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1 Introduction

The magneto-micropolar fluid equations can be used to describe the motion of aggregates of small solid
ferromagnetic particles relative to viscous magnetic fluids under the action of magnetic fields, such as
salt water, ester, fluorocarbon, etc., which is of great importance in practical and mathematical appli-
cations [2]. Let U be the fluid velocity, B be the magnetic field, W be the micro-rotational velocity
representing the angular velocity of the rotation of the particles of the fluid, and P be the scalar pressure.
The incompressible magneto-micropolar fluid equations take the following form:

U + (U-V)U —2xV x W = (u+ x)AU — VP + (B - V)B,
8B + (U -V)B =vAB+ (B - V)T,

W + (U - V)W + W — 2V x U — kVdiviV = yAW,
V.-U=V-B=0.

(1.1)
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Here, the nonnegative parameters p, x, v, v and & are associated with the properties of the materials:
1 is the kinematic viscosity, x is the vortex viscosity, % is the magnetic Reynolds number, and v and &
are the spin viscosities. Because of their mathematical and physical importance, there is a great amount
of literature on the mathematical theory of magneto-micropolar fluid flows. Before going into our math-
ematical analysis, we recall progress on System (1.1) and the related models.

If the magnetic field is neglected, i.e., B = 0, System (1.1) is transformed to the following micropolar

fluid equations proposed by Eringen [16]:

OU + (U - VYU — 2V x W = (u + \)AU — VP,
OW + (U - V)W + 4xW — 2xV x U — kVdiviW = yAW, (1.2)
V-U=0.

Physically, the micropolar fluid system (1.2) represents fluids consisting of rigid randomly oriented par-
ticles suspended in a viscous medium. The global existence of weak solutions and strong solutions to
the Cauchy problem of System (1.2) with full viscosities has been obtained by Galdi and Rionero [17].
In the remarkable paper [13], Dong and Zhang found a new quantity for the 2D system (1.2) with zero
angular viscosity, i.e., v = 0, and proved the global existence and uniqueness of smooth solutions. Then
Xue [35] proved the global well-posedness of the system with rough initial data and showed the vanishing
microrotation viscosity limit in the case of zero kinematic viscosity or zero angular viscosity, while Dong
et al. [12] recently studied the global regularity and large time behavior of solutions to the 2D micropolar
equations with only angular viscosity dissipation (i.e., p+ x = 0 in (1.2)). For the more related works
on System (1.2), we refer to [7,10,11] and the references therein.

On the other hand, when the micro-rotation effects are neglected, i.e., W = 0, Equations (1.1) will
become the usual magnetohydrodynamic (MHD) equations by taking x = 0:

U + (U -V)U = (n+x)AU — VP + (B -V)B,
B+ (U-V)B =vAB+ (B-V)U, (1.3)
V-U=V-B=0.

It is well known that the 2D MHD equations (1.3) with full viscosities have a unique and global classical
solution (see [15,29]). There is also some important recent progress in the global existence of the partial
viscous MHD system posed on the whole space. For example, Cao et al. [4], Cao and Wu [5], Cao et al.
[6] and Du and Zhou [14] established the global regularity of the 2D MHD equations with mixed partial
dissipation for any smooth initial data, and Jiu et al. [18] proved a weaker version of the small data global
existence result for the zero kinematic viscosity case (i.e., p + x = 0 in (1.3)). In the latter case, the
global existence of solutions was proved by Zhou and Zhu [40] for small initial data on periodic domain.
However, in the case without magnetic diffusion (i.e., v = 0), the question of whether the smooth solution
of the 2D system (1.3) develops singularity in finite time has been a long-standing open problem. In the
recent remarkable paper [20], Lin et al. proved the global existence of the smooth solution of System (1.3)
with v = 0 around the trivial solution ((1,0)",0), which motivated a series of results in this framework
[23,24,37-39] (see also [1,3,9,19,34] for the 3D case and [21,22,26] for the 3D toy model case). We also
remark that the initial-boundary value problem of System (1.3) with ¥ = 0 was investigated by [25,30].

For the full magneto-micropolar fluid equations (1.1) with full viscosities, the existence, uniqueness
and regularity of weak solutions were established by the standard energy method (see [28,33]). Wang
and Wang [31] established a blow-up criterion for the two-dimensional Cauchy problem of System (1.1)
without magnetic diffusion and spin viscosities (i.e., v = 0 and v = 0 in (1.1)). Then Cheng and Liu [§]
further investigated the global existence and uniqueness of the classical solution for the case of vertical
kinematic viscosity, horizontal magnetic diffusion and horizontal vortex viscosity, and Yamazaki [36]
studied the global regularity of the 2D system (1.1) with zero spin viscosity v = 0. Recently, Wei et
al. [32] also showed the global existence and optimal convergence rates of solutions for 3D compressible
magneto-micropolar fluid equations.
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Motivated by the above works, we are concerned with the initial-boundary value problem of the 2D
magneto-micropolar fluid equations with zero magnetic diffusion and zero spin viscosity, i.e., v = v =
k=0 in (1.1). Precisely, our governing equations are expressed as follows:

QU + (U - VYU —2yV x W = (u+ \)AU — VP + (B - V)B,
8B+ (U-V)B = (B-V)U,

OW 4+ (U - V)W +4xW —2xV x U =0,
V.U=V-B=0,

(1.4)

where U = (U1,Us),B = (B1,Bs), Vx W = (oW, —-01W) and V x U := 0,Us — 9;U;. Our main
purpose is to establish the global regularity for System (1.4) around the equilibrium (0, e1,0). Thus, we
will set U :=u+0, B:=b+ ey, W3 := w+0, and g = y = 3 for simplicity. Then System (1.4) can be
reformulated as
Ou+ (u-Vu—VXxw=Au—VP+(b-V)b+ db,
b+ (u-V)b=(b-V)u+ 0,

(1.5)
Ow~+ (u-V)w~+2w -V xu=0,
V-u=V-b=0
in 2 x (0,400) with the initial data
u(z,0) = up(x), b(z,0)=bo(z), w(z,0)=wo(x) (1.6)

in Q, where ug = (ug1, ug2) and by = (bg1,bp2). Similar to [25,30], we assume that the domain Q occupied
by the fluid is a horizontally infinite flat layer

Q:={z=(21,22)| —00 < < +00, 0 <2 < 1}. (1.7)
On the boundary, we impose the usual Navier-slip condition for the fluid u = (uy, u2):
u-n=0 and Vxu=0 on 09,
and assume that the container is perfectly conducting for the magnetic field b = (b1, ba), i.e.,
b-n=0 on 0.
Summarily, we have the following boundary conditions for u, b and w:
Uy =0u; =0 and by =0 on ON. (1.8)

This kind of boundary condition is also useful in the study of the viscous surface wave equation (see, for
example, [27]).

