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Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply

it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the

pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy

from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is

the landing point of a pinching path for any prescribed plumbing combinatorics.
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1 Introduction

One of the most important results in complex dynamics is Thurston’s topological characterization of

rational maps. It states that a post-critically finite branched covering of the 2-sphere with a hyperbolic

orbifold is combinatorially equivalent to a rational map if and only if it has no Thurston obstructions [11].

This condition has been proved to be necessary for geometrically finite rational maps [26]. McMullen [4]

proposed extending Thurston’s theorem to this case.

This problem has been solved for the sub-hyperbolic case [10, 17]. In the first part of this work, we

solve this problem in the presence of parabolic points. The main tool is pinching.

In general, pinching provides a path of quasiconformal deformations of a hyperbolic Riemann surface,

whose Beltrami differential is supported in a neighborhood of a finite disjoint union of simple closed

geodesics. Along the deformations the lengths of these geodesics shrink to zero. The limit is a stable

curve in the Deligne-Mumford compactification.

One may perform such deformations on Riemann surfaces occurring as the quotient space of a Kleinian

group (see [23] for related results). Pinching has also been applied in order to study the parameter space

of the dynamics of rational maps [22], where the simple closed geodesics on the quotient space of the

rational maps are chosen such that their lifts to the dynamical space are simple closed curves.
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For our purpose, creating parabolic points from attracting points, we have to choose the simple closed

geodesics on the quotient space such that their lifts to the dynamical space are arcs which join attracting

periodic points to the Julia set. Such a choice makes the control of the distortion of quasiconformal

conjugacy more difficult.

In this work, we first study pinching on specific simple closed geodesics on the quotient spaces of

rational maps. We will call this type of pinching simple pinching. By using the length-area method to

control the distortion of quasiconformal conjugacy, we prove that the pinching path is convergent. This

result was generalized to other cases [15,16].

Plumbing is a surgery on a nodded Riemann surface which is like an inverse to pinching: it replaces

pairs of cusp neighborhoods by thin annuli. We will apply this surgery to create attracting points from

parabolic points in the dynamics of rational maps.

Begin with a semi-rational map with parabolic points. We start by constructing a sub-hyperbolic

semi-rational map by plumbing. We prove that if the original map has neither a Thurston obstruction

nor a connecting arc, which can be viewed as a degenerate Thurston obstruction, then the resulting

semi-rational map has no Thurston obstruction. Now applying the characterization theorem obtained

in [10, 17] and the above result on simple pinching, we obtain a rational map that is c-equivalent to the

original semi-rational map.

Simple pinching can also be used to study a conjecture proposed by Goldberg and Milnor [12], which

states that if a polynomial has a parabolic cycle, then its immediate basins can be converted to be at-

tracting by a small perturbation without changing the topology of the Julia set. We prove this conjecture

in the setting of geometrically finite rational maps. Refer to [13–16] and [18, 19] for proofs of the same

conjecture in various settings, but with different methods.

The second part of this work is devoted to general pinching of rational maps. Unfortunately, the

distortion control for simple pinching is not valid in the general case. We start by studying plumbing

instead of pinching. We develop a new distortion control for univalent maps, and then show that any

plumbing of a geometrically finite rational map can be realized as a pinching path of a geometrically finite

rational map converging to the original map. Applying the characterization theorem obtained in the first

part, we prove that a pinching path is convergent if it satisfies the non-separating condition. This condition

has been proved to be necessary [37]. As a by-product, we show that the quasiconformal deformation of

a geometrically finite rational map supported on a non-separating multi-annulus is bounded in its moduli

space.

The above result is an analogue of Maskit’s theorem [23] for producing cusps. It is known that cusps

are dense in the space of boundary groups [24]. It has been asked whether cusps are dense in the boundary

of a hyperbolic component of rational maps [25]. Our results about pinching may be helpful in solving

this problem.

Main results. We now give definitions and statements. Let F be a branched covering of the Riemann

sphere C with degree degF > 2. Denote by ΩF = {z ∈ C : degz F > 1} the critical set of F , by

PF =
∪
n>0

Fn(ΩF )

the post-critical set of F and by P ′
F the set of accumulation points of PF . The map F is called

post-critically finite if PF is finite, and geometrically finite if P ′
F is finite.

Let f be a rational map of C with deg f > 2. Denote by Ff the Fatou set of f and by Jf the Julia set

of f ; refer to [2] or [30] for the definitions. In the literature, the geometric finiteness of a rational map f

is defined by the condition that Pf ∩ Jf is finite. It turns out that the two definitions are equivalent

when f is a rational map [7].

A geometrically finite branched covering F is called a semi-rational map if

(1) F is holomorphic in a neighborhood of P ′
F ,

(2) each cycle in P ′
F is attracting or super-attracting or parabolic, and

(3) any attracting petal at a parabolic periodic point in P ′
F contains points of PF .
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A semi-rational map F is called sub-hyperbolic if P ′
F contains no parabolic cycles.

See [30] or Subsection 2.6 for the definitions of attracting petals and attracting flowers. The

condition (3) implies that any attracting petal at a parabolic periodic point in P ′
F contains infinitely

many points of PF .
Let F be a semi-rational map. An open set U ⊂ C is called a fundamental set of F if U ⊂ F−1(U)

and U contains every attracting and super-attracting cycle in P ′
F and an attracting flower at each parabolic

cycle in P ′
F .

A fundamental set could be the empty set if F is post-critically finite. It is contained in the Fatou set

if F is a rational map.

Two semi-rational maps F and G are called c-equivalent if there exist a pair of orientation-preserving

homeomorphisms (ϕ, ψ) of C and a fundamental set U of F such that

(a) ϕ ◦ F = G ◦ ψ,
(b) ϕ is holomorphic in U ,
(c) ψ = ϕ in U ∪ PF and ψ is isotopic to ϕ rel U ∪ PF .
Let G be a semi-rational map with parabolic cycles in P ′

G. An open arc β ⊂ CrPG which joins two

points z0, z1 ∈ P ′
G is called a connecting arc if:

(i) either z0 ̸= z1, or z0 = z1 and both components of Crβ contain points of PG,
(ii) β is disjoint from a fundamental set of G, and

(iii) β is isotopic to a component β̃ of G−p(β) rel PG for some integer p > 0, i.e., there exists an isotopy

H : [0, 1]× C → C with H(0, ·) = id and H(t, ·) = id on PG for t ∈ [0, 1] such that H(1, β) = β̃.

Theorem 1.1 (Unicity). Two c-equivalent geometrically finite rational maps with infinite post-critical

sets are holomorphic conjugate in the isotopy class of the c-equivalence.

Theorem 1.2 (Existence). A semi-rational map with infinite post-critical sets is c-equivalent to a

rational map if and only if it has neither Thurston obstructions nor connecting arcs.

See [11,27] or Section 4 below for the definition of Thurston obstructions. In order to prove Theorem 1.2,

we first establish the following two results which have independent interest. See Section 5 for the precise

definition of pinching.

Theorem 1.3 (Simple pinching). Let f be a geometrically finite rational map and let ft = ϕt ◦ f ◦ϕ−1
t

(t > 0) be a simple pinching path starting from f = f0. Then the following properties hold:

(a) ft converges uniformly to a geometrically finite rational map g as t→ ∞.

(b) ϕt converges uniformly to a continuous onto map φ of C as t→ ∞.

(c) φ ◦ f = g ◦ φ and φ : Jf → Jg is a homeomorphism.

Theorem 1.4 (Simple plumbing). Any geometrically finite rational map with parabolic cycles is the

limit of a simple pinching path starting from a sub-hyperbolic rational map.

Denote by Md the space of holomorphic conjugate classes of rational maps of degree d > 2. For

[f ] ∈ Md, define M[f ] ⊂ Md by [g] ∈ M[f ] if g is quasiconformally conjugate to f .

Refer to Section 5 for the definition of non-separating.

Theorem 1.5 (Pinching). Let f be a geometrically finite rational map. Let ft = ϕt ◦ f ◦ ϕ−1
t (t > 0)

be a pinching path starting from f = f0 and supported on a non-separating multi-annulus. Then the

following properties hold:

(a) ft converges uniformly to a geometrically finite rational map g as t→ ∞.

(b) ϕt converges uniformly to a continuous onto map φ of C as t→ ∞.

(c) φ(Jf ) = Jg.
(d) M[g] ⊂ ∂M[f ].

The pinching deformation can be reversed via a plumbing surgery on the limit rational map g. The

complete set of possibilities for plumbing can be encoded by a finite set of combinatorial data—plumbing

combinatorics (see Subsection 10.1 for the definition).

Theorem 1.6 (Plumbing). Let g be a geometrically rational map with parabolic cycles and let σ be a

plumbing combinatorics of g. Then there exist a geometrically finite rational map f and a pinching path
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ft = ϕt ◦ f ◦ ϕ−1
t (t > 0) starting from f = f0 such that ft is a plumbing of g along σ and {ft} converges

uniformly to g as t→ ∞.

For each [f ] ∈ Md and any non-separating multi-annulus A in its quotient space, define M[f,A ] ⊂
M[f ] by [g] ∈ M[f,A ] if there exists a quasiconformal map ϕ of C such that g ◦ ϕ = ϕ ◦ f and the

Beltrami differential of ϕ is supported on π−1
f (A ). In general, M[f ] need not have compact closure

in Md. However, we have the following theorem.

Theorem 1.7 (Boundedness). Let f be a geometrically rational map and let A be a non-separating

multi-annulus. Then M[f,A ] is compactly contained in Md and any rational map in the closure of

M[f,A ] is geometrically finite.

Outline of the paper. In Section 2, we recall some basic results which will be used in the sequel.

Most of them are known except for some lemmas whose proofs are not difficult. In Section 3 we prove

Theorem 1.1 by considering local conjugacy at parabolic points and the boundary dilatation of a c-

equivalence. In Section 4 we begin by recalling Thurston’s theorem. Then we show that geometrically

finite rational maps have no connecting arcs, which is the necessary part of Theorem 1.2. We also show

that Thurston’s algorithm is convergent. In Section 5 we give the definition of the pinching path of a

rational map through a favorable model. The proof of Theorem 1.3 is given in Section 6.

In Section 7 we prove Theorem 1.4 and complete the proof of Theorem 1.2. The strategy is to make

a detour to sub-hyperbolic semi-rational maps via plumbing and pinching: Starting with a semi-rational

map G, we first construct a sub-hyperbolic semi-rational map F from G by simple plumbing. Then we

show that F has no Thurston obstructions and thus is c-equivalent to a rational map f . Finally we show

that the simple pinching limit of f is a rational map c-equivalent to G.

In the last three sections, we study general pinching and plumbing. In Section 8 we define a new

type of distortion for univalent maps and give a control for it using a property of the domains of the

univalent maps. Then we apply this distortion control to the dynamics of rational maps. The proofs of

Theorems 1.5–1.7 are given in the last two sections.

The proof of Theorem 1.5 is different from the proof of Theorem 1.3 and is quite involved. This is

because the distortion control in the proof of Theorem 1.3 cannot be applied to general pinching. We

start with a rational map f and its pinching path; instead of showing directly that the pinching path is

convergent, we first construct a semi-rational map G from the limit of truncated quasiconformal maps

whose convergence is easy to prove. Then we show that the map G has neither Thurston obstructions

nor connecting arcs, and hence is c-equivalent to a rational map g by Theorem 1.2. This provides us the

candidate limit map g of our pinching path. Now using a similar strategy as in the proof of Theorem 1.2,

we plumb g and then pinch. We have to check that we get exactly the same pinching path, and that it

converges uniformly to g by the distortion control established in Theorem 8.5.

Notation. The following notation and conventions will be used in this paper:

D(z0, r) = {z ∈ C : |z − z0| < r} for z0 ∈ C and r > 0,

D(r) = D(0, r) and D = D(0, 1),
D∗(r) = D(r)r{0} and D∗ = D∗(1),

A(z0; r1, r2) = {z ∈ C : r1 < |z − z0| < r2} for z0 ∈ C and 0 < r1 < r2,

A(r1, r2) = {z ∈ C : r1 < |z| < r2} for 0 < r1 < r2,

A(r) = {z ∈ C : 1/r < |z| < r} for r > 1.

C = C ∪ {∞} is the Riemann sphere and C∗ = Cr{0}.
U b V if U ⊂ V for open sets U, V ⊂ C.
A disk is a Jordan domain in C.
An annulus A1 is contained essentially in another annulus A2 if A1 ⊂ A2 and A1 separates the two

boundary components of A2.
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2 Preliminaries

2.1 Modulus and extremal length

Let A ⊂ C be an annulus such that each of its two complementary components contains at least two

points. Then there exist a constant r > 1 and a conformal map χA : A→ A(r), where r is unique and χA
is unique up to post-composition of a rotation and the inversion z 7→ 1/z.

• The modulus of A is defined by modA = (log r)/π.

• χ−1
A {z : arg z = θ} is a vertical line in A for 0 6 θ < 2π,

• χ−1
A {z : |z| = ρ} is a horizontal circle in A for 1/r < ρ < r and

• e(A) = χ−1
A {z : |z| = 1} is the equator of A.

Refer to [26, Theorem 2.1] for the next lemma (the statement is slightly different but with the same

proof).

Lemma 2.1. Let A ⊂ C be an annulus with modA > 5 log 2
2π and let z0 be a point in the bounded

component of CrA. Then there exists an annulus A(z0; r1, r2) contained essentially in A such that

modA(z0; r1, r2) > modA− 5 log 2

2π
.

The modulus of an annulus is related to extremal length as follows. Let ρ(z) be a non-negative Borel

measurable function on A satisfying

0 < Area(ρ,A) =

∫∫
A

ρ2(z)dxdy <∞.

The ρ-length of a locally rectifiable arc α ⊂ A is

L(ρ, α) =

∫
α

ρ(z)|dz|.

Let Height(ρ,A) be the infimum of L(ρ, α) over all locally rectifiable arcs α ⊂ A which join the two

components of CrA. Let Width(ρ,A) be the infimum of L(ρ, γ) over all locally rectifiable Jordan curves

γ ⊂ A which separate the two components of CrA. The following classical inequalities (refer to [20]) will

be used several times in this paper.

Lemma 2.2. It holds that

Height(ρ,A)2

Area(ρ,A)
6 modA 6 Area(ρ,A)

Width(ρ,A)2
.

Both equalities hold for ρ(z) = |(logχA)′(z)|, which is called an extremal metric of A.

A (topological) quadrilateral Q = Q(α, α′) is a Jordan domain Q in C together with a pair of open

arcs α, α′ ⊂ ∂Q that have disjoint closures. We will call the two arcs α and α′ the horizontal sides

of Q, and the two arcs ∂Qr(α ∪ α′) the vertical sides of Q. There exist a unique constant b > 0 and a

conformal map

χQ : Q→ Rb = {z = x+ iy : 0 < x < 1, 0 < y < b}

such that the continuous extension of χQ maps the two horizontal sides (α, α′) onto the two horizontal

sides (0, 1) and (ib, 1 + ib) of the rectangle Rb.

• The modulus of Q is defined by modQ = b.

• χ−1
Q {x+ iy : x = x0} is a vertical line of Q for 0 < x0 < 1 and

• χ−1
Q {x+ iy : y = y0} is a horizontal line of Q for 0 < y0 < b.

Lemma 2.2 also holds for the quadrilateral Q, where Height(ρ,A) and Width(ρ,A) are replaced by the

following: Height(ρ,Q) is the infimum of the ρ-length of all locally rectifiable arcs in Q which join the

two horizontal sides of Q, whereas Width(ρ,Q) is the infimum of the ρ-length of all locally rectifiable

arcs in Q which join the two vertical sides of Q. The following two lemmas will be used in the proof of

Lemma 5.9.
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Figure 1 (a) Four quadrilaterals form an annulus. (b) Sub-quadrilaterals

Lemma 2.3 (From quadrilaterals to an annulus). Let Qi(αi, α
′
i) (1 6 i 6 n) be quadrilaterals such that∪n

i=1Qi = A is an annulus and
n∪
i=1

(∂Qirα′
i) = ∂+A =

n∪
i=1

αi, (2.1)

where ∂+A is one of the two components of ∂A (see Figure 1(a)). Then

1

modA
6

n∑
i=1

1

modQi
.

Proof. Set ρi(z) =
|χ′

Qi
(z)|

modQi
on Qi and ρi(z) = 0 otherwise for 1 6 i 6 n. Then

Area(ρi, Qi) =
1

modQi
and Height(ρi, Qi) = 1.

Set ρ(z) = max{ρi(z)}. Then

Area(ρ,A) 6
n∑
i=1

1

modQi
.

By (2.1), the other component of ∂A is contained in
∪
α′
i. Let δ : (0, 1) → A be a locally rectifiable

arc in A which joins the two components of ∂A. By the second equation of (2.1), one end of δ must

be contained in αj for some 0 6 j 6 n. By the first equation of the condition, either δ is totally

contained in Qj and hence the other endpoint of δ lands on α′
j , or δ intersects α

′
j . In both cases, we have

L(ρ, δ) > L(ρj , δ) > 1. So Height(ρ,A) > 1. Now the lemma follows from Lemma 2.2.

A quadrilateral Q0(α0, α
′
0) is a sub-quadrilateral of a quadrilateral Q(α, α′) if Q0 ⊂ Q and (α0∪α′

0)

⊂ (α ∪ α′).

Let Q be a quadrilateral and let Q1, Q3 ⊂ Q be disjoint sub-quadrilaterals of Q such that each of the

two vertical sides of Q is a vertical side of Q1 or Q3. Let β1 and β3 be vertical lines in Q1 and Q3,

respectively. Then we get a sub-quadrilateral Q2 of Q such that (β1, β3) are vertical sides of Q2. Let

Q12 = Q1∩Q2, which is a sub-quadrilateral of Q1 and Q2. Let Q23 = Q3∩Q2, which is a sub-quadrilateral

of Q3 and Q2 (see Figure 1(b)). Let

M = max{modQ12,modQ23, 1}.

Lemma 2.4 (Three overlapping quadrilaterals). It holds that

1

modQ
6

3∑
i=1

M2

modQi
.
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Proof. Set ρi(z) =
|χ′

Qi
(z)|

modQi
on Qi and ρi(z) = 0 otherwise for i = 1, 2, 3. Then

Area(ρi, Qi) =
1

modQi
and Height(ρi, Qi) = 1.

Set

ρ(z) = max{ρi(z) : i = 1, 2, 3}.

Then Q = E1 ∪ E2 ∪ E3, where Ei is defined by

Ei = {z ∈ Q : ρ(z) = ρi(z)}, i = 1, 2, 3.

Since ρ(z) > 0 for z ∈ Q, we have Ei ⊂ Qi and

Area(ρ,Q) 6 Area(ρ,E1) + Area(ρ,E2) + Area(ρ,E3)

= Area(ρ1, E1) + Area(ρ2, E2) + Area(ρ3, E3)

6 Area(ρ1, Q1) + Area(ρ2, Q2) + Area(ρ3, Q3)

=
1

modQ1
+

1

modQ2
+

1

modQ3
.

Since β1 is a vertical line in Q1, the quadrilateral Q12 becomes a rectangle in the rectangle model

of Q1. Therefore ρ1 restricted to Q12 is an extremal metric of Q12. Thus

Area(ρ1, Q12) = Width(ρ1, Q12) =
1

modQ12
.

Similarly,

Area(ρ3, Q23) = Width(ρ3, Q23) =
1

modQ23
.

For any arc α in Q which joins the two horizontal sides of Q, either α is contained in Qi for some

i ∈ {1, 2, 3} and joins the two horizontal sides of Qi, or α intersects the two vertical sides of either Q12

or Q23. In the former case,

L(ρ, α) > L(ρi, α) > Height(ρi, Qi) = 1.

In the latter case, suppose α intersects the two vertical sides of Q12. Then there is a sub-arc α′ of α

which stays in Q12 and joins the two vertical sides of Q12. Thus

L(ρ, α) > L(ρ, α′) > L(ρ1, α
′) > Width(ρ1, Q12) =

1

modQ12
> 1

M
.

In summary, we have L(ρ, α) > 1/M and hence Height(ρ,Q) > 1/M . Applying Lemma 2.2, we obtain

1

modQ
6 Area(ρ,Q)

Height(ρ,Q)2
6

3∑
i=1

M2

modQi
.

This completes the proof.

Theorem 2.5. Let {ϕt} (t > 0) be a family of homeomorphisms of C which converges uniformly to a

homeomorphism ϕ of C as t→ ∞. Let A ⊂ C be an annulus with mod (A) <∞. Then

lim
t→∞

modϕt(A) = modϕ(A).

Proof. We may assume that ϕ is the identity by considering the sequence {ϕt ◦ ϕ−1}. Then {ϕt(A)}
converges to A as t→ ∞ in the sense of Carathéodory, i.e.,

(1) any compact subset E ⊂ A is contained in ϕt(A) once t is large enough, since {ϕt} converges

uniformly to the identity as t→ ∞, and

(2) if U ⊂ C is an open set and t0 > 0 is a constant such that U ⊂ ϕt(A) for t > t0, then U ⊂ A.
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In fact, for any point z ∈ U , since ϕt(z) converges to the point z as t → ∞, there exists a constant

t1 > 0 such that ϕt(z) ∈ U for t > t1. Thus ϕt(z) ∈ U ⊂ ϕt(A) for t > max{t0, t1}. So z ∈ A. Therefore

U ⊂ A.

Each of the two components E1, E2 of CrA contains more than one point since mod (A) < ∞.

Since {ϕt} converges uniformly to the identity, for i = 1, 2,

lim
t→∞

diamsϕt(Ei) = diamsEi > 0.

Therefore,

lim sup
t→∞

modϕt(A) <∞

by Teichmüller’s theorem (refer to [1, Theorems 4–7]). Let

χt : ϕt(A) → Bt := {z : 1/rt < |z| < rt}

be a conformal map, where

(log rt)/π = modϕt(A).

Then there exists a constant t0 > 0 such that the family {χt} (t > t0) is uniformly bounded.

For any sequence tn ∈ (t0,∞) (n ∈ N) with tn → ∞ as n → ∞, by the Motel principle, there exist a

subsequence (also denoted by {tn}) and a holomorphic map χ on A such that for any compact set E ⊂ A,

χtn converges uniformly to χ on E.

By Carathéodory’s theorem (refer to [32, Theorem 1.8]), either the map χ is constant or it is univalent,

and in the latter case, {Btn} converges to χ(A) as n→ ∞, i.e.,

(a) any compact subset E ⊂ χ(A) is contained in Btn once n is large enough, and

(b) if U ⊂ C is an open set and n0 > 0 is an integer such that U ⊂ Btn for n > n0, then U ⊂ χ(A).

Obviously, the map χ is not constant since χ fixes the unit circle. Thus {Btn} converges to χ(A) as

n→ ∞. It follows that

χ(A) = {z : r < |z| < 1/r} with r = lim
n→∞

rtn .

Therefore,

lim
n→∞

modϕtn(A) = lim
n→∞

modBtn = modχ(A) = modA.

This completes the proof.

2.2 Quotient maps

A continuum E ⊂ C is full if CrE is connected. By a quotient map of C we mean a continuous onto

map q of C such that for any point w ∈ C, q−1(w) is either a single point or a full continuum.

We will call two quotient maps q0 and q1 of C isotopic rel a closed subset E ⊂ C if there exists a

continuous map H : [0, 1] × C → C such that H(0, ·) = q0, H(1, ·) = q1, qt = H(t, ·) is a quotient map

of C for t ∈ [0, 1] and q−1
t (w) = q−1

0 (w) for w ∈ q0(E) and t ∈ [0, 1]. Refer to [8] or [31] for the following

lemma.

Lemma 2.6. Let q be a continuous onto map of C. The following conditions are equivalent:

(i) The map q is a quotient map.

(ii) q−1(E) is a full continuum if E ⊂ C is a full continuum.

(iii) q−1(E) is a continuum if E ⊂ C is a continuum.

(iv) q−1(U) is an n-connected domain if U ⊂ C is an n-connected domain (n > 1).

(v) There exists a sequence of homeomorphisms {ϕn} of C such that ϕn converges uniformly to q as

n→ ∞.

The following lemma will be used in the proof of Lemma 9.12.
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Lemma 2.7. Let Q be a family of quotient maps of C. Then Q is equicontinuous if, for any point

w0 ∈ C and any disk U ⊂ C with w0 ∈ U , there exist a constant δ(w0) > 0 and a disk V ∋ w0 with

V ⊂ U , such that for any q ∈ Q, the spherical distance

dists(q
−1(∂U), q−1(V )) > δ(w0).

Proof. If Q is not equicontinuous, then for any ε > 0, there exist a sequence {qn} in Q and a sequence

of pairs (zn, z
′
n) of points in C such that dists(zn, z

′
n) → 0 as n→ ∞ but

dists(qn(zn), qn(z
′
n)) > ε. (2.2)

Passing to a subsequence, we assume that {qn(zn)} converges to a point w0. Let U = D(w0, ε/2). By

hypothesis, there exist a constant δ(w0) > 0 and a disk V ∋ w0 with V ⊂ U , such that

dists(q
−1
n (∂U), q−1

n (V )) > δ(w0).

When n is large enough, qn(zn) ∈ V . Thus qn(z
′
n) /∈ U by (2.2). Therefore,

δ(w0) < dist(q−1
n (∂U), q−1

n (V )) 6 dist(zn, z
′
n).

This contradicts the fact that dists(zn, z
′
n) → 0 as n→ ∞.

2.3 Convergence of rational map sequences

If a sequence of rational maps {fn} is uniformly convergent on C, then it converges to a rational map g.

Moreover, deg(fn) = deg(g) once n is large enough. The next lemma will be used in Subsections 6.2

and 9.2.

Lemma 2.8. Let {fn} be a sequence of rational maps with constant degree d > 1. Suppose that U⊂C
is a non-empty open set and {fn} converges uniformly to a map g on U as n→ ∞. Then g is a rational

map and deg g 6 d. Moreover, deg g = d implies that {fn} converges uniformly to g on C as n→ ∞.

Proof. By composing Möbius transformations, we may assume that ∞ ∈ U and fn(∞) → 1. Thus,

once n is large enough, the function fn has the form

fn(z) = kn
(z − a1,n) · · · (z − ad,n)

(z − b1,n) · · · (z − bd,n)
,

and kn → 1 as n → ∞. Since {fn} converges uniformly in a neighborhood of ∞ and fn(∞) → 1, both

{ai,n} and {bj,n} are bounded in C. Passing to a subsequence {fnk
}, we have

(a1,nk
, . . . , ad,nk

; b1,nk
, . . . , bd,nk

) → (a1, . . . , ad; b1, . . . , bd) as nk → ∞.

If ai ̸= bj for 1 6 i, j 6 d, let

g1(z) =
(z − a1) · · · (z − ad)

(z − b1) · · · (z − bd)
;

then {fnk
} converges uniformly to g1 on C. Since {fn} converges uniformly to g on U , we have g = g1

on U , and {fn} converges uniformly to g on C.
Otherwise, suppose ai ̸= bj for 1 6 i, j 6 d0 and ak = bk for d0 < k 6 d. Let

g1(z) =
(z − a1) · · · (z − ad0)

(z − b1) · · · (z − bd0)
.

Then {fnk
} converges uniformly to g1 on any compact subset of Cr{ad0+1, . . . , ad}. So g = g1 on U and

hence g is a rational map with deg g = d0 < d.
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2.4 Shrinking lemma

Let f be a rational map with deg f > 1. The following lemma is well-known (refer to [21]) and will be

used several times throughout this paper.

Lemma 2.9. Let U ⊂ C be a simply-connected domain disjoint from Pf and rotation domains. For

any domain D b U and any integer n > 1, denote by Cn the maximum of the spherical diameters of all

the components of f−n(D). Then Cn → 0 as n→ ∞.

Proof. If #f−1(Pf ) < 3, then f is holomorphically conjugate to the power map z 7→ z±d. The lemma

is easy to check in this case.

Now we assume that #f−1(Pf ) > 3. If Cn ̸→ 0 as n → ∞, there exists a sequence {nk} in N with

nk → ∞ as k → ∞, and there exists a component Dk of f−nk(D), such that the spherical diameter

diamsDk → C > 0 as k → ∞.

Denote by Uk the component of f−nk(U) containing Dk and by gk the inverse map of the univalent

map fnk : Uk → U . Then {gk} is a normal family on U since gk(U) = Uk is disjoint from f−1(Pf ).
Thus there is a subsequence of {gk}, which we will also denote by {gk}, which converges uniformly to a

holomorphic function g on D. Moreover, g is not a constant since diamsgk(D) → C > 0 as k → ∞. Thus

g : D → g(D) is a univalent map.

