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1 Introduction

Let Π+ be the upper half of the complex plane, i.e., Π+ := {z ∈ C : ℑz > 0}. Let µ be a positive Borel

measure on Π+. For 0 < p < ∞, let Lp(µ) denote the Lebesgue space on Π+ with the measure µ, i.e.,

Lp(µ) comprises all measurable complex functions f defined on Π+ for which the “norm”

∥f∥Lp :=

{∫
Π+

|f |pdµ
} 1

p

is finite. When 0 < p < 1, the space Lp(µ) is a complete metric space under the translation-invariant

metric (f, g) 7→ ∥f − g∥pLp . When 1 6 p <∞, the space Lp(µ) is a Banach space. In particular, L2(µ) is

a Hilbert space. For α > −1, let

dAα(z) := cα(ℑz)αdA(z),

where cα = 2α(α+1)
π is a constant and dA is the Lebesgue area measure on Π+. For 0 < p <∞, we denote

the standard weighted Bergman space by Apα(Π
+), which comprises holomorphic functions of Lp(dAα).

It is known that each space Apα(Π
+) is a closed subspace of Lp(dAα). For convenience, we use ∥f∥Ap

α
to

represent the norm of f ∈ Apα(Π
+).
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Let H(Π+) and S(Π+) be the sets of all holomorphic functions and holomorphic self-maps on Π+,

respectively. The composition operator Cφ is defined by

Cφf = f ◦ φ, f ∈ H(Π+).

Extensive study of the theory of composition operators has been conducted during the past four decades

in various settings. For various aspects of the theory of composition operators acting on holomorphic

function spaces, see [11,21].

One of the most important problems in the study of composition operators is to characterize compact

differences of such operators (see [4, 5, 7, 14, 15, 18, 19, 23]). In particular, in a study [18] on weighted

Bergman spaces over the unit disk, the compact difference of two composition operators is characterized

by a particular cancellation property of the inducing maps at every “bad” boundary point, which prevents

each composition operator in the difference from being compact. For general linear combinations of

composition operators, see [1, 3, 7, 8, 15,16,23].

It is known that in contrast to the unit disk case, some composition operators are not bounded

on Apα(Π
+), and no composition operator on Apα(Π

+) is compact (see [12, 22]). Recently, the notion

of the joint Carleson measure was introduced by Koo and Wang [14] for their study of differences of

composition operators over the ball. Choe et al. [6] used the joint Carleson measure to provide a char-

acterization of bounded and compact differences of composition operators on Apα(Π
+) and showed that

there are several instances of distinct composition operators with compact differences.

Continuing along this line, we use Khinchine’s inequality and atom decomposition techniques, which

are quite different from the methods used in [6,20], to provide analogous joint Carleson measure charac-

terizations when the difference of composition operators is bounded or compact from standard weighted

Bergman spaces Apα(Π
+) to Lebesgue spaces Lq(µ) for all index choices, including the much more delicate

case in which 0 < q < p <∞.

The rest of this paper is organized as follows. Section 2 presents some necessary basic prerequisites

and technical lemmas. Section 3 is devoted to characterizations of boundedness and compactness of

differences of composition operators (see Theorem 3.1 and 3.2). For applications, we obtain direct analytic

characterizations of the bounded and compact differences of composition operators between such spaces

(see Theorems 3.3 and 3.4). In addition, we show that there are symbols φ and ψ inducing bounded or

compact difference Cφ−Cψ acting from Apα(Π
+) to Aqβ(Π

+) for any 0 < p, q <∞. Section 4 presents some

joint Carleson measure characterizations when the difference of composition operators is Hilbert-Schmidt

from A2
α(Π

+) to L2(µ) (see Theorem 4.1).

2 Preliminaries

In this section, we recall some basic facts about Apα(Π
+) and prove some technical lemmas that we will

need in the future.

Throughout the paper, we use the same letter C to denote various positive constants that might

change at each occurrence. Variables indicating the dependency of constants C will often be specified

in parentheses. We use the notation X . Y or Y & X for non-negative quantities X and Y so that

X 6 CY for some inessential constant C > 0. Similarly, we use the notation X ≈ Y if both X . Y and

Y . X hold.

The pseudo-hyperbolic distance ρ : Π+ ×Π+ → [0, 1) is

ρ(z, w) :=

∣∣∣∣z − w

z − w

∣∣∣∣.
For z ∈ Π+ and 0 < δ < 1, let Eδ(z) denote the pseudo-hyperbolic disk centered at z with radius δ. An

elementary calculation shows that Eδ(z) is actually a Euclidean disk centered at x+ i 1+δ
2

1−δ2 y with radius
2δ

1−δ2 y, where i2 = −1, x = ℜz, and y = ℑz. Furthermore, for α > −1, a, z, w ∈ Π+, and 0 < δ < 1, the



Pang C B et al. Sci China Math November 2020 Vol. 63 No. 11 2301

following inequalities hold:

1− ρ(z, w)

1 + ρ(z, w)
6 ℑz

ℑw
6 1 + ρ(z, w)

1− ρ(z, w)
, (2.1)

1− ρ(z, w)

1 + ρ(z, w)
6

∣∣∣∣ z − a

w − a

∣∣∣∣ 6 1 + ρ(z, w)

1− ρ(z, w)
, (2.2)

1− ρ(z, w)

1 + ρ(z, w)
6

∣∣∣∣z − w

2ℑz

∣∣∣∣ 6 1 + ρ(z, w)

1− ρ(z, w)
(2.3)

and

Aα[Eδ(z)] ≈ (ℑz)α+2. (2.4)

The above facts can be found in [10].

We will use the submean value type inequality

|f(z)|p 6 C

(ℑz)α+2

∫
Eδ(z)

|f(w)|pdAα(w), z ∈ Π+ (2.5)

for all f ∈ H(Π+) and some constant C = C(α, δ) (see [10, Lemma 3.6]). In particular,

|f(z)|p 6 C

(ℑz)α+2
∥f∥p

Ap
α
, z ∈ Π+. (2.6)

For a positive Borel measure µ on Π+, we have the following submean value property with respect to the

pseudo-hyperbolic disk.

Proposition 2.1. Assume that α > −1 and 0 < δ < 1, and µ is a positive Borel measure on Π+.

Then,

µ[Eδ(z)] 6
C

(ℑz)α+2

∫
Eδ(z)

µ[Eδ(w)]dAα(w), z ∈ Π+,

where C = C(α, δ) > 0 is a constant.

Proof. Let z ∈ Π+ and 0 < δ < 1. By Fubini’s theorem and (2.1),∫
Eδ(z)

µ[Eδ(w)]dAα(w) =

∫
Eδ(z)

∫
Eδ(w)

dµ(u)dAα(w)

=

∫
Π+

∫
Eδ(z)

χEδ(u)(w)dAα(w)dµ(u)

>
∫
Eδ(z)

∫
Eδ(z)∩Eδ(u)

dAα(w)dµ(u)

≈ (ℑz)α
∫
Eδ(z)

A[Eδ(z) ∩ Eδ(u)]dµ(u)

> (ℑz)αµ[Eδ(z)] inf
u∈Eδ(z)

A[Eδ(z) ∩ Eδ(u)]

> C(ℑz)α+2µ[Eδ(z)],

where C = C(α, δ) > 0 is a constant. The last inequality holds because both Eδ(z) and Eδ(u) are the

Euclidean disks and ℑu ≈ ℑz when u ∈ Eδ(z), and the above infimum is attained when

u0 := ℜu+ i
1 + δ2

1− δ2
ℑu

is on the boundary of Eδ(z).