Our result asserts that the 2D incompressible magneto-micropolar fluid equations (1.5)—(1.8) possess
a unique global classical solution for suitable small initial data. More precisely, we have the following
theorem.

Theorem 1.1.  Suppose that (ug,bo,wo) € H?(Q) satisfies divug = 0 and divby = 0 in Q, and
Up2 = 82u01 = 0, b02 = 82b01 = 0, wo = 0 on 0N). Let

[I(w0, b0, wo) |72 0y < &5

for some suitable small g € (0,1). Then System (1.5)—(1.8) admits a unique global solution (u,b,w) €
C([0, +00); H?(Q)) such that by = 0 and w = 0 on OQ and

(11, b, w) (Ol Fr2 + [l (e, we) (B)Z2)
+/O 1V, w)($)l[3z2 + 1010() 12 + ()2 + [[(be, we)(5)lI72)ds < Ce (1.9)

for any t > 0 and some uniform constant C' > 0.
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To prove Theorem 1.1, there are two main difficulties. The first one is due to the partial dissipation
of the magnetic b, which is similar to that of the MHD system (1.3) with zero magnetic diffusion and
can be observed by a spectral analysis for the linearized system of (1.5), while the second one arises from
the zero spin viscosity of the micro-rotational velocity w. These difficulties will be overcome by a series
of careful energy estimates. Roughly speaking, the dissipation for b in (1.9) is of the form |01b(s)|| g
rather than |[Vb(s)| g1. This will result in several trouble terms of particular forms: [(82b1)%d1u; (see
Lemma 3.3) and [(03b1)%?01u; (see Lemma 3.4), which cannot be absorbed by the dissipation from a
direct interpolation. Motivated by [22, 25], we will replace dyu; by Oiby + w - Vb — b - Vuy, which
will provide us more dissipation. On the other hand, the dissipation for w will resort to the damping
mechanism in (1.5). Here, the key observation is that the rotation terms in (1.5); and (1.5)3 can be
absorbed by the dissipation if we take the rotation for (1.5); and the Laplacian for (1.5)s, respectively
(see Lemma 3.4), which will be a failed recursive argument if we use the Stokes estimates as [25]. Finally,
the trading time derivative and spacial derivative is also new to our current work.

Remark 1.2. Since the magnetic equation and the micro-rotational velocity equation are hyperbolic
and characteristic, no boundary condition needs to be imposed for the magnetic field component b; or
the micro-rotational velocity w. This will result in an essential difficulty if we want to establish the
global existence of System (1.1) by using the basic energy method. Fortunately, the boundary condition
Oob1 = 0 and w = 0 on 9 can be propagated by the equations (1.5)2 and (1.5)3 if d2bp1 = 0 and wy = 0
on 0}, respectively.

Remark 1.3. The global well-posedness result in Theorem 1.1 also holds for the whole space case
Q = R?, due to the fact that all boundary terms actually vanish in the process of energy estimates. In
this case, indeed, the time derivatives can be removed from the energy functional A(t) and the dissipation
energy B(t) defined in Section 3.

The rest of this paper is organized as follows. In Section 2, we present some preliminary materials,
including the interpolation inequalities involving the derivatives in one direction and the local well-
posedness of System (1.1). The global uniform a priori estimates for System (1.1), which will yield the
proof of Theorem 1.1 by a continuity argument, will be established in Section 3.

Notations. Throughout this paper, we denote

/ f= //Q v, zo)dedrs, Nglee = lolr@y 100 DI = 1 F12a + 922 + 12122,

__o
T Ox;0x;
denote some absolute positive constant, which may be different on different lines.

For simplicity, we also set 9; := %, 0; = %, and 0;0; for 4, j = 1,2. Finally, we will use C to

2 Preliminaries

In this section, we first give several basic interpolation inequalities and then state the Stokes estimates.
A local well-posedness will also be presented at the end of this section.
We begin with the basic inequalities involving the derivatives in one direction.

Lemma 2.1 (See [25]).  Let Q be the strip domain defined by (1.7). Assume v = (vy,v2) € H2(2) with
dive =0 and vy |gq = 0. Then we have

[v2ll e (@) < CllOL0] 1 (0, (2.1)
1 1

||UHL°°(Q) < C||UH;11(Q)H81UHE1(Q)7 (22)

V(v Vo)llr2) < Cllvllaz@)l[01v] H1(0)- (2.3)

Next, we present the local well-posedness of System (1.5)—(1.8).
Theorem 2.2.  Suppose that (ug,bg,wo) € H2(Q) satisfies divug = 0 and divby = 0 in Q, and
gz = Oaugr = 0, b2 = O2bp1 = 0, wo = 0 on IN. Then there exists T > 0 such that System (1.5)—(1.8)
admits a unique solution (u,b,w) € C([0,T]; H*()) with 92by =0 and w =0 on Q.
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Theorem 2.2 can be proved by firstly constructing an iteration scheme for System (1.5)—(1.8), which
provides a series of approximate solutions to (1.5)—(1.8), and then deriving uniform bounds for the
approximate solutions to pass the limit. This procedure is more or less standard and thus we omit the
details.

3 A priori estimates

In this section, we will focus on the uniform a priori estimates of solutions to System (1.5)—(1.8), which
are the key ingredients of our global well-posedness analysis. For simplicity, we introduce a new energy
functional

At) = [l (u, b w) ()12 + e (B 72

and the dissipation energy
B(t) = [(Vu,w)(®)l7r2 + 1016 17 + lue (@l + 1| (b, we) (B)]17-

Then we have the following a priori estimates.
Proposition 3.1.  Let (u,b,w) be the solution of System (1.5)—(1.8) with the initial data (ug,bo, wp)
satisfying divug = divbg = 0 in Q and uge = Oougr = bga = Oabg1 = wo = 0 on ON. If

sup || (u, b, w)(8)]| %2 < ¢ (3.1)
0<t<T

for some ¢o € (0,1), then there exists a uniform constant Cy such that

At) + /0 Bls)ds < Coll(uo, bowo)| e (3.2)

for any t € [0,T] provided that co is suitably small.

We split the proof of Proposition 3.1 into a series of lemmas and begin with the basic L? estimate of
(u, b, w).

Lemma 3.2 (L? estimate of (u,b,w)).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the initial
data satisfying the conditions in Proposition 3.1. Then we have

1 t
ICu, b, w) (D172 + 5/0 (Y, w)(s)l[2ds < | (uo, bo, wo) |72 (3-3)

for any t € [0,T].
Proof. Lemma 3.2 can be proved by a direct energy method and thus we omit the details for

simplicity. O

Lemma 3.3 (L? estimate of (Vu, Vb, Vw)).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the
initial data satisfying the conditions in Proposition 3.1. Then we have

(170,90, Ol 4 [ m0202) + 5 [ 18w To)e)as

<0 [ D@+ 0B Bds + (1T T, w4 [ bu(@bo)?) (30

for any t € [0,T].