We claim that g(D) ⊂ Ff . Otherwise, there is a domain V b g(D) such that V ∩ Jf ̸= ∅. So fn(V )

covers C with at most two exceptional points once n is large enough. This contradicts the fact that

fn(V ) ⊂ D for infinitely many n ∈ N. Thus g(D) ⊂ Ff .
Since U is disjoint from rotation domains, for any domain W b g(D), fn(W ) converges to a periodic

orbit in Pf . On the other hand, once k is large enough, W b gk(D) and fnk |W = g−k |W converges

uniformly to the univalent map g−1 on W . This is a contradiction. Thus Cn → 0 as n→ ∞.

2.5 Parabolic points

By a parabolic fixed point we mean (g, y) where g is a holomorphic map from a neighborhood of y ∈ C
into C with g(y) = y, such that if y ̸= ∞, g′(y) = e2πi

p
q where p and q are co-prime positive integers with

p 6 q, and

gq(z)− y = (z − y)(1 + ckq(z − y)kq + · · · )

with ckq ̸= 0 for some integer k > 1; or if y = ∞, f(z) = 1/g(1/z) satisfies the above conditions at the

origin. Its rotation number is p/q and its multiplicity is kq+1. Refer to [30, Section 10], for the following

results, with a little modification.

Attracting/repelling petals and flowers. Let (g, y) be a parabolic fixed point with rotation number

p/q and multiplicity kq + 1. Let N ⊂ C be a neighborhood of the point y such that g is injective on N .

Suppose that Vi b N (i = 1, . . . , kq) are pairwise disjoint disks such that their union V satisfies the

following conditions:

(a) g(V) ⊂ V ∪ {y}.
(b) {gn(z)} → y as n→ ∞ uniformly on any compact subset of V.
(c) If {gn(z)} → y as n→ ∞ for z ∈ Nr{y}, then gn(z) ∈ V once n is large enough.

We will call these domains Vi attracting petals and their union V an attracting flower of (g, y). A

repelling petal and a repelling flower of g are defined as an attracting petal and an attracting flower

of g−1, respectively.

Theorem 2.10 (Leau-Fatou flower theorem). Let (g, y) be a parabolic fixed point. Then there exist an

attracting flower V and a repelling flower V ′ such that V ∪ V ′ ∪ {y} is a neighborhood of the point y.

Theorem 2.11 (Cylinder theorem). Let V be an attracting flower of the parabolic fixed point (g, y).

Then the quotient space V/⟨g⟩ is a disjoint union of k cylinders.
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Denote Ca = V/⟨g⟩. We will call it the attracting cylinder of (g, y). The repelling cylinder

of (g, y) is defined to be the quotient space Cr = V ′/⟨g⟩ of a repelling flower V ′. Then Cr is also a disjoint

union of k cylinders. The following corollary is easy to prove from the fact that every univalent map from

a cylinder to itself is surjective.

Corollary 2.12. Let V b N be a disjoint union of kq disks satisfying Conditions (a) and (b) in the

definition of attracting flowers. If the quotient space V/⟨g⟩ is a disjoint union of k cylinders, then V is

an attracting flower.

The existence of an attracting flower is a complete characterization of a parabolic fixed point, by the

following lemma.

Lemma 2.13. Let N ⊂ C be a domain and let g : N → C be a univalent map with a fixed point y ∈ N .

Suppose that V b N is a finite disjoint union of disks with y /∈ V satisfying the following conditions:

(a) g(V) ⊂ V ∪ {y}.
(b) {gn(z)} → y as n→ ∞ uniformly on any compact subset of V.
(c) If {gn(z)} → x as n→ ∞ for z ∈ Nr{x}, then gn(z) ∈ V once n is large enough.

Then (g, y) is a parabolic fixed point.

Proof. There exist a component V of V and an integer p > 1 such that gp(V ) ⊂ V ∪ {y}, by (a). Pick

a point z ∈ ∂Vr{y} and a Jordan arc δ0 in Vrgp(V ) joining the point z with gp(z). Let δk = gkp(δ0)

for k > 1. Then δk converges to the point y as k → ∞, by (b). Let

γ =
∪
k>1

δk ∪ {gkp(z)}.

Then γ is an arc joining the point gp(z) with the point y, and gp(γ) ⊂ γ. Thus by the Snail lemma (refer

to [30]) the fixed point y is not a Cremer point. Obviously, it is neither repelling nor Siegel. Consequently,

it is parabolic or attracting.

If the fixed point is attracting, then there exists a disk D b N with y ∈ D such that g(D) b D. Let

W0 = V ∩ g(D). Then g(W0) ⊂ W0. Let W1 = g−1(W0) ∩ g(D). Then g(W1) = W0 ⊂ W1. Inductively,

let Wn+1 = g−1(Wn) ∩ g(D) for n > 1. Then g(Wn+1) =Wn ⊂Wn+1.

Let En = ∂g(D)rg−1(Wn) for n > 1. Then En is closed and En+1 ⊂ En. In particular, En is

non-empty. Otherwise, we would have ∂g(D) ⊂ g−1(Wn). It follows that g(∂g(D)) ⊂ Wn. Since

g(Wn) ⊂ Wn−1 for all n > 1, we obtain gn+1(∂g(D)) ⊂ W0 ⊂ V. Since each component of V is simply

connected and g(D) b D, we get gn+2(D) ⊂ V. This is a contradiction since y ∈ gn+2(D) but y ̸∈ V.
Set E∞ =

∩
n>1En. It is non-empty. Pick a point z ∈ E∞. Then z ∈ ∂g(D) and hence gn(z) ∈ g(D)

for all n > 1, and {gn(z)} → y as n → ∞. On the other hand, z ̸∈ g−1(Wn) for all n > 1. Thus

g(z) ∈ g(D)rWn. We claim that gn(z) ̸∈ W0 for all n > 1. Otherwise, we would have gn−1(z) ∈ W1 by

the definition of W1. Inductively, g(z) ∈ Wn−1 and hence g(z) ∈ Wn. This is a contradiction. By the

claim and the definition of W0, g
n(z) /∈ V for all n > 1. This contradicts Condition (c). Therefore (g, y)

is a parabolic fixed point.

Sepals, calyxes and horn maps. Consider the map z → z+1. The infinity is a parabolic fixed point.

For any two constants y1 > 0 and y2 < 0, the two half planes {z = x+iy, y > y1} and {z = x+iy, y < y2}
are invariant under the map.

Such invariant domains exist for general parabolic points. The proof is easy and we omit it.

Let (g, y) be a parabolic fixed point with rotation number p/q and multiplicity kq + 1. Let N ⊂ C be

a neighborhood of the point y such that g is injective on N .

Theorem 2.14 (Sepal). There exist 2kq disjoint disks Wj b N such that g is a conformal map from

their union W onto itself and {gn(z)} → y as n→ ∞ uniformly on any compact subset of W.

We will call these domains Wi sepals and their union W a calyx. There are exactly two sepals of W
intersecting with an attracting petal; we call them a left sepal and a right sepal, as viewed from the

parabolic fixed point to the attracting petal.
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Denote by πa (πr, respectively) the natural projection from an attracting (repelling) flower to the

attracting (repelling) cylinder. For the sake of simplicity, we do not specify the domain of the projection

πa or πr. This does not cause confusion since if a point is contained in two different attracting flowers

(or repelling flowers), then its projection is independent of the choice of flower. Consequently, both πa
and πr are well-defined on a calyx.

Let W be a calyx. Then both πa(W) and πr(W) are the disjoint union of 2k one-punctured disks.

Define

Υg : πr(W) → πa(W) by Υg(πr(z)) = πa(z) for z ∈ W.

This is a well-defined conformal map and it is called a horn map of (g, y).

Regular flowers. Let (g, y) be a parabolic fixed point with rotation number p/q and multiplicity

kq+1. Let V be an attracting flower of (g, y). Then the projection πa(∂Vr{y}) is a disjoint union of kq

arcs and each of the k attracting cylinders contains q such arcs. Each arc lands on punctures at both ends,

or else the limit set of each arc is disjoint from punctures, or else the limit sets of the arcs are complicated

sets. On the other hand,
∩∞
n=1 g

n(V) is empty, or else contains a calyx, or else is a complicated set. To

avoid the complexity, we will need a further requirement for attracting flowers in this paper.

An attracting flower V is called regular if
∩∞
n=1 g

n(V) is empty, or equivalently, each arc in πa(∂Vr{y})
lands on punctures at both ends. A regular repelling flower is defined similarly. The following proposition

will be used in Section 3.

Proposition 2.15. (1) Any attracting flower contains a regular attracting flower.

(2) Let αn ⊂ Ca (1 6 n 6 kq) be pairwise disjoint arcs connecting two punctures such that each

of the k attracting cylinders contains q arcs. Then there exists a regular attracting flower V such that

πa(∂Vr{y}) =
∪kq
n=1 αn.

(3) For any attracting flower V of (g, y), there exists a regular repelling flower V ′ of (g, y) such that

V ∪ {y} ∪ V ′ is a neighborhood of the point y.

Proof. We only prove the proposition in the case that kq = 1. The proof for the general case has no

essential difficulty.

(1) Let V be an attracting flower of the parabolic fixed point (g, y) and let πa : V → Ca = C∗ be the

natural projection to the cylinder. Pick a bi-infinite sequence {wn} in C∗ (n ∈ Z) such that |wn| < |wn+1|,
|wn| → 0 as n → −∞ and |wn| → ∞ as n → ∞. Let βn ⊂ C∗ be a round circle with center zero and

radius |wn| for n ∈ Z. Then wn ∈ βn.

By Condition (c) in the definition of attracting flower, for each point w ∈ βn, there exists a point z ∈ V
such that πa(z) = w. Moreover, there exists a disk Dz ⊂ V with z ∈ Dz such that πa is injective on Dz.

Set Uw = πa(Dz). The sets Uw form an open cover of βn. Thus there is a finite open sub-cover. This

fact shows that there exists an arc γn ⊂ V joining a point zn ∈ π−1
a (wn) with the parabolic fixed point y,

such that πa(γn) = βn, and hence g(γn) ⊂ γn.

Let δn ⊂ C∗ be an arc in the annulus bounded by βn and βn+1 which joins the point wn with wn+1.

As above, there exist an integer in > 0 and an arc δ̃n ⊂ V which joins the point gin(zn) with g
in(zn+1)

such that πa(δ̃n) = δn. This implies that the domain bounded by δ̃n, γn and γn+1 is contained in V.
Start from the point z0 ∈ V. From the existence of δ̃n, we know that there exists an integer k1 > 0

such that the Fatou line segment α1 (a line segment in Fatou coordinates), which joins the point z0
with gk1(z1), is contained in V. Inductively, there exists a sequence of non-negative integers {kn} (n > 1)

such that the Fatou line segment αn which joins the point gkn−1(zn−1) with g
kn(zn) is contained in V.

Repeating this argument for n 6 −1 and setting k0 = 0, we get a sequence of non-negative integers

{kn} (n 6 0) such that the Fatou line segment αn which joins the point gkn+1(zn+1) with gkn(zn) is

contained in V.
These arcs {αn} for n ̸= 0 are pairwise disjoint. The union of them together with their endpoints

forms an arc α whose endpoints are both the parabolic fixed point y. Thus α ∪ {y} bounds a disk in V,
which is a regular attracting flower.

(2) We assume that kq = 1 for simplicity. Let W be a calyx of the parabolic fixed point (g, y). Then

πa(W) is the disjoint union of two once-punctured disks. The arc α1 can be cut into three arcs γ0, γ1
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and γ2 such that both γ0 and γ1 are contained in πa(W) and the endpoints of γ2 stay on α.

By a similar argument to that in the proof of (1), there exists an arc γ̃2 in an attracting flower of (g, y)

such that πa(γ̃2) = γ2. Let γ̃i ⊂ W be a lift of γi that has a common endpoint with γ̃2 for i = 0, 1.

Then the union of γ̃i (i = 0, 1, 2) together with their endpoints bounds a regular attracting flower V and

πa(∂Vr{y}) = α1.

(3) Pick a calyx W of (g, y) such that ∂Wr{y} is two horizontal lines in the Fatou coordinate. Then

there exists a regular repelling flower V ′
1 of (g, y) such that ∂V ′

1 ∩ W is two vertical lines in the Fatou

coordinate. Denote by z0 and z′0 the two endpoints of these two lines on ∂Wr{y}.
Pick a sequence of calyxes {Wn} (n > 1) in W such that Wn+1 ⊂ Wn ∪ {y}, ∂Wnr{y} is two

horizontal lines in the Fatou coordinate and {Wn} converges to the point y. Then there exists a pair

of points (zn, z
′
n) in ∂Wnr{y} for each n > 1 such that zn is contained in the same sepal as z0, z

′
n is

contained in the same sepal as z′0, and the Fatou line segments δn, δ
′
n which join zn with zn+1, and z

′
n

with z′n+1, respectively, are contained in V. Since {Wn} converges to the point y, both {zn} and {z′n}
converge to y as n→ ∞.

Let δ0 and δ′0 be the Fatou line segments which join z0 with z1, and z
′
0 with z′1, respectively. Let α be

the union of δn and δ′n together with their endpoints for n > 0. Then α ∪ {y} bounds a regular repelling

flower V ′ and V ∪ {y} ∪ V ′ is a neighborhood of the point y.

2.6 Quotient space of rational maps and periodic arcs

Let f be a rational map with attracting or parabolic domains. Define R̃f ⊂ Ff by z ∈ R̃f if its

forward orbit {fn(z)} is infinite, disjoint from Pf and contained in parabolic or attracting (but not

superattracting) domains. Define the grand orbit equivalence relation by z1 ∼ z2 if fn(z1) = fm(z2)

for integers n,m > 0. Then the quotient space Rf = R̃f/ ∼ has only finitely many components.

Each of them is either a punctured torus with at least one punctures (but only finitely many punctures)

corresponding to an attracting basin, or a punctured sphere with at least three punctures (but only finitely

many punctures) corresponding to a parabolic basin (refer to [29]). We will call Rf the (punctured)

quotient space of f and denote by πf : R̃f → Rf the natural projection.

Let β be an open arc in the attracting or parabolic domains of f with β∩Pf = ∅. We call β a periodic

arc if β coincides with a component of f−p(β) for some integer p > 1, or an eventually periodic arc if

fk(β) is a periodic arc for some integer k > 0. In that case the projection πf (β) is a simple closed curve

in Rf .

Conversely, let γ ⊂ Rf be a Jordan curve. Then either each component of π−1
f (γ) is a Jordan curve

or each component of π−1
f (γ) is an eventually periodic arc.

Lemma 2.16. A periodic arc lands at both ends.

Proof. Let β be a periodic arc of a rational map f with period p > 1. Then g := fp |β is a homeomor-

phism on β. Pick a point y ∈ β and denote by αn the closed arcs in β with endpoints gn(y) and gn+2(y),

for each integer n. Then g(αn) = αn+1 and
∪∞
n=−∞ αn = β.

Since β is contained in an attracting or parabolic periodic domain, αn converges to the attracting or

parabolic point x0 in the basin as n→ ∞. Thus β lands on x0 from one direction.

Denote by r(β) the limit set of the other end of β. It is connected and fp(r(β)) = r(β). For any

point x ∈ r(β), let {xn} (n > 1) be a sequence of points in β converging to x. Then for each point xn,

there exists an integer kn such that both xn and g(xn) are contained in αkn . Moreover kn → −∞ as

n → ∞ since {xn} converges to the point x ∈ r(β). By Lemma 2.9, diam(αk) → 0 as k → −∞. Thus

dist(xn, g(xn)) → 0 as n→ ∞. So fp(x) = x. Therefore r(β) can only be a single point.

Let β be a periodic arc with period p > 1. Denote by a(β) and r(β) the limit points of the forward and

backward orbits on β under fp, respectively. We call a(β) the attracting end and r(β) the repelling

end of β. They may coincide if both of them are parabolic.

If β1 is a pre-periodic arc, let k > 0 be an integer such that fk(β1) is periodic. We will denote by a(β1)

and r(β1) the two endpoints of β1 so that fk(a(β1)) = a(fk(β1)) and f
k(r(β1)) = r(fk(β1)). Both a(β1)

and r(β1) are pre-periodic.
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3 Unicity

We will prove Theorem 1.1 in this section. It is known that a parabolic fixed point has infinitely many

analytic invariants, e.g., the power series representations of the horn maps. This fact makes our attempt

to analytically conjugate two parabolic points a delicate issue. Our approach is to modify c-equivalency

to be a local quasiconformal conjugacy with a small distortion.

3.1 A lemma about quasiconformal maps

Let ϕ : R→ R′ be a quasiconformal homeomorphism between Riemann surfaces. We denote by

µ(ϕ) = µϕ(z)
dz̄

dz
=
∂z̄ϕ

∂zϕ
, Kϕ(z) =

1 + |µϕ(z)|
1− |µϕ(z)|

and K(ϕ) = ∥Kϕ∥∞

the Beltrami differential, the dilatation and the maximal dilatation of ϕ, respectively.

A quasiconformal map ϕ is extremal if K(ϕ) 6 K(ψ) for all the quasiconformal maps ψ isotopic

to ϕ rel the boundary. There always exists an extremal quasiconformal map in the isotopy class of a

quasiconformal map.

A quasiconformal map ϕ is called a Teichmüller map associated with an integrable holomorphic

quadratic differential ω(z)dz2 if

µϕ(z) = k
ω(z)

|ω(z)|
for some constant 0 < k < 1. It is known that a Teichmüller map is the unique extremal quasiconformal

map in its isotopy class. Refer to [35] or [33] for the following theorems.

Theorem 3.1. Let ϕ0 : R → R′ be an extremal quasiconformal map between open Riemann surfaces

with K(ϕ0) > 1. If there exists a quasiconformal map ϕ isotopic to ϕ0 rel the boundary such that

Kϕ(z) < K(ϕ0) in some neighborhood of ∂R, then ϕ0 is a Teichmüller map associated with an integrable

holomorphic quadratic differential and hence is the unique extremal quasiconformal map in its isotopy

class.

Theorem 3.2 (Main inequality). Let ϕ, ψ : R → R′ be quasiconformal maps between open Riemann

surfaces which are isotopic rel the boundary. Let ω(z)dz2 be an integrable holomorphic quadratic differ-

ential on R. Then

∥ω∥ :=

∫
R

|ω(z)|dxdy 6
∫
R

|ω(z)|
|1− µϕ

ω(z)
|ω(z)| |

2

1− |µϕ|2
Kψ−1 ◦ ϕ(z)dxdy.

From these known results we obtain the following lemma.

Lemma 3.3. Let ϕ be a homeomorphism of C∗. Assume that ϕ is quasiconformal in C∗rA(r0) for

some constant r0 > 1. Then for any ϵ > 0 and any r1 > r0, there exist a constant r > r1 and a

quasiconformal map ψ of C∗ such that

(1) ψ = ϕ on E(r) := C∗rA(r),
(2) ψ|A(r) is isotopic to ϕ |A(r) rel the boundary, and

(3) K(ψ) < K(ϕ |E(r1)) + ϵ.

Proof. For any r > r1 , let ψr : A(r) → ϕ(A(r)) be an extremal quasiconformal map isotopic to ϕ |A(r)

rel the boundary. If

K(ψr) < K(ϕ |E(r1)) + ϵ

for some r > r1, set ψ = ψr on A(r) and ψ = ϕ on E(r); then ψ satisfies the conditions.

Now we assume

K(ψr) > K(ϕ |E(r1)) + ϵ

for r > r1. By Theorem 3.1, ψr is a Teichmüller map associated with an integrable holomorphic quadratic

differential ωr(z)dz
2. We may assume ∥ωr∥ = 1. Then ωr converges to zero uniformly on any compact

subset of C∗ as r → ∞ since there is no non-zero integrable holomorphic quadratic differential on C∗.
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Let Ur = ψ−1
r ◦ϕ(A(r1)). Then there exists a compact subset V ⊂ C∗ such that Ur ⊂ V for all r > r1,

since K(ψr) 6 K(ϕ). Since ωr converges uniformly to zero on V as r → ∞, we obtain∫
Ur

|ωr|dxdy <
ϵ

K(ϕ)

when r is large enough. Applying Theorem 3.2 for ϕ |A(r), ψr and ωr, we get

1 = ∥ω∥ =

∫
A(r)

|ωr|dxdy

6
∫
A(r)

|ωr|
|1− µψr

ωr

|ωr| |
2

1− |µψr |2
Kϕ−1 ◦ ψrdxdy

=

∫
A(r)

|ωr|
K(ψr)

Kϕ−1 ◦ ψrdxdy.

Thus

K(ψr) 6
∫
A(r)

|ωr|Kϕ−1 ◦ ψrdxdy

6
∫
Ur

|ωr|Kϕ−1 ◦ ψrdxdy +
∫
A(r)rUr

|ωr|Kϕ−1 ◦ ψrdxdy.

Note that

ψr(A(r)rUr) ⊂ ϕ(E(r1)).

Therefore when r is large enough,

K(ψr) < ϵ+K(ϕ |E(r0)).

This leads to a contradiction.

3.2 Local conjugacy between parabolic points

Lemma 3.4 (From petal conjugacy to local conjugacy). Let (f, x) and (g, y) be parabolic fixed points.

Let ϕ : V(f) → V(g) be a K-quasiconformal conjugacy between regular attracting flowers of (f, x) and

(g, y). Then for any ϵ > 0, there exist a neighborhood N of the point x with V(f) ⊂ N and a (K + ϵ)-

quasiconformal map ϕ0 on N ∪ f(N) such that ϕ0 = ϕ on V(f) and ϕ0 ◦ f = g ◦ ϕ0 on N .

Proof. Let W(f) be a calyx at the parabolic fixed point (f, x) such that each arc of ∂W(f)r{x}
intersects ∂V(f) at exactly one point. Once the calyx W(f) is small enough, ϕ(W(f)∩V(f)) is contained
in a calyx W1(g) of (g, y). Thus the union of the backward orbit of ϕ(W(f)∩V(f)) under g |W1(g) forms

a calyx W(g) of (g, y). The map ϕ can be extended to a quasiconformal map from W(f) to W(g) by the

equation ϕ ◦ f = g ◦ ϕ (see Figure 2).

By Proposition 2.15(2), there exists a regular repelling flower V ′(f) of (f, x), disjoint from V(f), such
that each arc of ∂V ′(f)r{x} intersects ∂W(f) at exactly two points and there exists an integer k > 1

such that

fk(∂V ′(f) ∩W(f)) = ∂V(f) ∩W(f).

Similarly, there exists a regular repelling flower V ′(g) of (g, y), disjoint from V(g), such that each arc of

∂V ′(g)r{y} intersects ∂W(g) at exactly two points and there exists an integer k1 > 1 such that

gk1(∂V ′(g) ∩W(g)) = ∂V(g) ∩W(g).

We may assume that k1 = k. Otherwise, if k1 > k, we may use fk−k1(V ′(f)) to replace V ′(f).

Denote by (πa,f , πr,f ) and (πa,g, πr,g) the projections to attracting and repelling cylinders (Ca(f),Cr(f))

of (f, x) and attracting and repelling cylinders (Ca(g),Cr(g)) of (g, y), respectively. Denote by

Υf : πr,f (W(f)) → πa,f (W(f)) and Υg : πr,g(W(g)) → πa,g(W(g))
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Figure 2 From petal to local conjugacy

the horn maps. Let Φ : Ca(f) → Ca(g) be the projection of ϕ to the attracting cylinders. It is well-defined

since ϕ is a conjugacy. Composing with the horn maps Υf and Υg, we get a K-quasiconformal map

Ψ := Υ−1
g ◦ Φ ◦Υf : πr,f (W(f)) → πr,g(W(g)).

By the choices of V ′(f) and V ′(g), we have

Ψ ◦ πr,f (∂V ′(f) ∩W(f)) = πr,g(∂V ′(g) ∩W(g)).

Note that the boundaries of πr,f (W(f)) and πr,g(W(g)) are disjoint unions of simple closed curves. Thus

the map Ψ can be extended continuously to a homeomorphism Ψ : Cr(f) → Cr(g) such that

Ψ ◦ πr,f (∂V ′(f)r{x}) = πr,g(∂V ′(g)r{y}).

By Lemma 3.3, for any ϵ > 0, there exist a smaller calyx W0(f) ⊂ W(f) and a (K+ ϵ)-quasiconformal

map Ψ0 : Cr(f) → Cr(g) such that Ψ0 = Ψ on πr,f (W0(f)), and restricted to the complement of

πr,f (W0(f)), Ψ0 is isotopic to Ψ modulo the boundary. Let ψ0 be the lift of Ψ0 through the isotopy from

Ψ0 to Ψ. It is well-defined on

V ′
n(f) = f−n(V ′(f))

for some integer n > 0, and ψ0(V ′
n(f)) ⊂ V ′(g).

Because Ψ0 = Ψ on πr,f (W0(f)), and restricted to the complement of πr,f (W0(f)), Ψ0 is isotopic to Ψ

rel the boundary, we have ψ0 = ϕ on V ′
n(f)∩W0(f). Set ϕ0 = ϕ on V(f)∪W0(f) and ϕ0 = ψ on V ′

n(f).

Then ϕ0 is a (K + ϵ)-quasiconformal map and g ◦ ϕ0 = ϕ0 ◦ f on V(f) ∪W(f) ∪ V ′
n+1(f).

The following result, which was first proved by McMullen in the case of one petal [28, Theorem 7.1],

is a corollary of the previous lemma.

Corollary 3.5. Two parabolic fixed points with same rotation number and multiplicity are locally

(1 + ϵ)-quasiconformal conjugate for any ϵ > 0.

3.3 Proof of Theorem 1.1

Let F and G be semi-rational maps and let (ϕ, ψ) be a c-equivalence between them on a fundamental

set U of F , i.e., (ϕ, ψ) is a pair of orientation-preserving homeomorphisms of C such that

(a) ϕ ◦ F = G ◦ ψ,
(b) ϕ is holomorphic in U , and
(c) ψ = ϕ in U ∪ PF and ψ is isotopic to ϕ rel U ∪ PF .
The relation c-equivalence is an equivalence relation by the following lemma.

Lemma 3.6. ϕ(U) is a fundamental set of G.

Proof. Obviously, ϕ(U) ⊂ G−1(ϕ(U)) and ϕ(U) contains all the attracting or super-attracting points

in P ′
G. We only need to prove that if x ∈ P ′

F is a parabolic periodic point of F with period p > 1 and

V ⊂ U is an attracting flower of F p at the point x, then ϕ(x) is a parabolic periodic point of G and ϕ(V)
is an attracting flower of Gp at the point ϕ(x).
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By Theorem 2.11, the quotient space V/⟨F p⟩ is a disjoint union of cylinders. If ϕ(x) is attracting,

then ϕ induces a holomorphic injection from the cylinders into a torus. This is impossible. So ϕ(x) is

parabolic. Since each attracting petal of Gp at the point ϕ(x) contains points of PG, the multiplicities

of the parabolic fixed points (Gp, ϕ(x)) and (F p, x) are equal. The quotient space ϕ(V)/⟨Gp⟩ is also a

disjoint union of cylinders. By Corollary 2.12, ϕ(V) is an attracting flower of Gp at the point ϕ(x).

The following totally topological lemma will be used when we deal with c-equivalence. It implies that

c-equivalence may be defined with a weaker condition; the condition (c) can be replaced by: ψ = ϕ in

U ∪ PF and ψ is isotopic to ϕ rel PF .
Lemma 3.7. Let E1, E2 be closed subsets of C. Let θ be an orientation-preserving homeomorphism

of C isotopic to the identity rel E1 with θ = id on E2. Assume that

(1) (E1rE2) is a finite set,

(2) E2 has only finitely many components and each of them contains points of E1, and

(3) each component of E2 is a either a closed Jordan domain, or finitely many closed Jordan domains

intersecting at a single point.

Then θ is isotopic to the identity rel E1 ∪ E2.

Proof. Assume E2 ̸= ∅. Otherwise the lemma is trivial. Let H : I × C → C, where I = [0, 1], be an

isotopy such that H(0, ·) = id, H(1, ·) = θ and H(t, z) = z for z ∈ E1 and t ∈ I. Pick one point of E1

in each component of E2, and denote by E0 the set of them together with all points of E1 outside of E2.

Then E0 ⊂ E1 and E0 ∪ E2 = E1 ∪ E2.