Given α > −1, it follows from (2.6) that each point evaluation is a continuous linear function on

A2
α(Π

+). Thus, for each z ∈ Π+, there exists a unique reproducing kernel K
(α)
z ∈ A2

α(Π
+), i.e.,

f(z) =

∫
Π+

f(w)K
(α)
z (w)dAα(w)
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for f ∈ A2
α(Π

+). The explicit formula of K
(α)
z is

K(α)
z (w) =

(
i

w − z̄

)α+2

.

Let Π̂+ = Π+∪{∞}. We consider limz→∂Π̂+ g(z) = 0, if g(z) → 0 as ℑz → 0+ and g(z) → 0 as |z| → ∞.

This is equivalent when ∀ ϵ > 0, and there is a compact set K ⊂ Π+ such that supz∈Π+\K |g(z)| < ϵ. Let

τz(w) :=
1

w − z̄
, z, w ∈ Π+,

throughout this paper. The following lemma is cited from [6, Lemma 2.5].

Lemma 2.2. Let α > −1, s > 0, z ∈ Π+, and 0 < p <∞. If ps > α+ 2, then

τsz ∈ Apα(Π
+), ∥τ sz ∥

p
Ap

α
≈

1

(ℑz)ps−α−2
,

and
τs
z

∥τs
z∥A

p
α

→ 0 as z → ∂Π̂+ uniformly on compact subsets of Π+.

For α > −1, 0 < p < ∞, and a positive Borel measure µ on Π+, µ is an (α, p, q)-Carleson measure

if the embedding Apα(Π
+) ⊂ Lq(µ) is continuous. In addition, if the embedding Apα(Π

+) ⊂ Lq(µ) is

compact, then µ is evaluated as a compact (α, p, q)-Carleson measure. For φ ∈ S(Π+), we define the

pullback measure µ ◦ φ−1 on Π+:

(µ ◦ φ−1)[E] = µ[φ−1(E)]

for every Borel subset E of Π+. Then, the identity∫
Π+

(f ◦ φ)dµ =

∫
Π+

fd(µ ◦ φ−1)

is valid for any Borel function f > 0 (see [13, p. 163]).

Lemma 2.3 is widely known, which can be proved through the following equation. For s > 0 and

α > −1, define Ts by

Tsf(z) =

∫
Π+

(ℑw)s−α−2

|z − w|s
f(w)dAα(w), z ∈ Π+, (2.7)

∀ f ∈ Lp(dAα).

Lemma 2.3. Suppose that s > 0, α > −1, and 1 < p < ∞. If s > 1 + α+1
p , then Ts is bounded on

Lp(dAα).

Proof. For 1 < p <∞, let q be the conjugate exponent of p. Let

(A,B) =

(
− s− 1

q
, 0

)
and (C,D) =

(
− α+ 1

p
,
s− α− 2

p

)
.

Since s > 1 + α+1
p and α > −1, (A,B)∩ (C,D) ̸= ∅. Let h(w) = (ℑw)t, where t ∈ (A,B)∩ (C,D). Since

t > − s−1
q , s− 2 + qt > −1. Thus, by Lemma 2.2,∫

Π+

(ℑw)s−α−2

|z − w|s
(h(w))qdAα(w) ≈

∫
Π+

(ℑw)s−2+qt

|z − w|s
dA(w)

≈
∫
Π+

∣∣∣∣ 1

(z − w)
s
q

∣∣∣∣qdAs−2+qt(w)

≈ (h(z))q. (2.8)

In addition, since t > −α+1
p , we have pt+ α > −1. Thus, by Lemma 2.2,∫

Π+

(ℑw)s−α−2

|z − w|s
(h(z))pdAα(z) ≈ (ℑw)s−α−2

∫
Π+

(ℑz)pt+α

|z − w|s
dA(z)
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≈ (ℑw)s−α−2

∫
Π+

∣∣∣∣ 1

(z − w)
s
p

∣∣∣∣pdApt+α(z)
≈ (h(w))p. (2.9)

Now, from (2.8) and (2.9), we determine that Ts is bounded on Lp(dAα) by Schur’s test [25,

Theorem 3.6].

Furthermore, we recall some terminologies. When we consider 0 < δ < 1 and Eδ(zn) are pairwise

disjoint, a sequence {zn} ⊂ Π+ is called δ-separated. In addition, we say that {zn} ⊂ Π+ is separated

if it is δ-separated for some δ. A sequence {zn} ⊂ Π+ is called a δ-lattice if it is δ
2 -separated and

Π+ =
∪∞
n=1Eδ(zn). A δ-lattice can be explicitly constructed by using almost the same argument as that

in [25].

The following lemma is cited from [10, Lemma 4.2].

Lemma 2.4. Assume s > 0 and 0 < δ < 1 with (s+ 1)δ < 1. If {zn} is δ-separated, then there exists

a positive integer N = N(s, δ) such that no more than N of the balls Esδ(zn) contain a common point.

The following lemmas are cited from [6, Lemma 3.2] and [6, Lemma 7.2], respectively.

Lemma 2.5. Let α > −1, 0 < p < ∞ and 0 < δ′ < δ < 1. There is a constant C = C(α, p, δ, δ′) > 0

such that

|f(z)− f(w)|p 6 C
ρp(z, w)

Aα[Eδ(z)]

∫
Eδ(z)

|f |pdAα

for all z, w ∈ Π+ with w ∈ Eδ′(z) and functions f holomorphic on Eδ(z).

Lemma 2.6. Given that s is real and 0 < δ < 1, there is a constant C = C(s, δ) > 0 such that∣∣∣∣( z − a

w − a

)s
− 1

∣∣∣∣ 6 Cρ(z, w)

for a, z, w ∈ Π+ with ρ(z, w) < δ.

Using the above lemmas, we now prove the next lemma.

Lemma 2.7. Assume that 0 < p < ∞, α > −1 and s > max{1, 1p} + α+1
p . Let {ak} ⊂ Π+ be an

η-lattice with 0 < η < 1
4 . Define T : Apα(Π

+) → H(Π+) by

Tf(z) =

∞∑
k=1

(is)(As−2[Eη(ak)])f(ak)

(ak − z)s
.

Then, the following inequality holds:

|f(z)− Tf(z)| .
∞∑
k=1

η(ℑak)s−
α+2
p

|z − ak|s

(∫
E2η(ak)

|f |pdAα
) 1

p

for any f ∈ Apα(Π
+).

Proof. Let 0 < η < 1
4 , s > max{1, 1p} + α+1

p , and {ak} ⊂ Π+ be an η-lattice. Let β = s − 2. Then

β > −1. Performing the change-of-variable

γ(z) = i
1 + z

1− z
,

which maps D (the unit disk in the complex plane C) to Π+, we obtain

f(z) =

∫
Π+

f(w)

(
i

w − z

)s
dAβ(w).

Thus, we get

|f(z)− Tf(z)| .
∞∑
k=1

∫
Eη(ak)

∣∣∣∣ f(w)

(z − w)s
− f(ak)

(z − ak)s

∣∣∣∣dAβ(w)
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6
∞∑
k=1

1

|z − ak|s

∫
Eη(ak)

|f(w)− f(ak)|dAβ(w)

+
∞∑
k=1

1

|z − ak|s

∫
Eη(ak)

∣∣∣∣(z − ak
z − w

)s
− 1

∣∣∣∣|f(w)|dAβ(w)
=: I + II.

For w ∈ Eη(ak), by Lemma 2.5, there exists a constant C > 0 such that

I 6
∞∑
k=1

1

|z − ak|s
(Aβ [Eη(ak)])

(
Cρp(w, ak)

Aα[E2η(ak)]

∫
E2η(ak)

|f |pdAα
) 1

p

.
∞∑
k=1

η(ℑak)s−
α+2
p

|z − ak|s

(∫
E2η(ak)

|f |pdAα
) 1

p

.

By (2.5) and Lemma 2.6,

II .
∞∑
k=1

η

|z − ak|s

∫
Eη(ak)

|f(w)|dAβ(w)

.
∞∑
k=1

η(ℑak)s−
α+2
p

|z − ak|s

(∫
E2η(ak)

|f |pdAα
) 1

p

.