Proof.  Taking the L? inner product of the first three equations in (1.5) with —Au, —Ab and —Aw,
respectively, we obtain

1d

5 371V Vb, Vw)l[Zz + [[(Au, 2Vw) 72
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:/(u-V)u~Au—/(b-V)b~Au+/(u-V)b~Ab—/(b-V)u~Ab
+/(u.v)w.Aw—/Vxw-Au—/quAw. (35)

Here, we used the fact that

/VPAu:/alPAu1+82PAu2:—/PA81U1—/PA@gng—/pdlvu:O

d
/81bAu: 7/616%1“ 7/1)16%6111,1 7/1)28%“27/[)23%31’&2
= —/8%1)1811” */831)131’&1 7/8121728111,2 7\/(93[)281712 = —/Abé‘lu

due to Aug = 02ug — 0102u; = 0 and dauy = Gaby = by = uy = 0 on IQ. Then we rewrite (3.5) as

aln

5 (70,5, V) 2 + [ (A, 290) s
:/((u-v>u—(b-V)b).Au+/(u-V)b.agb—/(b.V)u-agb
+/[(u-V)b—(b-V)u]-afb—i—/(u-V)wAw—/(Vxw~Au+V X uAw)
= Ji+Ji2+ -+ Jis. (3.6)
We now estimate Ji1, ..., Jig one by one. For Ji1, we use Holder’s inequality, (2.1), Sobolev’s inequality

and Young’s inequality to have

Jin= [ ((u-V)u— 01010 — bydab) - Au

—

< (lulle [IVullz2 + f[orl[ oo 1010]] 22 + [[b2]| Lo [|O2b]| L2) | A 22

< Clllullg2(Vullz2 + [[ball 211010l L2 + 1010] g [[bl] a0 ) [| A 2

< Cllull gz + bll =) (100113 + [[Vull3)

< Cllullzz + bl a2)B(1). (3.7)

For Jyo, since d2by = 0 and u-Vbs = 0 on 02, the integration by parts together with Holder’s inequality
and Young’s inequality gives that

Jio = —/az(u-w;l)aZb1 - /az(u-ng)asz
_ / (ot Vby) Dby — / (10~ VOub1)Baby — / (o1t - Vo) Dby — / (10 Vbo) Dby
= —/82u181b182b1 — /82142(82171)2 + /(agu - Vbs)01b1
< ||O2ur || o || 0161 ]| £2[|02D1 || 2 + |02 oo || Vb2 L2 ||01b1 || 2 + /81u1(82b1)2
< CITulzl0ablz Bl + [ Dvus(0abr)?
< Clbllmn Bt) + [ oy (@ab)* (3.8)

where we used [(u- Vdaba)d2bs = 0 and [(u - Vdab1)d2b1 = 0 in the third equality.
To estimate Ji3, we first rewrite it as

Ji3 = —/blalulagbl — /b282u18§b1 + /82(() . Vu2)82b2
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= —/b181u18§b1 - /b282u18§b1 +/(82b-Vu2 + b - VOauz)Oaby
=: Ji31 + Jiz2 + Jiss. (3.9)
Clearly, it follows from the integration by parts that
Jiz1 = /52b131U132b1 Jr/blalaQulale
= /81u1(82b1)2—/81b182u182b1 —/b152u15231bl
< /<91ul(32b1)2 + 10101 (| L2 102ua | o< (| 0201 [| L2 + [[b1 ]| Lo [|O2ua || £2]| 0201 b1 [| L2
< [ @202 + Clortall [Vl el
< [ ovn(@ab2* + ol B ). (310)

Similarly, we have

< lba | o< |1Baun || £2 10501 || 2 + (11026 2| Vug | e + [1b]| o< | VDaus]| 12)[|02b2 | 12

< C||0nb]l g1 102ua || L2 19561 (| L2 + Clbll 2]Vl 172 [|0101 | 2

< Cloll a2 ([1010]1 72 + [|VullF2)

< C|bll g2 B(t). (3.11)

Jiz2 + Ji33

Substituting (3.10) and (3.11) into (3.9), we obtain
J13 < CHb”HzB(t) + /61’11,1((921)1)2. (312)
Similarly, for Ji4 and Ji5, applying Holder’s inequality and Sobolev’s inequality, we deduce

J14+J15:—/(alu-V)b-alb—/(b-V)uw?fb—l—/(u-V)wAw

< [0vull 4l VO] L2 016l 2 + bl o [Vl L2 ]| 0Fb 2 + [l poe [ Veo | 2 || Aw]| 2

< Cllovul Vbl 21010 ] e + Cllbl 2 [Vl 221|076l 22 + Cllull 2 | V]| 2| Aw]| 2

< Clblla= (1010l + [ Vullf) + Clull gz [wllFe

< C([blla2 + llullz2)B(1), (3.13)

where we have used the integration by parts for the first term of Jy4.
Finally, for the linear term Jyg, it follows from the integration by parts that

J16 = 7/82MAU1 +/81U}AU2 7/81U2A"UJ+/82U1AU}
= —/agwAul +/61U}A’LLQ —/A81u2w+/A82u1w
= —2/82wAu1 +2/61wAu2.
Thus, by Holder’s inequality and Young’s inequality, we obtain
4 2 3 2
To < 20Vullzaldulze < 519wl + A0l (3.14)
Substituting all the estimates of Ji1, ..., Jig into (3.6), we conclude that

d 1
7 1(Vu, Vb, Vw)llz: + 5 1(Aw, Vo)l7e < C(lfullaz + [1blla2) B() + 4/(52b1)251U1- (3.15)
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It remains to estimate the integral term in (3.15). From (1.5)s, we have 01u; = 0;by + u- Vb1 — b - Vuy
and thus
/(82b1)281u1 = /(621)1)2(@()1 +u- Vbl —b- Vul)
d
=2 /(82b1)2b1 — 2/b182b1828tbl + /(82b1)2(u Vb —b-Vuy)

= % (92b1)%by — 2/b132b132(51U1 —u- Vb +b-Vuy) + /(32b1)2(u Vb —b-Vuy),

which implies that
d
(621)1)2[)1 + /81U1(82b1)2

Cdt
—2/1)182()18281111 + 2/b182b162(u . Vb1) - 2/1)1826162(1) . VU1)

+ /(82b1)2(u . Vbl - b . Vul)

(3.16)

Since

2/b182b182(u-Vb1) :2/b182b1(82u~Vb1)+2/b182b1(u-V(’)2b1)

= 2/[)182[)1(82’& . Vbl) + /blu . V(82b1)2

= 2/b182b1(32u . Vbl) — /(82b1)2u . Vbl,

we can deduce from (3.16) that

d
— % (62b1)2b1 + /81U1(82b1)2

= -2 / 6182b18231u1 + Q/blagbl(agu . Vbl) — /(21)1621)162(1) . Vul) + (32b1)2b . Vul)

= J17+J18+J19. (317)
For Jy7, the integration by parts together with Hélder’s inequality, Sobolev’s embedding and Young’s
inequality gives that

Jir =2 /(51b152b1 + 010102b1)02u1
2(/[01b1([ 4 [|02b1 (| L2 + [|b1][ 4 |01 0201 || £2) |02 || 4
10101 |2 (|01 | 21 (| O2ua || 2
(3.18)

<
<C
< Cllol[ g2 B(1).

