w#,q,fs(w)|fn(w)|qua(w)
< [ oyl faw) A4 ()
K.
4 [ X0, (0)Gu, )l fo0) 1 Au )
1+

< / Gy ()| i () 7 A ()
K.

pP—g

i </m[XQS(“’)G‘MM(w)]pp‘*dAa(w)) "M

Since w4 is locally finite and f, converges to 0 uniformly on compact subsets of each K,

lim sup / Gy 3(W0) | f (W) [7d A (w) = 0.
K.

n—oo

Then,

pP—g

P

imsup 772) 5 ([ 10, 000G, a0} o))

n—oo

Note that
XQ.(w)Gaw, ,5(w) =0 as €— ot

for every w € I, since
P
XQ. (w)Gaw, ,6(w) < Ga,wmyg(w), well™ and Gow, 406 € L1 (dAy).
Owing to the dominated convergence theorem,

limsup I(f,) = 0.

n—oo
Thus, C, — Cy is compact from AP (IT) to L9 (u).

If 0 < p < ¢ < 00, then repeating the argument in (3.5) and (2.17) and using Theorem 2.11 yields that
limy, 00 I(fn) = 0. Thus, Cy, — Cy is compact from AP (II1) to L9(u), as desired.

For necessity, suppose Cy, — Cy is compact from AP (IT*) to L9(u). Then w4 is locally finite from
Theorems 2.11 and 3.1. If 0 < ¢ < p < oo, then C, — Cy is bounded from A?(II*) to L(n). From
Theorem 3.1, w4 is an (o, p, g)-Carleson measure. By Theorem 2.11, this is equivalent to w, 4 being
a compact (a,p,q)-Carleson measure. If 0 < p < ¢ < o0, we deduce from (3.10), Lemma 2.2 and
Theorem 2.11 that w,, 4 is a compact (o, p, ¢)-Carleson measure, as desired.
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Note that if 0 < ¢ < p < oo, by Theorems 2.11 and 3.1, C,, — Cy is bounded from AP (IT') to LI(p) if
and only if w), 4 is an (a, p, ¢)-Carleson measure if and only if w,, 4 is a compact («, p, ¢)-Carleson measure
if and only if C, — Cy is compact from AP (IT) to L9(u). O

With the theorems above, we obtain the following direct analytic characterizations of the bounded and
compact difference of composition operators between such spaces. Therefore, we set some notations. For
p, 9 € SIIT), 2 € I, let

Hyp(2) = /H+ [HZ (p(w)) — H (1 (w))|*dpu(w)

and

Grip(2) = [ 1 (o) = (wlw)" ).

Theorem 3.3.  Suppose that 0 < p < q < 00, > —1, and u is a positive Borel measure on IIT. Let
0,9 € SIIT). Then, the following statements hold:

(1) Cp — Cy is bounded from AP (IT") to L(p) if and only if sup, e+ Hypp(2) < 00;

(2) C,—Cly is compact from AP (II1) to L(p) if and only if w, q is locally finite and lim__, y5, Hy, o (%)
=0.
Proof.  Sufficiency. Taking s = w in (3.10) yields that

H@vw,qﬁ(z) SHyew(z), z€ .

By Theorems 2.11 and 3.1 (resp. Theorem 3.2), C,, — Cy, is bounded (resp. compact) from A? (II) to
L(p) if sup, e+ Hy,pp(2) < 00 (resp. wy, 4 is locally finite and lim, 554 Hy 0 (2) = 0).
Necessity. With
2(a+2) 75

s=———= and g, = —2—

1751 az
for z € I+, g, € AP (II*) and g. — 0 uniformly on any compact subsets of IT* as z — dII* by Lemma 2.2.
Note that

Hup() = [ (€= Colgw)ltdn(w)

If C, — Cy is bounded from AP (IT") to L(p), then sup,cp+ Hypu(2) < co. If Cp — Cy is compact
from AP (IT") to LI(p), then
lim H,,4(2) =0.

z—dll+

By Theorems 2.11 and 3.2, w,, 4 is locally finite. O
Theorem 3.4.  Suppose that 0 < q < p < oo, > —1, and p is a positive Borel measure on II. Let
w, € S(IIT). Then, the following statements are equivalent:

(1) C, — Cy is bounded from AP (II") to L9(p);

(2) C, — Cy is compact from AP (IIT) to L(p);

(3) Gy € L7717 (dAy).
Proof. Tt is sufficient to prove (1) < (3). (1) = (3). Suppose that C, — Cy is bounded from AP (II*)
to L7(u). Then, by Theorems 2.11 and 3.1, there exists 0 < § < 1/4 such that

Gowp 6 € L771(dA,), zeIIT,

Taking s = Q(O‘T“) and f, = ($2)272, we have

Grinso(2) = [ 1(Cy = Cof.l1dutu)
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= [ G- Cotduw)+ [ (€= G felrdutw)
Qs IH\Qs
2 2

5/ Ifz(w)—fz(w)\qdu(w)Jr/ [f=(0)* + [ f2() " dp(w)
Qs H*\Q%

= I(f.) + II(f.).

By an argument similar to that of (3.4),

K0S [ oo BT i

|U) _ Z|2 a+2)

1
/ Ga W, q, md/l (w)
= a+2(Ga Wy,qs 5)(Z)a

where Ty, 12 is defined in (2.7). By an argument similar to that of (3.3),

1I(f:) < /m[IHz(sD(w))\ + [H- (¢ (w))[Jo (w)dp(w).

Then, by (2.20) and Lemma 2.3, the operator T, 2 is bounded on Lﬁ(dAa). By Lemma 2.13 and
Theorem 3.1, the function

F(z) = /H+[|Hz(90(w))| + [H: (¢ (w))]Jo? (w)dp(w)

is in L7-7 (dA,). Therefore, G € L7 (dAy).
(3)= (1). Suppose that the function G, , y is in L= (dAy). Forany 0 < § < 1,w € ¢ (Es(2)), and z €
II", by Lemma 2.12,

1

i w)) — H2 (b (wN)9du(w L ol(w w
[ 1 ) = B ) Pato) 2 s [ ot

The same estimate holds when the roles of ¢ and v are interchanged. Therefore, we deduce
Guo(2) 2 Gaw, p6(2), zeIlt.

Therefore, by Theorems 2.11 and 3.1, C,, — Cy, is bounded from AP (II) to L7(p). O

We close this section with the following example, which shows that there exist symbols ¢ and v
inducing bounded or compact difference C, — Cy, acting from A (II*) to A%(IT*) for any 0 < p,¢ < o0
by using Theorems 2.11, 3.1 and 3.2. The example below is cited from [6, Example 7.8]. Based on that
proof, a straightforward calculation yields the conclusions.

Example 3.5. For 0 < p,qg <ooands >0, let
0

z) =2mi+log(z+ei) and Y(z)=p(z)+ —.
o(2) 8( ) (2) = ¢(2) (o 1 o) (log(e 1 o))

Then, the following claims hold for «, 5 > —1:
(1) neither C, nor Cy, is bounded from A? (II*) to A%(IIF);
(2) if 0 < p < ¢ < o0, then C, — Cy is bounded/compact from A% (IT*) to AG(II*) if and only if
s> (B+2).
q )
(3)if 0 < ¢ < p < o0, then C, — Cy is bounded/compact from A% (IT*) to AZ(II*) if and only if
(6+2)
s >
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4 Hilbert-Schmidt difference

In this section, we characterize the Hilbert-Schmidt character of differences of composition operators from
A2(ITM) to L%(p) by means of the joint Carleson measure. Let (X, || - ||x) and (Y, - [ly) be separable
Hilbert spaces. A compact linear operator T' from X to Y is Hilbert-Schmidt if

o0

Tl sxvy = D ITesll3 < o0
j=1

for any orthonormal basis {e,} of X. For p,¢ € S(IIT), C, — Cy is Hilbert-Schmidt from A2 (II*)
to L?(p) if and only if

1Cs CwHHS(A2 (I+), L2 (u Z (Cop — Cy)ejl72 < oo

From [2, Proposition 3.1],

[[e —Cwlle (A2 (IT+),L2 (. Z” (Cy —Cw)eylle

/ [ G K“{’( ) 2dAa (w)dp(2)

I+ JII+

— [ [ K@) - KO@EPduEdAw). (@)
I+ JII+

Recall

Wyq(E) z/ oqdu—F/ odpu.
e H(E) YH(E)

Our principal result on the Hilbert-Schmidt difference of composition operators is the following.