Consider the path H(I, z) ⊂ CrE0 for each point z ∈ U := Cr(E0 ∪ E2). Its two endpoints (z, θ(z))

are contained in U . Since each component of E2 contains exactly one point of E0, there exists a path

β(z) ⊂ U connecting (z, θ(z)) which is homotopic to H(I, z) in CrE0, and such paths are homotopic to

each other in U .

When θ(z) = z, define θt(z) = z for t ∈ I. Otherwise, let γ(z) ⊂ U be the unique geodesic under

the Poincaré metric on U connecting (z, θ(z)) and homotopic to β(z) in U . Define θt(z) by θ0(z) = z,

θ1(z) = θ(z) and θt(z) ∈ γ(z) with

L(θ(0, t))

L(θ(t, 1))
=

t

1− t
,

where L(·) denotes the length under the Poincaré metric. Then θt is a homotopy in U connecting the

identity with θ and θt = id on the boundary of U for t ∈ I.

By [3, Theorem 1.12], two homotopic homeomorphisms between compact surfaces with finitely many

punctures and holes are isotopic. Thus there exists an isotopy θ̃t on U connecting the identity with θ

such that θ̃t = id on ∂U for t ∈ I. Define θ̃t = id on E1 ∪ E2. Then θ̃t is an isotopy of C rel E1 ∪ E2

connecting the identity with θ.

Lemma 3.8. Let F and G be semi-rational maps. Let (ϕ, ψ) be a c-equivalence from F to G. Then

for any ϵ > 0, there exist a c-equivalence (ϕ0, ψ0) between F and G in the isotopy class of ϕ and an open

set U ⊃ P ′
F such that ψ0 = ϕ0 on U , ϕ0 is quasiconformal in C and K(ϕ0 |U ) < 1 + ϵ.

Proof. Let x ∈ P ′
F be a parabolic periodic point of F with period p > 1. Assume p = 1 for simplicity.

Let Ṽx be an attracting flower of (F, x) such that ϕ is holomorphic in Ṽx and ψ is isotopic to ϕ rel Ṽx.
By Lemma 3.4, there exist an attracting flower Vx of (F, x) with Vx ⊂ Ṽx, a disk Dx with Vx b Dx and

a (1 + ϵ)-quasiconformal map ξx defined on a domain containing the closure of Dx ∪ F (Dx) such that

ξx = ϕ on Vx and ξx ◦ F = G ◦ ξx on Dx.

Let Ũx ⊂ C be a disk such that Vx b Ũx and ŨxrVx is disjoint from PF . By choosing Dx close enough

to Vx, one may assume that Dx ∪ ϕ−1 ◦ ξx(Dx) b Ũx since ϕ−1 ◦ ξx = id on Vx. Thus there exists a

homeomorphism θx of C isotopic to the identity rel (CrŨx) ∪ Vx such that θx = ϕ−1 ◦ ξx on DxrVx.
Choose θx as above for all parabolic periodic points x ∈ P ′

F . Let θ be the composition of all these

maps and let ϕ1 = ϕ ◦ θ. Then there exists a small fundamental set U1 of F such that ϕ1 is isotopic to ϕ

rel U1 ∪ PF . Let ψ1 be the lift of ϕ1, i.e., ϕ1 ◦ F = G ◦ ψ1. Then (ϕ1, ψ1) is also a c-equivalence from F

to G and there exists an open set Ũ ⊃ P ′
F such that ψ1 = ϕ1 on Ũ and K(ϕ1 |Ũ ) < 1 + ϵ.
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Pick a quasi-disk Ux b Ũ with x ∈ Ux for each point x ∈ P ′
F such that they have disjoint closures. Then

their images under ϕ1 are also quasi-disks. Thus ϕ1 can be further modified to be a global quasiconformal

map without changing it on any Ux such that the modified map ϕ0 is isotopic to ϕ1 rel ∪Ux∪PF . Let ψ0

be the lift of ϕ0. Then they satisfy the conditions.

Let f and g be rational maps. Let (ϕ, ψ) be a pair of quasiconformal maps of C such that ψ is isotopic

to ϕ rel Pf and ϕ ◦ f = g ◦ ψ on C. Let

Kb[ϕ] = inf{K(ϕ̃ |U ) : ϕ̃ is isotopic to ϕ rel Pf and U ⊃ P ′
f is open}.

Theorem 3.9. With the above assumption, there exists a quasiconformal conjugacy h between f and g

in the isotopy class of ϕ rel Pf such that K(h) 6 K(ϕ). Moreover, if f has no Thurston obstructions,

then h can be chosen such that K(h) 6 Kb[ϕ].

The existence of the quasiconformal conjugacy h is proved in [27, Theorem A.1]. The second part of

the theorem comes from Lemma 3.8 and [6, Theorem 2]. Refer to the next section for the definition of

Thurston obstruction.

Proof of Theorem 1.1. Let f and g be geometrically finite rational maps with infinite post-critical sets.

Suppose that (ϕ, ψ) is a c-equivalence between them. One may choose ϕ to be quasiconformal, and hence

Kb[ϕ] = 1 by Lemma 3.8. Thus there exists a holomorphic conjugacy between f and g in the isotopy class

of ϕ, by Theorem 3.9, since f has no Thurston obstructions (refer to Theorem 4.2 in the next section).

4 Thurston obstructions and connecting arcs

4.1 Thurston obstructions

By a marked branched covering (F,P) we mean a branched covering F of C with degF > 2 and a

closed set P ⊂ C such that PF ⊂ P and F (P) ⊂ P. A marked branched covering (F,P) will be written

as F if P = PF .
A simple closed curve on CrP is called essential if it does not bound a disk in CrP, or peripheral

if it encloses a single point of P.

A multicurve Γ of (F,P) is a finite nonempty collection of disjoint simple closed curves in CrP,

each essential and non-peripheral, and no two isotopic rel P. It is called stable if for any γ ∈ Γ, every

essential and non-peripheral component of F−1(γ) is isotopic rel P to a curve in Γ.

A multicurve determines a transition matrix M(Γ) = (aβγ) by the formula

aβγ =
∑
δ

1

deg(F : δ → γ)
,

where the sum is taken over all components δ of F−1(γ) which are isotopic to β rel P. Let λ(Γ) > 0

denote the spectral radius of M(Γ). A stable multicurve Γ on CrP is called a Thurston obstruction

of (F,P) if λ(Γ) > 1.

Two marked semi-rational maps (F,P) and (G,Q) are called c-equivalent if there exist a fundamental

set U of F and a pair of orientation-preserving homeomorphisms (ϕ, ψ) of C such that

(a) ϕ ◦ F = G ◦ ψ,
(b) ϕ is holomorphic in U , and
(c) ψ = ϕ in U ∪ P and ψ is isotopic to ϕ rel U ∪ P.

This definition coincides with the definition in [5] of combinatorial equivalence when P is finite. Refer

to [11,26] for the definition of hyperbolic orbifold and [5] for the following theorem.

Theorem 4.1 (Marked Thurston’s theorem). Let (F,P) be a marked branched covering of C with

hyperbolic orbifold and with #P < ∞. Then (F,P) is c-equivalent to a marked rational map (f,Q) if

and only if (F,P) has no Thurston obstructions. Moreover, the marked rational map (f,Q) is unique up

to holomorphic c-equivalence.
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Theorem 4.2 (See [5]). Let (f,P) be a marked rational map and let Γ be a multicurve on CrP. Then

λ(Γ) 6 1. The equality λ(Γ) = 1 holds only in the following cases:

• f is post-critically finite and the signature of the orbifold of f is (2, 2, 2, 2).

• Pf is an infinite set, and Γ includes the essential curves in a finite system of annuli permuted by f .

These annuli lie in Siegel discs or Herman rings for f , and each annulus is a connected component of

CrPf .
Refer to [5,26] for the above theorem. If f is a geometrically finite rational map, then f has no rotation

domains. Hence if P ′
f ̸= ∅, then λ(Γ) < 1 for any multicurve Γ on CrP.

Theorem 4.3 (Sub-hyperbolic version). Let (F,P) be a marked sub-hyperbolic semi-rational map with

P ′
F ̸= ∅ and #(PrPF ) < ∞. Then (F,P) is c-equivalent to a marked rational map (f,Q) if and

only if (F,P) has no Thurston obstructions. Moreover, the marked rational map (f,Q) is unique up to

holomorphic c-equivalence.

This theorem was proved for the case P = PF in [10, 17]. One may easily check that the proof in [10,

Subsection 3.3] still works in this slightly stronger version. The theorem will be used in Sections 7 and 9.

We will prove the following theorem, which is stronger than Theorem 1.2. Refer to Subsection 4.2 for the

definition of connecting arcs for marked semi-rational maps.

Theorem 4.4. Let (G,Q) be a marked semi-rational map with P ′
G ̸= ∅ and #(QrPG) < ∞. Then

(G,Q) is c-equivalent to a marked rational map if and only if (G,Q) has neither Thurston obstructions

nor connecting arcs.

The following lemma (refer to [26]) is useful for checking if there is a Thurston obstruction. A multic-

urve Γ is called irreducible if for each pair (γ, β) ∈ Γ × Γ, there is an integer n > 1 such that F−n(β)

has a component δ isotopic to γ rel PF and F k(δ) is isotopic rel PF to a curve in Γ for 1 6 k < n.

Lemma 4.5. For any multicurve Γ with λ(Γ) > 0, there is an irreducible multicurve Γ0 ⊂ Γ such that

λ(Γ0) = λ(Γ).

4.2 Connecting arcs

Let (G,Q) be a marked semi-rational map with #(QrPG) < ∞ and with parabolic cycles in P ′
G. An

open arc β ⊂ CrQ which joins two points z0, z1 ∈ P ′
G is a connecting arc if

• either z0 ̸= z1, or z0 = z1 and both components of Crβ contain points of Q,

• β is disjoint from a fundamental set of G, and

• β is isotopic rel Q to a component of G−p(β) for some integer p > 0.

Example 4.6. Let G be the formal mating of the quadratic polynomial P (z) = z2+ 1
4 with itself (refer

to [36] for a detailed definition of mating). It will be a semi-rational map with two points in P ′
G if we

preserve its complex structure near P ′
G. Consider two external rays, each with angle zero. They form

an invariant arc and hence the arc is a connecting arc of G. It is easy to check that G has no Thurston

obstructions since it is combinatorially equivalent to a Blaschke product.

A connecting arc is invariant under c-equivalence by Lemma 3.6. The following lemma gives a stronger

version of the definition.

Lemma 4.7. Let β ⊂ CrQ be a connecting arc. Then there exist a connecting arc α isotopic to β

rel Q and an integer p > 1 such that G−p(α) has a component α̃ isotopic to α rel Q and α̃ coincides with

α in a neighborhood of its endpoints.

Proof. Denote by β : (0, 1) → β a parametrization, which is a homeomorphism. Let z0, z1 ∈ P ′
G be

the two endpoints of β, with β(t) → z0 as t → 0. Then there exists an integer p > 1 such that G−p(β)

has a component β̃ isotopic to β rel Q and Gp(zi) = zi for i = 0, 1. Denote by β̃ : (0, 1) → β̃ the

parametrization such that Gp ◦ β̃(t) = β(t).

Since β is disjoint from a fundamental set, both z0 and z1 are parabolic periodic points of G. By

Proposition 2.15(3), there exist constants 0 < t0 < t1 < 1 and regular repelling flowers V ′
0,V ′

1 ⊂ CrQ at
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the parabolic fixed points (Gp, z0) and (Gp, z1), respectively, such that β(0, t0) ⊂ V ′
0 and β(t1, 1) ⊂ V ′

1.

Obviously, V ′
0 is disjoint from V ′

1 if z0 ̸= z1. If z0 = z1 we may require that V ′
0 = V ′

1.

By the definition of semi-rational maps, there are critical orbits converging to the point zi between

any two adjacent repelling petals of V ′
i. Thus there exist constants 0 < s0 < s1 < 1 such that either

(1) both β̃(0, s0] and β(0, t0] are contained in the same petal of V ′
0, and both β̃[s1, 1) and β[t1, 1) are

contained in the same petal of V ′
1, or

(2) z0 = z1, both β̃(0, s0] and β[t1, 1) are contained in the same petal of V ′
0 = V ′

1, and both β̃[s1, 1)

and β(0, t1] are contained in the same petal of V ′
0.

If Condition (2) holds, we replace β̃ by the component of G−2p(β) that is isotopic to β rel PG. Then

Condition (1) holds. Thus we may assume that Condition (1) holds. Consequently, the rotation numbers

of Gp at z0 and z1 are both equal to 1.

Denote by gi (i = 0, 1) the inverse map of Gp restricted to the repelling flower V ′
i. Then there exists

an integer m > 1 such that β(t0, t1) is disjoint from gmi (V ′
i). Thus there exists an arc γi ⊂ V ′

irgmi (V ′
i)

connecting β(ti) with a point wi ∈ ∂gmi (V ′
i) such that γi is disjoint from β(t0, t1). Obviously, γ0 is disjoint

from γ1 if z0 ̸= z1. Otherwise we may assume that they are disjoint by a suitable choice of wi.

Since the rotation number of Gp at z0 and at z1 is equal to 1, there exists an arc αi ⊂ gmi (V ′
i)

connecting zi with wi such that gi(αi) ⊂ αi and α0 is disjoint from α1. Set

α = α0 ∪ γ0 ∪ β(t0, t1) ∪ γ1 ∪ α1.

Since V ′
i is disjoint from Q, α is isotopic to β rel Q. Moreover, G−p(α) has a component α̃ isotopic

to α rel Q, and both g0(α0) and g1(α1) are contained in α̃. Now the lemma follows from the fact that

gi(αi) ⊂ αi.

Theorem 4.8 (No connecting arcs). Any marked geometrically finite rational map has no connecting

arcs.

Proof. Let (g,Q) be a marked geometrically finite rational map. Assume that β0 ⊂ CrQ is a connecting

arc, i.e., β0 joins two parabolic periodic points z0, z1 ∈ P ′
g, β0 is disjoint from an attracting flower of z0

and one of z1, and β0 is isotopic rel Q to a component of g−p(β0) for some integer p > 1.

There exist repelling flowers V ′
0, V ′

1 at z0 and z1, respectively, such that β0 is cut into three arcs β0,0,

β0,1 and β0,2 where β0,i ⊂ V ′
i for i = 0, 1 and the closure of β0,2 is disjoint from Q. Let βn be the

component of g−np(β) isotopic rel Q to β0 for n > 1. Then βn is also cut into three arcs βn,0, βn,1 and

βn,2 such that gnp(βn,j) = β0,j for j = 0, 1, 2. Thus βn,i ⊂ V ′
i and hence diamsβn,i → 0 as n → ∞ for

i = 0, 1. By Lemma 2.9, diamsβn,2 → 0 as n→ ∞. So diamsβn → 0 as n→ ∞. This shows that z0 = z1
and one component of Cr(β ∪ {z0}) is disjoint from Q. This leads to a contradiction.

4.3 Thurston’s algorithm

This part is not needed until Section 9; one may skip it on a first reading. Let (F,P) be a marked

semi-rational map with P ′
F ̸= ∅ and #(PrPF ) <∞.

Thurston sequences. Let xi (i = 1, 2, 3) be three distinct points in P. Then there exists a unique

homeomorphism θ1 of C normalized by θ1(xi) = xi such that f1 := F ◦ θ−1
1 is a rational map by the

uniformization theorem. There is also a unique normalized homeomorphism θ2 of C such that f2 :=

θ1 ◦ F ◦ θ−1
2 is a rational map. Continuing this process inductively, we produce a sequence of normalized

homeomorphisms {θn} of C and a sequence of rational maps {fn} such that fn ◦ θn = θn−1 ◦ F . We call

that {fn} is a Thurston sequence of (F,P).

Lift of the c-equivalence. Denote by PsF the set of super-attracting periodic points of F . Then

PsF ⊂ PF and F (PsF ) = PsF . Assume that F is holomorphic in a neighborhood of PsF and c-equivalent to

a marked rational map. Then there exists a normalized c-equivalence (ϕ0, ϕ1) from (F,P) to a marked

rational map (f,Q) on a fundamental set U of F such that PsF ⊂ U . Refer to [34] for the construction of

ϕ0 near PsFrP ′
F .
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Let ϕ2 be the lift of ϕ1. Then ϕ2 is isotopic to ϕ1 rel F−1(P ∪ U). Inductively, we obtain a sequence

of homeomorphisms {ϕn} of C such that ϕn+1 is isotopic to ϕn rel F−n(P ∪ U) and f ◦ ϕn+1 = ϕn ◦ F .
See the diagram below:

�� �� ��

C

f
��

C

F
��

ϕ2oo θ2 // C

f2
��

C

f
��

C

F
��

ϕ1oo θ1 // C

f1
��

C C
ϕ0oo id // C.

Let ζ0 = ϕ−1
0 . Then ζ0 is holomorphic in ϕ0(U). Let ζn = θn ◦ ϕ−1

n for n > 1. Then fn ◦ ζn = ζn−1 ◦ f .
Consequently, ζn is holomorphic in f−n(ϕ0(U)).
Theorem 4.9. The sequence {fn} converges uniformly to the rational map f and {ζn} converges

uniformly to the identity as n→ ∞.

To prove this theorem, we need the lemma below, which is more general than needed here but which

will be used in Section 9.

Combinatorial quotient maps. Let (f,Q) be a marked geometrically finite rational map with

P ′
f ̸= ∅ and #(QrPf ) < ∞. Let U be a fundamental set of f with Psf ⊂ U . Let {hn} (n > 0) be

a sequence of quotient maps of C such that f ◦ hn+1 = hn ◦ f and hn is isotopic to the identity rel

f−n(U ∪ Q).

Lemma 4.10. The sequence {hn} converges uniformly to the identity as n→ ∞.

Proof. Let ht,0, t ∈ I = [0, 1], be an isotopy of quotient maps connecting h0,0 = id with h1,0 = h0 such

that ht,0 is a quotient map of C for all t ∈ I and h−1
t,0 (w) = w for w ∈ U ∪ Q and t ∈ I. Let ht,1 be the

lift of ht,0. Then ht,0 ◦ f = f ◦ ht,1, h0,1 = id, h1,1 = h1 and h−1
t,1 (w) = w for w ∈ f−1(U ∪ Q) and t ∈ I.

Inductively, let ht,n be the lift of ht,n−1. Then
h0,n = id, h1,n = hn,

h−1
t,n(w) = w for w ∈ f−n(U ∪ Q) and t ∈ I,

ht,n−1 ◦ f = f ◦ ht,n.

Let βn(z) = {ht,n(z) : t ∈ I}. Then f : βn+1(z) → βn(f(z)) is injective, and

dists(hn(z), z) 6 diamsβn(z).

We want to prove that diamsβn(z) → 0 as n→ ∞ uniformly for z ∈ C.
For any disk U ⊂ C and any integer n > 0, we denote by Cn(U) the maximum of the diameters of

the components of f−n(U). Then Cn(U) → 0 as n → ∞ if the closure of U is disjoint from Pf , by
Lemma 2.9.

Let w ∈ Cr(U ∪Q) be a point. Then β0(w) is disjoint from Q. If it is simple, then there exists a disk

U ⊃ β0(w) such that U ∩ Q = ∅. Thus there exists an open set Dw ∋ w such that β0(z) ⊂ U for all

points z ∈ Dw. Therefore diamsβn(z) 6 Cn(U) → 0 as n→ ∞ for z ∈ f−n(Dw).

In general, let d := dists(β0(w), P ) > 0. We can cut the path β0(w) into k sub-paths such that each of

them has diameter less than d. Thus each sub-path is contained in a disk Ui (1 6 i 6 k) whose closure

is disjoint from Q. Denote their union by U . Similarly, there exists an open set Dw ∋ w such that
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β0(z) ⊂ U for all points z ∈ Dw. Therefore

diamsβn(z) 6
k∑
i=1

Cn(Ui) → 0

as n→ ∞ for z ∈ f−n(Dw).

Assume that w ∈ QrU is not periodic. Let U ∋ w be a disk whose closure is disjoint from Qr{w}.
Then Cn(U) → 0 as n→ ∞. Since β0(w) = w, there exists an open set Dw ∋ w such that β0(z) ⊂ U for

z ∈ Dw. Thus diamsβn(z) 6 Cn(U) → 0 as n→ ∞ for z ∈ f−n(Dw).

Assume w ∈ QrU is a repelling periodic point with period p > 1. Let U ∋ w be a disk whose

closure is disjoint from Qr{w} such that the component of f−p(U) containing the point w is compactly

contained in U . Then Cn(U) → 0 as n → ∞. As above, there exists an open set Dw ∋ w such that

diamsβn(z) 6 cn(U) → 0 as n→ ∞ for z ∈ f−n(Dw).

Suppose now w ∈ QrU is a parabolic periodic point with period p > 1. Let Vw be a repelling flower

of (F p, w) such that its closure is disjoint from Qr{w} and Vw ∪ U is a neighborhood of w. Then

Cn(Vw) → 0 as n→ ∞. Since β0(w) = w, there exists an open set Dw ∋ w such that β0(z) ⊂ Vw ∪U for

z ∈ Dw. In particular, β0(z) ⊂ Vw if z ∈ DwrU . Therefore diamsβn(z) 6 Cn(Vw) → 0 as n → ∞ for

z ∈ f−n(DwrU).
The union of these open sets Dw forms an open cover of CrU . Hence there is a finite cover. Thus

diamsβn(z) → 0 as n→ ∞ uniformly for z ∈ Crf−n(U). On the other hand, βn(z) = z for z ∈ f−n(U).
Therefore

diamsβn(z) → 0 as n→ ∞

uniformly for z ∈ C. This completes the proof.

Let f be a geometrically finite rational map with P ′
f ̸= ∅. Let U be a fundamental set of f with

Psf ⊂ U . Assume that j0 is a quasiconformal map of C which is holomorphic in U and normalized by

fixing three points in Pf . Then there exists a unique normalized quasiconformal map j1 of C such that

f1 := j0 ◦ f ◦ j−1
1 is a rational map. Inductively, there exists a sequence of normalized quasiconformal

maps {jn} (n > 1) such that

fn := jn−1 ◦ f ◦ j−1
n

is a rational map.

Lemma 4.11. The sequence {jn} converges uniformly to the identity and {fn} converges uniformly

to f as n→ ∞.

Proof. Since fn = jn−1 ◦ f ◦ j−1
n is a rational map, the sequence {jn} is uniformly quasiconformal. So

it has a subsequence which converges uniformly to a quasiconformal map j∞. Since jn is holomorphic

in f−n(U), the map j∞ is holomorphic in Ff and hence is holomorphic on the whole sphere since Jf
has zero Lebesgue measure [38]. Thus it is the identity since it fixes three points in Pf . It follows that

the whole sequence {jn} uniformly converges to the identity as n → ∞. Consequently, {fn} converges

uniformly to f .

Proof of Theorem 4.9. By Lemma 3.8, there exist a fundamental set U1 ⊂ U of F with PsF ⊂ U1 and a

quasiconformal map ψ0 of C normalized by fixing xi (i = 1, 2, 3), such that ψ0 is isotopic to ϕ0 rel U1∪P .
Let ψn+1 be the lift of ψn. Then ϕ0 ◦ ψ−1

0 is isotopic to the identity rel ϕ0(U) ∪ P and

(ϕn ◦ ψ−1
n ) ◦ f = f ◦ (ϕn+1 ◦ ψ−1

n+1).

Thus {ϕn ◦ ψ−1
n } converges uniformly to the identity as n→ ∞, by Lemma 4.10.

Set jn = ζn ◦ ϕn ◦ ψ−1
n for n > 0. Then j0 = ψ−1

0 is quasiconformal in C and holomorphic in ψ0(U1).

Moreover,

fn+1 ◦ jn+1 = jn ◦ f.

By Lemma 4.11, {jn} converges uniformly to the identity and {fn} converges uniformly to f as n→ ∞.

Thus {ζn} also converges uniformly to the identity as n→ ∞.
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5 Basic properties of pinching

5.1 Definition of pinching

Pinching model. For any r > 1 and t > 0, define a quasiconformal map

wt,r = wt : A(r) → A(r1+t)

by argwt(z) = arg z and log |wt(z)| = ϱ(log |z|), where

ϱ : (− log r, log r) → (−(1 + t) log r, (1 + t) log r)

is defined by ϱ(−x) = −ϱ(x) and

ϱ(x) =


e2tx, if 0 6 x 6 log r

2e2t
,

1

2

(
log

2x

log r
+ 1 + 2t

)
log r, if

log r

2e2t
< x <

1

2
log r,

x+ t log r, if
1

2
log r 6 x < log r.

The family {wt} (t > 0) is called a pinching model.

Let νt be the Beltrami differential of wt. Let r(t) = r1/(2e
2t) and r′ = r(0) =

√
r. The following

proposition is easy to check.

Proposition 5.1. The pinching model wt(z) satisfies the following properties:

(1) wt(z) is conformal on A(r)rA(r′).
(2) νt(z) = νt0(z) on A(r)rA(r(t0)) for t > t0 > 0.

(3) For any t0 > 0, let Et0 be a component of A(r)rA(r(t0)). Then

modwt(Et0) =
2t0 + 1

4
modA(r)

for t > t0 and hence modwt(Et0) → ∞ as t→ ∞.

(4) The map wt(rz)/r
1+t restricted to A(1/r, 1) converges uniformly to a homeomorphism w : A(1/r, 1)

→ D∗ as t→ ∞, where w is defined as
w(z) = z, if

√
1/r 6 |z| < 1,

argw(z) = arg z, if 1/r < |z| <
√
1/r,

log |w(z)| = −1

2

(
1 + log

log r

2 log(r|z|)

)
log r, if 1/r < |z| <

√
1/r.

Remark 5.2. The pinching model wt has usually been defined as wt(z) = |z|tz (refer to [23]). We

choose the above technical definition to ensure the convergence of the quasiconformal conjugacy path

{ϕt} defined below.

Multi-annuli. Let f be a rational map with non-empty quotient space Rf (refer to Subsection 2.6

for its definition). A multi-annulus A ⊂ Rf is a finite disjoint union of annuli whose boundaries are

pairwise disjoint simple closed curves in Rf such that each component of π−1
f (e(A )) is an arc, where

e(A ) denotes the union of the equators of the annuli in A .

A multi-annulus A ⊂ Rf is called non-separating if for any choice of finitely many components

of π−1
f (A ), the union T of their closures does not separate the Julia set Jf , i.e., CrT has exactly one

component intersecting Jf (refer to [37, Example 3′] for a non-separating case, and [37, Examples 6′

and 8] for two separating cases).

Let A ⊂ Rf be a multi-annulus. Then each component of π−1
f (e(A )) is an eventually periodic arc.

The multi-annulus A is called starlike if for each component β of π−1
f (e(A )), r(β) is eventually repelling,

a(β) is eventually attracting, and a(β1) ̸= a(β2) for any two distinct components β1, β2 of π−1
f (e(A )).

Obviously, a starlike multi-annulus is non-separating.
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Pinching paths. Let f be a rational map with Rf ̸= ∅. Let A = ∪Ai ⊂ Rf be a non-separating

multi-annulus. Let χi be a conformal map from Ai onto A(ri) and let µi,t be the Beltrami differential

of wt,ri ◦ χi, where wt,ri is the pinching model on A(ri). Set µt = µi,t on each Ai ⊂ A . Let µ̃t be the

pullback of µt, i.e.,

µ̃t(z) =

µt(π(z))
π′
f (z)

π′
f (z)

, for z ∈ π−1
f (A ),

0, otherwise.

Then there exists a quasiconformal map ϕt : C → C whose Beltrami differential is µ̃t. Set ft = ϕt◦f ◦ϕ−1
t .

Then ft is a rational map. The quasiconformal map ϕt has a natural projection

Φt : Rf → Rft .

We call the path ft = ϕt ◦ f ◦ ϕ−1
t (t > 0) the pinching path starting from f supported on A , or a

simple pinching path if A is starlike.

Note that the family {ft} is defined only up to holomorphic conjugation and hence represents a family

in Md, the complex orbifold of holomorphic conjugate classes of rational maps with degree d = deg f . It

is convenient to consider {ft} as a family in the space of rational maps when we study its convergence

in Md. For this purpose, we need to make a normalization for the map ϕt.

One favorite choice of a normalization of ϕt is fixing three points in Pf . There always exists a compo-

nent U0 of Crπ−1
f (A ) such that both U0 ∩Pf and ∂U0 ∩Jf are infinite sets. Throughout this paper we

always make a normalization for the map ϕt by fixing three distinct points in U0 ∩ Pf . Then both {ϕt}
and {ft} are continuous families.