For Jig, noticing that
/b1(82b1)282U2 = —/(82171)28211,2})1 — /8221718211,2{)% —/82b18§qu%

by the integration by parts, i.e.,
2/[)1(821)1)282'UQ = —/nglaguﬂ)f —/agblaqubf,

we can deduce that
Jig = 2/[)182[)1821“811)1 + 2/1)1(82()1)28211,2
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:2/b182b182U181b1 —/8§b182u2b% —/82b18§u2b%

< 2|y || e [|02b1 || Lo 102w | 2 0161 | Lo + (|0501 ]| L2 102usl 2 + [|02b1 ]| L2 |05 ua | L2) [[b1] 7
< Cllb1 72 (|02 || L2 101611 1 + CllO2b || g 102w g |61 || g1 [|0161 || 10
< C||b||%{zB(t). (3.19)

Here, we used (2.2) in the second inequality. Similarly, we have
Jig = —3/b1(82b1)281u1 - 2/b182b182b282u1 - Q/bfagblagf)lul
—2/b162b1b283u1 - /b2(8261)282u1
_ _‘;</a§b162u2b§ +/0251322qu§) - 2/b182b162b262u1
72/b%82b18281u1 72/b182b1b2822u1 - /b2(62b1)282u1

3 1
= —i/agblaguzbf—k5/8261822@!)%+2/b182b181b182u1 —Q/blagblbgagul —/b2(82b1)282u1
and thus

Jio < S (/10301 ]| L2 ]|02uz | L2 + 11021 || 2|05 ual| £2) (611700 + 211021l pal|Orbr || 12 || O2ua || pa

3

2

+ [|02b1 | 21[b2l oo |05 ua | L2) |01 [l s + (1B o< 19201 174 [|O2wa || L2

Cl|92b1 || 1 18 us | 1 |01 ]| 21 0101 [ 1 + Cllba[[ 721101l 1 [| 0w || 0

C|b)|32B(t). (3.20)
Substituting (3.18)—(3.20) into (3.17), we obtain

_a
dt

which together with (3.15) leads to

<
<

(@atn)br+ [ @b 0uus < Clbl ()

d d 1
ST Ve Tu)E: — 4z [@a)s + 3w V)l < CClull + [l + [l O,
This completes the proof of Lemma 3.3. O

Lemma 3.4 (L? estimate of (Au, Ab, Aw)).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the
initial data satisfying the conditions in Proposition 3.1. Then we have

(|<V<v <), VIV %0, 8w)0)]: 6 [ tu(@3nn)? 21 [ b?(asbn?)
+3 [ AT <), Aw)(s)ads
<C [ (b)) + s + 10(6) ) Bs)s

+ (l(V(V x ug), V(V x by), Awg)||22 — 6/b01(8§b01)2 + 21/631(8221701)2) (3.21)

for any t € [0,T].
Proof.  Applying Vx to the first two equations and A to the third equation in (1.5), respectively, and
setting h :=V X w and j := V X b, we have
Oh+ (u-Vh+Aw=Ah+ (b-V)j + 017,
Oj+ (u-V)j = (b-V)h+201b1(rug 4 Oaur) — 201u1 (O1by + Daby) + 01k, (3.22)
OAw + A((u- V)w) +2Aw — Ah =0
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in Q x (0,7). Due to ug = dou; = 0 and by = 92b; = 0 on 912, we also have
h=0 and j=0 on ONQ.

Then we can take the L? inner product of the three equations in (3.22) with —Ah, —Aj and Aw,
respectively, and deduce from the integration by parts that

1d

2.dt

:2/AhAw+/(u-V)hAh+/(u~V)jAj—/(b-V)jAh—/(b~V)hAj

— 2/811)1(811@ + 82U1)A] + 2/81U1(61b2 + 82()1)A] — /A((u . V)’LU)AU}

=:Jo1 + Jog + - + Jog. (323)

1(Vh, Vi, Aw)|2 + [(Ah, 2Aw)]|7

Here, we have used the fact that
/81jAh+/81hAj = —/jA81h+/81hAj = /Vj -Voih — /V@lh -Vj=0.
We now estimate Jo1, Joo, ..., Jog one by one. Clearly, for Jy1, we have
Tr < 2dwllzal|Ahlze < S1AwlEs + 1A (3.24)
For Jos, it follows from Holder’s inequality and Sobolev’s embedding that
Joz < Julla VAl La| AR L2 < Cllullm [ VRIF: < Cllullm [[Vullz < Cllullm=B(t). (3.25)

For Js3, since
/(U.V)aljalj+/<u-V)azjazj:o,

we can first use the integration by parts to rewrite it as
Jog = — /(alu “V)joj— /(52U V)j 02
= —/(alu-V)j O1j — /82u181j82j — /azuz((a%bl)2 +207b105b1 + (03b1)?)
by (u-V)j =0 on 0Q and 95 = —Ab;. Then we have
Jos < 2|Vl = (Vi 221017 22 + 07612 + 2(10701]| 2210501 2 ) — /32Uz(3§b1)2
< CITulel00Vbl 12| Tl + [ v (@301)”
< C|bll =B () +/81u1(8§b1)2 (3.26)

by Hélder’s inequality and Sobolev’s embedding.
Similarly, due to (b-V)j = (b- V)h =0 on 9Q and 025 = —Ab; again, we also have

Jog + Jos = /(3,-() -V)j0ih + /(3,-() -V)hoij + /(b -V)(0:j0:h)
_ /(&-b .V)joih + /(&-b V)hd,j
= /81b181]azh+/81b282j81h+2/82b282j82h+/(31bV)halj+/82b181h82]