Thus, we get

|f(z)− Tf(z)| .
∞∑
k=1

η(ℑak)s−
α+2
p

|z − ak|s

(∫
E2η(ak)

|f |pdAα
) 1

p

.

This completes the proof.

Based on Lemmas 2.3, 2.4 and 2.7, we have the following atom decomposition theorem on Apα(Π
+),

whose proof is similar to the argument of [24, Theorem 2.30] that is provided below.

Theorem 2.8. Suppose that 0 < p < ∞, α > −1, and s > max{1, 1p} + α+1
p . Then, there exists a

constant 0 < λ < 1 such that for any δ-lattice {wn} ⊂ Π+, where 0 < δ < λ, the space Apα(Π
+) comprises

functions of the form

f =
∞∑
n=1

cn
τ swn

∥τswn
∥Ap

α

∈ Apα(Π
+), (2.10)

where {cn} ∈ lp, and

∥f∥Ap
α
≈ inf{∥{cn}∥lp : {cn} satisfies (2.10)}.

Proof. Let s > max{1, 1p}+
α+1
p , and 0 < δ < 1. Consider a function f defined by (2.10), where {wn}

is a δ-lattice and {cn} ∈ lp. If 0 < p 6 1, then ∥f∥Ap
α
6 ∥{cn}∥lp . When 1 < p <∞, let

F (z) =
∞∑
n=1

|cn|(Aα[Eδ(wn)])−1/pχEδ(wn)(z).

It clearly shows that ∥F∥Lp . ∥{cn}∥lp . Then, by (2.1), (2.2) and Lemma 2.2,

Ts(F )(z) =

∞∑
n=1

|cn|(Aα[Eδ(wn)])−1/p

∫
Eδ(wn)

(ℑw)s−α−2

|z − w|s
dAα(w) & |f(z)|.

Since s > 1 + α+1
p , by Lemma 2.3, we conclude that f ∈ Apα(Π

+) and ∥f∥Ap
α
. ∥{cn}∥lp .

To show that every function f ∈ Apα(Π
+) admits a representation of the form given in (2.10), we fix a

δ-lattice {wn}, where 0 < δ < 1/4. Furthermore, by Lemmas 2.4 and 2.7, and the first part of this proof,

there exists a constant C > 0 such that∫
Π+

|f(z)− Tf(z)|pdAα(z) < Cδp
∫
Π+

|f(z)|dAα(z).
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If δ is sufficiently small to ensure that Cδp < 1, then the operator I−T on Apα(Π
+) has norm less than 1,

where I is the identity operator. It follows from standard functional analysis that the operator T is

invertible on Apα(Π
+). Therefore, every f ∈ Apα(Π

+) admits the following representation:

f(z) =
∑
n=1

cn
τ swn

(z)

∥τswn
∥Ap

α

,

where

cn = (is)(As−2[Eδ(wn)])∥τswn
∥Ap

α
g(wn)

and g = T−1f . Then, by (2.1), (2.4), (2.5), Lemmas 2.2 and 2.4, ∥{cn}∥lp . ∥f∥Ap
α
. The proof is

completed when we substitute λ = δ.

The complicated part of our principal results also requires Khinchine’s inequality. Therefore, the

Rademacher functions rn : [0, 1] → [−1, 1] are defined as

rn(t) := sgn(sin(2nπt)).

Khinchine’s inequality says that for 0 < p <∞, there are constants 0 < Ap 6 Bp <∞ such that

Ap

( m∑
n=1

|cn|2
) p

2

6
∫ 1

0

∣∣∣∣ m∑
n=1

cnrn(t)

∣∣∣∣pdt 6 Bp

( m∑
n=1

|cn|2
) p

2

(2.11)

for all natural numbers m and all complex numbers c1, . . . , cm.

In addition, we define some notations that will be used in the sequel for brevity. For z ∈ Π+, 0 < δ < 1,

α > −1, and a positive Borel measure µ on Π+, let

Hα,µ,δ(z) =
µ[Eδ(z)]

(ℑz)
q(α+2)

p

and Gα,µ,δ(z) =
µ[Eδ(z)]

(ℑz)α+2
. (2.12)

By definition, a positive Borel measure µ is locally finite when µ(K) <∞ for any compact set K ⊂ Π+.

Remark 2.9. If supz∈Π+ Hα,µ,δ(z) < ∞, then µ is locally finite. In particular, for any compact set

K ⊂ Π+, we have

sup
z∈K

Hα,µ,δ(z) 6 sup
z∈Π+

Hα,µ,δ(z) <∞.

Note that supz∈K ℑz . 1. Then supz∈K µ[Eδ(z)] . 1. Since K can be covered by finitely many Eδ(z), µ

is locally finite.

To characterize an (α, p, q)-Carleson measure for 0 < q < p < ∞, we use an idea of Luecking [17].

First, we need the following lemma.

Lemma 2.10. Assume that 0 < q < p < ∞, and µ is a positive Borel measure on Π+. If µ is an

(α, p, q)-Carleson measure, then there exists a constant 0 < λ < 1
4 such that for any δ-lattice {wn} ⊂ Π+,

where 0 < δ < λ, the sequence {Hα,µ,2δ(wn)}n is in l
p

p−q .

Proof. Let s > max{1, 1p}+
α+1
p . Considering a sequence {cn} ∈ lp and t ∈ [0, 1], by the definition of

the Rademacher functions rn, we have

∥{cnrn(t)}∥lp = ∥{cn}∥lp .

By Theorem 2.8, there exists a constant 0 < λ < 1 such that for any δ-lattice {wn} ⊂ Π+, where

0 < δ < λ,

ft :=
∞∑
n=1

cnrn(t)
τ swn

∥τswn
∥Ap

α

∈ Apα(Π
+) and ∥ft∥Ap

α
. ∥{cn}∥lp .
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Generally, we can assume that 0 < λ < 1
4 . Since µ is an (α, p, q)-Carleson measure, we deduce that∫

Π+

∣∣∣∣ ∞∑
n=1

cnrn(t)
τswn

(z)

∥τswn
∥Ap

α

∣∣∣∣qdµ(z) . ∥ft∥qAp
α
. ∥{cn}∥qlp . (2.13)

Then, by Khinchine’s inequality and Fubini’s theorem,∫
Π+

[ ∞∑
n=1

|cn|2
|τswn

(z)|2

∥τ swn
∥2
Ap

α

] q
2

dµ(z)

6 1

Aq

∫
Π+

∫ 1

0

∣∣∣∣ ∞∑
n=1

cnrn(t)
τ swn

(z)

∥τswn
∥Ap

α

∣∣∣∣qdtdµ(z)
6 1

Aq

∫ 1

0

∫
Π+

∣∣∣∣ ∞∑
n=1

cnrn(t)
τ swn

(z)

∥τswn
∥Ap

α

∣∣∣∣qdµ(z)dt
. ∥{cn}∥qlp . (2.14)

By (2.3),

∞∑
n=1

|cn|qHα,µ,2δ(wn)

=

∞∑
n=1

|cn|q
∫
E2δ(wn)

1

(ℑwn)
q(α+2)

p

dµ(z)

≈
∫
Π+

∞∑
n=1

χE2δ(wn)(z)|cn|
q

[
(ℑwn)s

|z − wn|s
1

(ℑwn)
(α+2)

p

]q
dµ(z)

=:M.