Such a choice of U0 is necessary. As we will see later, some components of Crπ−1
f (A ) may touch Jf at

only finitely many points, and images of the components under ϕt will shrink to single points as t→ ∞.

Let Ai(t) = χ−1
i (A(ri(t))) for t > 0 and A′

i = χ−1
i (A(r′i)) = Ai(0). Then Ai(t1) ⊂ Ai(t2) if t1 > t2.

Denoted by A ′ and A (t) the union of A′
i and Ai(t) for all components Ai of A , respectively. The

following proposition is a direct consequence of Proposition 5.1.

Proposition 5.3. Let Ai be a component of A . Then the following conditions hold:

(1) µt(z) = 0 on AirA′
i.

(2) µt(z) = µt0(z) on AirAi(t0) for t > t0 > 0.

(3) Let t0 > 0 and let E be a component of AirAi(t0). Then

modΦt(E) =
2t0 + 1

4
modAi

for t > t0 and hence modΦt(E) tends to infinity as t0 → ∞.

5.2 Bands and skeletons

We now need to analyze in more detail the structure of the lifts of a multi-annulus. Let f be a geometrically

finite rational map and let A ⊂ Rf be a non-separating multi-annulus. A component B of π−1
f (A ) is

called a band. It is of level 0 if it is periodic, or level n with n > 1 if fn(B) is periodic but fn−1(B) is

not periodic.

Any band B is bounded by two eventually periodic arcs with a common attracting end and a common

repelling end. We denote them by a(B) and r(B), respectively. A band B is periodic if and only if both

of its endpoints are periodic. Consequently, bands of different levels have disjoint closures.

The core arc of a band B is the lift of the equator of πf (B) to B. Its two endpoints are exactly the

endpoints of B. A skeleton of level n is a component of the union of core arcs of all the level n bands

together with their endpoints.

By the non-separating condition, each skeleton has exactly one complementary component intersect-

ing Jf . The fill-in of a skeleton S, denote by Ŝ, is the union of S together with all its complementary



Cui G et al. Sci China Math December 2018 Vol. 61 No. 12 2181

Figure 3 A band-tree

components disjoint from Jf . Thus Ŝ is a full continuum, i.e., CrŜ is connected. A filled-in skeleton

is the fill-in of a skeleton. Each component of f−1(Ŝ) is a full continuum by the non-separating condition

and thus is also a filled-in skeleton.

There is an integer n0 > 1 such that for any skeleton S of level n > n0, Ŝ∩Pf = ∅. Thus one need only

check finitely many levels of skeletons to see whether A is non-separating. The following proposition is

easy to verify.

Proposition 5.4. Let Ŝ be a periodic filled-in skeleton and x ∈ Ŝ be a periodic point. Let k > 1 be

the number of components of Ŝr{x}. Let Dx ∋ x be a sufficiently small disk, such that DxrŜ has k

components Ui whose closures contain the point x. Then Ui contains infinitely many points of Pf if there

exists a periodic band B such that a(B) = x and Ui ∩B ̸= ∅.
In general, the map f need not be injective on a filled-in skeleton. However, f is injective on periodic

filled-in skeletons.

Proposition 5.5. Let Ŝ be a periodic filled-in skeleton. Then f is injective in a neighborhood of Ŝ.

Proof. We need only consider the case that Ŝ ̸= S. Let U be a component of ŜrS. Then U is a

component of CrS by the definition of Ŝ. We claim that U is bounded by either two periodic arcs

α, β ⊂ S with a(α) = a(β) and r(α) = r(β), or one periodic arc γ ⊂ S with a(γ) = r(γ). Otherwise,

if U is bounded by distinct periodic arcs γ1, . . . , γn with n > 3, let p > 1 be an integer such that fp

fixes all these arcs; then fp(U) = U ⊂ Ff by the non-separating condition. Thus all the γi have the

same attracting ends. This leads to a contradiction. Therefore f is injective on U . This implies that f

is injective in a neighborhood of Ŝ.

By a band-tree of level n we mean a connected component of the closure of the union of all the level n

bands and filled-in skeletons (see Figure 3).

Pick pairwise disjoint disks N(T ) ⊃ T for all periodic band-trees T such that N(T )rT is disjoint from

the critical values of f and ∂N(T )∩Pf = ∅. Then each component of f−1(N(T )) is also a disk containing

exactly one component of f−1(T ).

For each level 1 band-tree T1 with f(T1) = T , denote by N(T1) the component of f−1(N(T )) that

contains T1. Then N(T1) is disjoint from all periodic band-trees. Since T1 is disjoint from P ′
f , taking

N(T ) small enough, we may assume that N(T1)rT1 is disjoint from Pf .
For each n > 1 and each component Tn of f−n+1(T1), let N(Tn) be the component of f−n+1(N(T1))

that contains Tn. Then N(Tn) is a disk disjoint from band-trees of level k 6 n except for Tn, and

N(Tn)rTn is disjoint from Pf .
Note that there is an integer n0 > 1 such that each band-tree of level n > n0 is disjoint from Pf . By

Lemma 2.9, diamsN(Tn) → 0 as n → ∞ uniformly for all n-level band-trees Tn. We have proved the

following proposition.

Proposition 5.6. There exist a constant M > 0 and a disk N(T ) ⊃ T for each band-tree T satisfying

the following conditions:

(a) ∂N(T ) ∩ Pf = ∅.
(b) f : N(T )rT → N(f(T ))rf(T ) is a covering if T is not periodic.

(c) mod (N(T )rT ) > M .
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(d) N(Tn) is disjoint from all band-trees of level k 6 n except for Tn.

(e) diamsN(Tn) → 0 as n→ ∞ uniformly for all n-level band-trees Tn.

We will call such a choice of the neighborhood N(T ) a Koebe space of the band-tree T , and the

collection {N(T )} a Koebe space system. For a band B or a skeleton S, we also use N(B) or N(S)

to denote the Koebe space N(T ) if B ⊂ T or S ⊂ T .

For any point z0 ∈ C, its ω-limit set ω(z0) is defined to be the set of points z ∈ C such that there

exists a sequence of positive integers {nk} → ∞ as k → ∞ such that {fnk(z0)} → z as k → ∞.

Proposition 5.7. (1) For any compact set E ⊂ C with E∩π−1
f (A ) = ∅, there is a Koebe space system

{N(T )} such that N(T ) ∩ E = ∅ for every band-tree T .

(2) Let z0 ∈ C be a point such that ω(z0) is disjoint from all periodic band-trees. Then there is a Koebe

space system {N(T )} such that z0 /∈ N(T ) for every band-tree T .

Proof. (1) This is a direct consequence of Proposition 5.6(e).

(2) Choose the Koebe space system {N(T )} such that for every periodic band-tree T0, N(T0) is disjoint

from the closure of the orbit of z0. Then z0 /∈ N(T ) for every band-tree T .

5.3 Nested neighborhoods of a skeleton

Denote by Bn the union of all bands of level k 6 n for n > 0. Let ϕt,n be the normalized quasiconformal

map of C whose Beltrami differential µ(ϕt,n) is the truncation of µt up to the n-level bands, i.e.,

µ(ϕt,n) =

{
µ(ϕt), on Bn,
0, elsewhere.

Lemma 5.8. For any fixed t > 0, {ϕt,n} converges uniformly to ϕt as n→ ∞.

Proof. For any fixed t > 0, the sequence {ϕt,n} is uniformly quasiconformal and hence a normal family.

Let ψt be one of its limits. Then the Beltrami differential of ψt ◦ ϕ−1
t vanishes everywhere. So ψt ◦ ϕ−1

t

is conformal on C and thus ψt = ϕt by the normalization.

The main objective in this sub-section is to prove the following lemma.

Lemma 5.9. Fix n > 0. Let S be a skeleton of level j 6 n. Then there exist a constant M > 0, a

sequence of positive numbers {tk} → ∞ as k → ∞, and a sequence of nested disks {Uk} in C such that

(a) Uk+1 ⊂ Uk,

(b)
∩
k>0 Uk = Ŝ, and

(c) modϕt,n(UkrUk+1) > M for t > tk.

Proof. Let N(T ) be a Koebe space system such that N(T ) for all the band-trees T of level k 6 n are

pairwise disjoint. Begin by assuming that j = 0, i.e., S is periodic. Then there is an integer p > 1 such

that each periodic arc on S is fixed under fp. Then each periodic point x ∈ S is fixed under fp. Let

g = fp |N(S).

Nested sub-bands and the choice of {tk}. For each component Ai ⊂ A , let

Ai,0 = Ai c Ai,1 c · · · c Ai,k c · · ·

be a sequence of nested annuli such that the equator e(Ai,k) coincides with the equator e(Ai) and ∂Ai,k
consists of horizontal circles in Ai. By Proposition 5.3, there exists a sequence of constants {tk > 0} such

that Ai(tk) ⊂ Ai,k. Thus for each component E of Ai,krAi,k+1, the modulus of Φt(E) is a constant for

t > tk. Therefore we may further assume that

modΦt(E) = 3k for t > tk.

Denote by Ak the union of Ai,k for all components Ai of A . Then∩
k>0

Ak = e(A ).
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Let B0 be the union of all bands intersecting S. Let Bk = B0 ∩ π−1
f (Ak). Then the {Bk} (k > 0) are

nested sub-bands with ∩
k>0

Bk = S.

Nested calyxes. Let x ∈ S be a parabolic fixed point of g. Pick a calyx W0(x) ⊂ N(S) of g at

the point x such that W0(x) ∩ B0 = {x}. Noticing that π(W0(x)) is the disjoint union of finitely many

once-punctured disks, there is a holomorphic map ξx : π(W0(x)) → D∗ such that ξx is a conformal map

on each component.

Pick a constant r ∈ (0, 1). Set r0 = 1, r1 = r and rk = r1+3+···+3k−1

for k > 2. Let

Wk(x) = π−1 ◦ ξ−1
x (D∗(rk)) ∩W0(x) for k > 0.

Then the {Wk(x)} are nested calyxes at the point x. Let Wk = ∪Wk(x), the union over all parabolic

periodic points x ∈ S.

Nested attracting/repelling flowers. Let x ∈ S be a parabolic fixed point of g. By Proposition 2.15,

there exist a regular attracting flower V+
0 (x) and a regular repelling flower V−

0 (x) of g at the point x in

N(S), such that

• for each band B ⊂ B0, V±
0 (x) is disjoint from B if x /∈ B, and π(∂V±

0 (x) ∩ B) is a vertical arc in

π(B) if a(B) = x (or r(B) = x),

• for each component β of ∂V±
0 (x) ∩W0(x), ξx ◦ π(β) is a straight line in D∗, and

• the sets V±
0 (x) for all parabolic periodic points x ∈ S, are pairwise disjoint.

Define V±
k+1(x) = g±3k(V±

k (x)) for k > 0 inductively. Then {V±
k (x)} (k > 0) are nested attracting and

repelling flowers at the point x. Let V±
k = ∪V±

k (x), the union over all parabolic fixed points x ∈ S.

Nested disks at hyperbolic points. Let x ∈ S be an attracting or repelling fixed point of g. Pick

a disk Dx ⊂ N(S) with x ∈ Dx satisfying the following conditions:

• g(Dx) ⊂ Dx (or g−1(Dx) ⊂ Dx if x is repelling).

• Dx ∩ V±
0 = ∅.

• The sets Dx for all periodic attracting and repelling points x ∈ S, are pairwise disjoint.

Note that the quotient space Tx = Dx/⟨g⟩ is a torus. Denote by πx the natural projection from Dx

to Tx. Then πx(Dx ∩B0) are mutually isotopic annuli. Pick a Jordan curve γ ⊂ Tx such that its lift are

Jordan curves and the intersection of γ with each annulus is a vertical line. Then γ has a lift in Dx that

bounds a disk Vh0 (x) ⊂ Dx.

Define Vhk+1(x) = g3
k

(Vhk (x)) (or g−3k(Vhk (x)) if x is repelling) for k > 0 inductively. Then {Vhk (x)}
(k > 0) forms nested disks with ∩

k>0

Vhk (x) = {x}.

Let Vhk =
∪
Vhk (x), the union over all attracting and repelling points x ∈ S.

Nested disk neighborhoods of Ŝ. Let Vk = Vhk ∩ V+
k ∪ V−

k and let

Uk = Bk ∪ Vk ∪Wk ∪ Ŝ.

Then {Uk} (k > 0) are nested disks with Uk+1 ⊂ Uk and
∩
k>0 Uk = Ŝ (see Figure 4).

Proposition 5.10. Let Q be a component of (Bk−irBk+1) ∩ (VkrVk+1) where k > 0 and i = 0, 1.

We obtain a topological quadrilateral by setting the horizontal sides to be

α1 = (Bk−irBk+1) ∩ ∂Vk and α2 = (Bk−irBk+1) ∩ ∂Vk+1.

Then when t > tk+1,

modϕt,n(Q) =

{
1, if i = 0,

3/4, if i = 1.
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Q1k (B)

Qmk (B)

Qrk (B)
Q1k (P) Qrk (P)

Qmk (P)

Qk (V ) Qk(V )
Qk (V)

Qk (V )

Figure 4 Nested disks

Proof. By the choice of ∂Vk, πf (α1) = πf (α2) is a vertical line in the annulus πf (B0). By the choice

of Bk, πf (∂Bk) are horizontal circles in πf (B0). Thus Q ∩ gs(∂Vk) is a horizontal line in Q for s ∈ Z
whenever it is not empty, and ∂Bs∩Q is a vertical line in Q for k < s < l if it exists. Recall that for each

component E of BkrBk+1, modπft ◦ϕt(E) = 3k for t > tk+1, and Vhk+1(x) = g3
k

(Vhk (x)) (or g−3k(Vhk (x))
if x is repelling) for k > 0. Thus when t > tk+1,

modϕt,n(Q) =
3k

3k
= 1, if i = 0,

modϕt,n(Q) =
3k

3k−1 + 3k
=

3

4
, if i = 1.

This completes the proof.

Modulus control. Let Nk = UkrUk+1. In the following we always assume t > tk. Then modϕt,n(Nk)

is independent of t. We want to show that there exists a constant M > 0 such that

modϕt,n(Nk) >M.

The intersections of Nk with Bk, with Wk and with Vk are topological quadrilaterals. Their moduli are

bounded from below by the following discussion:

Case 1. For each component B of B0rŜ, there is a unique component of Bk ∩ Nk contained in B

(denote it by Qk(B)) which becomes a quadrilateral by setting its horizontal sides to be ∂Qk(B) ∩ ∂Bk
and ∂Qk(B) ∩ ∂Bk+1. Let Mk(B) = modϕt,n(Qk(B)).

The set Qk(B) is cut into three sub-quadrilaterals by ∂Vk. Denote the left, right and middle pieces

by Qlk(B), Qrk(B) and Qmk (B), respectively. Denote by Mk,l(B), Mk,r(B) and Mk,m(B) the moduli of

their ϕt,n-images, respectively. Note that ϕt,n(∂Vk ∩ Qk(B)) are still vertical arcs in ϕt,n(Qk(B)). By

the choices of Bk and Vk, we have

Mk,m(B) = 3Mk−1(B).

By Proposition 5.10,

Mk,l(B) =Mk,r(B) = 1 for k > 0.

Thus
1

Mk(B)
=

1

3Mk−1(B)
+

1

M0,l(B)
+

1

M0,r(B)
=

1

3

1

Mk−1(B)
+ 2.

It follows that

1

Mk(B)
=

1

3k
1

M0(B)
+ 2

(
1 +

1

3
+ · · ·+ 1

3k−1

)
6 1

M0(B)
+ 3 =:

1

M1
.
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Case 2. For each component W of W0rŜ, there is a unique component of Wk ∩Nk contained in W

(denote it by Qk(W )) which becomes a quadrilateral by setting its horizontal sides to be ∂Qk(W )∩ ∂Wk

and ∂Qk(W ) ∩ ∂Wk+1. Similar to Case 1, we may show that there exists a constant M2 > 0 such that

modϕt,n(Qk(W )) >M2 for k > 0.

Case 3. For each component V of V0rŜ, there is a unique component of Vk ∩ Nk contained in V

(denote it by Qk(V )) which becomes a quadrilateral by setting its horizontal sides to be ∂Qk(V ) ∩ ∂Vk
and ∂Qk(V ) ∩ ∂Vk+1. Let Mk(V ) = modϕt,n(Qk(V )).

For k > 1, there are exactly two components of Bk−1 intersecting Qk(V ). Denote the intersections by

Qℓk(V ) and Qrk(V ) for k > 0. These are quadrilaterals whose vertical sides lie on ∂Bk+1 and ∂Bk−1. By

Lemma 5.10, we have

modϕt,n(Q
ℓ
k(V )) = modϕt,n(Q

r
k(V )) = 3/4 for k > 1.

Set Qmk (V ) = Qk(V )rBk for k > 0. By the choice of Vk, we get three pairwise disjoint sub-

quadrilaterals of Qmk (V ) whose moduli equal to that of Qk−1(V ), and whose vertical sides as subsets

of the vertical sides of Qmk (V ). Then we can apply the standard Grötzsch inequality to get

modϕt,n(Q
m
k (V )) > 3 modϕt,n(Qk−1(V )) = 3Mk−1(V ) for k > 1.

Let

Qℓmk (V ) = Qℓk ∩Qmk (V ) and Qrmk (V ) = Qrk ∩Qmk (V ).

Also by Proposition 5.10,

modϕt,n(Q
ℓm
k (V )) = modϕt,n(Q

rm
k (V )) = 1.

As above, ϕt,n(∂Q
m
k (V )∩Qrk(V )) is a vertical line in ϕt,n(Q

r
k(V )); and ϕt,n(∂Q

m
k (V )∩Qℓk(V )) is a vertical

line in ϕt,n(Q
ℓ
k(V )). By Lemma 2.4, we have

1

Mk(V )
6 1

3

1

Mk−1(V )
+

4

3
+

4

3

=
1

3k
1

M0(V )
+

(
1 +

1

3
+ · · ·+ 1

3k−1

)
8

3
6 1

M0(V )
+ 4 =:

1

M3
.

The numbers of components of Nk ∩Bk, Nk ∩Wk and Nk ∩Vk are independent of k > 0; denote them

by n1, n2 and n3, respectively. Applying Lemma 2.3, we conclude that

1

modNk
6 n1
M1

+
n2
M2

+
n3
M3

=:
1

M
.

Now suppose that S is a skeleton of level j with 0 < j 6 n. Let Uk be the domain chosen as above for

the periodic skeleton f j(S). Let Uk(S) be the component of f−j(Uk) containing S. Then

f j : U0(S)rUk(S) → U0rUk

is a covering of degree d > 1. Thus

modϕt,n(U0(S)rUk(S)) =
1

d
modϕt,n(U0rUk).

This completes the proof of Lemma 5.9.

6 Simple pinching

In this section, we will prove Theorem 1.3. Let f be a geometrically finite rational map and let A ⊂ Rf

be a starlike multi-annulus. Let ft = ϕt ◦ f ◦ ϕ−1
t (t > 0) be the simple pinching path supported on A .

Recall that the map ϕt is normalized by fixing three distinct points z1, z2 and z3 in U0 ∩ Pf , where U0

is a component of Crπ−1
f (A ) such that both U0 ∩ Pf and ∂U0 ∩ Jf are infinite sets. By making a

holomorphic conjugacy, we may assume that z3 = ∞, for the sake of simplicity.
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B

D(B)

Figure 5 The angular space D(B) of B′

6.1 The angular space system

Recall that for each component A of A , A′ b A is an annulus essentially contained in A whose boundary

consists of horizontal curves in A. Denote by A′′ the annulus bounded by the equators of the two annular

components of ArA′. Then A′ b A′′ b A, and ∂A′′ consists of smooth curves. Denote by A ′′ the union

of A′′ for each component A of A . For each band B, we denote by B′′ the component of π−1(A ′′)

contained in B.

Let {N(T )} be a Koebe space system of the band-trees. For each periodic band B, pick a smooth disk

UB ∋ a(B) such that

• ∂UB ∩ Pf = ∅,
• UB ⊂ N(T ) if B ∈ T ,

• f(UB) ⊂ Uf(B) and

• ∂UB ∩ ∂B′′ contains exactly two points.

Let D(B) = B′′ ∪ UB . Then {D(B)} are pairwise disjoint disks, due to the assumption that the

multi-annulus A is starlike. For each level n band Bn, f
n(Bn) = B is a periodic band. Let D(Bn) be

the component of f−n(D(B)) containing a(Bn). Then D(B) b N(B) and {D(B)} are pairwise disjoint

disks for all bands B.

For each band B, denote by B′ ⊂ B the band of A ′. Then B′ b D(B) ∪ r(B). We call that D(B) is

the angular space of B′ and {D(B)} is an angular space system (see Figure 5).

Lemma 6.1. There is a constant K0 <∞ such that for any band B, any point z ∈ ∂D(B)rr(B) and

any holomorphic injection ζ from N(B) into C, there exists an arc δ ⊂ D(B)−B′ which joins z to r(B),

such that

L(ζ(δ)) < K0 · dist(ζ(z), ζ(B′)),

where L(·) denotes the Euclidean length and dist(·, ·) denotes the Euclidean distance.

Proof. We only need to prove the lemma for bands B with r(B) ∈ f−1(Pf ) and for the holomorphic

injection ζ = id, by the Koebe distortion theorem.

Let B be a periodic band with period p > 1. Since r(B) is repelling, there exists a disk V ⊂ N(B)

with r(B) ∈ V such that ∂V intersects ∂B′′ at exactly two points on ∂D(B), fp is injective on V and

V b fp(V ).

Let λ be the multiplier of fp at the fixed point r(B). Then |λ| > 1. By the Linearization theorem,

there exists a conformal map ψ : fp(V ) → ψ(fp(V )) ⊂ C such that ψ(r(B)) = 0 and ψ ◦ fp(z) = λ ·ψ(z)
on V .

Let β = ∂D(B)r{r(B)}. Denote by β1 and β2 the two arcs of (∂B′′r{r(B)})∩ V . Then fp(βi) ⊃ βi.

Let γi = ψ(βi). Then one endpoint of γi is the origin and the other endpoint of γi, denote it by wi, is

on ψ(∂V ).

For any two distinct points w,w′ ∈ γi, denote by γi(w,w
′) the arc on γi with endpoints w and w′.

Since βi is smooth, the Euclidean length L(γi(wi/λ,wi)) is bounded. Moreover,

L

(
γi

(
wi
λ2
,
wi
λ

))
=

1

|λ|
L

(
γi

(
wi
λ
,wi

))
.
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Thus L0 = L(γi(0, wi)) is bounded and for any point w ∈ γi(0, wi),

L(γi(0, w)) = |λ| · L(γi(0, w/λ)).

There exists a constant r0 > 0 such that D(w, r0) ⊂ fp(VrB′) for all points w ∈ γi(wi/λ,wi). For

each k > 1 and any point w ∈ γi(wi/λ
k+1, wi/λ

k), since λ ◦ ψ(V ∩ B′) = ψ(fp(V ) ∩ B′), we have

D(w, r0/|λ|k) ⊂ fp(VrB′).

By the Koebe distortion theorem, there exists a constant K1 <∞ such that for any point z ∈ βi,

L(βi(r(B), z)) < K1 diste(z,B
′).

For each point z ∈ βrV , dist(z,B′) is bounded from below, while L(β(r(B), z)) is bounded from above

since ∂Da(B) is smooth. Thus there exists a constant K2 such that

L(β(r(B), z)) < K2 diste(z,B
′).

Combining the two inequalities above, we prove the lemma for the periodic band B.

Now let Bk be a band of level k > 1 with r(Bk) ∈ f−1(Pf ). Let V be the disk defined as above for

the periodic band B = fk(Bk) and let p > 1 be the period of B. Let U and W be the components of

f−k(V ) and f−k(fp(V )) that contain Bk, respectively. Then there exists a conformal map ξ : U → W

such that fk ◦ ξ = fk ◦ fp on U and ξ(Bk ∩ U) = Bk ∩W . This shows that r(Bk) is a repelling fixed

point of ξ. By the same argument as the above, we may verify the lemma for the band Bk.

6.2 Modulus control

Applying Lemmas 2.2 and 6.1, we will control the modulus of ϕt(A) for certain annuli A ⊂ C in the

following lemmas.

Lemma 6.2. Let A ⊂ C be an annulus which contains π−1
f (A ). Then there exists a constant K > 1

such that
1

K
modA 6 modϕt(A) 6 KmodA

for t > 0.

Proof. Since π−1
f (A ) ⊂ A, there exists a Koebe space system {N(T )} such that N(T ) ⊂ A for every

band-tree T , by Proposition 5.7. Let D(B) be an angular space system such that D(B) ⊂ N(B).

Let ρ be an extremal metric on the annulus A. It can be chosen to be ρ(z) = |(logχ)′(z)|, where
χ : A → A(r) is a conformal map for some r > 1. For each n > 0, denote by B′

n the union of bands of

the multi-annulus A ′ with level k 6 n . Define

ρn(z) =

{
0, on the closure of B′

n,

ρ(z), otherwise.

Let B be a band of level k 6 n and let B′ ⊂ B be a band of A ′. Let α be an arc in D(B) which joins

two boundary points z1, z2 ∈ ∂D(B). If α ∩B′ = ∅, then L(ρn, α) = L(ρ, α).

Now we assume that α intersects B′. Consider the map logχ(z); it has a univalent branch ζ(z) on

the disk N(B). By Lemma 6.1, there exist two arcs δ1, δ2 ⊂ D(B) − B′ which join z1, z2 with r(B),

respectively, such that

L(ζ(δi)) < K0 · dist(ζ(zi), ζ(B′)) for i = 1, 2,

where K0 <∞ is the constant from Lemma 6.1. Set δ = δ1∪{r(B)}∪δ2. Then δ ⊂ (D(B)rB′)∪{r(B)}
and

L(ρ, δ) = L(ζ(δ1)) + L(ζ(δ2)) < K0 · L(ρn, α).

It follows that

Width(ρn, A) >
1

K0
Width(ρ,A) and Height(ρn, A) >

1

K0
Height(ρ,A).
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Let ρt,n be the pushforward of ρn by ϕt,n, i.e.,

ρt,n(w) =

{
0, on the closure of ϕt,n(B′

n),

|(ϕ−1
t,n)

′(w)|ρn(ϕ−1
t,n(w)), otherwise.

Then ρt,n is a conformal metric on ϕt,n(A) since ϕt,n is holomorphic in CrB′
n. Therefore

Area(ρt,n, ϕt,n(A)) = Area(ρn, A) 6 Area(ρ,A),

Width(ρt,n, ϕt,n(A)) = Width(ρn, A) >
1

K0
Width(ρ,A), and

Height(ρt,n, ϕt,n(A)) = Height(ρn, A) >
1

K0
Height(ρ,A).

By Lemma 2.2, we have
1

K2
0

modA < modϕt,n(A) < K2
0modA.

Letting n→ ∞ and applying Lemma 5.8 and Theorem 2.5 completes the proof.

From Lemma 6.2 and the normalization condition, we have the following corollary.

Corollary 6.3. For each domain D compactly contained in Crπ−1
f (A ), there exists a constant C > 0

such that diamsϕt(D) > C for t > 0.

Lemma 6.4. Let S be a skeleton. Then for any disk U ⊃ S and any constant M > 0, there exist a

disk D ⊃ S with D b U and a constant t0 > 0, such that

modϕt(UrD) >M for t > t0.

Proof. We only need to prove the lemma for periodic skeletons. Let S be a periodic skeleton. Let

{N(T )} be a Koebe space system and let {D(B)} be an angular space system with D(B) ⊂ N(B). Since

N(B) is disjoint from periodic bands for each band B with level n > 1, by the Koebe distortion theorem,

there exists a constant M1 <∞ such that for any band B with level n > 1,

diamϕt,0(D(B)) 6M1dist(ϕt,0(D(B)), ∂ϕt,0(N(B))).

By Lemma 5.9, for any constant M2 < ∞, there exist a constant t0 > 0 and disks V1 and V2 with

S ⊂ V2 b V1 ⊂ U ∩N(S), such that

modϕt,0(V1rV2) >M2 for t > t0.

Given any t > t0, by Lemma 2.1, there exists a round annulus At = A(w0, r1, r2) with center w0 ∈
ϕt,0(S) and with At contained essentially in ϕt,0(V1rV2) such that

modAt =
log(r2/r1)

2π
>M2 −

5 log 2

2π
.