:/8lb181j31h+/81b282]81h—2/81b182j82h+/(81bV)halj
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— /nglalhafbl — /82b181h8§b1.
Noticing that
/82b181h8§b1 = %/81h82(82b1)2 = %/82h81(82b1)2 = /azhazblaQalbl,

we can obtain from Holder’s inequality and Sobolev’s embedding that

< |IVOlzal|ovdl 22| VR] ps + 41010l L4 VR 4|Vl L2 + 2V L4 [ VR 24 ]| 01 V| 2

< OV g2 [|010] 1 [[ VA 1

< C[bl| 2]|01b]| 1 (V| g2

< Clbll = B2). (3.27)

Jog + Jos

For Jyg, a similar argument leads to

Jag = 2 / (V011 (Drug + Daur) + 91b1 (VO1ug + Vdaur)) - Vj

<A(IVabll L2 IVull oo + 110101 ]| 24 [V ul| ) IV 5] 2
< C)|01b] 1 [ Vul| g2 V2] 12
< O[]l 2 B(2). (3.28)

The estimates for Jy7 are more subtle. We first rewrite it as
Jor = —2/(812u1(8162 + 9ab1) + Orur (87ba + 0102b1))01j
-2 /(8182u1(81b2 + Oab1) 4 111 (810202 + 93b1))02]
= —2/(812u1(81b2 + Doby) + Oyu1 (03by + 0102b1))015 — 2/(8182u181b2 + 01101 02b1)02]
+2 /(8182u182b1 + O1u103b1)07by + 2/6182u182b18§b1 + 2/6lu1(8§b1)2.

Then Hélder’s inequality and Sobolev’s embedding give that

Jor < 2([|0Fua £al| V]| Lo + 101w || L [[V20] 2) 1014 2 + 21|01 D2ua || 4 [|O1b2 | Lo
+ (|01 || Lo [|0102ba || L2) 1025 ]| L2 + 2(|01O2un || L4 102611 4 + [[Ovun || Loe (| D361 || 12) 10T b1 | 2

+ 2[|0Fus || La]| Dby || 4[| 018201 || L2 + 2/31U1(32251)2
< COIVullm=([[VOll g (|01l L2 + 1010] 1 [|025]| 2 + (| V]| 2 [|016] 1) + 2/31U1(3§b1)2
< Il 8] |0ubl s +2 [ Ors (350)°
< C|b]| 2 B(t) + 2/61u1(8§b1)2. (3.29)

Here, we used the fact that
/8182u182b18§b1 = /8§u182b18182b1

in the first inequality.
Finally, for Jag, a direct calculation yields that

Jog = /(Au -V)wAw + 2 /(Vu - V)VwAw
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1296
(1Aullpall Vel zs + 2] Vul| = [ V2w]l2) [ Aw]2

<
< OVl g2 w3
< Cllwll s B(). (3.30)

Summarily, substituting (3.24)—(3.30) into (3.23), we can conclude that
d 1

(VR Vi, Aw) 7z + SI(AR, Aw) 72 < Cll(u, b,w)ll 2 B() + 6/(322171)251’“1- (3.31)
It remains to estimate the last integral [(93b1)?d1u;. To this end, we use the magnetic equation of (1.5)

to obtain
(3.32)

/(a§b1)281u1 = /(8§b1)28tb1 +/(822b1)2u~Vb1 —/(8§b1)2b-Vu1.
The first term on the right-hand side of (3.32) can be rewritten as

d
/(8351)231551 =7 b1 (02b1)? — 2/b18§bla§blt
= %/61(8361)2 — 2/()185518%(81'&1 —u-Vby +b-Vuy).

Thus, we have

d
— %/b1(8§b1)2+/81u1(8§bl)2

= —2/b18§b182281u1 +2/b18§b18§(u-Vb1) —2/b18§b18§(b-Vu1)
+/(a§b1)2u-vz;1—/(a§b1)2b-vu1
= 2/81()18%[)183’&1 — 2/82()16281[)18%“1 — 2/b16281b18§ﬂ1 +2/b18§b18§qu1

+ 4/()1651)182’& . 32Vb1 — 2/()18221)18%(17 . Vul) — /(3%()1)219 . Vu1
(3.33)

=t Js1+ Jz2 + -+ a7
Here, we used the fact that 2 [ 003bju - VO3by = — [(93b1)?u - Vby in the second equality. By using
Holder’s inequality, Sobolev’s embedding and Young’s inequality, we obtain
Ja1 + Jao + Jaz < 2[|00ba || ]| 051 || 2 (|05 ua || L + 2(10ab1 | L4 | 020101 | L2 |05 || Lo
+ 2[[b1] oo [| 020101 | L2 (|05 || 2
Cllorbr ]l o 10] 2 |03 s | e
(3.34)

<
< Ofblla=B().

For J34, we have

J34 = Q/blagblﬁgulalbl - Q/blagblagalulagbl
= Q/blagblagulalbl + 2/(82171)38281’&1 +2/b1(82b1)28§81u1
= 2/1)18%()1822’11181[)1 - 6/(82171)281826182'&1 — 2/8161(82b1)28§u1 - 4/1)181821)1821)18%1&1

< C|lby|| o< |03b1 || L2 105 wn || L4 10151 [| s + C|02b1 [|74]| 0201 b1 || 12 [| G2 s || Los
+ C||0101||4]|0201 |74 105 ur || Lo + C|[b1 || Loe [|0201b1 || 12| D21 || L4 || O3 ua || 4
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< C[[bl] 2| 010]| g1 [[ V]|
< OblH=B(®). (3.35)

Finally, for Js5, J3g and Js7, we first rewrite them as
Jas 4 Jag + Ja7 = 4/b1622b182u18261b1 —2 / b1 0201 02by Doty — 4/b18§b182b18281u1
74/b1822b162b28§u1 - 2/b§a§blala§u1 - Q/blbzagbla‘gul
- /b2(8§b1)25‘2u1 - 7/b1(822b1)281u1
= 6/b18§b18281b182u1 — 6/(82b1)28182b182u1 - 2/81b1(82b1)2622u1
—4/b162b16182b18§u1 +4/b16§b181b1622u1 — 2/b§a§blala§u1
— 2/b1b28§b18§u1 - /bg(agbl)Zagul - 7/b1(8§b1)281u1. (3.36)

On the right-hand side of (3.36), all the integrals except for the last one can be bounded by

16111 18561 [| 22 [| 020101 || 2 18911 || Lo + [|D2b1 (1741|012 [| L2 || Oawa [| oo
+ 1061 [l 2 10261 174 |05 n || o + [[a ]| Low [|O2b1 || (|01 Dab1 || L2 |05 wa || s
+ 1|61 oo [|05b1 || 21|01 b1 || L4 |05 wa [| L+ + (1617 [|05b1 | L2 (| VO3 || 2
+ |12 oo 10301 |72 |82 un || o

and thus by
18172 1916 2 |Vl 122

Here we used (2.1) and (2.2). Then we have
Jss + Jsg + Jar < Cb|2B(t) — 7/b1(8§b1)281u1. (3.37)
Substituting (3.34), (3.35) and (3.37) into (3.33), we deduce that