By Lemma 2.4, there exists a positive integer N that does not belong to more than N sets E2δ(wni) with

some n1 < n2 < · · · < nN for any z ∈ Π+. Thus,

∞∑
n=1

χE2δ(wn)(z)|cn|
q

(
(ℑwn)s

|z − wn|s
1

(ℑwn)
(α+2)

p

)q

=

N∑
i=1

χE2δ(wni
)(z)|cni |q

(
(ℑwni)

s

|z − wni |s
1

(ℑwni
)

(α+2)
p

)q

6
N∑
i=1

[
|cni |2

(
(ℑwni)

s

|z − wni |s
1

(ℑwni)
(α+2)

p

)2] q
2

.
( ∞∑
n=1

|cn|2
|τswn

(z)|2

∥τswn
∥2
Ap

α

) q
2

. (2.15)

Then, by (2.14),

M .
∫
Π+

( ∞∑
n=1

|cn|2
|τswn

(z)|2

∥τ swn
∥2
Ap

α

) q
2

dµ(z) . ∥{cn}∥qlp ,

which implies that
∞∑
n=1

|cn|qHα,µ,2δ(wn) . ∥{cn}∥qlp .

For any {bn} ∈ l
p
q , {(bn)

1
q } ∈ lp. Thus, for any {bn} ∈ l

p
q ,

∞∑
n=1

|bn|Hα,µ,2δ(wn) . ∥{bn}∥
l
p
q
.
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Thus, we deduce that

{Hα,µ,2δ(wn)}n ∈ (l
p
q )∗ = l

p
p−q .

This completes the proof.

The (α, p, q)-Carleson measures for Apα(Π
+) can be characterized in the following manners.

Theorem 2.11. Suppose that α > −1 and µ is a positive Borel measure on Π+. Then the following

statements hold:

(1) If 0 < p 6 q < ∞, then µ is an (α, p, q)-Carleson measure if and only if supz∈Π+ Hα,µ,δ(z) < ∞
for some (or all ) 0 < δ < 1.

(2) If 0 < p 6 q < ∞, then µ is a compact (α, p, q)-Carleson measure if and only if µ is locally finite

and limz→∂Π̂+ Hα,µ,δ(z) = 0 for some (or all) 0 < δ < 1.

(3) If 0 < q < p <∞, then the following statements are equivalent:

(a) µ is an (α, p, q)-Carleson measure;

(b) µ is a compact (α, p, q)-Carleson measure;

(c) there exists 0 < λ < 1
4 such that {Hα,µ,2δ(wn)}n ∈ l

p
p−q for all 0 < δ < λ and any δ-lattice

{wn} ⊂ Π+;

(d) there exists 0 < δ < 1
4 such that {Hα,µ,2δ(wn)}n ∈ l

p
p−q for some δ-lattice {wn} ⊂ Π+;

(e) there exists 0 < δ < 1
4 such that Gα,µ,δ ∈ L

p
p−q (dAα),

where Hα,µ,δ and Gα,µ,δ are defined in (2.12). Moreover, if µ is an (α, p, q)-Carleson measure, then µ is

locally finite.

Proof. Since (1) is much easier than (2), whose proof is omitted to the reader, we only provide proofs

for (2) and (3). Suppose 0 < p 6 q <∞. To prove sufficiency, assume

lim
z→∂Π̂+

Hα,µ,δ(z) = 0

for some δ, and µ is locally finite. Then, ∀ ϵ > 0, there exists a compact set K ⊂ Π+ such that

sup
z∈Π+\K

Hα,µ,δ(z) < ϵ.

Let {fn} be a sequence in Apα(Π
+) that converges to 0 uniformly on compact subsets of Π+, and ∥fn∥Ap

α

6M for some positive constant M . By (2.1), (2.5) and Fubini’s theorem,∫
Π+

|fn(z)|qdµ(z) .
∫
Π+

[
1

(ℑz)α+2

∫
Eδ(z)

|fn(w)|qdAα(w)
]
dµ(z)

=

∫
Π+

[ ∫
Π+

χEδ(w)(z)

(ℑz)α+2
dµ(z)

]
|fn(w)|qdAα(w)

≈
∫
Π+

Gα,µ,δ(w)|fn(w)|qdAα(w). (2.16)

Again, ∫
Π+

Gα,µ,δ(w)|fn(w)|qdAα(w) =
∫
K

Gα,µ,δ(w)|fn(w)|qdAα(w)

+

∫
Π+\K

Gα,µ,δ(w)|fn(w)|qdAα(w)

=: I(fn) + II(fn). (2.17)

Since µ is locally finite, we present an argument in one line to see that I(fn) → 0 as n → ∞. It follows

from (2.6) that

II(fn) 6
∫
Π+\K

Hα,µ,δ(w)(ℑw)(
(q−p)(α+2)

p )|fn(w)|q−p|fn(w)|pdAα(w)
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. ϵ∥fn∥q−pAp
α

∫
Π+\K

|fn(w)|pdAα(w) 6 ϵ∥fn∥qAp
α
6 ϵMq.

Thus,

lim sup
n→∞

∫
Π+

|fn(z)|qdµ(z) . ϵMq.

Due to the arbitrariness of ϵ, we determine that fn → 0 in Lq(µ), as desired.

For necessity, assume that µ is a compact (α, p, q)-Carleson measure. Then, µ is locally finite from (1).

Let fz =
τs
z

∥τs
z∥A

p
α

, where s > α+2
p , z ∈ Π+. For any 0 < δ < 1, from (2.3) and Lemma 2.2,

lim
z→∂Π̂+

Hα,µ,δ(z) ≈ lim
z→∂Π̂+

∫
Eδ(z)

|fz(w)|qdµ(w)

6 lim
z→∂Π̂+

∫
Π+

|fz(w)|qdµ(w)

= 0,

as desired.

For the proof of (3), suppose 0 < q < p < ∞. (a) ⇔ (b) is proved in [9, Theorem 5.4] for the

unweighted harmonic Bergman space on Π+ when 1 < q < p <∞. However, it still holds for a weighted

holomorphic Bergman space on Π+ and 0 < q < p <∞. Since (c) ⇒ (d) is trivial and (a) ⇒ (c) follows

from Lemma 2.10, it sufficiently proves (d) ⇒ (e) ⇒ (a).

(d) ⇒ (e). Suppose that there exists a constant 0 < δ < 1
4 such that {Hα,µ,2δ(wn)}n ∈ l

p
p−q , where

{wn} ⊂ Π+ is a δ-lattice. Let 0 < δ′ 6 δ
δ+2 . Then, we have Eδ′(z) ⊂ E2δ(wn) and ℑz ≈ ℑwn for

z ∈ Eδ(wn) from (2.1). By (2.4) and Lemma 2.4,∫
Π+

[Gα,µ,δ′(z)]
p

p−q dAα(z) 6
∞∑
n=1

∫
E2δ(wn)

[Gα,µ,δ′(z)]
p

p−q dAα(z)

.
∞∑
n=1

[Gα,µ,2δ(wn)]
p

p−q (ℑwn)α+2

=
∞∑
n=1

[Hα,µ,2δ(wn)]
p

p−q <∞, (2.18)

as desired.

In the above case, for any z ∈ Π+, z belongs to at most N of the sets Eδ(wn) from Lemma 2.4.

Therefore, we assume z ∈ Eδ(wnj ), where j = 1, 2, . . . , N . Since Eδ′(z) ⊂ E2δ(wnj ) and ℑz ≈ ℑwnj ,

Hα,µ,δ′(z) . Hα,µ,2δ(wnj ) 6 ∥{Hα,µ,2δ(wn)}n∥
l

p
p−q

.

Thus, supz∈Π+ Hα,µ,δ′(z) <∞. Hence, µ is locally finite from Remark 2.9.

(e) ⇒ (a). Suppose that there exists 0 < δ < 1
4 such that Gα,µ,δ ∈ L

p
p−q (dAα). For any f ∈ Apα(Π

+),

by an argument similar to (2.16),∫
Π+

|f(z)|qdµ(z) .
∫
Π+

Gα,µ,δ(w)|f(w)|qdAα(w).