Denote by C2 and C1 the outer and the inner boundary components of At, respectively. Since w0 /∈
ϕt,0(N(B)), if ϕt,0(D(B1)) ∩ C2 ̸= ∅ for some band B1 with level n > 1, then

dist(w0, ϕt,0(D(B1))) > r2/(1 +M1).

Similarly, if ϕt,0(D(B2)) ∩ C1 ̸= ∅ for some band B2 with level n > 1, then

dist(w0, ϕt,0(D(B2))) 6 r1(1 +M1).

Given any n > 1, the map ϕt,n ◦ ϕ−1
t,0 is holomorphic except on the closure of the union of all bands of

level 1 6 k 6 n. Define a conformal metric on At by

ρn(w) =

0, on the closure of ϕt,0(B′
n),

ρ(w) =
|dw|

|w − w0|
, otherwise.
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Then

Area(ρn, At) 6 Area(ρ,At) = 2π log(r2/r1) = 4π2 modAt.

For any arc α in At joining its two boundary components, as in the proof of Lemma 6.2,

L(ρn, α) >
1

K0

(
log

r2
r1

− 2 log(1 +M1)

)
,

where K0 is the constant in Lemma 6.1. Thus

mod (ϕt,n ◦ ϕ−1
t,0 )(At) >

Height(ρn, At)
2

Area(ρn, At)
> modAt

K2
0

(
1− log(1 +M1)

π modAt

)2

.

Combining these inequalities with the fact that ϕ−1
t,0 (At) is contained in V1rV2 essentially, we get

modϕt,n(V1rV2) >
M2 − (5 log 2)/(2π)

K2
0

(
1− 2 log(1 +M1)

2πM2 − 5 log 2

)2

for t > t0.

Note that both constants M1 and K0 are independent of the choice of n. Let n→ ∞. We get the lemma

by Theorem 2.5 and Lemma 5.8.

Lemma 6.5. Let z0 ∈ C be a point which is not contained in any skeleton. Then for any disk U ⊂ C
with z0 ∈ U and any constant M > 0, there exist a constant t0 > 0 and a disk D b U with z0 ∈ D,

such that

modϕt(UrD) >M for t > t0.

Proof. If z0 ∈ Ff , then {ϕt} is uniformly quasiconformal in a neighborhood of z0 for t > 0. The lemma

is trivial in this case. Now we assume that z0 ∈ Jf .
Case 1. Assume that ω(z0) is disjoint from the closures of all periodic bands. By Proposition 5.7,

there exists a Koebe space system {N(T )} such that z0 /∈ N(T ) for every band-tree T . Let {D(B)} be

an angular space system with D(B) ⊂ N(B). Then there exists a constant M1 < ∞ such that for each

band B and any holomorphic injection ζ : N(B) → C,

diamζ(D(B)) 6M1dist(ζ(D(B)), ∂ζ(N(B))).

For any M > 0, let A be a round annulus with modulus modA = M2 and contained essentially in

Ur{z0}. Using the argument in the proof of Lemma 6.4, we have a constant K0 <∞ such that

modϕt,n(A) >
M2

K2
0

(
1− log(1 +M1)

πM2

)2

for t > 0.

Note that both constants M1 and K0 are independent of the choice of n. Let n→ ∞. We get the lemma

by Theorem 2.5 and Lemma 5.8.

Case 2. Assume that r(S) ∈ ω(z0) for some periodic skeleton S. Let {N(T )} be a Koebe space

system. By Lemma 6.4, there exist a constant M > 0, two disks U0 and U1 in N(S) with S ⊂ U1 b U0

and a constant t0 > 0, such that

modϕt(U0rU1) >M for t > t0.

Without loss of generality, we may assume that S is fixed, i.e., f(S) = S. Then f−1(U1) has exactly one

component U ′ such that S ⊂ U ′. Since r(S) is repelling, we may assume that (U ′ ∩ Jf ) ⊂ U1 (recall the

construction of Un in Lemma 5.9).

Now let fnk(z0) ∈ U1 be the first return of the orbit {fn(z0)}. Then fnk−1(z0) /∈ U1. Let Vk and V ′
k

be the components of f−nk(U0) and f
−nk(U1) that contain z0 along its orbit, respectively. Then VkrV ′

k

is an annulus around z0, which shrinks to the point z0 by Lemma 2.9. Note that

modϕt(VkrV ′
k) >

M

K
for t > t0,

where K = maxk>1 degzk f
k over all point zk with fk(zk) = r(S) but fk−1(zk) ̸= r(S). Therefore, we

may choose as many of them as possible such that they are pairwise disjoint, which forms the desired

annulus.
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6.3 Proof of Theorem 1.3

Lemma 6.6. The family {ϕt} (t > 0) is equicontinuous. Let φ be a limit of the family as t → ∞.

Then φ(S) is a single point for each skeleton S. Conversely, for any point w ∈ C, φ−1(w) is either a

single point or a skeleton.

Proof. We begin by proving that {ϕt} is equicontinuous. Pick a disk D0 ⊂ C such that π−1
f (A ) ⊂ D0.

From Lemma 2.1 and Corollary 6.3, we only need to prove that for any M > 0 and point z0 ∈ D0, there

exists a disk Dz0 ∋ z0 such that modϕt(D0rDz0) > M for all t > 0.

Assume that z0 is contained in an m-level skeleton S. By Lemma 6.4, there exist a disk D ⊃ S with

D ⊂ D0 and a constant t0 > 0, such that

modϕt(D0rD) >M

for t > t0. Since {ϕt, t 6 t0} is uniformly quasiconformal, there exists a disk Dz0 ∋ z0 with Dz0 ⊂ D,

such that modϕt(D0rDz0) >M for t 6 t0. Combining these facts we get modϕt(D0rDz0) >M for all

t > 0.

Now we assume that z0 is not contained in any skeleton. By Lemma 6.5, there exists a disk Dz0 ∋ z0
with Dz0 ⊂ D0 such that

modϕt(D0rDz0) >M

for all t > 0.

Now we have proved that {ϕt} is equicontinuous in D0 and thus is also equicontinuous in C since ϕt
is holomorphic in CrD0. Let φ be a limit of the family as t → ∞. From Lemma 2.6, φ is a quotient

map of C. By Lemma 6.4, for each skeleton S, φ(S) is a single point. Conversely, for each point w ∈ C,
if φ−1(w) contains at least two points, we claim that φ−1(w) is a skeleton. Otherwise, let z1 and z2 be

two distinct points in φ−1(w) which are not contained in one skeleton. By Lemmas 6.4 and 6.5, there

exist constants t0 > 0 and M > 5 log 2/(2π), and an annulus A ⊂ C, such that the two components D1

and D2 of CrA are disks which contain the points z1 and z2, respectively, and

modϕt(A) >M for t > t0.

Note that both D1 and D2 intersect Crπ−1
f (A ). Thus neither φ(D1) nor φ(D2) is a single point. There-

fore, there is a positive distance between them and hence φ(z1) ̸= φ(z2). This leads to a contradiction.

Let φ be a limit of the family {ϕt} as t → ∞. Let B be a periodic band with period p > 1 and let E

be a component of BrS, where S is the periodic skeleton with S ⊂ B. Let χ : πf (E) → A(1/r, 1) be a

conformal map such that |χ ◦ πf (z)| → 1 as z → ∂BrS. Let W = φ(E). Then

g = φ ◦ fp ◦ φ−1 :W →W

is a well-defined conformal map. From Proposition 5.1, we have the following lemma.

Lemma 6.7. There exists a universal covering π : W → D∗ with π(w1) = π(w2) if and only if

w1 = gk(w2) for some integer k ∈ Z such that the following diagram commutes:

E

χ◦πf

��

φ // W

π

��
A(1/r, 1) w // D∗,

where w is the map defined in Proposition 5.1(4).

Proof of Theorem 1.3. From Lemmas 6.6, {ϕt} (t > 0) is equicontinuous. Let {tn} be a sequence

in [0,∞) with {tn} → ∞ as n → ∞ such that {ϕtn} converges uniformly to a quotient map φ. Let

ftn = ϕtn ◦ f ◦ ϕ−1
tn . By Corollary 6.3, φ is injective on

W := Crπ−1
f (e(A )).
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So {ftn} converges uniformly to a map g on any compact set in W and deg(g |φ(W )) = deg f . By

Lemma 2.8, g is a rational map and {ftn} converges uniformly to g on C.
Each skeleton S intersects Jf at exactly one point r(S). So φ is injective on Jf and hence it is a

homeomorphism from Jf to φ(Jf ).
Since φ(Jf ) is a completely invariant perfect set and is contained in the closure of the periodic point

set, we have φ(Jf ) = Jg. Since Jg ∩ Pg = φ(Jf ∩ Pf ) and f is geometrically finite, g is a geometrically

finite rational map.

If there exists another sequence {t′n} in [0,∞) with {t′n} → ∞ as n → ∞ such that {ϕt′n} converges

uniformly to φ̃, then {ϕt′n ◦ f ◦ ϕ−1
t′n

} converges uniformly to another rational map g̃. Set ψ = φ̃ ◦ φ−1.

It is a well-defined homeomorphism and ψ ◦ g = g̃ ◦ ψ. Moreover, ψ is holomorphic on the Fatou set Fg.
Thus ψ is a conformal map of C by Theorem 1.1. By the normalization condition, we have ψ = id and

hence φ̃ = φ. Thus {ϕt} converges uniformly to φ and {ft} converges uniformly to g as t→ ∞.

7 Simple plumbing

In this section we will prove the following theorem. Theorem 1.4 and the sufficiency part of Theorem 1.2

are direct consequences of this theorem.

Theorem 7.1. Let (G,Q) be a marked semi-rational map with parabolic cycles in P ′
G and #(QrPG)

< ∞. Suppose that (G,Q) has neither Thurston obstructions nor connecting arcs. Then there exist a

marked rational map (g,Q1), a sub-hyperbolic rational map f and a simple pinching path {ft} (t > 0)

starting from f such that {ft} converges to g uniformly on C as t → ∞ and (G,Q) is c-equivalent

to (g,Q1).

7.1 Simple plumbing surgery

Step 1. The cut-glue surgery. Let (G,Q) be a marked semi-rational map with parabolic cycles in P ′
G

and #(QrPG) < ∞. Denote by Y ⊂ P ′
G the set of parabolic cycles. Pick a calyx for each cycle in Y

such that the closure of their union W is disjoint from QrY . The quotient space W/⟨G⟩ is a disjoint

union of once-punctured disks. Thus there is a natural holomorphic projection π : W → D∗ such that for

each sepal W of W with period p > 1, π :W → D∗ is a universal covering and π(z1) = π(z2) if and only

if z1 = Gkp(z2) for some integer k ∈ Z.
Given any 0 < r < 1, let W(r) = π−1(D∗(r)) and R(r) = WrW(r). Then G(R(r)) = R(r). Thus

there is a conformal map τ : R(r2) → R(r2) such that

(i) τ(z) and z are contained in the same attracting petal but in different sepals.

(ii) τ2 = id and G ◦ τ = τ ◦G.
The map τ is unique up to composition with some iterates of G.

Define an equivalence relation on CrW(r2) by z1 ∼ z2 if τ(z1) = z2. The equivalence relation is trivial

in the set CrW. Then the quotient space is a punctured sphere with finitely many punctures. Thus

there exist a finite set X ⊂ C and a holomorphic surjective map

p : CrW(r2) → CrX

such that p(z1) = p(z2) if and only if either z1 = z2 or z1 ∈ R(r2) and z2 = τ(z1) (see Figure 6).

Let S = p(∂W(r)rY )∪X. It is a finite disjoint union of trees whose vertex set is X. Let B = p(R(r2)).

It is a finite disjoint union of disks, and S ∪X ⊂ B.
Step 2. The induced map after surgery. The semi-rational map can be pushed forward to the quotient

space CrW(r2) except on W1 := G−1(W)rW since G◦ τ = τ ◦G on R(r2), i.e., there is continuous map

F0 : Crp(W1) → C such that

F0 ◦ p = p ◦G on CrG−1(W).

Since G is holomorphic in a neighborhood of W, F0 is holomorphic in a neighborhood of B since the

points in the set X are removable singularities of F0. Obviously, F0(X) = X, F0(S) = S and F0(B) = B.
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plumbing

W

W (r)

W(r2)
τ τ

Figure 6 Simple plumbing

For each component B of B, B ∩X contains exactly two points. Let p > 1 be the period of B. The

sequence {F kp0 (z)} converges to a point in B ∩ X for any point z ∈ B. Denote it by a(B). Since each

attracting petal of G at a point in Y contains infinitely many points of PG, a(B) is an accumulation

point of p(PGrY ).

Denote by r(B) the other point in B ∩X. By Condition (i) in the definition of the map τ , r(B) is not

an accumulation point of p(PGrY ). Moreover, the closures of any two distinct components B1, B2 of B,
are either disjoint or touch each other at r(B1) = r(B2). Consequently the set X can be decomposed

into X = Xa ⊔Xr such that a(B) ∈ Xa and r(B) ∈ Xr for each component B of B. Both Xa and Xr

are fixed by F0. In the following we want to prove that cycles in Xa are attracting and cycles in Xr are

repelling.

Let y ∈ Y be a point with period p > 1. Pick an attracting flower V of G at the point y such that each

component of ∂R(r2)r{y} intersects ∂V at exactly two points and

τ(∂V ∩R(r2)) = ∂V ∩R(r2).

Then D = p(VrW(r2)) is a disjoint union of once-punctured disks whose punctures are contained in Xa,

and F p0 (D) ⊂ D. This shows that each cycle in Xa is attracting. On the other hand, pick a repelling

flower V ′ at y such that each component of ∂R(r2)r{y} intersects ∂V ′ at exactly two points and

τ(∂V ′ ∩R(r2)) = ∂V ′ ∩R(r2).

Then D′ = p(V ′rW(r2)) is a once-punctured disk with puncture x ∈ Xr, and F
−p
0 (D′) ⊂ D′, where the

inverse branch is taken along F p0 (x) = x. This shows that each cycle in Xr is repelling.

Step 3. Extension of the inverse map of the projection. Note that restricted to CrW the holomorphic

projection p is injective and p(CrW) = CrB. We want to extend its inverse map to be a quotient map

of C (refer to Subsection 2.3 for its definition) as follows.

Note that π(W) = D∗ and π(R(r)) = A(r, 1). Let w : A(r, 1) → D∗ be the homeomorphism defined in

Proposition 5.1(4), i.e.,
w(z) = z, if

√
r 6 |z| < 1,

argw(z) = arg z, if r < |z| <
√
r,

log |w(z)| = 1

2

(
1 + log

log(1/r)

2 log(|z|/r)

)
log r, if r < |z| <

√
r.

Then there exists a unique homeomorphism w̃ : R(r) → W such that π ◦ w̃ = w◦π and w̃ = id on R(
√
r).

It follows that G ◦ w̃ = w̃ ◦G on R(r). Define

q =

{
p−1 : CrB → CrW,

w̃ ◦ p−1 : BrS → R(r) → W.
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Then q : CrS → CrY is a homeomorphism. It is quasiconformal on any compact subset of CrS and

holomorphic in CrB′, where B′ ⊂ B is the interior of q−1(W(
√
r)). It can be extended to a quotient map

of C by setting q(S) = Y . See the following commutative diagram:

BrS

π◦p−1

��

q // W

π

��
A(r, 1) w // D∗.

From G ◦ w̃ = w̃ ◦G on R(r), we obtain that

G ◦ q = q ◦ F0 on Crq−1(W1).

Step 4. Construction of a marked sub-hyperbolic semi-rational map. Each component E of W is a full

continuum which contains exactly one point of Q. Pick a disk U(E) ⊃ E such that U(E)rE contains no

critical values of G, ∂U(E) is disjoint from Q and all these domains U(E) have disjoint closures. Denote

by U0 their union. Then U(E) contains at most one critical value of G. Thus each component of G−1(U0)

is a disk containing exactly one component of G−1(W).

Let U1 be the union of all components of G−1(U0) which contain a component of W1. Since W1 is

disjoint from P ′
G once U0 is close enough to W, we may assume that U1rW1 is disjoint from Q.

Define a branched covering F of C satisfying the following conditions:

(a) F (z) = F0(z) on Crq−1(U1) and hence G ◦ q = q ◦ F on Crq−1(U1).

(b) F : q−1(U1) → q−1(U0) is a branched covering whose critical points are contained in Y1 :=

G−1(Y )rY and F (q−1(Y1)) ⊂ Xr.

Then F is a geometrically finite branched covering of C. Since any attracting petal at a point in Y

contains points of PG (refer to the definition of semi-rational maps in Section 1), we have

q−1(PGrY ) ∪Xa ⊂ PF ⊂ q−1(PGrY ) ∪X,

and P ′
F = q−1(P ′

GrY ) ∪Xa. In particular, q(PF ) = PG. Set

P = q−1(QrY ) ∪X.

Then q(P) = Q, (PF ∪ F (P)) ⊂ P and #(PrPF ) <∞.

Note that F is holomorphic in a neighborhood of q−1(P ′
G). Since each cycle in P ′

GrY is either

attracting or super-attracting for G, each cycle in q−1(P ′
GrY ) is either attracting or super-attracting

for F . On the other hand, F0 is holomorphic in a neighborhood of B and each cycle in Xa is attracting.

Thus (F,P) is a marked sub-hyperbolic semi-rational map.

Step 5. Lift of the quotient map. For each component D of U1, G : D → G(D) is a covering with at

most one critical value. On the other hand, F : q−1(D) → F (q−1(D)) is also a branched covering with

at most one critical value, and they have the same degree. Thus the quotient map

q : F (q−1(D)) = q−1(G(D)) → G(D)

can be lifted to a quotient map q̃ : q−1(D) → D that coincides with q on the boundary, i.e., G ◦ q̃ = q ◦F
on q−1(D).

Define q̃ = q on Crq−1(U1). Then q̃ is a quotient map of C and

G ◦ q̃ = q ◦ F.

Since each component of q−1(U1) is a disk containing at most one point of P, q̃ is isotopic to q rel

(Crq−1(U1)) ∪ P.

Lemma 7.2. If U is a fundamental set of F , q(U) contains a fundamental set of G.
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Proof. We only need to show that q(U) contains an attracting flower at each cycle in Y . Pick a disk

Dx around each point x ∈ Xa in Urq−1(U1) such that ∂Dx ∩ S is a single point, F is univalent and

holomorphic in Dx and F (D) ⊂ D, where D denotes the union of the Dx. Then V = q(D)rY is a disjoint

union of disks, G is holomorphic in V and G(V) ⊂ V ∪ Y .

Let {Gn(w)} (n > 0) be an orbit converging to a cycle in Y but with Gn(w) /∈ Y for all n > 0. Let

zn = q−1(Gn(w)). Then F (zn) = zn+1 once n is large enough and {zn} converges to an attracting cycle

in Xa as n → ∞. Thus zn ∈ D and hence Gn(w) ∈ q(D) once n is large enough. Therefore V contains

an attracting flower at each cycle in Y .

Lemma 7.3. The marked semi-rational map (F,P) has no Thurston obstructions.

Proof. Assume by contradiction that Γ is an irreducible multicurve of (F,P) with λ(Γ) > 1. Recall

that S = q−1(Y ) is a star. Thus we may further assume that for each γ ∈ Γ, #(γ ∩ S) is minimal in its

isotopy class. Since F : S → S is bijective, k := #(γ ∩ S) <∞ is a constant for γ ∈ Γ.

If k = 0, then for each γ ∈ Γ, q(γ) is essential and non-peripheral in CrQ since q : PrX → QrY
is injective and q(X) = Y ⊂ P ′

G. Thus Γ1 = {q(γ) : γ ∈ Γ} is an invariant multicurve of (G,Q).

Noticing that G ◦ q̃ = q ◦ F and that q̃ is isotopic to q rel P, we have λ(Γ) = λ(Γ1) < 1. This leads to a

contradiction.

Now we assume that k > 0. Then there exists at most one component of F−1(γ) isotopic to a curve

in Γ rel P for each γ ∈ Γ since F : S → S is bijective. Thus for each γ ∈ Γ, there is exactly one curve

β ∈ Γ such that F−1(β) has a component isotopic to γ rel P since Γ is irreducible. Therefore each entry

of the transition matrix M(Γ) is less than or equal to 1. Because λ(Γ) > 1, there is a curve γ ∈ Γ such

that γ is isotopic to a component δ of F−p(γ) rel P for some integer p > 1 and F p is injective on δ.

Let U be a fundamental set of F that is disjoint from every curve in Γ. Since q(U)rY contains a

fundamental set of G and q is injective on CrS, q(γ) is disjoint from a fundamental set of G.

Suppose γ intersects at least two components of S. Let β be a component of q(γ)rY such that β joins

two distinct points of Y . Then β is isotopic to a component of G−jp(β) rel Q for some integer j > 0 since

#(γ ∩ S) is minimal in its isotopy class and γ is isotopic to a component of F−p(γ) rel P. Thus β is a

connecting arc of (G,Q). This leads to a contradiction.

Suppose that γ intersects exactly one component S of S. Let U1 and U2 be the two components of

Crγ. Since γ is non-peripheral, each Ui contains at least two points of P. Either one of them is not

contained in S or one of them is contained in P ′
F since S contains exactly one isolated point of P. In the

latter case, Ui contains infinitely many points of P. Consequently, each Ui contains at least one point of

PrS. Thus UirS has a component U ′
i which contains at least one point of PrS.

Let y = q(S). Then there exists a component β of q(γ)r{y} such that β ∪ {y} separates q(U ′
1) from

q(U ′
2). In other words, each component of Cr(β ∪ {y}) contains at least one point of Q since q(P) = Q.

As above, β is isotopic to a component of G−jp(β) rel Q for some integer j > 0. Thus β is a connecting

arc of (G,Q). This is a contradiction. Thus (F,P) has no Thurston obstructions.

7.2 Proof of Theorems 1.2 and 1.4

Proof of Theorem 7.1. Let (G,Q) be a marked semi-rational map with parabolic cycles in P ′
G and

#(QrPG) < ∞. Suppose that (G,Q) has neither Thurston obstructions nor connecting arcs. Let

(F,P) be the marked sub-hyperbolic semi-rational map constructed in Step 4. By Lemma 7.3 and

Theorem 4.3, there exist a marked rational map (f,P1) and a c-equivalence (ϕ0, ϕ1) from (F,P) to (f,P1)

on a fundamental set U of F .

Recall that F (B) = B and F is conformal in a neighborhood of B. Pick a disk Dx ⊂ U around each

point x ∈ Xa such that ∂Dx ∩ B is an arc and F (D) ⊂ D, where D denotes the union of the Dx. Then

A = πf ◦ϕ0(D∩B) is a multi-annulus in Rf . From Step 1 and Condition (b) in Step 4, we know that A

is starlike.

Proposition 7.4. For each component B of B, let B′ be the component of π−1
f (A ) such that a(B′) =

ϕ0(a(B)). Then r(B′) = ϕ0(r(B)).
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Proof. Let p > 1 be the period of B. Let B̃ = ϕ0(B). Then B̃ coincides with B′ in a neighborhood

of a(B′). Since dega(B′) f
p = 1, there is a unique component B̃k of f−kp(B̃) whose closure contains the

point a(B′) for k > 1. Consequently, B̃k coincides with B′ in a neighborhood of a(B′).

Note that ϕ0(r(B)) ∈ P1 is a repelling periodic point of f . Cut B̃ into three disks B̃ = U ∪ V ∪W
such that U ⊂ B′, V ∩ P1 = ∅ and W is contained in a linearizable disk of the repelling periodic point

ϕ0(r(B)). Then each B̃k is also cut into three domains B̃k = Uk ∪ Vk ∪Wk such that fkp(Uk) = U ,

fkp(Vk) = V and fkp(Wk) = W . Since fp(B′) = B′, we have Uk ⊂ B′ for k > 1. On the other hand,

diamsVk → 0 as k → ∞ by Lemma 2.9 and diamsWk → 0 as k → ∞ sinceW is contained in a linearizable

disk. Thus r(B′) = ϕ0(r(B)).

By this proposition, we may assume by modification that ϕ0 is holomorphic in B∪U and ϕ1 is isotopic

to ϕ0 rel B ∪ U ∪ P. Then ϕ0(B) is the union of periodic bands of A , ϕ0(S) is the union of periodic

skeletons of A and ϕ1(F
−1(S)) is the union of skeletons of level at most 1 by the equation ϕ0◦F = f ◦ϕ1.

Let ft = ϕt ◦ f ◦ ϕ−1
t (t > 0) be the simple pinching path of f supported on A . By Theorem 1.3,

{ft} converges uniformly to a rational map g and {ϕt} converges uniformly to a quotient map φ of C as

t→ ∞, and g ◦ φ = φ ◦ f . Let Q1 = φ(P1). Then (g,Q1) is a marked rational map.

For any point w ∈ C, q−1(w) is either a single point or a component of S, and q̃−1(w) is either a single

point or a component of F−1(S). Let

ζ0 = φ ◦ ϕ0 ◦ q−1 and ζ1 = φ ◦ ϕ1 ◦ q̃−1.

These are well-defined quotient maps of C, and ζ0 ◦G = g ◦ ζ1.
From the definitions of q̃ and q, there exists a fundamental set U1 ⊂ U of F such that q̃ ◦q−1 is isotopic

to the identity rel q(U1 ∪ B ∪ P). By Lemma 7.2, there exists a fundamental set UG of G such that

UG ⊂ q(U1). Note that q−1(UG ∪Q) ⊂ U1 ∪ B ∪ P. Thus ζ1 is isotopic to

ζ1 ◦ (q̃ ◦ q−1) = φ ◦ ϕ1 ◦ q−1

rel UG ∪Q. Since ϕ1 is isotopic to ϕ0 rel U1 ∪ B ∪ P, ζ0 is isotopic to φ ◦ ϕ1 ◦ q−1 rel UG ∪Q. Therefore

ζ1 is isotopic to ζ0 rel UG ∪Q.

By Lemma 3.6, ϕ0(U1) is a fundamental set of f . Recall that ϕ0(B) is the union of all periodic bands

of A . Let B′ ⊂ B be the domain defined in Step 3. Then ϕ0(B′) is the union of all periodic bands of

A ′ ⊂ A (refer to Proposition 5.3 for the definition of A ′), and q(B′) = W(
√
r). Once U1 is small enough,

we may assume that

ϕ0(U1rB′) ⊂ Ffrπ−1
f (A ′).

Then φ is holomorphic in ϕ0(U1rB′). Thus ζ0 is holomorphic in UGrW(
√
r).

By the definition of q in Step 3, q is quasiconformal on any domain compactly contained in CrS and

holomorphic in CrB. Moreover, there exist holomorphic universal coverings π1 : BrS → A(r, 1) and

π2 : W = q(BrS) → D∗ such that

• π1(z1) = π1(z2) if and only if z1 = F i(z2) for some integer i ∈ Z,
• π2(w1) = π2(w2) if and only if w1 = Gj(w2) for some integer j ∈ Z, and
• |π1(z)| → 1 as z → ∂BrS and the following diagram commutes:

BrS

π1

��

q // W

π2

��
A(r, 1) w // D∗,

where w is the map defined in Proposition 5.1(4). Note that the map w commutes with any rotation of

D∗. Since ϕ0(B) is the union of all periodic bands of A , by Lemma 6.7, ζ0 is holomorphic in W and

hence in W ∪ (UGrW(
√
r)) = UGrY = UG. The last equality is because ζ0(UG) is a fundamental set

of g and hence is contained in the Fatou set of g.
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Obviously, ζ0 : Q → Q1 is bijective. Thus there exists a homeomorphism ψ0 of C such that ψ0 is

isotopic to ζ0 rel UG ∪ Q. Let ψ1 be the lift of ψ0. Then it a homeomorphism of C isotopic to ψ0 rel

UG ∪Q by [3, Theorem 1.12], and

g ◦ ψ1 = ψ0 ◦G.

Therefore (G,Q) is c-equivalent to (g,Q1). See the following diagram:

.

This completes the proof.

Proof of Theorems 4.4 and 1.2. Let (G,Q) be a semi-rational map with P ′
G ̸= ∅ and #(QrPG) <∞. If

(G,Q) is c-equivalent to a marked rational map (g,Q1), then (g,Q1) has neither Thurston obstructions

nor connecting arcs, by Theorems 4.2 and 4.8. Neither does (G,Q). Conversely, if (G,Q) has neither

Thurston obstructions nor connecting arcs, then (G,Q) is c-equivalent to a marked rational map, by

Theorems 7.1 and 4.3.