/b1 02b )2 /(6§b1)261u1 < OBl + b))% B(E) — 7/b1(8§b1)28lu1. (3.38)

We will take a similar procedure to establish the estimate of the last integral f b1(032b1)?01u; to that of
J(95b1)*01u1. The key observation that such an inference will be closed is that we have the higher order
nonlinearity in [ b (02b1)201u; than that in [(03b1)20;u;. Precisely, by the magnetic equation of (1.5),
we see

/b1(6§b1)261u1 = /b1(8§b1)28tb1 +/b1(a§b1)2(u-v1)1 —b-Vuy)

1d
=53 b3 (02b1)* — /biagblagbu +/b1(822b1)2(u~Vb1 —b-Vuy).
Then using the magnetic equation of (1.5) again, we deduce that
1d
2 dt
= /biagblagbu - /b1(8§b1)2(u -Vby —b-Vuy)

b%(&gbl)z 7/b1(a§b1)281ul

= /bfa:%bla;(b -Vuy —u-Vby + 01uy) — /b1(8§b1)2(u Vb —b-Vuy)
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= /bfagbl(agb - Vuy + 202 - Vdouy +b- Voau,)
— /bfagbl(agu.vz;l + 201 - VOaby) +/b§8§bla§alu1 +/b1(a§b1)2b-vu1.
Here in the last equality we have used the fact that
_ / B02byu - VOZby — / by (92b1)%u - Vby.

Thus it follows from Hoélder’s inequality, Sobolev’s embedding and Young’s inequality that

1d
§$/b§(8§b1)2 —/b1(6§b1)281u1

< Clbl L bl a2 (1Bl 2 [Vl e + [V2ullal| VBl s + 1Bl] e [VPus [ 22 + [IVPullz2)
< ClIblIZz2 1010l o ([10] 2 [ Vel 72 + V] gr2)
< C([Ibll72 + [IbllZ2)B(2). (3.39)

Combining (3.38) and (3.39), we obtain
G- [mezr+ ][] + [@mou < Clpl + 101 + Pl B0, (40
which together with (3.31) yields that
(17 V3. 2wl — o [oa@007 + 21 [6308007) + 1Ak, w1
< O )l + Bl + 10l) B

This completes the proof of Lemma 3.4. O

Lemma 3.5 (Dissipation of 01b).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the initial
data satisfying the conditions in Proposition 3.1. Then we have

1 t t
Jow-us g [ 1) ads — [ du oy Vus)ds
0 0

< c/o ||(u,b)(s)||HzB(s)ds+/81b0~u0 (3.41)

for any t € [0,T].

Proof.  Multiplying (1.5); and (1.5)2 by d1b and 9, u, respectively, and integrating the resulted equations
over (), we get

/8tu~81b+/(u~Vu)-81b7/Au-81b:/(b~Vb)~31b+||81b||2L2+/V><w~81b,
/5‘tb -O1u+ /(u -Vb) - Ohu = /(b - Vu) - 01u + || 01|22
Since [ug - 91b = — [ Druy - b, we can subtract the second equation from the first one to deduce that
G [orev ol ~ ol = [ vu-aw- [©-v0)-00— [ v0) 0
—|—/(b-Vu)-81u—/Au-81b—/Vxw-&lb. (3.42)
For the nonlinear terms on the right-hand side of (3.42), we have

/(u~Vu)-81b—/(b~Vb)-alb—/(u~Vb)-81u+/(b-Vu)-81u
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:/(u~Vu) -alb—/b1|81b|2 —/bg@gb-81b—/u181b~81u—/uzagb-81u+/(b~Vu)-81u
< lullpo [Vl L2 1816]| 2 + 01| o< 1016]1 72 + (162 oo [|02b]] 22|91 2
+ [luzll Lo [[02b]| L2 (| Orul L2 + [[b]| Loe [[Vul| L2 ][ O1ul| L2
<l z2 [ Vull 22 1010l 2 + (10l 22 101672 + 116 2 [191e| Fr + ([0l 222 [Vl 72
< Cllull + 10 a2) IVl 7 + 1016]171)
< C(lull g2 + [|b]l z2) B(), (3.43)

while for the linear terms, it is easy to see that

/Au 81b—/V><w 1b < (| Aull 2 + [|Veo]| ) 01b]] 2

1
< (1AulZz + [VwllZe) + Sl101blIZe (3.44)
Inserting the estimates (3.43) and (3.44) into (3.42) leads to (3.41). This completes the proof of
Lemma 3.5. O

Lemma 3.6 (Dissipation of (ut,be,we)).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the
initial data satisfying the conditions in Proposition 3.1. Then we have

t t
(Vs 20) (8) |22 + / 1 ut b, we) (5) | 2odls — 4 / (Y, 81b, Vo) (s) 2 ds
0 0

<c / 1, ) (8)]12p2 B(8)d + [ (Vg 20)] 2. (3.45)

for any t € [0,T].

Proof.  Taking the L? inner product of the first three equations in (1.5) with u,, by and wy, respectively,
we can show from the integration by parts that

1d

5 oIV, 20) 3 + e, by ) 3

_/(U'V)U'Ut+/(b~V)b-ut—/(u~V)b-bt+/(b~V)u-bt—/(u-V)wwt

+/81b~ut+/81u~bt+/vxw-ut—i-/vxuwt (346)

due to dyus = dou; = 0 and wy = w = 0 on 9. We first use Hélder’s inequality, Sobolev’s embedding
and Young’s inequality to bound the nonlinear terms on the right-hand side of (3.46) as

—/(u~V)u-ut+/(b~V)b-ut—/(u~V)b-bt+/(b~V)u-bt—/(u-V)wwt

:—/((u-V)u—blalb—bQGQb)-ut—/(u181b+u282b—(b-V)u)-bt—/(u-v)wwt

< (lullze IVullz2 + o] Lo 1010]] L2 + [[b2] Lo [|02b]| L2) 1wt ]| 22
+ (lurllze 1010l L2 + lluzll L1020l L2 + ([l oo [Vl L2)[[bell 2 + [l Lo [Vl 2] | 22
Clllullz=IVullz2 + 1621010 ) [uel 2 + C(llullm2l|01bll L2 + (16l 2|Vl ) [[be]| 2
+ Cllull e [Vl 22w 22
1

< s b w7z + C(lull + 1BllZ) (IVullfn + 101015 + [IVellZ:)

1
< s, b, w72 + Clllullf + [BlI7=) B(2)- (3.47)

For the linear terms on the right-hand side of (3.46), on the other hand, it is clear that

/(%b ut—l—/alu bt—l—/wa ut+/quwt
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1
< G b, we) 72 + 2(101811Z2 + [Vulfz + [VellZs). (3.48)

Combining (3.46)—(3.48), we can deduce the desired estimate (3.45). This completes the proof of
Lemma 3.6. O

Lemma 3.7 (Dissipation of Vu).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the initial
data satisfying the conditions in Proposition 3.1. Then we have

e (£)]125 + / IV ue(s) [22ds — 2 / (bt we)(s)||2ads < C / 1, b)(5) 22 B(s)ds + [[un(0)[2 (3.49)

for any t € [0,T].