By Hölder’s inequality,∫
Π+

|f(z)|qdµ(z) .
(∫

Π+

[Gα,µ,δ(w)]
p

p−q dAα(w)

) p−q
p

∥f∥q
Ap

α
,

as desired.

The following lemma provides an estimate of the difference of our test functions in terms of the pseudo-

hyperbolic distance.
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Lemma 2.12. Given s > 0 and 0 < δ < 1, there exists a constant C = C(δ, s) > 0 such that

|τ sa(w)− τsa(z)| > C|τ sa(w)|ρ(z, w)

for all a, z ∈ Π+ and w ∈ Eδ(a).

Proof. Let s > 0 and 0 < δ < 1. From (2.2),∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣ = ρ(z, w)

∣∣∣∣z − w

z − a

∣∣∣∣ ≈ ρ(z, w) (2.19)

for a, z ∈ Π+ and w ∈ Eδ(a). Thus, by the triangle inequality,∣∣∣∣ τa(z)τa(w)

∣∣∣∣s 6M

for some M > 1 depending only on δ and s. If ℜ( τa(z)τa(w) )
s > 1

2 , let

K =

{
ξ ∈ C : |ξ| 6M and ℜξ > 1

4

}
.

Then, K is a nonempty compact subset of C. Let

h(ξ) = (ξ)
1
s and ξ0 :=

(
τa(z)

τa(w)

)s
.

Thus, by the mean value property,∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣ = |h(1)− h(ξ0)| 6 |1− ξ0| sup
ξ∈K

|h′(ξ)|

=
1

s
|1− ξ0|max{41− 1

s ,M
1
s−1},

i.e., ∣∣∣∣1− (
τa(z)

τa(w)

)s∣∣∣∣ & ∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣.
Thus,

|τsa(w)− τ sa(z)| & |τ sa(w)|
∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣ ≈ |τsa(w)|ρ(z, w).

Conversely, if ℜ( τa(z)τa(w) )
s < 1

2 , then∣∣∣∣1− (
τa(z)

τa(w)

)s∣∣∣∣ > ∣∣∣∣1−ℜ
(
τa(z)

τa(w)

)s∣∣∣∣ > 1

2
.

Thus, ∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣ 6 1 +

∣∣∣∣ τa(z)τa(w)

∣∣∣∣ 6 2(1 +M
1
s )

∣∣∣∣1− (
τa(z)

τa(w)

)s∣∣∣∣.
Therefore, there exists a constant C > 0 depending on δ and s such that

|τsa(w)− τsa(z)| = |τsa(w)|
∣∣∣∣1− (

τa(z)

τa(w)

)s∣∣∣∣
> C|τsa(w)|

∣∣∣∣1− τa(z)

τa(w)

∣∣∣∣
≈ |τsa(w)|ρ(z, w).

This completes the proof.



2310 Pang C B et al. Sci China Math November 2020 Vol. 63 No. 11

For α > −1, let

Hz(w) =
(ℑz)α+2

(w − z)2(α+2)
, z, w ∈ Π+

throughout this paper and

Gα,µ,δ(z) =
µ[Eδ(z)]

(ℑz)α+2
.

Lemma 2.13. Suppose that α > −1, 0 < q < p < ∞, 0 < δ < 1, and µ is a positive Borel measure

on Π+. Then, Gα,µ,δ ∈ L
p

p−q (dAα) if and only if the function

F (z) =

∫
Π+

|Hz(w)|dµ(w), z ∈ Π+

is in L
p

p−q (dAα).

Proof. For sufficiency, suppose that 0 < δ < 1 and F ∈ L
p

p−q (dAα). Since

Gα,µ,δ(z) ≈
∫
Eδ(z)

|Hz(w)|dµ(w) 6
∫
Π+

|Hz(w)|dµ(w) = F (z), z ∈ Π+,

Gα,µ,δ ∈ L
p

p−q (dAα).

For necessity, suppose Gα,µ,δ ∈ L
p

p−q (dAα). Since 2(α + 2) > α + 2, Hz ∈ A1
α(Π

+) from Lemma 2.2.

It follows from (2.5) that

|Hz(w)| .
(
ℑz
ℑw

)α+2 ∫
Eδ(w)

1

|u− z|2(α+2)
dAα(u), w ∈ Π+.

Thus, from (2.1) and Fubini’s theorem,

F (z) =

∫
Π+

|Hz(w)|dµ(w)

.
∫
Π+

[(
ℑz
ℑw

)α+2 ∫
Eδ(w)

1

|u− z|2(α+2)
dAα(u)

]
dµ(w)

6
∫
Π+

[
1

(ℑw)α+2

∫
Eδ(w)

1

|u− z|α+2
dAα(u)

]
dµ(w)

=

∫
Π+

[ ∫
Π+

χEδ(u)(w)

(ℑw)α+2
dµ(w)

]
1

|u− z|α+2
dAα(u)

≈
∫
Π+

µ[Eδ(u)]

(ℑu)α+2

1

|u− z|α+2
dAα(u)

= Tα+2(Gα,µ,δ)(z),

where Tα+2 is defined in (2.7). Note that

α+ 2−
(
1 +

α+ 1

p/(p− q)

)
= (α+ 1)

2p− q

p
> 0. (2.20)

Furthermore, by Lemma 2.3, the operator Tα+2 is bounded on L
p

p−q (dAα). Thus, F ∈ L
p

p−q (dAα).

3 Boundedness and compactness of difference

In this section, we characterize bounded and compact differences of composition operators by means of

joint measures. We define some notations used in the rest of this paper. For φ,ψ ∈ S(Π+) and 0 < δ < 1,

we let

σ(z) = σφ,ψ(z) := ρ(φ(z), ψ(z))
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and

Ωδ := {z ∈ Π+ : σ(z) < δ}. (3.1)

Given α > −1 and 0 < q <∞, we define the joint pullback measure ωµ,q as

ωµ,q(E) =

∫
φ−1(E)

σqdµ+

∫
ψ−1(E)

σqdµ

for any Borel set E ⊂ Π+. Then, ωµ,q is actually the sum of two pullback measures, (σqdµ) ◦ φ−1 and

(σqdµ) ◦ ψ−1.

Our principal result regarding the bounded difference of composition operators is the following

characterization.

Theorem 3.1. Suppose 0 < p, q < ∞, and α > −1. Let φ,ψ ∈ S(Π+) and µ be a positive Borel

measure on Π+. Then, Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ) if and only if ωµ,q is an (α, p, q)-

Carleson measure.

Proof. For sufficiency, assume that ωµ,q is an (α, p, q)-Carleson measure. Let 0 < δ < 1. For f ∈
Apα(Π

+), ∫
Π+

|(Cφ − Cψ)f |qdµ =

∫
Ω δ

2

|(Cφ − Cψ)f |qdµ+

∫
Π+\Ω δ

2

|(Cφ − Cψ)f |qdµ

.
∫
Ω δ

2

|(Cφ − Cψ)f |qdµ+

∫
Π+\Ω δ

2

|f(φ)|q + |f(ψ)|qdµ

=: I(f) + II(f). (3.2)

The second term of the above equation is easily handled. In particular, for z ∈ Π+ \Ω δ
2
, 1

2 6 σ(z)
δ . Thus,

II(f) 6 2q

δq

∫
Π+\Ω δ

2

(|f(φ)|q + |f(ψ)|q)σqdµ

.
∫
Π+

(|f(φ)|q + |f(ψ)|q)σqdµ

=

∫
Π+

|f |qdωµ,q. (3.3)

Since ωµ,q is an (α, p, q)-Carleson measure, II(f) . ∥f∥q
Ap

α
.