Proof of Theorem 1.4. This is a direct consequence of Theorem 7.1.

8 Distortion of univalent maps

8.1 Modulus difference distortion

Let V ⊂ C be an open set and let ϕ : V → C be a univalent map. Define

D0(ϕ, V ) = sup
E1,E2⊂V

|modA(E1, E2)−modA(ϕ(E1), ϕ(E2))|,

where E1 and E2 are disjoint full continua in V and A(E1, E2) := Cr(E1 ∪ E2). Define

D1(ϕ)(z, w) =

∣∣∣∣ log |ϕ′(z)ϕ′(w)||z − w|2

|ϕ(z)− ϕ(w)|2

∣∣∣∣
for (z, w) ∈ V × V, z ̸= w, and define

D1(ϕ, V ) = ∥D1(ϕ)(z, w)∥∞.

Obviously, for i = 0, 1,

Di(ϕ
−1, ϕ(V )) = Di(ϕ, V ),

and for any Möbius transformations β and γ of C,

Di(γ ◦ ϕ ◦ β, β−1(V )) = Di(ϕ, V ).

Theorem 8.1. Suppose that D0(ϕ, V ) = δ <∞. Then

(a) D1(ϕ, V ) 6 2πδ.

(b) Assume that V contains 0,∞ and D(1, r0) for some r0 > 0. If ϕ fixes 0, 1 and ∞, then there exists

a constant C(r0) > 0 depending only on r0 such that

dists(ϕ(z), z) 6 C(r0)δ.
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Proof. (a) We want to prove that D1(ϕ)(z, w) 6 2πδ for z, w ∈ V and z ̸= w. Since D1(ϕ, V ) is

invariant under Möbius transformations, we may assume that z = 0, w = 1, ϕ(0) = 0 and ϕ(1) = 1. Then

D1(ϕ)(z, w) = | log |ϕ′(0)ϕ′(1)||.
Let M0(r) and m0(r) be the supremum and infimum of |ϕ(z)| on the disk D(r), and let M1(r) and

m1(r) be the supremum and infimum of |ϕ(z)− 1| on the disk D(1, r). Then

A(D(M0(r)),D(1,M1(r))) ⊂ A(ϕ(D(r)), ϕ(D(1, r))) ⊂ A(D(m0(r)),D(1,m1(r))).

By a direct computation, we have

modA(D(r1),D(1, r2)) =
1

2π
log(κ(r1, r2) +

√
κ(r1, r2)2 − 1),

where κ(r1, r2) = (1 − r21 − r22)/(2r1r2). Since both M0(r)/r and m0(r)/r converge to |ϕ′(0)|, and both

M1(r)/r and m1(r)/r converge to |ϕ′(1)| as r → 0, we get

|modA(D(r),D(1, r))−modA(ϕ(D(r)), ϕ(D(1, r)))| = | log |ϕ′(0)ϕ′(1)||
2π

+O(r).

Letting r → 0, we deduce that | log |ϕ′(0)ϕ′(1)|| 6 2πδ.

(b) Set λ0 = |ϕ′(0)|, λ1 = |ϕ′(1)| and λ2 = limz→∞ |z/ϕ(z)|. Then | log λiλj | 6 2πδ for i ̸= j. It follows

that | log λi| 6 3πδ for i = 0, 1, 2.

For any point z ∈ Vr{∞}, we have D1(ϕ)(z, w) 6 2πδ for w ∈ Vr{z}. Letting w → ∞, we get

| log |λ2ϕ′(z)|| 6 2πδ. Thus

| log |ϕ′(z)|| 6 5πδ for z ∈ Vr{∞}. (8.1)

Therefore ∣∣∣∣ log |ϕ(z1)− ϕ(z2)|2

|z1 − z2|2

∣∣∣∣ 6 10πδ (8.2)

for any points z1, z2 ∈ Vr{∞} with z1 ̸= z2. Applying (8.2) for the pairs (z, 0) and (z, 1) with |z| 6 2,

we obtain

||ϕ(z)|2 − |z|2| 6 4(e10πδ − 1),

||ϕ(z)− 1|2 − |z − 1|2| 6 9(e10πδ − 1).

It follows that

|Re(ϕ(z)− z)| 6 7(e10πδ − 1), (8.3)

|Im(ϕ(z)− z)| · |Im(ϕ(z) + z)| 6 18(e20πδ − 1). (8.4)

Let s = max{1, r0/7}. Without loss of generality, we assume that e10πδ − 1 < s/21. Then

|ϕ′(w)| 6 e5πδ 6
√

1 + s/21 6 2 for w ∈ Vr{∞}.

For each point w ∈ D(1, s), we have D(w, 6r0/7) ⊂ D(1, r0). Applying Cauchy’s integral formula on

∂D(w, 6r0/7), we get |ϕ′′(w)| 6 1/(3s). Thus

|Re(ϕ′(w)− ϕ′(1))| 6 |ϕ′(w)− ϕ′(1)| 6
∣∣∣∣ ∫ w

1

ϕ′′(ζ)dζ

∣∣∣∣ 6 1/3. (8.5)

Applying (8.3) for z = 1 + s, we get∣∣∣∣ ∫ 1+s

1

Re (ϕ′(ζ)− 1)dζ

∣∣∣∣ = |Reϕ(1 + s)− (1 + s)| 6 7(e10πδ − 1) <
s

3
.

By (8.5), we have

|Reϕ′(1)− 1| = 1

s

∣∣∣∣ ∫ 1+s

1

Re (ϕ′(1)− 1)dζ

∣∣∣∣
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s

∣∣∣∣ ∫ 1+s

1

Re(ϕ′(ζ)− 1)dζ

∣∣∣∣+ 1

s

∣∣∣∣ ∫ 1+s

1

Re (ϕ′(ζ)− ϕ′(1))dζ

∣∣∣∣
6 2

3
.

Thus

|Reϕ′(w)− 1| 6 |Reϕ′(1)− 1|+ |Re(ϕ′(w)− ϕ′(1))| 6 1

for w ∈ D(1, s). It follows that Reϕ′(w) > 0 for w ∈ D(1, s). Therefore

Imϕ(1 + is) =

∫ s

0

Reϕ′(1 + iζ)d|ζ| > 0.

Applying (8.4) for z = 1 + is, we obtain

|Im(ϕ(1 + is)− s)| 6 18(e20πδ − 1)/s. (8.6)

For each point z ∈ D ∩ V , let w1 = z − (1 + is) and w2 = ϕ(z)− ϕ(1 + is). Applying (8.2) and (8.3) for

the points z and 1 + is, we get

||w2
1| − |w2

2|| 6 9(e10πδ − 1),

|Re(w1 − w2)| 6 14(e10πδ − 1).

It follows that

|Im(w2 − w1)| · |Im(w2 + w1)| 6 51(e20πδ − 1). (8.7)

Since

Im(ϕ(z) + z)− Im(w1 + w2) = Imϕ(1 + is) + s > s,

we have either |Im(w1 + w2)| > s/2 or |Im(ϕ(z) + z)| > s/2. In the former case,

|Im(w2 − w1)| 6 102(e20πδ − 1)/s

by (8.7). Combining with (8.6), we obtain

|Im(ϕ(z)− z)| 6 |Im(w2 − w1)|+ |Im(ϕ(1 + is)− s)| 6 120(e20πδ − 1)/s.

Applying (8.4) in the latter case,

|Im(ϕ(z)− z)| 6 36(e20πδ − 1)/s.

In summary, we have

|Im(ϕ(z)− z)| 6 120(e20πδ − 1)/s.

Combining with (8.3), we get

|ϕ(z)− z| 6 127(e20πδ − 1)/s for z ∈ D ∩ V.

By considering 1/ϕ(1/z) and comparing spherical distance with Euclidean distance, we can get the

constant C(r0).

Corollary 8.2. Let V ⊂ C be an open set and let ai (i = 0, 1, 2) be three distinct points in V . Let {ϕn}
be a sequence of univalent maps from V into C such that ϕn(ai) = ai for i = 0, 1, 2. If D0(ϕn, V ) → 0 as

n→ ∞, then {ϕn} converges uniformly to the identity on V as n→ ∞.

Remark 8.3. Denote by Sϕ the Schwarzian derivative of ϕ and by λ(z)|dz| the Poincaré metric on V

if CrV contains at least three points. It is proved in [9] that

∥Sϕ(z)λ−2(z)∥∞ 6 Cδ(| log δ|2 + 1)

for a universal constant C > 0, where δ = D0(ϕ, V ).
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In order to estimate D0(ϕ, V ) we need the following quantity.

Lemma 8.4. Let W ⊂ C be an open set with #(CrW ) > 2. Suppose that E is a measurable set with

E ⊂W . Then

Areap(E,W ) := sup
h

Area(ρ∗, h(E)) <∞,

where the supremum is taken over all univalent maps h : W → C∗ and ρ∗(z) = 1/|z| is the density of a

planar metric on C∗.

Proof. We may assume that W ⊂ C. Denote by d > 0 the Euclidean distance between E and ∂W , and

by M the Euclidean area of E. Let h :W → C∗ be a univalent map. Applying Koebe’s 1/4-theorem for

the disk D(z, d) with z ∈ E, we have |h′(z)/h(z)| 6 4/d. Thus

Area(ρ∗, h(E)) =

∫∫
E

∣∣∣∣h′(z)h(z)

∣∣∣∣2dxdy 6 16M

d2
.

This completes the proof.

8.2 Nested disk systems

Let X ⊂ C be a finite set. For each point x ∈ X, let Dx ⊂ C be a disk with x ∈ Dx. We will call

{Dx}x∈X a nested disk system if Dx ̸= Dy for distinct points x, y ∈ X, and Dx ∩Dy ̸= ∅ for x, y ∈ X

implies that either Dx ⊂ Dy or Dy ⊂ Dx.

For any r ∈ (0, 1), let Dx(r) = χ−1(D(r)), where χ is a conformal map from Dx to D such that

χ(x) = 0. Let s(r) : (0, 1] → (0, 1] be a (non-strictly) increasing function with s(r) > r and s(r) → 0

as r → 0. A nested disk system {Dx}x∈X is called s(r)-nested if for any two disks with Dy ⊂ Dx,

Dy ∩Dx(r) ̸= ∅ for some r ∈ (0, 1], we have Dy ⊂ Dx(s(r)).

Let {Dx}x∈X be a nested disk system. Let W ⊂ C be an open set with CrW ̸= ∅ such that∪
x∈X Dx b W . For each point x ∈ X, denote by Vx the union of all domains Dy with y ̸= x and

Dy ⊂ Dx, and by Wx the component of W containing the point x. Then Vx ⊂ Dx b Wx. Let λ ∈ (0, 1)

be a constant. We will call that the nested disk system {Dx}x∈X is λ-scattered in W if for any point

x ∈ X and any univalent map h :Wx → C∗,

Area(ρ∗, h(Vx)) 6 λ ·Area(ρ∗, h(Dx)).

Let {Dx}x∈X be an s(r)-nested disk system λ-scattered in W . Obviously, for any subset X0 ⊂ X,

{Dx}x∈X0 is also an s(r)-nested disk system λ-scattered in W . For any univalent map ϕ : W → C,
{ϕ(Dx)}x∈X is an s(r)-nested disk system λ-scattered in ϕ(W ).

Theorem 8.5. Suppose that {Dx}x∈X is an s(r)-nested disk system λ-scattered in W . Let D =∪
x∈X Dx and D(r) =

∪
x∈X Dx(r). Then there exist a constant r0 ∈ (0, 1) and an increasing function

C(r) on (0, r0) with C(r) → 0 as r → 0, which depend only on λ and s(r), such that for any r ∈ (0, r0)

and any univalent map ϕ : CrD(r) → C,

D0(ϕ,CrW ) 6 C(r) ·Areap(D,W ),

and for any annulus A ⊂ C with ∂A ∩W = ∅ and modA <∞,∣∣∣∣ modA′

modA
− 1

∣∣∣∣ 6 C(r),

where A′ is the annulus bounded by ϕ(∂A).

Proof. For each point x ∈ X, let k(x) = #{y ∈ X : Dy ⊃ Dx}. Then k(x) > 1 and Dx is disjoint

from Dy if k(x) = k(y). Denote by Ik and Ik(r) the union of Dx and Dx(r), respectively, for all points

x ∈ X with k(x) = k. Let n = max{k(x) : x ∈ X}. Then

D = I1 ⊃ I2 ⊃ · · · ⊃ In−1 ⊃ In.
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Let r1 ∈ (0, 1) be a constant with s(r1) < min{(1−
√
λ)3, 1/64}. Given any r ∈ (0, r1), let X

′
1 = {x ∈

X : k(x) = k} and let

X ′
k = {x ∈ X : k(x) = k and Dx ∩ Ij(r) = ∅ for all j < k}

for 2 6 k 6 n. Let I ′k and I ′k(r) be the union of Dx and Dx(r), respectively, over x ∈ X ′
k. Then I

′
1 = I1

and I ′1(r) = I1(r).

Let A ⊂ C be an annulus with W ⊂ A and modA < ∞. Let χA be a conformal map from A to a

round annulus in C whose core curve is the unit circle. Then ρ0(z) = |(logχA)′(z)|/2π is an extremal

metric on A, Width(ρ0, A) = 1 and

Height(ρ0, A) = Area(ρ0, A) = modA.

Define ρk(z) for 1 6 k 6 n inductively by

ρk(z) =


ρk−1(z) on ArI ′k,

ρ0(z)

(1−
√
s(r))k

on I ′krI ′k(s(r)),

0 on I ′k(s(r)).

Claim 1. We have ρk(z) = 0 on Ik(s(r)) for k > 1.

Proof. Claim 1 is true for k = 1 since I ′1 = I1. For k > 2, we assume by induction that ρj(z) = 0 on

Ij(s(r)) for j < k. Let x ∈ X be a point with k(x) = k. By definition, ρk(z) = 0 on Dx(s(r)) if x ∈ X ′
k.

Now we assume that x ̸∈ X ′
k, i.e., there is an integer 1 6 j < k such that Dx ∩ Ij(r) ̸= ∅. Let

Dx ⊂ Dxk−1
⊂ · · · ⊂ Dxj+1

be the unique sequence with k(xi) = i (j < i < k). Then Dxi ⊂ Ii − I ′i. Thus

ρk(z) = ρk−1(z) = · · · = ρj(z)

on Dx by the definition of ρi. Since Dx ∩ Ij(r) ̸= ∅, we have Dx ⊂ Ij(s(r)) and hence ρk(z) = ρj(z) = 0

on Dx(s(r)) ⊂ Dx.

Claim 2. We have ρk(z) = 0 on
∪k
i=1 Ii(r) for k > 1.

Proof. By definition, ρ1(z) = 0 on I1(s(r)). Thus ρ1(z) = 0 on I1(r) since r 6 s(r). Assume that

ρk−1(z) = 0 on
∪k−1
i=1 Ii(r) for k > 2. Then ρk(z) = ρk−1(z) = 0 on

∪k−1
i=1 Ii(r) since

∪k−1
i=1 Ii(r) is disjoint

from I ′k by the definition of X ′
k. Now Claim 2 follows from Claim 1.

Claim 3. It holds that

ρk(z)


6 ρ0(z)

(1−
√
s(r))k

on Ik,

6 ρ0(z)

(1−
√
s(r))j

on IjrIj+1, 1 6 j < k,

= ρ0(z) on ArI1.

Proof. By definition, ρj+1(z) = ρj(z) on ArI ′j+1 and

ArI ′j+1 ⊃ ArIj+1 = (ArI1) ∪ (I1rI2) ∪ · · · ∪ (IjrIj+1).

Thus ρk(z) = ρ0(z) on ArI1 and ρk(z) = ρj(z) on IjrIj+1. Now the claim is proved by induction.

Claim 4. For each 1 6 k 6 n,

Height(ρk, A) > Height(ρk−1, A) and Width(ρk, A) > Width(ρk−1, A).
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Proof. For each point x ∈ X ′
k, the map log ◦χA has a univalent branch hx on Dx and

modhx(DxrDx(s(r))) =
− log s(r)

2π
.

Since s(r) 6 s(r1) < 1/64, by Lemma 2.1, there exists an annulus Bx ⊂ DxrDx(s(r)) which separates

Dx(s(r)) from ∂Dx, such that hx(Bx) is bounded by concentric Euclidean circles and

modhx(Bx) >
− log s(r)

4π
.

Denote by Cx ⊂ Dx the disk bounded by the outer boundary of Bx.

Let γ ⊂ A be a locally rectifiable simple closed curve or arc which separates (joins) the two components

of CrA. Assume that β is a component of γ ∩ Cx such that β ∩Dx(s(r)) ̸= ∅. Then there is an arc β′

in Cx which joins the two endpoints of β such that hx(β
′) is a straight line segment, since hx(Cx) is a

Euclidean disk.

Denote by d1 > d2 the diameters of the two circles of ∂hx(Bx). Then d2 6 d1
√
s(r). By the definition

of ρk(z) and Claim 3,

L(ρk−1, β
′) 6 (1−

√
s(r))−k+1d1 6 (1−

√
s(r))−k(d1 − d2) 6 L(ρk, β).

Modifying every component of γ ∩ Cx as above and making the modification for each point x ∈ X ′
k,

we get a simple closed curve (or an arc) γ′ which separates (joins) the two components of CrA. Since

ρk(z) > ρk−1(z) on A− I ′k(s(r)), we have L(ρk, γ) > L(ρk−1, γ
′). The claim is proved.

By Claim 4,

Height(ρn, A) > Height(ρ0, A) and Width(ρn, A) > Width(ρ0, A) = 1.

Thus Area(ρn, A) > Area(ρ0, A) by Lemma 2.2. We know {Dx}x∈X is λ-scattered in W . Since χA :W ⊂
A → A(R) ⊂ C∗ is univalent and the metric ρ0 is the pullback of the metric ρ∗ by χA, we deduce that

for x ∈ X with k(x) = k < n,

Area(ρ0, Ik+1 ∩Dx) 6 λ ·Area(ρ0, Dx).

It follows that

Area(ρ0, Ik+1) 6 λ ·Area(ρ0, Ik)

and

Area(ρ0, Ik) 6 λk−1Area(ρ0, I1) 6 λk−1Areap(D,W ).

Therefore

0 6 Area(ρn, A)−Area(ρ0, A)

6
n−1∑
k=1

∫∫
IkrIk+1

(ρ2n − ρ20)dxdy +

∫∫
In

(ρ2n − ρ20)dxdy

6
n∑
k=1

(
1

(1−
√
s(r))2k

− 1

)
Area(ρ0, Ik)

6
∞∑
k=1

(
1

(1−
√
s(r))2k

− 1

)
λk−1Area(ρ0, I1).

Since s(r) is increasing and s(r) → 0 as r → 0, there exists a constant r0 ∈ (0, r1) such that (1 −√
s(r0))

2 > λ. Thus

0 6 Area(ρn, A)−Area(ρ0, A)
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6 2
√
s(r)− s(r)

(1− λ)[(1−
√
s(r))2 − λ]

Area(ρ0, I1) =: C(r) ·Area(ρ0, I1).

Let A′ ⊂ C be the annulus bounded by ϕ(∂A). Let ρ̃(w)|dw| be the pullback of the metric ρn(z)|dz|
under the map ϕ on ArD(r) and zero otherwise, i.e., ρ̃(ϕ(z)) = ρn(z)/|ϕ′(z)| for z ∈ ArD(r). Then

Area(ρ̃, A′) = Area(ρn, A),

Height(ρ̃, A′) = Height(ρn, A) and Width(ρ̃, A′) = Width(ρn, A).

By Lemma 2.2,

|modA′ −modA| 6 |Area(ρn, A)−Area(ρ0, A)| 6 C(r) ·Area(ρ0, I1). (8.8)

Because Area(ρ0, I1) 6 Areap(D,W ), we obtain

D0(ϕ,CrW ) 6 C(r) ·Areap(D,W ).

Now assume that A ⊂ C is an annulus with ∂A ∩W = ∅. Then W is split into two disjoint open sets,

W = W ′ ∪W ′′, such that W ′ ⊂ A and W ′′ ∩ A = ∅. Consider the nested disk sub-system {Dx} where

x ∈ X ∩A. It is s(r)-nested and λ-scattered in W ′. Thus the inequalities (8.8) still hold with I1 replaced

by I1 ∩A. Obviously, Area(ρ0, I1 ∩A) 6 Area(ρ0, A) = modA. We obtain∣∣∣∣ modA′

modA
− 1

∣∣∣∣ 6 C(r).

This completes the proof.

8.3 Application to rational maps

Let g be a geometrically finite rational map with Fg ̸= ∅. Let X0 be a finite set with g(X0) = X0.

Let X =
∪
n>0 g

−n(X0). For each point x ∈ X, denote by n(x) > 0 the minimal integer such that

gn(x)(x) ∈ X0.

Pullback system of X. Pick a disk Ux ∋ x for each point x ∈ X0 such that Uxr{x} contains no

critical values of g and Ux ∩ Uy = ∅ if x ̸= y.

For each point x ∈ X with n(x) = 1, let y = g(x) and Ux be the component of g−1(Uy) that contains

the point x. Then Ux is also a disk and Uxr{x} is disjoint from g−1(X0). Since x /∈ P ′
g, we may require

that Uxr{x} is disjoint from Pg if Uy is chosen to be small enough.

For each point x ∈ X with n(x) = n, let y = gn(x) and let Ux be the component of g−n(Uy) that

contains the point x. Then Ux is also a disk and Uyr{y} is disjoint from Pg. Obviously, Uxr{x} is

disjoint from g−n(X0). By Lemma 2.9, maxn(x)=n{diamsUx} → 0 as n → ∞. We have proved the

following proposition.

Proposition 8.6. There exist disks Ux ∋ x for all points x ∈ X satisfying the following conditions:

(a) Uxr{x} contains no critical values of g.

(b) Uxr{x} is disjoint from Pg if n(x) > 1.

(c) Uxr{x} is disjoint from g−n(X0) if n(x) = n > 0.

(d) Ux is a component of g−1(Uy) if g(x) = y and n(x) > 1.

(e) maxn(x)=n{diamsUx} → 0 as n→ ∞.

We will call {Ux} a pullback system of X.

Let {Ux}x∈X be a pullback system of X. Given any r ∈ (0, 1], for each point x ∈ X0, let Ux(r) =

χ−1(D(r)), where χ : Ux → D is a conformal map with χ(x) = 0.

For each point x ∈ X with n(x) = 1, let y = g(x) and let Ux(r) be the component of g−1(Uy(r)) that

contains the point x. For each point x ∈ X with n(x) = n, let y = gn(x) and let Ux(r) be the component

of g−n(Uy(r)) that contains the point x. Then {Ux(r)} satisfies Conditions (a)–(d) and hence is also a

pullback system of X.
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The notation Ux(r) may cause misunderstanding. For each point x ∈ X, let

d(x) =

{
degx g

n(x), if n(x) > 1,

1, if x ∈ X0

and

d(X) = sup{d(x) : x ∈ X} <∞.

Let x ∈ X with n(x) > 1. Let y = gn(x)(x). Then gn(x) : Uxr{x} → Uyr{y} is a covering of

degree d(x). Let χx and χy be conformal maps from Ux and Uy, respectively, to the unit disk D, such
that χx(x) = χy(y) = 0. Then χy ◦ gn(x) ◦ χ−1

x is a covering of D∗ of degree d(x). It follows that

χx(Ux(r
d(x))) = D(r).

Nested disk system. Let {Ux}x∈X be a pullback system of X. Let n > 0 be given.

Set Dx = Ux if n(x) = n. For each point x ∈ X with n(x) = n− 1, let

b(x) = {y ∈ X : n(y) = n and Dy ∩ ∂Ux ̸= ∅}.

Set Dx to be the component of Uxr
∪
y∈b(x)Dy that contains the point x. Then Dx is a disk. Inductively,

for each point x ∈ X with 0 6 n(x) = k < n− 1, let

b(x) = {y ∈ X : k < n(y) 6 n and Dy ∩ ∂Ux ̸= ∅}.

Set Dx to be the component of Uxr
∪
y∈b(x)Dy that contains the point x. Then Dx is a disk. Obviously,

{Dx}n(x)6n is a nested disk system. The following properties are easy to check.

Properties of the nested disk system. Let x ∈ X be a point.

(1) Dx ⊂ Ux.

(2) If Dy ⊂ Dx and y ̸= x, then n(y) > n(x).

(3) Given r0 ∈ (0, 1), if any Uy with n(y) > n(x) and Uy ∩ ∂Ux ̸= ∅ is disjoint from Ux(r0), then

Ux(r0) ⊂ Dx.

Recall that for a nested disk system {Dx} and for r ∈ (0, 1), Dx(r) is defined by Dx(r) = χ−1(D(r))
for a conformal map χ : Dx → D. Applying the Schwarz lemma, we have

(4) Dx(r) ⊂ Ux(r
d(x)) for r ∈ (0, 1).

(5) If Ux(r0) ⊂ Dx, then Ux(r0 · rd(x)) ⊂ Dx(r) for r ∈ (0, 1).

Proposition 8.7. Let {Ux}x∈X be a pullback system of X. There exist constants r0, λ ∈ (0, 1) and an

increasing function s(r) : (0, 1] → (0, 1] with s(r) > r and s(r) → 0 as r → 0, such that for any integer

n > 0, the nested disk system {Dx} generated from the pullback system {Ux(r0)} at step n is s(r)-nested

and λ-scattered in
∪
n(x)6n Ux. Moreover, there exists a constant r′0 ∈ (0, r0) such that for x ∈ g−n(X0)

and r ∈ (0, 1],

Ux(r
′
0 · rd(x)) ⊂ Dx(r).

Proof. Denote by p(X) > 1 the maximum of the periods of cycles in X0. By Proposition 8.6(e), there

exists a constant r1 ∈ (0, 1) such that Ux(r1) ∩ Uy(r1) = ∅ if x ̸= y and n(x), n(y) 6 p(X).

Let x ∈ X0 be a parabolic or repelling periodic point with period p > 1. Let V be a repelling flower

of (gp, x) if x is parabolic, or a linearizable disk at the point x if x is repelling, i.e., gp is injective in V

and V ⊂ gp(V ). Since Fg ̸= ∅, there exists a disk E0 ⊂ Fg ∩ V such that E0 ∩ (X ∪ Pg) = ∅. Let {Ek}
(k > 1) be the backward orbit of E0 in V under gp, i.e., gp(Ek+1) = Ek for k > 0. Then Ek is also a disk

and {Ek} converges to the point x as k → ∞. Thus there exists an integer k0 > 0 such that Ek ⊂ Ux(r1)

for k > k0. For simplicity, we write Ek in place of Ek+k0 .

Again by Proposition 8.6(e), we have Uy(r1) ∩ E0 = ∅ if n(y) is large enough, since E0 ∩ X = ∅.
Therefore there exists a constant r(x) ∈ (0, r1) such that Uy(r(x)) ∩ E0 = ∅ for all points y ∈ Xr{x}.
It follows that Uy(r(x)) ∩ E1 = ∅ if n(y) > p. Hence Uy(r(x)) ∩ E1 = ∅ for all points y ∈ Xr{x} since

E1 ⊂ Ux(r1) and Uy(r1) ∩ Ux(r1) = ∅ if y ̸= x and n(y) 6 p. Inductively, for each k > 1,

Uy(r(x)) ∩ Ek = ∅ for all points y ∈ Xr{x}.
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Let r2 = min{r(x)}, the minimum over all parabolic and repelling points x ∈ X0. Then for each

parabolic or repelling point x ∈ X0, we have a sequence of disks {Ex,k} in Ux which converge to the

point x such that Ex,k are disjoint from Uy(r2) for all points y ∈ Xr{x}.
Let n0 > 2 be an integer such that x ̸∈ g−1(Pg) if n(x) > n0. Then there exists a constant r0 ∈ (0, r2)

such that the Ux(r0) are pairwise disjoint for all points x ∈ g−n0(X0). In the sequel we will write

U ′
x := Ux(r0) for simplicity.

For each point x ∈ g−n0(X0) and each point y ∈ X, if dists(x,U
′
y) → 0 then n(y) → ∞ and hence

diamsU
′
y → 0 uniformly. Thus there exist a constant r3 ∈ (0, r0) and an increasing function s1 : (0, r3] →

(0, 1] with s1(r) > r and s1(r) → 0 as r → 0, such that for each point x ∈ g−n0(X0) and each point

y ∈ X, if U ′
y ∩ U ′

x(r) ̸= ∅ for some r 6 rr, then n(y) > n0 and U ′
y ⊂ U ′

x(s1(r)).