Proof.  Applying d; to (1.5); and taking the L? inner product of the resulted equation with wu;, we can
use the integration by parts to obtain

1d
g gpllulis + 190l = = [ Vyws e+ [(@ b+ [ bt [Vxwnu

—/(ut~V)u-ut—/(bt~V)ut-b—/(b-V)ut'bt—/bt-alut-l-/thxut.

It then follows from Hélder’s inequality, Sobolev’s embedding and Young’s inequality that
1d
2.dt

< IVl gz flullgs + 2010l oe [1bel| 2| Ve ]| 22 + [1bg

—lluellZz + [VuellZ:

|2 101ue][ L2 + [Jwel[ L2 | Ve 2
1 1
< Ol Vaull 2 (uell 32l Vue )| 22 + lluell2)? + ClUbN g2 16l 2 [ Vel L2 + (1Bell 22 + llwell 22) [ Vae | 22
1
< §||Vut||%2 + C(IVullpz + 11l a2) (luell 3 + 1061 72) + (10el| 72 + [[wel|72)
1
< §||Vut||ri‘—2 + C(llull g + 16l 2)B(t) + (Ibell 72 + llwel|72),

from which we can deduce the desired estimate (3.49). This completes the proof of Lemma 3.7. O

Lemma 3.8 (Dissipation of Vo1b).  Let (u,b,w) be the solution of System (1.5)—(1.8) with the initial
data satisfying the conditions in Proposition 3.1. Then we have

(120013 6 [ m(@g00? +21 [ 2(030)?)

t t t
+ / IV0,b(s) [22ds — 2 / [Vue(s) [2ods — 8 / ||v2w<s>|izds>
0 0 0

< C/O (I, 0)(8) 12 + [1b(5) 72 + [1b(5) 1 F2) B(s)ds
+ (||Ab0|i2 - 6/601(8§b01)2 +21/b31(a§b01)2> (3.50)

for any t € [0,T].

Proof.  Firstly, we apply A to (1.5)y and take the L? inner product of the resulted equation with Ab
to get

2dt”AbHL2 /Ab A(Ou) + /A (b-Vu—u-Vb)- Ab. (3.51)

To obtain the dissipation of V9;b, we first rewrite the first term on the right-hand side of (3.51). Since
JAb- V& P =0 due to Aby = 0 on 99, we see from the velocity equation of (1.5) that

/Ab A(O1u) = /Ab 82b+/Ab Oruy — /Ab 01 (V x w) + /Ab O1(u-Vu—>b-Vb). (3.52)
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The dissipation will arise from the first integral on the right-hand side of (3.52). Indeed, the integration
by parts gives that

/Ab-afb = /afblafbl +/622b18fb1 +/Ab2<’9§b2
= /812b18fb1 - /agblagafbl - /alAbgalbg
= /a%blafbl +/8182b18281b1 +/81Vb2 - 01Vby
= [|VOrb]7e. (3.53)
For the linear terms on the right-hand side of (3.52), we have
/Ab-alut = /612b181u1t+/8§b131u1t+/Ab281th
= / 07b10vuy; — / Dab1 020 U1 — / Vby - 01 Vugy
= /8fb181u1t+/8182b182u1t +/81Vb2-Vu2t
<0 9b] Vel 2 < 7I90ub 2 + Vel (3.54)
and
—/Ab-@l(v X w) = —/afb-al(v X w) —/agblalaZer/agbzafw

= —/afb . 81(V X w) — /8162[)16;10 — /82(91()181211)
<0190 12 (IV x drw| 2 + |0Fw] 2 + [|03w] 2)

1
< Zuvalbuiz + 4| V2w]|2,. (3.55)

Inserting (3.52)—(3.55) into (3.51), we obtain

1d 1
5 7180052 + 5100Vbl: = [[Vul7z - 4(ll0F w7 + [05wllz2)
< /81(u-Vu)-Ab—/31(b-Vb)~Ab+/A(b~Vu)-Ab—/A(u-Vb)~Ab

=t Ju1 + Jaz + Jaz + Jua. (3.56)

We now estimate Jy1, Ja2, Jag and Jyq one by one. For Jy1, we can use the integration by parts and (2.3)
to deduce that

J41 = —/(Ulalul)A81b1 — /(U181U2)A81b2 — /(’U,Qag’u,) . A@lb

= /V(ulalul) . V81b1 + /V(ulﬁluQ) . V31b2 +/V(U282U) . V@lb

< V(u - Vu)|[2([[VO1ba|z + [VOib2| L2 + [|[VO1b]|L2)
< Cllull g2 |Vl g1 ]]01b] 1
< Cllull = B). (3.57)

Similarly, for Jyo, we have

Jup = / byOyby A,y + / by Ovbs A, bs + / boabADLD
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= —/V(blalbl)-valbl —/V(b181b2)~V81b2 —/V(bg@gb)-valb

< CV(b-Vb)|[L2[|VOrib] L2
< O[bl| 2|16 1 [V O1b1 || 2
< O|bllu=B(2). (3.58)

The estimates for Jy3 and Jy4 are more subtle. For Jy3, we first split it into three terms
Juz = /(Ab “Vu+2(Vh-V)Vu +b-VAu) - 02b + /(Ab - Vug 4+ 2(Vb - V)Vug + b - VAus)03by

+ /(Ab -Vuy +2(Vb-V)Vuy +b- VAu;)93b,
=: Jy31 + Juz2 + Juzs. (3.59)
By Holder’s inequality, Sobolev’s embedding and Young’s inequality, we have

Jaz1 < (1Ab] 2 [Vl + 2/V0] Lo [V2ul s + [[b] oe [|VPul| £2) [ 070 2

Clloll a2 IVl 122|016 21

Clbllzz2 (Va7 + 1918117

Cllbl = B(t) (3.60)