Furthermore, we estimate the first term of (3.2) by Lemma 2.5 and Fubini’s theorem,

I(f) .
∫
Ω δ

2

[
σq(z)

Aα[Eδ(φ(z))]

∫
Eδ(φ(z))

|f(w)|qdAα(w)
]
dµ(z)

=

∫
Π+

[ ∫
Ω δ

2
∩φ−1[Eδ(w)]

σq(z)

Aα[Eδ(φ(z))]
dµ(z)

]
|f(w)|qdAα(w). (3.4)

From (2.4) and (2.1), we have

Aα[Eδ(φ(z))] ≈ (ℑφ(z))α+2 ≈ (ℑw)α+2

for all z ∈ φ−1[Eδ(w)]. The same estimate holds when the roles of φ and ψ are interchanged. Thus,

from (3.4),

I(f) .
∫
Π+

Gα,ωµ,q,δ(w)|f(w)|qdAα(w). (3.5)
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If 0 < q < p <∞, by Hölder’s inequality,∫
Π+

Gα,ωµ,q,δ(w)|f(w)|qdAα(w)

6
(∫

Π+

[Gα,ωµ,q,δ(w)]
p

p−q dAα(w)

) p−q
p

∥f∥q
Ap

α
. (3.6)

If 0 < p 6 q <∞, by (2.6), then∫
Π+

Gα,ωµ,q,δ(w)|f(w)|qdAα(w)

6
(

sup
w∈Π+

Hα,ωµ,q,δ(w)
)∫

Π+

(ℑw)(
(q−p)(α+2)

p )|f(w)|q−p|f(w)|pdAα(w)

.
(

sup
w∈Π+

Hα,ωµ,q,δ(w)
)
∥f∥q−p

Ap
α

∫
Π+

|f(w)|pdAα(w)

=
(

sup
w∈Π+

Hα,ωµ,q,δ(w)
)
∥f∥q

Ap
α
. (3.7)

Therefore, by Theorem 2.11, (3.6) and (3.7), it is always the case that∫
Π+

|(Cφ − Cψ)f |qdµ . ∥f∥q
Ap

α
.

This proves the sufficiency.

For necessity, assume that Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ). If 0 < q < p < ∞, let

s > max{1, 1p} + α+1
p . Taking {ck} ∈ lp, t ∈ [0, 1], and the Rademacher functions rk by the atom

decomposition theorem (see Theorem 2.8), there exists a constant 0 < λ < 1 such that

ft :=

∞∑
k=1

ckrk(t)
τswk

∥τswk
∥Ap

α

∈ Apα(Π
+) and ∥ft∥Ap

α
. ∥{ck}∥lp ,

where {wk} ⊂ Π+ is a δ-lattice and 0 < δ < λ. Without loss of generality, we can assume 0 < λ < 1
4 .

Since Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ),∫

Π+

∣∣∣∣ ∞∑
k=1

ckrk(t)
(Cφ − Cψ)τ

s
wk

(z)

∥τswk
∥Ap

α

∣∣∣∣qdµ(z) . ∥ft∥qAp
α
. ∥{ck}∥qlp .

Then, by an argument similar to that of (2.14),∫
Π+

[ ∞∑
k=1

|ck|2
|(Cφ − Cψ)τ

s
wk

(z)|2

∥τswk
∥2
Ap

α

] q
2

dµ(z) . ∥{ck}∥qlp . (3.8)

By (3.8) and Lemma 2.12,

∞∑
k=1

|ck|qHα,v,2δ(wk) =
∞∑
k=1

|ck|q
∫
φ−1(E2δ(wk))

σq(z)

(ℑwk)
q(α+2)

p

dµ(z)

=

∫
Π+

∞∑
k=1

|ck|qχφ−1(E2δ(wk))(z)
σq(z)

(ℑwk)
q(α+2)

p

dµ(z)

.
∫
Π+

∞∑
k=1

|ck|qχφ−1(E2δ(wk))(z)

∣∣∣∣ (Cφ − Cψ)τ
s
wk

(z)

∥τswk
∥Ap

α

∣∣∣∣qdµ(z)
=:M.
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By Lemma 2.4, there exists a positive integer N such that for any z ∈ Π+, φ(z) does not belong to more

than N sets E2δ(wn). By an argument similar to that of (2.15),

M .
∫
Π+

[ ∞∑
k=1

|ck|2
|(Cφ − Cψ)τ

s
wk

(z)|2

∥τswk
∥2
Ap

α

] q
2

dµ(z)

.
∫
Π+

[ ∞∑
k=1

|ck|2
|(Cφ − Cψ)τ

s
wk

(z)|2

∥τswk
∥2
Ap

α

] q
2

dµ(z).

By this and (3.8),
∞∑
k=1

|ck|qHα,v,2δ(wk) . ∥{ck}∥qlp .

The same estimate holds when we replace φ by ψ. Thus, we deduce

∞∑
k=1

|ck|qHα,ωµ,q,2δ(wk) . ∥{ck}∥qlp .

Thus, for any {bk} ∈ l
p
q ,

∞∑
k=1

|bk|Hα,ωµ,q,2δ(wk) . ∥{bk}∥
l
p
q
,

which implies that

{Hα,ωµ,q,2δ(wn)}n ∈ (l
p
q )∗ = l

p
p−q .

Then, by Theorem 2.11, ωµ,q is an (α, p, q)-Carleson measure.

If 0 < p 6 q <∞, let s > α+2
p . For any 0 < δ < 1, by (2.2) and Lemma 2.12,

|(Cφ − Cψ)τ
s
w(z)|q & σq(z)|τsw(φ(z))|q ≈

σq(z)

(ℑw)sq
,

where z ∈ φ−1[Eδ(w)]. Thus,∫
Π+

|(Cφ − Cψ)τ
s
w(z)|qdµ(z) >

∫
φ−1(Eδ(w))

|(Cφ − Cψ)τ
s
w(z)|qdµ(z)

≈
1

(ℑw)sq

∫
φ−1(Eδ(w))

σq(z)dµ(z). (3.9)

The same estimate holds when the roles of φ and ψ are interchanged. Then, we deduce

∥(Cφ − Cψ)τ
s
w∥

q
Lq

∥τsw∥
q
Ap

α

& Hα,ωµ,q,δ(w). (3.10)

Since Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ),

∥(Cφ − Cψ)τ
s
w∥

q
Lq

∥τ sw∥
q
Ap

α

. 1.

Thus, ωµ,q is an (α, p, q)-Carleson measure due to Theorem 2.11.

Our principal result regarding the compact difference of composition operators is the following char-

acterization.

Theorem 3.2. Suppose 0 < p, q < ∞, and α > −1. Let φ,ψ ∈ S(Π+), and µ be a positive Borel

measure on Π+. Then, Cφ − Cψ is compact from Apα(Π
+) to Lq(µ) if and only if ωµ,q is a compact

(α, p, q)-Carleson measure. Moreover, if 0 < q < p <∞, then Cφ−Cψ is compact from Apα(Π
+) to Lq(µ)

if and only if it is bounded.
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Proof. We use the same notation as in the proof of Theorem 3.1. Note that Cφ − Cψ is compact

from Apα(Π
+) to Lq(µ) if and only if (Cφ−Cψ)fn → 0 in Lq(µ) for any bounded sequence {fn} in Apα(Π

+)

satisfying fn → 0 uniformly on compact subsets of Π+. This can be proved by modifying the argument

in [11, Proposition 3.11].

For sufficiency, assume ωµ,q is a compact (α, p, q)-Carleson measure. Then ωµ,q is locally finite from

Theorem 2.11. Let fn be a sequence in Apα(Π
+) that converges to 0 uniformly on compact subsets of Π+,

and ∥fn∥Ap
α
6M for some positive constants M . Then, limn→∞ II(fn) = 0 by (3.3).

If 0 < q < p < ∞, by Theorem 2.11, there exists 0 < δ < 1 such that Gα,ωµ,q,δ ∈ L
p

p−q (dAα). For

ϵ > 0, let

Kϵ =

{
z ∈ Π+ : |z − ϵi| 6 1

ϵ
and ℑz > ϵ

}
and

Qϵ = Π+ \Kϵ.