Let x ∈ X be a point with n(x) > n0. Set k = n(x) − n0. Then n(gk(x)) = n(x) − k = n0. For any

point y ∈ X with n(y) > n(x), if U ′
y ∩ U ′

x(r) ̸= ∅ for some r 6 r1, then

U ′
gk(y) ∩ U

′
gk(x)(r) = gk(U ′

y ∩ U ′
x(r)) ̸= ∅.

Thus gk(U ′
y) = U ′

gk(y) ⊂ U ′
gk(x)(s1(r)) = gk(U ′

x(s1(r))) and hence U ′
y ⊂ U ′

x(s1(r)).

For any integer n > 0, let {Dx} be the nested disk system generated from the pullback system {U ′
x}

at step n. From Property (3), we know that U ′
x(r3) ⊂ Dx if n(x) 6 n. Set r′0 = r0 · r3. By Property (5),

Ux(r
′
0 · rd(x)) = U ′

x(r3 · rd(x)) ⊂ Dx(r) for r ∈ (0, 1].

Because s1(r) → 0 as r → 0, there exists a constant r4 ∈ (0, r3) such that s1(r4) < r3. For any

two points x, y ∈ X with n(y) > n(x) > n, if Dy ∩ Dx ̸= ∅, then Dy ⊂ Dx by Property (2). Assume

further that Dy ∩Dx(r) ̸= ∅ for some r < r4. Then U ′
y ∩ U ′

x(r) ̸= ∅ since Dx(r) ⊂ U ′
x(r

d(x)) ⊂ U ′
x(r) by

Property (4). Thus

Dy ⊂ U ′
y ⊂ U ′

x(s1(r)) ⊂ Dx

((
s1(r)

r3

) 1
d(x)

)
.

Set s(r) = (s1(r)/r3)
1

d(X) if 0 < r < r4 and s(r) = 1 if r4 6 r 6 1. Then {Dx} is an s(r)-nested disk

system.

Now we want to prove that the nested disk system {Dx} is λ-scattered in
∪
n(x)6n Ux. Let x ∈ X be

a point with n(x) 6 n0. If it is eventually attracting or super-attracting, then there exists a constant

r(x) ∈ (0, 1) such that Dx(s(r(x)))r{x} contains no eventually periodic points. Set Ex := Dx(r(x)).

Then for any disk Dy with y ̸= x and Dy ⊂ Dx, Ex ∩Dy = ∅. Otherwise y ∈ Dy ⊂ Dx(s(r(x))). This

leads to a contradiction.

Assume that the point x ∈ X with n(x) 6 n0 is eventually parabolic or repelling. Set z = gn(x)(x).

From the discussion at the beginning of the proof, there exists a sequence of disks {Ez,k} in Uz which

converges to the point z such that the disks are disjoint from Uy(r0) for all points y ∈ Xr{z}. In

particular, there exists an integer k > 1 such that Ez,k ⊂ gn(x)(Dx). Let Ex ⊂ Dx be a component of

g−n(x)(Ex,k). Then for any disk Dy ⊂ Dx with y ̸= x, Dy ∩ Ex = ∅. Otherwise, gn(x)(Dy) intersects

gn(x)(Ex). It follows that gn(x)(Uy(r0)) = Ugn(x)(y)(r0) intersects Ex,k, since n(y) > n(x). This leads to

a contradiction.

In summary, for each point x ∈ X with n(x) 6 n0, there exists a disk Ex ⊂ Dx such that for any disk

Dy ⊂ Dx with y ̸= x, Dy ∩ Ex = ∅.
For any univalent map h : Ux → C∗, applying the Koebe distortion theorem for h, we get a constant

λx ∈ (0, 1) such that

Area(ρ∗, h(Ex)) > (1− λx)Area(ρ∗, h(U
′
x)). (8.9)

It follows that

Area(ρ∗, h(Ex)) > (1− λx)Area(ρ∗, h(Dx)) and Area(ρ∗, h(DxrEx)) 6 λx ·Area(ρ∗, h(Dx)). (8.10)

Set λ = max{λx}, the maximum over all points x ∈ X with n(x) 6 n0. If n 6 n0, the lemma is

proved. Otherwise, for each point x ∈ X with n0 < n(x) 6 n, let k = n(x) − n0 and z = gk(x). Then
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n(z) = n(x) − k = n0. Let Ex ⊂ Dx be a component of g−k(Ez), where Ez is defined above. Then for

any disk Dy ⊂ Dx with y ̸= x, we have Dy ∩ Ex = ∅.
For any univalent map h : Ux → C∗, applying the Koebe distortion theorem again for h◦g−k on Uz, we

get the inequality (8.9), where λx should be replaced by λ. The inequality (8.10) follows. This completes

the proof.

Combining Proposition 8.7 and Theorem 8.5, we have the following theorem.

Theorem 8.8. Let {Ux}x∈X be a pullback system of X. Let V be an open set compactly contained in

CrX. Then there exist a constant r0 ∈ (0, 1) and an increasing function C(r) on (0, r0) with C(r) → 0

as r → 0, such that for any constant r ∈ (0, r0), if

ϕ : Cr
∪

n(x)6n
Ux(r) → C

is univalent for some integer n > 0, then D0(ϕ, V ) 6 C(r).

Recall that if q is a quotient map of C and A ⊂ C is an annulus, then q−1(A) is also an annulus. The

following lemma will be used in Section 9.

Lemma 8.9. Let {Ux} be a pullback system of X. Then there exists a constant r0 ∈ (0, 1) such that if

(a) A1 ⊂ A0 are annuli in C such that A1 is contained essentially in A0 and for any point x ∈ X,

Ux ∩ ∂A0 ̸= ∅ implies that Ux ∩A1 = ∅, and
(b) q is a quotient map of C such that

q−1 : Cr
∪

n(x)6n
Ux(r0) → C

is univalent for some integer n > 0, then mod q−1(A0) > (modA1)/2.

Proof. By Proposition 8.7, there exist constants 0 < r1 < r′1 < 1 such that for any integer n > 0, we

have Ux(r1) ⊂ D′
x if n(x) 6 n, where {D′

x} is the nested disk system generated from the pullback system

{Ux(r′1)} at step n.

Applying Proposition 8.7 for the pullback system {Ux(r1)}, there exist constants λ ∈ (0, 1) and 0 <

r2 < r′2 < r1 and an increasing function s(r) : (0, 1] → (0, 1] with s(r) > r and s(r) → 0 as r → 0, such

that for any integer n > 0, the nested disk system {Dx} generated from the disk system {Ux(r′2)} at

step n is s(r)-nested and λ-scattered in W :=
∪
n(x)6n Ux(r1) and Ux(r2 · rd(x)) ⊂ Dx(r) if n(x) 6 n.

Fix any n > 0. Then Ux(r1) ⊂ D′
x ⊂ Ux if n(x) 6 n. Since {D′

x} is a nested disk system, by

assumption, there exists an annulus Bn ⊂ A0 such that ∂Bn ∩ (
∪
n(x)6nD

′
x) = ∅ and A1 ⊂ Bn. In

particular, ∂Bn ∩W = ∅ since W ⊂
∪
n(x)6nD

′
x.

By Theorem 8.5, there exists a constant r3 ∈ (0, r2), which is independent of the choice of n, such that

for any univalent map

ϕ : Cr
∪

n(x)6n
Dx(r3) → C,

we have ∣∣∣∣ modB′
n

modBn
− 1

∣∣∣∣ 6 1

2
,

where B′
n is the annulus bounded by ϕ(∂Bn).

Set r0 = r2 ◦ rd(X)
3 . Then Ux(r0) ⊂ Dx(r3) if n(x) 6 n. Let q be a quotient map of C such that q−1 is

univalent in Cr
∪
n(x)6n Ux(r0). Then q

−1 is univalent in Cr
∪
n(x)6nDx(r3). Therefore,

mod q−1(A0) > mod q−1(Bn) > (modBn)/2 > (modA1)/2.

This completes the proof.
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9 Hyperbolic-parabolic deformation

In this section, we will prove Theorem 1.5. Let f be a geometrically finite rational map and let A ⊂ Rf

be a non-separating multi-annulus. Then there exists an integer n0 > 1 such that all the filled-in skeletons

of level n0 are disjoint from Pf ∪Ωf . Thus all the filled-in skeletons of level n are disjoint from f−1(Pf )
for n > n0. We will prove the theorem under the assumption n0 = 1 for simplicity. The proof in the case

n0 > 1 has no essential difficulty. The following notation will be used in this section: For n > 0,

Bn is the union of all bands of level k 6 n,

Ŝn is the union of all filled-in skeletons of level k 6 n,

Tn is the union of all band-trees of level k 6 n, and

In is the interior of Tn.

9.1 Piecewise pinching

Recall that ϕt,n is the normalized quasiconformal map of C with Beltrami differential µ(ϕt,n) = µ(ϕt)

on Bn and zero otherwise.

Lemma 9.1. Let n > 0 be fixed. Then {ϕt,n} converges uniformly to a quotient map φn as t → ∞.

For each filled-in skeleton Ŝ ⊂ Ŝn, φn(Ŝ) is a single point. Conversely, for any point w ∈ C, φ−1
n (w) is

either a single point or a filled-in skeleton in Ŝn.
Proof. We begin by proving that {ϕt,n} is equicontinuous for the given n. For each filled-in skeleton

Ŝi ⊂ Ŝn, by Lemma 5.9, there exist a constant M > 0, a sequence {tk > 0} (k > 0) with tk → ∞ as

k → ∞, and a sequence of nested disks {Uk} such that Uk+1 ⊂ Uk,
∩
k>0 Uk = Ŝi and modϕt,n(UkrUk+1)

> M for t > tk. Thus

modϕt,n(U0rUk+1) > kM for t > tk.

For any ε > 0, by the normalization condition and the above inequality, there is an integer k > 0 such

that

diamsϕt,n(Uk) < ε for t > tk. (9.1)

Let Di = Uk+1. Since {ϕt,n} is uniformly quasiconformal for t < tk, there exists a constant δi > 0 such

that for any two points z1 ∈ Di and z2 ∈ C with dists(z1, z2) < δi,

dists(ϕt,n(z1), ϕt,n(z2)) < ε for t > 0. (9.2)

LetD be the union of all the domainsDi taken above for all filled-in skeletons Ŝi ⊂ Ŝn. LetW = CrŜn.
Then W is connected and CrD ⊂W . Thus there exists a domain V bW such that D ⊂ V . The family

{ϕt,n} is uniformly quasiconformal on V and hence is equicontinuous by the normalization condition. Thus

there exists a constant δ0 < 0 such that for any points z1 ∈ CrD and z2 ∈ C with dists(z1, z2) < δ0, the

inequality (9.2) holds.

Set δ = min{δi}. Then (9.2) holds for any two points z1, z2 ∈ C with dists(z1, z2) < δ. Thus {ϕt,n} is

equicontinuous.

Let φn be a limit of ϕt,n as t→ ∞. By (9.1), φn(Ŝi) is a single point for each filled-in skeleton Ŝi ⊂ Ŝn.
Since φn is a quasiconformal map on any domain compactly contained in W , it is injective on W .

If φ̃n is also a limit of {ϕt,n}, then φ̃n◦φ−1
n is a well-defined homeomorphism of C, which is holomorphic

except on a finite set. Thus it is a global conformal map. So φ̃n = φn by the normalization. Therefore

{ϕt,n} converges uniformly to φn as t→ ∞.

9.2 The candidate pinching limit and the proof of Theorem 1.5

Let n > 1 be fixed. Then {ϕt,n−1 ◦ f ◦ ϕ−1
t,n} are rational maps which converge uniformly to a rational

map gn as t→ ∞, by Lemmas 9.1 and 2.8. Obviously,

φn−1 ◦ f = gn ◦ φn.
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Pick a Koebe space system {N(T )} for the band-trees. Denote by Nn the union of the Koebe spaces

of the level n band-trees. Then N1 is disjoint from Pf ∪ Ωf by the assumption. Note that φ1 ◦ φ−1
0 is

a well-defined quotient map of C, which is univalent in Crφ0(N1). Thus there exists a homeomorphism

θ1 of C such that θ1 = φ1 ◦ φ−1
0 on Crφ0(N1).

Define G = g1 ◦ θ1. Then G is a branched covering of C which is holomorphic in Crφ0(N1). Let

φ̃0 = θ−1 ◦ φ1. Then {
φ0 ◦ f = G ◦ φ̃0 on C,
φ̃0 = φ0 on CrN1.

Thus φ̃0 is isotopic to φ0 rel CrN1 since N1 is a disjoint union of disks whose closures are disjoint

from PG. Obviously, PG = φ0(Pf ) ⊂ Crφ0(N1). See the commutative diagram:

C

f
��

φ1 // C

g1
��

Cθ1oo

G
��

C
φ0 // C C.idoo

Recall that PsG ⊂ PG is the set of super-attracting periodic points of G.

Lemma 9.2. The map G is a semi-rational map which is holomorphic in a neighborhood of PsG. If U
is a fundamental set of f , then φ0(U) contains a fundamental set of G.

Proof. Note that PG = φ0(Pf ) is contained in Crφ0(N1) and G is holomorphic in Crφ0(N1). Thus G

is geometrically finite and holomorphic in a neighborhood of PG. Let Ỹ = φ0(Ŝ0). Then Ỹ ⊂ P ′
G and

G(Ỹ ) = Ỹ . We only need to show that each point y ∈ Ỹ is a parabolic periodic point of G and that there

exists an attracting flower at y in φ0(U) such that each of its petals contains points of PG.
Let Ŝ = φ−1

0 (y). This is a periodic filled-in skeleton. Denote by X the set of attracting or parabolic

periodic points in Ŝ. This is a non-empty finite set. For simplicity, we may assume that each point in X

is a fixed point of f .

Let U ⊂ CrN1 be a fundamental set of f . For each point x ∈ X, if x is attracting, then x ∈ U . Thus
there exists a disk Dx ⊂ U with x ∈ Dx such that f is injective on Dx and f(Dx) ⊂ Dx. Moreover, we

may require that ∂Dx intersects each component of Ŝr{x} at a single point or a closed arc. Then for

each component U of DxrŜ, we see that V = φ0(U) is a disk and G(V ) ⊂ V ∪ {y}. By Proposition 5.4,

the domain U contains infinitely many points of Pf . Thus the disk V contains infinitely many points

of PG.
Now suppose that x ∈ X is parabolic. Then there exists an attracting flower Vx of f at x such that

Vx ⊂ U . We may also require that each component of ∂Vxr{x} is either disjoint from Ŝ or intersects each

component of Ŝr{x} at a single point or a closed arc. Then for each component U of VxrŜ, V = φ0(U)

is a disk and G(V ) ⊂ V ∪ {y}. By Proposition 5.4, the domain U contains infinitely many points of Pf .
Thus the disk V contains infinitely many points of PG.

Denote by Vy the union of φ0(U) for all components U of DxrŜ and VxrŜ for all point x ∈ X. Let

{wn = Gn(w)} be an orbit in Crφ0(N1) converging to the point y as n → ∞. Then {zn = φ−1
0 (wn)}

converges to a point x ∈ X and f(zn) = zn+1. Thus once n is large enough, zn is contained in Dx if x is

attracting, or Vx if x is parabolic. So wn is contained in Vy once n is large enough. Therefore the point y

is a parabolic fixed point of G and Vy ⊂ φ0(U) is an attracting flower of (G, y) by Lemma 2.13. Since

each component of Vy contains infinitely many points of PG, the branched covering G is a semi-rational

map and φ0(U) contains a fundamental set of G.

Lemma 9.3. The semi-rational map G has neither Thurston obstructions nor connecting arcs.

Proof. Let Γ be a multicurve in CrPG. Since φ0(N1) is a disjoint union of disks whose closures are

disjoint from PG, we may assume that γ is disjoint from φ0(N1) for each γ ∈ Γ. Let Γ′ = {φ−1
0 (γ) : γ ∈ Γ}.

Then Γ′ is a multicurve of f and λ(Γ) = λ(Γ′) since φ0 ◦ f = G ◦ φ0 on CrN1 and PG = φ0(Pf ). Thus
λ(Γ) < 1 since f has no Thurston obstructions. Therefore G has no Thurston obstructions.
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Assume that β0 ⊂ CrPG is a connecting arc which connects two points y± in P ′
G, i.e., either y

− ̸= y+

or y− = y+ and both components of Cr(β0∪{y+}) contain points of PG; β0 is disjoint from a fundamental

set of G and G−p(β0) has a component β1 isotopic to β0 rel PG for some integer p > 1. We may assume

that both β0 and β1 are disjoint from φ0(N1).

By Lemma 4.7, we may further assume that β1 coincides with β0 in a neighborhood of the endpoints

{y±}. Then β0 can be divided into three arcs: β+
0 , β−

0 and the middle piece β0
0 , such that β±

1 :=

(Gp |β1)
−1(β±

0 ) ⊂ β±
0 . Thus {β±

k := (Gp |β1)
−k(β±

0 )} converges to the endpoints {y±} as k → ∞.

Set δ±k = φ−1
0 (β±

k ) for all k > 0. Then δ±k+1 ⊂ δ±k and fp(δ±k+1) = δ±k . Thus δ±0 lands on a repelling

or parabolic periodic point a± of f by Lemma 2.16 and {δ±k } converges to a± as k → ∞. Note that

y± = φ0(a
±). Thus a± ∈ P ′

f ∪ Ŝ0.

Let δ0 = φ−1
0 (β0). Then f−p(δ0) has a unique component δ1 isotopic to δ0 rel Pf ∪ {a±} since φ̃0 is

isotopic to φ0 rel Pf . So δ±1 ⊂ δ1. For each k > 2, f−kp(δ0) has a unique component δk isotopic to δ0 rel

Pf ∪ {a±}. Therefore δ±k ⊂ δk. Set δ
0
k = δkr(δ+k ∪ δ−k ). Then its spherical diameter converges to zero as

k → ∞ by Lemma 2.9. Thus a− = a+ and δk converges to the point a+. In particular, the Jordan curve

δ0 ∪ {a+} does not separate the points of Pf . Thus y− = y+ and one component of Cr(β0 ∪ {y+}) is

disjoint from PG. This leads to a contradiction.

Lemma 9.4. There exist a rational map g, a sequence of normalized quotient maps {ξn} (n > 0) of C,
a fundamental set Uf of f and a fundamental set Ug of g such that the following conditions hold:

(a) ξ0(Ŝ0) consists of some parabolic cycles of g.

(b) I0 ∪ PsF ⊂ Uf and ξ0(Uf ) = Ug ∪ ξ0(Ŝ0).

(c) g ◦ ξn+1 = ξn ◦ f .
(d) ξn+1 is isotopic to ξn rel f−n(Uf ∪ Pf ).
(e) φn ◦ ξ−1

n is quasiconformal on C and holomorphic in g−n(Ug).
Proof. Let YG = φ0(Ŝ0) and WG = φ0(I0rŜ0). Then YG ⊂ P ′

G and φ0(I0) = WG ∪ YG. Each cycle

in YG is parabolic and each component of WG is a sepal of G at a point in YG.

Applying Theorem 1.2 and Lemma 9.3 to G, we get a normalized c-equivalence (ψ0, ψ1) from G to a

rational map g. By Lemma 3.8, we may choose the c-equivalence such that ψ0 is quasiconformal on C
and ψ1 = ψ0 in a neighborhood N of P ′

G.

Since WG ∩ PG = YG, using a similar argument to that in the proof of Lemma 3.8, we may require

further that WG b N , ψ0 is holomorphic in WG and ψ1 = ψ0 on WG. Thus there exists a fundamental

set UG of G with WG ⊂ UG such that ψ0 is quasiconformal on C and holomorphic in UG, and ψ1 is

isotopic to ψ0 rel UG ∪PG by Lemma 3.7. We may also assume that PsG ⊂ UG since G is holomorphic in

a neighborhood of PG.
Set Uf = φ−1

0 (UG)∪I0. Then φ0(Uf ) = UG ∪ YG. Thus Uf is a fundamental set of f . Set ξ0 = ψ0 ◦φ0

and ξ1 = ψ1 ◦ φ̃0. Then g ◦ ξ1 = ξ0 ◦ f and ξ1 is isotopic to ξ0 rel Uf ∪ Pf . Set Ug = ψ0(UG). This is a

fundamental set of g by Lemma 3.6. We have ξ0(Ŝ0) = ψ0(YG) and ξ0(Uf ) = Ug ∪ ψ0(YG). Obviously,

φ0 ◦ ξ−1
0 = ψ−1

0 is quasiconformal on C and holomorphic in Ug.
Let ξn+1 be the lift of ξn for n > 1. Then g ◦ ξn+1 = ξn ◦ f and ξn+1 is isotopic to ξn rel f−n(Uf ∪Pf ).

Recall that

gn+1 ◦ (φn+1 ◦ ξ−1
n+1) = (φn ◦ ξ−1

n ) ◦ g.

Thus φn ◦ ξ−1
n is quasiconformal on C and holomorphic in g−n(Ug). See the following commutative

diagrams:

C

f

��

φ̃0 // C

G
��

ψ1 // C

g

��

C

gn+1

��

C

f

��

φn+1oo ξn+1 // C

g

��
C

φ0 // C
ψ0 // C, C C

φnoo ξn // C.

This completes the proof.

Set ξt,n := ξn ◦ ϕ−1
t for t, n > 0. For each periodic filled-in skeleton Ŝ, ξ0(Ŝ) is a parabolic periodic

point in P ′
g. Let Y0 = ξ0(Ŝ0). Then g(Y0) = Y0. Let Y =

∪
n>0 Yn. We will prove the following lemma
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in Subsections 9.3 and 9.4.

Lemma 9.5. (1) For fixed t > 0, {ξt,n} converges uniformly to a quotient map qt of C as n→ ∞, and

qt ◦ ft = g ◦ qt.
(2) For each filled-in skeleton Ŝ, qt ◦ ϕt(Ŝ) is a single point. Conversely, for each point w ∈ C,

(qt ◦ ϕt)−1(w) is a single point if w /∈ Y , or else is a filled-in skeleton.

(3) The sequence {qt} converges uniformly to the identity as t→ ∞.

Proof of Theorem 1.5. By Lemma 9.5, qt ◦ ft = g ◦ qt and {qt} converges uniformly to the identity as

t→ ∞. It follows that {ft} converges uniformly to g as t→ ∞.

Because ξt,n = ξn ◦ϕ−1
t and {ξt,n} converges uniformly to qt as n→ ∞, we get q0 = qt ◦ϕt. Thus {ϕt}

converges uniformly to q0 as t→ ∞ since {qt} converges uniformly to the identity as t→ ∞.

Let X0 = Ŝ0 ∩ Jf and X =
∪
n>0 f

−n(X0). Then q0(X) = Y by Lemma 9.5(2). Thus q0(Jf ) = Jg
since X is dense in Jf and Y is dense in Jg.

Denote by M(g) the space of g-invariant Beltrami differentials µ̃ on Fg with ∥µ̃∥∞ < 1. For each

µ̃ ∈ M(g), let ϕµ̃ be a quasiconformal map of C whose Beltrami differential is µ̃. Then gµ̃ := ϕµ̃ ◦ g ◦ϕ−1
µ̃

is a rational map whose holomorphic conjugate class [gµ̃] is contained in M[g]. Conversely, since Jg has

zero area [38], each element of M[g] is represented by such a rational map gµ̃.

Define an equivalence relation on M(g) by µ̃1 ∼ µ̃2 if ϕµ̃2
◦ ϕ−1

µ̃1
is isotopic to a conformal map of C

rel Pgµ̃1
. Then µ̃1 ∼ µ̃2 if and only if there exists a holomorphic conjugacy between gµ̃1

and gµ̃2
in the

corresponding isotopy class (refer to Lemma 3.9 or [29]).

Recall that R̃g is the set of wandering points in the attracting and parabolic basins of g whose orbits

contains no points of Pg, and πg : R̃g → Rg is the natural projection. Each µ̃ ∈ M(g), restricted to Rg,

can be pushed forward to be a Beltrami differential µ on Rg, which is exactly the Beltrami differential

of the pushforward Φµ : Rg → Rgµ̃ of the quasiconformal conjugacy ϕµ̃. If µ̃1 ∼ µ̃2, then Φµ2 ◦ Φ−1
µ1

is

isotopic to a conformal map. Conversely, if Φµ2 ◦ Φ−1
µ1

is isotopic to a conformal map and µ̃1 = µ̃2 in

all super-attracting basins of g, then there exists a holomorphic conjugacy between gµ̃1
and gµ̃2

in the

corresponding isotopy class.

Let W = ξ0(I0)rY0. This is a disjoint union of calyxes of g, and πg(W) ⊂ Rg is a finite disjoint

union of once-punctured disks whose closures are pairwise disjoint. We claim that for each Beltrami

differential µ on Rg with ∥µ∥∞ < 1, there exists a Beltrami differential ν on Rg with ∥ν∥∞ < 1, such

that ν = 0 on πg(W) and Φν2 ◦ Φ−1
µ is isotopic to a conformal map.

Pick a large once-punctured quasi-disk for each component of πg(W) such that they also have disjoint

closures and πg(W) ⊂ Q, where Q is their union. Then there exists a quasiconformal map Ψ : Rg →
Φµ(Rg) such that Ψ = Φµ on RgrQ and Ψ is holomorphic in πg(W). Thus Ψ is isotopic to Φµ. Let ν

be the Beltrami differential of Ψ. Then ν satisfies the conditions in the claim.

For each µ̃ ∈ M(g), by the claim, there exists a Beltrami differential ν̃ ∈ M(g) such that ν̃ = µ̃ on

CrR̃g, ν̃ = 0 on the grand orbit of W and gν̃ = gµ̃. Recall that q
−1
0 is a univalent map from Cr∪g−n(W)

into C. Let ν̃∗ be the pullback of ν by q0. Then ν̃
∗ is f -invariant. It is easy to verify that gν̃ is the limit

of the pinching path starting from fν̃∗ . Therefore M[g] ⊂ ∂M[f ].

9.3 Factoring of quotient maps by surgery

We will prove Lemma 9.5 in the following two sub-sections. By Lemma 9.4(c), the sequence {ξn} converges
uniformly on any compact subset of Fg. However, we have to take a long detour to prove its global

convergence.

The quotient map ξn is uniquely determined on band-trees up to step n, which contains all its non-

trivial fibers. In the remaining part, ξn is only determined up to isotopy and asymptotic conformal

rigidity near the band-trees. This observation suggests factoring the quotient maps into hard factors

which are uniquely determined quotient maps, and soft factors which are uniformly quasiconformal maps

with a certain sort of asymptotically conformal rigidity. We will achieve this factoring through a surgery.
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Denote by Tn(t) ⊂ Tn the union of all band-trees of A (t) with level k 6 n. Let Wn and Wn(t) be the

interiors of ξn(Tn) and ξn(Tn(t)), respectively. Then Wn = ξn(InrŜn),

ξt,n : ϕt(InrTn(t)) → WnrWn(t)

is a conformal map and ξt,n+1 = ξt,n on ϕt(Tn), by Lemma 9.4.

Given any n > 0, glue ϕt(In) with CrWn(t) by ξt,n. The space obtained is a punctured sphere. Thus

there exist a unique normalized univalent map

pt,n : CrWn(t) → C

and a univalent map

jt,n : ϕt(In)) → C

such that jt,n(z1) = pt,n(z2) if and only if z1 ∈ ϕt(InrTn(t)) and z2 = ξt,n(z1). Thus there exists a

unique rational map ft,n of C such that{
ft,n+1 ◦ pt,n+1 = pt,n ◦ g on CrWn+1(t), and

ft,n+1 ◦ jt,n+1 = jt,n ◦ ft on ϕt(In+1).

Define jt,n = pt,n ◦ ξt,n on Crϕt(In). Then jt,n is a normalized homeomorphism of C and

ft,n+1 ◦ jt,n+1 = jt,n ◦ ft.

By Lemma 9.4(e), φn ◦ ξ−1
n is a quasiconformal map of C and is holomorphic in g−n(Ug). Recall that

φn ◦ ϕ−1
t is holomorphic in Crϕt(Tn(t)). Thus ξt,n is quasiconformal in Crϕt(Tn(t)). So is jt,n. By the

definition, jt,n is holomorphic in ϕt(In). Note that Tn(t)rIn consists of finitely many points. Hence jt,n
is quasiconformal in C. Meanwhile, ξn is holomorphic in UfrTn since ξn(Uf ) = ξ0(Uf ) = Ug ∪ Y0. Thus
ξt,n is holomorphic in ϕt(UrTn(t)) and so is jt,n. Therefore jt,n is holomorphic in ϕt(Ur(Tn(t)rIn)) and
hence in ϕt(Uf ).