Theorem 4.1.  Assume that o > —1, p,v € S(IT), and p is a positive Borel measure on IIT. Then,
compact operator C,, — Cy, is Hilbert-Schmidt from AZ(IIT) to L*(u) if and only if

wp,2[Bas(w)]

F(w) = (Sw)2(a+2) € Li(d4a)
if and only if
1 ana onty 1 Wy,2[Eas(an)] 1!
{W}e ’

where {a,} C II™ is a §-lattice and 0 < § < 1. Moreover,

2 N wp,2[Eas (w)] = Wp2[Bas(an)]
1Ce = CyllEscaz m),L2(u)) = /n+ de‘la(w) ~ Z T (Sap)er?

n=1

Proof.  Let 0 < § < 4. Then, by (2.3), (4.1) and Lemma 2.12,

1Cs = Cylltrscaz ey, z2(y)
= K (p(2)) — KL (6() Pap(2)dAa(w)
I+ —1(Eas(w))

o?(2)
> ——————du(z)dA,(w).
/H+ /P_l(EZJ(w)) (Sw)2(et2) (2) (w)

The same estimate holds when the roles of ¢ and v are interchanged. Thus,

5 wp,2[Es (w)]
HCL,D _C’leHS(Ai(H+)7L2(H)) 2 _/1:[+ (%w>2(a+2)

dAa(w). (4.2)
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For any d-lattice {a,,} C IT*, by Proposition 2.1 and Lemma 2.4,

o~ W2 [Bos(an)] _ o 1
Y Gage . S 2 Gy /E o el B2 dAa )

S wy,2[Fas(2)]
~ z:: Bas(on) (%22,)2(23+2)’d14a(2)
2[E26(2)]
< /+ Wdﬁl o(2). (4.3)

Let 0 < ¢’ < 5+2 From (3.1),
[ RS () — K ) P2
= [ IR ) - KO @) Pt

+ / K (0(2)) — K (@(2)Pdp(z)
+\Q

S [ IR ) - K ) Pdu(z)

Qg1
2
[ IR K ) Pl
IH\Q
= I(K®) + I1(K).
By (2.2) and an argument similar to (3.4),

) 5 [ 2SR ) Py o)

Since Es (u) C Eas(an), Su = Sa,, and |K1(,Ja)(an)| ~ |K1(Ua)(u)| for u € Ej5(ay,) from (2.1) and (2.2),

Mm&a)(u)ﬁdAQ(U)

©w
e (Su)et?

<> [ Bl wpan )

i Eas(an)  (Su)o

S DK (an) Pwna[Eas(an)]

o0
=Y1K (w)Pwy 2[Bas(an))-
Thus,

K§) S0 1K (w)Pw[Eas(an)].

n=1

By (2.2) and an argument similar to that of (3.3),
) S [ K (0)Pdea().
I+

From (2.2),

/H ) @) Pz Z /E () Py o (1)



Pang C B et al. Sci China Math  November 2020 Vol. 63 No.11 2319

o0

~ Z K5 (an) P2 [Ezs(an)]
= Z [K S (w) Pwy o[ Eas(an)].
Thus,
1K) Z I (w) Py o[ Bzs (an)]- (4.6)
By (4.4)(4.6) and Lemma 2.2,

ICy — C¢||§{S(A§(H+),L2(;L)) S Z wy,2[E2s(an)] /n+ |K((1‘T’f)(w)|2dAa(w)

Wy,2| 25\ An )| 2[Fas(an)]
~ Z Ga)ers (4.7)
From (4.2), (4.3) and (4.7),
> ~ [ wwlBas(w)] ~ Wy 2[Fas(an)]
||C<p_C¢’||HS(A§(H+),L2(IA)) N/n+ (Sw)2(a+2) n; (San)ot?
as desired. 0
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