By (3.5) and Hölder’s inequality,

I(fn) .
∫
Π+

Gα,ωµ,q,δ(w)|fn(w)|qdAα(w)

6
∫
Kϵ

Gα,ωµ,q,δ(w)|fn(w)|qdAα(w)

+

∫
Π+

χQϵ(w)Gα,ωµ,q,δ(w)|fn(w)|qdAα(w)

6
∫
Kϵ

Gα,ωµ,q,δ(w)|fn(w)|qdAα(w)

+

(∫
Π+

[χQϵ(w)Gα,ωµ,q,δ(w)]
p

p−q dAα(w)

) p−q
p

Mq.

Since ωµ,q is locally finite and fn converges to 0 uniformly on compact subsets of each Kϵ,

lim sup
n→∞

∫
Kϵ

Gα,ωµ,q,δ(w)|fn(w)|qdAα(w) = 0.

Then,

lim sup
n→∞

I(fn) .
(∫

Π+

[χQϵ(w)Gα,ωµ,q,δ(w)]
p

p−q dAα(w)

) p−q
p

.

Note that

χQϵ(w)Gα,ωµ,q,δ(w) → 0 as ϵ→ 0+

for every w ∈ Π+, since

χQϵ
(w)Gα,ωµ,q,δ(w) 6 Gα,ωµ,q,δ(w), w ∈ Π+ and Gα,ωµ,q,δ ∈ L

p
p−q (dAα).

Owing to the dominated convergence theorem,

lim sup
n→∞

I(fn) = 0.

Thus, Cφ − Cψ is compact from Apα(Π
+) to Lq(µ).

If 0 < p 6 q <∞, then repeating the argument in (3.5) and (2.17) and using Theorem 2.11 yields that

limn→∞ I(fn) = 0. Thus, Cφ − Cψ is compact from Apα(Π
+) to Lq(µ), as desired.

For necessity, suppose Cφ − Cψ is compact from Apα(Π
+) to Lq(µ). Then ωµ,q is locally finite from

Theorems 2.11 and 3.1. If 0 < q < p < ∞, then Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ). From

Theorem 3.1, ωµ,q is an (α, p, q)-Carleson measure. By Theorem 2.11, this is equivalent to ωµ,q being

a compact (α, p, q)-Carleson measure. If 0 < p 6 q < ∞, we deduce from (3.10), Lemma 2.2 and

Theorem 2.11 that ωµ,q is a compact (α, p, q)-Carleson measure, as desired.
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Note that if 0 < q < p <∞, by Theorems 2.11 and 3.1, Cφ −Cψ is bounded from Apα(Π
+) to Lq(µ) if

and only if ωµ,q is an (α, p, q)-Carleson measure if and only if ωµ,q is a compact (α, p, q)-Carleson measure

if and only if Cφ − Cψ is compact from Apα(Π
+) to Lq(µ).

With the theorems above, we obtain the following direct analytic characterizations of the bounded and

compact difference of composition operators between such spaces. Therefore, we set some notations. For

φ,ψ ∈ S(Π+), z ∈ Π+, let

Hµ,φ,ψ(z) =

∫
Π+

|H
1
p
z (φ(w))−H

1
p
z (ψ(w))|qdµ(w)

and

Gµ,φ,ψ(z) =

∫
Π+

|H
1
q
z (φ(w))−H

1
q
z (ψ(w))|qdµ(w).

Theorem 3.3. Suppose that 0 < p 6 q < ∞, α > −1, and µ is a positive Borel measure on Π+. Let

φ,ψ ∈ S(Π+). Then, the following statements hold:

(1) Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ) if and only if supz∈Π+ Hµ,φ,ψ(z) <∞;

(2) Cφ−Cψ is compact from Apα(Π
+) to Lq(µ) if and only if ωµ,q is locally finite and limz→∂Π̂+ Hµ,φ,ψ(z)

= 0.

Proof. Sufficiency. Taking s = 2(α+2)
p in (3.10) yields that

Hα,ωµ,q,δ(z) . Hµ,φ,ψ(z), z ∈ Π+.

By Theorems 2.11 and 3.1 (resp. Theorem 3.2), Cφ − Cψ is bounded (resp. compact) from Apα(Π
+) to

Lq(µ) if supz∈Π+ Hµ,φ,ψ(z) <∞ (resp. ωµ,q is locally finite and limz→∂Π̂+ Hµ,φ,ψ(z) = 0).

Necessity. With

s =
2(α+ 2)

p
and gz :=

τ sz
∥τsz ∥Ap

α

for z ∈ Π+, gz ∈ Apα(Π
+) and gz → 0 uniformly on any compact subsets of Π+ as z → ∂Π̂+ by Lemma 2.2.

Note that

Hµ,φ,ψ(z) =

∫
Π+

|(Cφ − Cψ)gz(w)|qdµ(w).

If Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ), then supz∈Π+ Hµ,φ,ψ(z) < ∞. If Cφ − Cψ is compact

from Apα(Π
+) to Lq(µ), then

lim
z→∂Π̂+

Hµ,φ,ψ(z) = 0.

By Theorems 2.11 and 3.2, ωµ,q is locally finite.

Theorem 3.4. Suppose that 0 < q < p < ∞, α > −1, and µ is a positive Borel measure on Π+. Let

φ,ψ ∈ S(Π+). Then, the following statements are equivalent:

(1) Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ);

(2) Cφ − Cψ is compact from Apα(Π
+) to Lq(µ);

(3) Gµ,φ,ψ ∈ L
p

p−q (dAα).

Proof. It is sufficient to prove (1) ⇔ (3). (1) ⇒ (3). Suppose that Cφ − Cψ is bounded from Apα(Π
+)

to Lq(µ). Then, by Theorems 2.11 and 3.1, there exists 0 < δ < 1/4 such that

Gα,ωµ,q,δ ∈ L
p

p−q (dAα), z ∈ Π+.

Taking s = 2(α+2)
q and fz = (ℑz) s

2 τ sz , we have

Gµ,φ,ψ(z) =

∫
Π+

|(Cφ − Cψ)fz|qdµ(w)
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=

∫
Ω δ

2

|(Cφ − Cψ)fz|qdµ(w) +
∫
Π+\Ω δ

2

|(Cφ − Cψ)fz|qdµ(w)

.
∫
Ω δ

2

|fz(φ)− fz(ψ)|qdµ(w) +
∫
Π+\Ω δ

2

|fz(φ)|q + |fz(ψ)|qdµ(w)

=: I(fz) + II(fz).

By an argument similar to that of (3.4),

I(fz) .
∫
Π+

Gα,ωµ,q,δ(w)
(ℑz)α+2

|w − z|2(α+2)
dAα(w)

6
∫
Π+

Gα,ωµ,q,δ(w)
1

|w − z|(α+2)
dAα(w)

= Tα+2(Gα,ωµ,q,δ)(z),

where Tα+2 is defined in (2.7). By an argument similar to that of (3.3),

II(fz) .
∫
Π+

[|Hz(φ(w))|+ |Hz(ψ(w))|]σq(w)dµ(w).

Then, by (2.20) and Lemma 2.3, the operator Tα+2 is bounded on L
p

p−q (dAα). By Lemma 2.13 and

Theorem 3.1, the function

F (z) =

∫
Π+

[|Hz(φ(w))|+ |Hz(ψ(w))|]σq(w)dµ(w)

is in L
p

p−q (dAα). Therefore, Gµ,φ,ψ ∈ L
p

p−q (dAα).