/

NN N

and

(1Abll 2 | Vuz ]| oo + 2[ VBl o [ VPuzl o + [[bll 2 [V uz] £2) [05b2 | 2

Juza <
< Cllbll 2 ([ Vel 20201 ] 12
<
<

Clibllzzz (I Vullzp + 1910117
ClIbll 2 B(2).- (3.61)
To estimate Jy33, we first use the integration by parts to rewrite it as
Juz3 = /fﬁblaﬂtlagh +/31u1(322b1)2+/6f6232u13§b1 +/8§b232u18§b1
+2/(81b~V)81u10§b1 +2/82b18201u18§b1 +2/82b2822u18§b1
+/b161Au13§bl +/b282Au18§b1
= /afblalulagbl +/(822b1)281u1 +/a§b282ula§b1 - /8281b182u18§b1
+ 2/(81b~V)81u18§b1 — 2/822u182b18182b1 — 2/01b1822u18§b1
—/alblAu16§b1 +/82b1Au18281b1 +/b162Au18281b1 +/b262Au18§b1. (3.62)

Then it is clear that except for the second term on the right-hand side of (3.62) the other integrals can
be bounded by
10101 11 [ Vun || o< 0361|224 110106 Lo |V 2 un || 4 10301 | 22 + |V *ua || 2 [|D2ba[[ L4 (|01 Db [| 2
+ [[b1 ]| o 102 Aun || 2182011 (| 2 + [[b2]| o< |82 A || £2(|8301 | L2
and thus by

This means that
Ju33 < CHbHHzB(t) + /(83[)1)2611“,



Lin H X et al. Sci China Math ~ July 2020 Vol. 63 No.7
which together with (3.59)—(3.61) yields that
Jus < C|bll = B(E) + /(822b1)281u1.
Similarly, for Jy4, we rewrite it as
Jyg = — /(Au -Vb+2(Vu-V)-Vb)-02b — /(Au Vb, 4 2(Vu - V) - Vb1 )92by
— /(Au - Vby + 2(Vu - V) - Vby)02by
=: Jyq1 + Jaao + Jyu3.

Clearly, we have

< (1Aull 4 V0]l o + 2[Vull L [ V20]|2) ([07D]| 2 + 95Dzl 2)
< C(IAull g VOl g + IV ull = [0l =) (107Dl 2 + 1020101 | 12)
< ClIVaull g2 bl 21016 a1

< Clbll=B(?).

Jaar + Jaasz

We now deal with Jy4o:
Jago = —/Aulfﬁlbla%bl —/612u282b18§b1 +/6281u182b18§b1
) / Dvu - Vi by2by — 2 / D1 Or Daby O2by — 2 / Da>02b102b,
= —/Aulalbl(?%bl —/3231uz32b18182b1 +/3§u182618182b1
- 2/31u -VO1b,02by — 2/82u18182b13§b1 + 2/(a§b1)2a1u1.
On the right-hand side of (3.64), all the integrals except for the last one can be bounded by

([ Auy || 4 )|01b1 || £a]|O5b1 | L2 + |Vl 4| 02by || L4 101821 (| 12 + [ V]| oo [ VO1b1 || 2 |03 b1 | 2

and thus by
[1Bl] 72 1016l 12 [[ V]| 2.

This means that
J442 < CHb”H?B(t) + 2/(8%1)1)281”1;

which together with (3.64)—(3.66) gives that
J44 < CHbHHzB(t) + 2/(63[)1)281”1.

Substituting (3.57), (3.58), (3.63) and (3.67) into (3.56), we have
Ld
2dt

which together with (3.40) gives that
d
5 (1001 =6 [ @0+ 21 [ 1030)?) + (19001 — 20wl - IVl
< Cllull gz + bl = + 617> + 1BlI72) B(2)-

This completes the proof of Lemma 3.8.

1303

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

1
J8bl22 + 5 IVObl2: — IVuel3e — 41Vw]3e < Cllullis + bl =) B() +3 / (93b1)?0rus,
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Proof of Proposition 3.1.  Firstly, we remark that
[Au|rz = |[V2ull 2 = [V(V x w)|[r2 and  [[VPul|zz = [|A(V x u)|z2

and that
V202 = [V(V x b)|[r2 and [|Aw] 2 = |[VZw]| L2

by the integration by parts. Then we can combine (3.3), (3.4) and (3.21) to deduce that
(2”(u’ b))l _8/’)1(‘9251)2 - 12/b1(a§b1)2 +42/b2 (92b1) > / 1(Vu, w)(s)[|42ds
< C/Ot(ll(wb, w)($) |2 + 1[6(s) |72 + [16(s)72) B(s)ds
+ (2ll(uo,bo,wo)lip - 8/b01(82b01)2 — 12/b01(822b01)2 +42/b%1(8§bm)2) (368)

for any ¢t € [0,7]. Thus multiplying (3.41), (3.45), (3.49) and (3.50) by %, 35, 135 and 15, respectively,
and adding the resulted inequalities into (3.68), we obtain

1
(1)@ + 135 )13 — Salble=lo1e )

1 t
512 /) U1V, w)(s)lI372 + 1010() |72 + (e, by we) (5)[1 72 + [Vue(s)172)ds

< C/O (s b, w) ()2 + 11 (u, )(8) 12 + [1B(5) [[342) B(s)dls

1
s (0)12 +64||b0||Lw||bo||%z)

b 2
N G

for any ¢ € [0, T], which together with the assumption (3.1) yields that

1Cu, b, w) (O 72 + 1Ot [1Z +/0 (Ve w) ()72 + 1010() 7 + el + 11 (be, we) () 172 ) s

t

C(ll(uo, bo, wo) [ > + 10¢u(0)[[Z2) + Ceo [ B(s)ds
0

t
< Ol (ug, bo, wo) || %2 + Cco/ B(s)ds
0
for some c( suitably small. Here, we also used the fact that

10¢u(0)]| L2 < C([[(uo, bo) |l 2> + lwoll )
in the last inequality, which follows from the compatibility conditions. Therefore, we have

t t

A(t) +/ B(s)ds < C||(uo, bo, wo)|| 32 +Cc0/ B(s)ds.
0 0

By choosing some ¢y suitably small, we conclude that

t
A + / B(s)ds < C/|(uo, bo, wo)|pa.
0

This completes the proof of Proposition 3.1. O
Proof of Theorem 1.1.  We first take &g suitably small such that Cpe? < %cg. Let

T = sup{t] || (u. b, w)(t)[|%> < i}
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If T* < +o0, we will see from the uniform a priori estimates (3.2) in Proposition 3.1 that

1
sup ”(uvb7 w)(t)H%IQ < C’05(2) < 503,
0<t<T™

which contradicts the definition of T*. Hence, we conclude T* = +oo.

The uniform estimate (1.9) follows from Proposition 3.1. This completes the proof of Theorem 1.1. [
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