(3)⇒ (1). Suppose that the functionGµ,φ,ψ is in L
p

p−q (dAα). For any 0 < δ < 1, w ∈ φ−1(Eδ(z)), and z ∈
Π+, by Lemma 2.12,∫

Π+

|H
1
q
z (φ(w))−H

1
q
z (ψ(w))|qdµ(w) &

1

(ℑz)α+2

∫
φ−1(Eδ(z))

σq(w)dµ(w).

The same estimate holds when the roles of φ and ψ are interchanged. Therefore, we deduce

Gµ,φ,ψ(z) & Gα,ωµ,q,δ(z), z ∈ Π+.

Therefore, by Theorems 2.11 and 3.1, Cφ − Cψ is bounded from Apα(Π
+) to Lq(µ).

We close this section with the following example, which shows that there exist symbols φ and ψ

inducing bounded or compact difference Cφ − Cψ acting from Apα(Π
+) to Aqβ(Π

+) for any 0 < p, q < ∞
by using Theorems 2.11, 3.1 and 3.2. The example below is cited from [6, Example 7.8]. Based on that

proof, a straightforward calculation yields the conclusions.

Example 3.5. For 0 < p, q <∞ and s > 0, let

φ(z) = 2πi + log(z + ei) and ψ(z) = φ(z) +
π

(z + ei)s(log(z + ei))
1
q

.

Then, the following claims hold for α, β > −1:

(1) neither Cφ nor Cψ is bounded from Apα(Π
+) to Aqβ(Π

+);

(2) if 0 < p 6 q < ∞, then Cφ − Cψ is bounded/compact from Apα(Π
+) to Aqβ(Π

+) if and only if

s > (β+2)
q ;

(3) if 0 < q < p < ∞, then Cφ − Cψ is bounded/compact from Apα(Π
+) to Aqβ(Π

+) if and only if

s > (β+2)
q .
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4 Hilbert-Schmidt difference

In this section, we characterize the Hilbert-Schmidt character of differences of composition operators from

A2
α(Π

+) to L2(µ) by means of the joint Carleson measure. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be separable

Hilbert spaces. A compact linear operator T from X to Y is Hilbert-Schmidt if

∥T∥2HS(X,Y ) :=
∞∑
j=1

∥Tej∥2Y <∞

for any orthonormal basis {en} of X. For φ,ψ ∈ S(Π+), Cφ − Cψ is Hilbert-Schmidt from A2
α(Π

+)

to L2(µ) if and only if

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) =

∞∑
j=1

∥(Cφ − Cψ)ej∥2L2 <∞.

From [2, Proposition 3.1],

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) =

∞∑
j=1

∥(Cφ − Cψ)ej∥2L2

=

∫
Π+

∫
Π+

|K(α)
φ(z)(w)−K

(α)
ψ(z)(w)|

2dAα(w)dµ(z)

=

∫
Π+

∫
Π+

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)dAα(w). (4.1)

Recall

ωµ,q(E) =

∫
φ−1(E)

σqdµ+

∫
ψ−1(E)

σqdµ.

Our principal result on the Hilbert-Schmidt difference of composition operators is the following.

Theorem 4.1. Assume that α > −1, φ,ψ ∈ S(Π+), and µ is a positive Borel measure on Π+. Then,

compact operator Cφ − Cψ is Hilbert-Schmidt from A2
α(Π

+) to L2(µ) if and only if

F (w) =
ωµ,2[E2δ(w)]

(ℑw)2(α+2)
∈ L1(dAα)

if and only if {
ωµ,2[E2δ(an)]

(ℑan)α+2

}
n

∈ l1,

where {an} ⊂ Π+ is a δ-lattice and 0 < δ < 1
4 . Moreover,

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) ≈

∫
Π+

ωµ,2[E2δ(w)]

(ℑw)2(α+2)
dAα(w) ≈

∞∑
n=1

ωµ,2[E2δ(an)]

(ℑan)α+2
.

Proof. Let 0 < δ < 1
4 . Then, by (2.3), (4.1) and Lemma 2.12,

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ))

>
∫
Π+

∫
φ−1(E2δ(w))

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)dAα(w)

>
∫
Π+

∫
φ−1(E2δ(w))

σ2(z)

(ℑw)2(α+2)
dµ(z)dAα(w).

The same estimate holds when the roles of φ and ψ are interchanged. Thus,

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) &

∫
Π+

ωµ,2[E2δ(w)]

(ℑw)2(α+2)
dAα(w). (4.2)
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For any δ-lattice {an} ⊂ Π+, by Proposition 2.1 and Lemma 2.4,

∞∑
n=1

ωµ,2[E2δ(an)]

(ℑan)α+2
.

∞∑
n=1

1

(ℑan)2(α+2)

∫
E2δ(an)

ωµ,2[Eδ(z)]dAα(z)

≈
∞∑
n=1

∫
E2δ(an)

ωµ,2[E2δ(z)]

(ℑz)2(α+2)
dAα(z)

.
∫
Π+

ωµ,2[E2δ(z)]

(ℑz)2(α+2)
dAα(z). (4.3)

Let 0 < δ′ 6 δ
δ+2 . From (3.1),∫

Π+

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)

=

∫
Ω δ′

2

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)

+

∫
Π+\Ω δ′

2

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)

.
∫
Ω δ′

2

|K(α)
w (φ(z))−K(α)

w (ψ(z))|2dµ(z)

+

∫
Π+\Ω δ′

2

|K(α)
w (φ(z))|2 + |K(α)

w (ψ(z))|2dµ(z)

=: I(K(α)
w ) + II(K(α)

w ). (4.4)

By (2.2) and an argument similar to (3.4),

I(K(α)
w ) .

∫
Π+

ωµ,2[Eδ′(u)]

(ℑu)α+2
|K(α)

w (u)|2dAα(u).

Since Eδ′(u) ⊂ E2δ(an), ℑu ≈ ℑan, and |K(α)
w (an)| ≈ |K(α)

w (u)| for u ∈ Eδ(an) from (2.1) and (2.2),∫
Π+

ωµ,2[Eδ′(u)]

(ℑu)α+2
|K(α)

w (u)|2dAα(u)

6
∞∑
n=1

∫
E2δ(an)

ωµ,2[Eδ′(u)]

(ℑu)α+2
|Kα

w(u)|2dAα(u)

.
∞∑
n=1

|K(α)
w (an)|2ωµ,2[E2δ(an)]

=
∞∑
n=1

|K(α)
an (w)|2ωµ,2[E2δ(an)].

Thus,

I(K(α)
w ) .

∞∑
n=1

|K(α)
an (w)|2ωµ,2[E2δ(an)]. (4.5)

By (2.2) and an argument similar to that of (3.3),

II(K(α)
w ) .

∫
Π+

|K(α)
w (u)|2dωµ,2(u).

From (2.2), ∫
Π+

|K(α)
w (u)|2dωµ,2(u) 6

∞∑
n=1

∫
E2δ(an)

|K(α)
w (u)|2dωµ,2(u)
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≈
∞∑
n=1

|K(α)
w (an)|2ωµ,2[E2δ(an)]

=

∞∑
n=1

|K(α)
an (w)|2ωµ,2[E2δ(an)].

Thus,

II(K(α)
w ) .

∞∑
n=1

|K(α)
an (w)|2ωµ,2[E2δ(an)]. (4.6)

By (4.4)–(4.6) and Lemma 2.2,

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) .

∞∑
n=1

ωµ,2[E2δ(an)]

∫
Π+

|K(α)
an (w)|2dAα(w)

≈
∞∑
n=1

ωµ,2[E2δ(an)]

(ℑan)α+2
. (4.7)

From (4.2), (4.3) and (4.7),

∥Cφ − Cψ∥2HS(A2
α(Π+),L2(µ)) ≈

∫
Π+

ωµ,2[E2δ(w)]

(ℑw)2(α+2)
dAα(w) ≈

∞∑
n=1

ωµ,2[E2δ(an)]

(ℑan)α+2
,

as desired.
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