The map p−1
t,n can be extended to a quotient map of C by defining

qt,n =

{
p−1
t,n on pt,n(CrWn(t)),

ξt,n ◦ j−1
t,n on jt,n ◦ ϕt(Tn).

By definition, ξt,n = qt,n ◦ jt,n on C for t, n > 0. We have proved the following lemma.

Lemma 9.6. For any t, n > 0, there exist a fundamental set Uf of f with (Psf ∪I0) ⊂ Uf , a normalized

quasiconformal map jt,n of C and a normalized quotient map qt,n of C such that the following conditions

hold:

(1) ξt,n = qt,n ◦ jt,n.
(2) jt,n is holomorphic in ϕt(Uf ).
(3) q−1

t,n is univalent in CrWn(t).

(4) There exists a rational map ft,n+1 such that the following diagram commutes:

C

ft
��

jt,n+1 // C

ft,n+1

��

qt,n+1 // C

g

��
C

jt,n // C
qt,n // C.

Since jt,n is quasiconformal in C and holomorphic in ϕt(Uf ), applying Lemmas 4.11 and 9.6(4), we

have the following lemma.

Lemma 9.7. For a fixed t > 0, {ft,n} converges uniformly to the rational map ft and {jt,n} converges

uniformly to the identity as n→ ∞.
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Recall that Y0 = ξ0(Ŝ0) consists of some parabolic cycles of g and Y is the grand orbit of Y0. Thus

Y = Jg. Let {Uy} be a pullback system of Y as defined in Subsection 8.3. Set n(y) = 0 if y ∈ Y0 and

n(y) = n if gn(y) ∈ Y0 but gn−1(y) ̸∈ Y0. Since W0(t) converges to Y0 as t → ∞, for any r ∈ (0, 1),

there exists a constant t0 > 0 such that W0(t) ⊂
∪
n(y)=0 Uy(r). It follows that Wn(t) ⊂

∪
n(y)6n Uy(r).

Applying Lemma 9.6(3) and Theorem 8.8, we have the following lemma.

Lemma 9.8. For any non-empty open set V b Fg, there exist a constant t0 > 0 and a decreasing

function C(t) on (t0,∞) with C(t) → 0 as t→ ∞ such that V ∩Wn(t0) = ∅ for n > 0 and

D0(q
−1
t,n, V ) 6 C(t) for t > t0 and n > 0.

9.4 Convergence of the hard factors

We want to start by comparing the maps {qt,n} if they share same parameter t or same step n. Note

that qt,n ◦ jt,n ◦ ϕt = ξn. For t1, t2, n > 0, set

℘t1,t2;n = jt1,n ◦ ϕt1 ◦ ϕ−1
t2 ◦ j−1

t2,n.

Then ℘t1,t2;n is a homeomorphism of C and qt1,n ◦ ℘t1,t2;n = qt2,n. Note that

℘t1,t2;n : q−1
t2,n(CrWn) → q−1

t1,n(CrWn)

is holomorphic since ℘t1,t2;n = q−1
t1,n ◦ qt2,n. On the other hand,

℘t1,t2;n = jt1,n ◦ ϕt1 ◦ ϕ−1
t2 ◦ jt2,n : jt2,n ◦ ϕt2(Tn) → jt1,n ◦ ϕt1(Tn)

is quasiconformal and its maximal dilatation is equal to the maximal dilatation of ϕt1 ◦ ϕ−1
t2 since both

jt1,n and jt2,n are holomorphic.

Proposition 9.9. For t1, t2 > 0 and n > 0, there exists a quasiconformal map ℘t1,t2;n of C whose

maximal dilatation is equal to the maximal dilatation of ϕt1 ◦ ϕ−1
t2 , such that qt1,n ◦ ℘t1,t2;n = qt2,n.

By Lemma 9.4(d), there exists a quotient map ζn of C such that ζn is isotopic to the identity rel

f−n(Pf ∪ Uf ) and ξn = ξn−1 ◦ ζn. It follows that f ◦ ζn+1 = ζn ◦ f . By Lemma 4.10, {ζn} converges

uniformly to the identity as n→ ∞. Set

ηt,n = (jt,n−1 ◦ ϕt) ◦ ζn ◦ (jt,n ◦ ϕt)−1.

Then for a fixed t > 0, {ηt,n} also converges uniformly to the identity as n → ∞ by Lemma 9.7. From

qt,n ◦ jt,n ◦ ϕt = ξn and ξn = ξn−1 ◦ ζn, we get

qt,n ◦ jt,n ◦ ϕt = qt,n−1 ◦ jt,n−1 ◦ ϕt ◦ ζn = qt,n−1 ◦ ηt,n ◦ jt,n ◦ ϕt.

Thus qt,n = qt,n−1 ◦ ηt,n. We have proved the following proposition.

Proposition 9.10. For t, n > 0, there exists a quotient map ηt,n of C such that qt,n = qt,n−1 ◦ ηt,n.
For a fixed t > 0, {ηt,n} converges uniformly to the identity as n→ ∞.

Now we want to control the distortion of {qt,n} using the results obtained in Section 8.

Proposition 9.11. Let w ∈ C be a point and let U ∋ w be a disk. Then for any M > 0, there exist a

constant t0 > 0 and a disk V b U with w ∈ V such that

mod q−1
t,n(UrV ) >M

for n > 0 and t > t0. Moreover, the constant t0 can be chosen to be t0 = 0 if w ̸∈ Y .

Proof. If w ∈ Fg, then {qt,n} is uniformly quasiconformal in a neighborhood of w by Lemmas 9.6

and 9.9. The lemma is trivial in this case. Now we assume w ∈ Jg.
Case 1. Assume that the ω-limit set ω(w)∩Y = ∅. By Proposition 8.6, there exists a pullback system

{Uy} of Y such that w /∈ Uy for y ∈ Y . By Lemma 8.9, there exists a constant r0 ∈ (0, 1) such that if
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(a) A1 ⊂ A0 are annuli in C such that A1 is contained essentially in A0 and for any point y ∈ Y ,

Uy ∩ ∂A0 ̸= ∅ implies that Uy ∩A1 = ∅, and
(b) q is a quotient map of C such that

q−1 : Cr
∪

n(x)6n
Uy(r0) → C

is univalent for some integer n > 0,

then mod q−1(A0) > (modA1)/2.

Let t0 > 0 be a constant such that W(t0) ⊂
∪
n(y)=0 Uy(r0). By Proposition 9.9, for any 0 6 t 6 t0,

there is a quasiconformal map ℘t0,t;n such that qt,n = ℘t0,t;n ◦qt0,n, whose maximal dilatation is bounded

by a constant K > 1 depending only on t0.

For any constantM > 0, since the diameter of Uy tends to zero as n(y) → ∞, there exist a disk V b U

with w ∈ V and an annulus A1 contained essentially in A := UrV such that modA1 > 2KM and for

any point y ∈ Y , Uy ∩ ∂A ̸= ∅ implies that Uy ∩A1 = ∅. Now applying Lemmas 8.9 and 9.6(3), we have

mod q−1
t,n(A0) >

1

2
modA1 > KM for n > 0 and t > t0.

It follows that

mod q−1
t,n(UrV ) >M for t, n > 0.

Case 2. Assume w = yk ∈ Yk. We may assume further that yk = 0 for simplicity. Set r1 = inf{|z| :
z ∈ ∂U}. For any constant M > 0, let ϵ ∈ (0, r1) be a constant such that 2ϵe4πM 6 r1 − ϵ. Let

V = {z : |z| < ϵ} and A1 = {z : 2ϵ < |z| < r1 − ϵ}.

Then A1 ⊂ UrV and modA1 > 2M .

Let {Uy} be a pullback system of Y such that the Euclidean diameter diamUy 6 ϵ for any y ∈ Y .

Applying Lemma 8.9 for this pullback system, we obtain a constant t0 ∈ (0, 1) such that for any quotient

map q of C, if q−1 : CrWn(t0) → C is univalent for some integer n > 0, then

mod q−1(UrV ) > (modA1)/2.

In particular,

mod q−1
t,n(UrV ) > 1

2
modA1 >M for n > 0 and t > t0.

Case 3. Assume ω(w)∩ Y ̸= ∅. Then there exists a point x ∈ Y0 such that x ∈ ω(w). Without loss of

generality, we may assume that g(x) = x. Since w ∈ JgrY , ω(w) ̸= {x}. Thus we may choose a pullback

system {U ′
y} of Y such that ω(w)rU ′

x ̸= ∅.
By Proposition 8.7, there exists a small pullback system {Uy} of Y with Uy b U ′

y for y ∈ Y such that

for each point y ∈ Yn, if ∂U
′
y′ ∩ U ′

y ̸= ∅ and n(y′) > n(y), then U ′
y′ ∩ Uy = ∅.

Applying Case 2 for the point x and the domain Ux, we obtain a constant r0 ∈ (0, 1) and a disk

Vx b Ux with x ∈ Vx such that W(t0) ⊂
∪
n(y)=0 Uy and for any quotient map q of C, if

q−1 : CrWn(t0) → C

is univalent for some integer n > 0, then mod q−1(UxrVx) >M .

Since x is a parabolic fixed point, we may assume that W ∩Jg ⊂ Vx ∩Jg, where W is the component

of g−1(Vx) containing the point x.

Let {gnk(w)} (k > 0) be the first returns to Vx of the orbit {gn(w)}n>1. It is defined as follows: n0 > 1

is the minimal positive integer such that gn0(w) ∈ Vx. Since ω(w)rUx ̸= ∅, there exists an integer n > n0

such that gn(w) ̸∈ Vx. Let n1 > n0 be the minimal integer such that gn1(w) ∈ Vx but gn1−1(w) ̸∈ Vx.

Inductively, nk > nk−1 is the minimal integer such that gnk(w) ∈ Vx but gnk−1(w) ̸∈ Vx.
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Recall that w ∈ Jg and W ∩ Jg ⊂ Vx ∩ Jg. Thus for k > 1, we have gnk−1(w) /∈ W and hence

gnk−1(w) ∈ Uy1 for a certain point y1 ∈ Y1 with g(y1) = x.

For each k > 1, let Vk and Uyk be the components of g−nk(Vx) and g
−nk(Ux) containing the point w,

respectively. Then gnk : Uyk → Ux is conformal by the assumption at the beginning of this section.

Given any integer n > 0, let q be a quotient map of C such that q−1 is univalent in CrWn(t0). For

each component W of Wn(t0) with W ∩ ∂Uyk = ∅, gnk(W ) is also a component of Wn(t0) which is not

periodic since gnk is the first return map. Thus there exists a disk Uk b U ′
yk

with Uyk ⊂ Uk such that if

W is a component of Wn(t0) with W ∩ ∂Uyk = ∅, then W ⊂ Uk. Define hk to be equal to gnk ◦ q on Uk
and quasiconformal otherwise. Then hk is also a quotient map of C. By the Riemann mapping theorem,

there exists a quasiconformal map ϕ of C which is holomorphic in Uk such that ϕ ◦ h−1
k is univalent in

Crgnk(Wn(t0) ∩ Uk) ⊂ CrWn(t0).

Thus

modϕ ◦ h−1
k (UxrVx) = modϕ ◦ q−1(UykrVk) >M.

Note that ϕ is conformal in Uk ⊃ Uyk . Therefore mod q−1(UykrVk) >M . In particular,

mod q−1
t,n(UykrVk) >M for n > 0 and t > t0.

By Proposition 9.9, there exists a constant K > 1 such that

mod q−1
t,n(UykrVk) >

M

K

for t, n > 0. Choose an integer k0 > 1 such that k0/K > 1. Since the diameter of Uyk converges to zero

as k → ∞, there are k0 annuli UykrVk contained in U that are pairwise disjoint. Set V to be the smallest

one of these k0 domains Vk. Then

mod q−1
t,n(UrV ) >M for t, n > 0.

This completes the proof.

Lemma 9.12. The family {qt,n} (t, n > 0) is equicontinuous.

Proof. We claim that for any point w0 ∈ C and any disk U ⊂ C with w0 ∈ U , there exist a constant

δ(w0) > 0 and a disk V ∋ w0 with V ⊂ U , such that for any qt,n, the spherical distance

dists(q
−1
t,n(∂U), q−1(V )) > δ(w0).

The claim holds for w0 ∈ Fg by Lemma 9.8, Proposition 9.9 and the normalization condition. Now we

assume w0 ∈ Jg.
Assume ∞ ∈ Fg for simplicity. Choose a constant M > 5 log 2/(2π). Then there exist a constant

t0 > 0 and a disk V ∋ w0 with V ⊂ U , such that

mod q−1
t,n(UrV ) >M

for n > 0 and t > t0, by Proposition 9.11. From Lemma 2.1, we have

dist(q−1
t,n(∂U), q−1

t,n(V )) > C(M)diam q−1
t,n(V )

for all n > 0 and t > t0. On the other hand, there exists a disk D ⊂ V such that D b Fg. Thus there

exists a constant t1 > t0 such that D is disjoint from g−n(Wt) for n > 0 and t > t1. So there exists a

constant C > 0 such that

diam q−1
t,n(D) > C for n > 0 and t > t1.

Take δ1(w0) = C · C(M). Then the claim holds for t > t1.
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By Proposition 9.9, there exists a normalized quasiconformal map ℘t1,t;n of C whose maximal dilatation

is equal to the maximal dilatation of ϕt1 ◦ ϕt, such that qt1,n ◦ ℘t1,t;n = qt,n. Thus ℘−1
t1,t;n is uniformly

Hölder continuous for all n > 0 and t ∈ (0, t1). In particular, there exists a constant δ(w0) 6 δ1(w0)

such that dist(℘−1
t1,t;n(z1), ℘

−1
t1,t;n(z2)) > δ(w0) if dist(z1, z2) > δ1(w0) for all n > 0 and t ∈ (0, t1). Now

the claim is proved. By Lemma 2.7, the family {qt,n} is equicontinuous.

Lemma 9.13. For fixed t > 0, {qt,n} converges uniformly to a quotient map qt of C as n → ∞, and

qt ◦ft = g ◦qt. For each filled-in skeleton Ŝ, qt ◦ϕt(Ŝ) is a single point. Conversely, for each point w ∈ C,
(qt ◦ ϕt)−1(w) is a single point if w /∈ Y , or else is a filled-in skeleton of level n if w ∈ Yn.

Proof. Let qt be the limit of a subsequence {qt,nk
} as nk → ∞. Then the subsequence {ξt,nk

=

qt,nk
◦ jt,nk

} also converges uniformly to qt as nk → ∞ since the sequence {jt,n} converges uniformly to

the identity as n → ∞ by Lemma 9.7. By Proposition 9.10, qt,n = qt,n−1 ◦ ηt,n where {ηt,n} converges

uniformly to the identity. Thus the sequence {ξt,nk−1 = qt,nk−1 ◦ jt,nk−1} also converges uniformly to qt
as nk → ∞. From ξt,n−1 ◦ ft = g ◦ ξt,n, we get qt ◦ ft = g ◦ qt.

Let w ∈ Y0 be a periodic point with period p > 1. Then ξ−1
t,n(w) is the ϕt-image of a periodic filled-in

skeleton Ŝ, by Lemma 9.4. Thus qt(ϕt(Ŝ)) = w since {jt,n} converges uniformly to the identity as n→ ∞.

It follows that ϕt(Ŝ) ⊂ q−1
t (w).

Consider the continuum q−1
t (w). For any point z ∈ Fft with qt(z) = w, there exists an integer N > 0

such that fnt (z) ∈ ϕt(U) for n > N , where U is a fundamental set of f as defined in Lemma 9.4. Thus

ξt,n(z) = qt(z) = w for n > N by Lemma 9.4. Therefore,

q−1
t (w) ∩ Fft = ϕt(Ŝ) ∩ Fft .

Note that E := ϕt(Ŝ) ∩ Jft contains only finitely many points, each of which is periodic. There are

finitely many disjoint disks in Fft such that their union D contains ϕt(Ŝ) ∩ Fft and ∂D ∩ ϕt(Ŝ) = E.

Thus ∂D ∩ q−1
t (w) = E. We claim that each component of K := q−1

t (w) ∩ Jft contains a point of E.

Otherwise, assume that W0,W1 ⊂ C are disjoint domains that both contain points of K, K ⊂ W0 ∪W1

and W0∩E = ∅. Then W0rD has a component W ′ such that W ′∩K ̸= ∅. Moreover, W ′∩K is compact

since ∂W ′ ⊂ ∂W0 ∪ ∂D has positive distance from W0 ∩K. On the other hand, W ′ ∩ q−1
t (w) =W ′ ∩K

since q−1
t (w) ∩ Fft = ϕt(Ŝ) ∩ Fft ⊂ D and W ′ ∩ D = ∅. It follows that q−1

t (w) is disconnected. This

leads to a contradiction.

By the claim, q−1
t (w)∩Jft has only finitely many components and each of them is eventually periodic.

From the equation qt ◦ ft = g ◦ qt, we see that q−1
t (w) is a component of f−pt (q−1

t (w)) and fpt is univalent

in a neighborhood of q−1
t (w) since gp(w) = w and degw g

p = 1. Thus each component of q−1
t (w) ∩ Jft

must be a single point by Lemma 2.9. Therefore q−1
t (w) ∩ Jft = ϕt(Ŝ) ∩ Jft and hence q−1

t (w) = ϕt(Ŝ).

Let w ∈ CrY be a point. For contradiction we assume that q−1
t (w) is not a single point. Let U ⊂ C

be a disk with w ∈ U . Then

mod q−1
t (Ur{w}) =M <∞.

Pick a disk U1 ∋ w such that U1 ⊂ U . From Proposition 9.11, there exists a disk V ∋ w with V ⊂ U1,

such that

mod q−1
t,n(U1rV ) > M for t, n > 0.

Since {qt,nk
} converges uniformly to qt as nk → ∞, there exists an integer N > 0 such that q−1

t,nk
(U1) ⊂

q−1
t (U) and q−1

t,nk
(V ) ⊃ q−1

t (w) for nk > N . Thus

mod q−1
t,n(U1rV ) > M = mod q−1(Ur{w}) > mod q−1

t,n(U1rV ).

This leads to a contradiction.

If q̃t is another limit of the sequence {qt,n}, then θ := q̃t ◦ q−1
t is a well-defined homeomorphism of C

and g ◦ θ = θ ◦ g. Moreover, θ is holomorphic in Fg. Thus θ is holomorphic on C by Theorem 1.1 and

hence is the identity by the normalization condition. Therefore q̃t = qt and hence the whole sequence

{qt,n} converges uniformly to qt.

Proof of Lemma 9.5. Parts (1) and (2) are direct consequences of Lemmas 9.6, 9.7 and 9.13. Part (3)

comes from Lemma 9.8 and Corollary 8.2.
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9.5 Proof of Theorem 1.7

The proof of Theorem 1.7 is a small modification of the proof of Theorem 1.5. We continue to use the

notation from the proof of Theorem 1.5.

Proof of Theorem 1.7. Let g be the limit of the pinching path {ft = ϕt ◦ f ◦ ϕ−1
t } supported on A .

Let φ be the limit of {ϕt}. Denote by W the interior of φ(B0).

Let D b Cr
∪
n>0 Wn be a disk. Then

g−1(D) b Cr
∪
n>0

Wn.

From Theorem 8.8 and Lemma 9.6, there exist constants δ <∞ and t0 > 0 such that for any n > 0 and

any univalent map ϕ : CrWn(t0) → C,

D0(ϕ,D ∪ g−1(D)) 6 δ <∞.

Define M[g,D, δ] ⊂ Md (d = deg g) by [h] ∈ M[g,D, δ] if there exists a univalent map

ϕ : D ∪ g−1(D) → C

such that h ◦ ϕ = ϕ ◦ g on g−1(D) and D0(ϕ,D ∪ g−1(D)) 6 δ. Since

deg(g : g−1(D) → D) = d,

M[g,D, δ] is compactly contained in Md by Lemma 2.8.

Let Θ : Rf → Rft0
be the quasiconformal map whose lift is ϕt0 . Let ν be a Beltrami differential

supported on Θ(A (t0)) with ∥ν∥∞ < 1. Let ϕ be a quasiconformal map of C whose Beltrami differential

is the lift of ν. Then h = ϕ ◦ ft0 ◦ ϕ−1 is a rational map. Repeat the proof of Theorem 1.5 with ξt,n
replaced by ξt0,n ◦ ϕ. We again obtain a sequence of quotient maps {qn} and a Thurston sequence {hn}
of h such that qn◦hn = g◦qn+1 and q

−1
n is holomorphic and injective in CrWn(t0). Thus [h] ∈ M[g,D, δ].

From the definition of a multi-annulus, there exists a quasiconformal map Φ from Rf to itself such

that Φ(A (t0)) ⊂ A . Then

Θ ◦ Φ−1(A ) ⊂ Θ(A (t0)).

For any Beltrami differential µ on Rf supported on A , let Φµ : R(f) → R(fµ̃) be the quasiconformal

map with Beltrami differential µ. Let

Ψ = Φµ ◦ Φ ◦Θ−1 : R(ft0) → R(fµ̃).

Then µ(Ψ) = µ(Φ ◦Θ−1) on Rft0
rΘ(A (t0)) and hence µ(Ψ) is independent of the choice of µ. Let Ψ0

be a quasiconformal map on R(ft0) such that µ(Ψ0) = µ(Φ) on Θ(A (t0)) and µ(Ψ0) = 0 otherwise. Set

Ψ1 = Ψ ◦Ψ−1
0 . Then the maximal dilatation of Ψ1 depends only on Φ ◦Θ−1 and hence is bounded by a

constant K <∞.

Let h be the quasiconformal deformation of ft0 with Beltrami differential µ(Ψ0). Then h ∈ M[g,D, δ]

and h is K-quasiconformally conjugate to fµ̃. Define M[g,D, δ;K] ⊂ Md by [h1] ∈ M[g,D, δ;K] if h1 is

K-quasiconformally conjugate to a rational map h with [h] ∈ M[g,D, δ]. Then

[fµ̃] ∈ M[g,D, δ;K].

Obviously M[g,D, δ;K] is compactly contained in Md. It is easy to check that each rational map in the

closure of M[f,A ] is geometrically finite.
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10 Parabolic-hyperbolic deformation

Let g be a geometrically finite rational map with parabolic cycles. Let W be a collection of pairwise

disjoint sepals such that the closure of their union W is disjoint from PgrP ′
g and g(W) = W. A bijection

σ : W → W is called a plumbing correspondence if it satisfies the following conditions:

(1) σ2 = id but σ has no fixed element.

(2) σ is compatible with g, i.e., σ(g(Wi)) = g(σ(Wi)) for each sepal Wi.

(3) If σ(Wi) =Wj , then Wi and Wj touch each other and Wj is a left sepal if and only if Wi is a right

sepal.

(4) (Non-crossing condition) If Wi touches Wj at y ∈ P ′
g but σ(Wi) ̸= Wj , then both Wj and σ(Wj)

lie on the same side of Wi ∪ {y} ∪ σ(Wi).

Two plumbing correspondences σ : W → W and σ′ : W′ → W′ are called equivalent if there is a

plumbing correspondence σ′′ : W′′ → W′′ such that all of them have same number of sepals and for each

sepal W ′′ ∈ W′′, there are sepals W ∈ W and W ′ ∈ W′ such that

W ′′ ∈W ∩W ′ and σ′′(W ′′) ⊂ σ(W ) ∩ σ′(W ′).

A plumbing combinatorics is an equivalence class of plumbing correspondences.

In this section, we will prove the following theorem—a precise version of Theorem 1.6.

Theorem 10.1. Let g be a geometrically finite rational map and let Y be a set of parabolic cycles of

g. Let W = {W1, . . . ,W2m} be a collection of pairwise disjoint sepals of cycles in Y such that the closure

of their union W is disjoint from PgrY and g(W) = W. Let σ : W → W be a plumbing correspondence.

Then there exist a geometrically finite rational map f and a non-separating multi-annulus A ⊂ Rf such

that the following conditions hold:

(1) The pinching path ft = ϕt◦f ◦ϕ−1
t (t > 0) starting from f = f0 supported on A converges uniformly

to the rational map g.

(2) Let φ be the limit of the conjugacy ϕt as t→ ∞. Let B0 and S0 be the unions of all periodic bands

and skeletons, respectively. Then φ(B0rS0) = W and for any two distinct components B1, B2 of B0rS0,

φ(B1) = σ(φ(B2)) if and only if B1 and B2 are contained in the same periodic band.

Step 1. Plumbing surgery. Note that the quotient space W/⟨g⟩ is a finite disjoint union of once-

punctured disks. Thus there is a natural holomorphic projection π : W → D∗ such that for each sepal W

of W with period p > 1, π : W → D∗ is a universal covering and π(z1) = z2 if and only if z1 = gkp(z2)

for some integer k ∈ Z.
Given any 0 < r < 1, let W(r) = π−1(D∗(r)) and R(r) = WrW(r). Then g(R(r)) = R(r). Thus

there is a conformal map τ : R(r2) → R(r2) such that

• τ(z) ∈ σ(Wi) if z ∈Wi, and

• τ2 = id and g ◦ τ = τ ◦ g.
Define an equivalence relation on CrW(r2) by z1 ∼ z2 if τ(z1) = z2. Then the quotient space is a

punctured sphere with finitely many punctures. Thus there exist a finite set X ⊂ C and a holomorphic

onto map

p : CrW(r2) → CrX

such that p(z1) = p(z2) if and only if z1 = τ(z2).

Let S = p(∂W(r)rY ) ∪ X. This is a finite disjoint union of trees whose vertex set is X. Let

B = p(R(r2)). This is a finite disjoint union of disks.

Step 2. The induced map after surgery. Let W1 = g−1(W)rW. Since g ◦ τ = τ ◦ g, there is a unique

holomorphic map F0 : Crp(W1) → C, such that

F0 ◦ p = p ◦ g on Crg−1(W).

Obviously, all the sets X, S and B are fixed by F0.
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Define Xc ⊂ X by x ∈ Xc if x is an accumulation point of p(PgrY ). Then F0(Xc) = Xc. For each

component B of B, B ∩ X contains exactly two points. Let p > 1 be the period of B. Then {F kp0 (z)}
converges to a point in B ∩ X for any point z ∈ B. Denote the point by a(B). Since each attracting

petal of G at a point y ∈ Y contains infinitely many points of PG, we have a(B) ∈ Xc. Denote the other

point of B ∩X by r(B).

Pick an attracting flower of g at each point y ∈ Y whose union V satisfies the following conditions:

(1) g(V) ⊂ V ∪ Y ⊂ CrW1, and

(2) each component R of R(r2) intersects ∂V at exactly two open arcs and τ(R(r2)∩∂V) = R(r2)∩∂V.
Then each component of p(∂VrW(r2)) is either a Jordan curve, or an open arc whose two endpoints

land on the same point in X. Denote by U the union of disks enclosed by these closed curves and open

arcs together with their endpoints. Then F0(U) ⊂ U ∪X.

Let x ∈ Xc be a point. If x ∈ U , then x is an attracting point of F0. Otherwise, let Vx be the union

of the components of U touching the point x. Then Vx satisfies the conditions of Lemma 2.13. Thus the

point x is a parabolic point of F0 and Vx is an attracting flower of F0 at the point x. Obviously, each

component of Vx contains infinitely many points of p(PgrY ). The following proposition is easy to verify.

Proposition 10.2. Let S be a component of S and let x ∈ S ∩Xc be a point. Let k > 1 be the number

of components of Sr{x}. Let Dx ∋ x be a sufficiently small disk such that DxrS has k components Ui
whose closures contain the point x. Then Ui contains infinitely many points of p(Pg) if there exists a

component B of B such that a(B) = x and Ui ∩B ̸= ∅.

Step 3. Quotient extension of the inverse map of the projection. Note that the map p : CrW → CrB
is a conformal map. We want to extend its inverse map to be a quotient map of C as follows. Let

w : A(r, 1) → D∗ be the homeomorphism defined in Proposition 5.1(4). Then there exists a unique

homeomorphism w̃ : R(r) → W such that π ◦ w̃ = w ◦ π, g ◦ w̃ = w̃ ◦ g and the continuous extension of w̃

to

∂W ⊂ ∂R(r) → ∂W

is the identity. Define

q =

{
p−1 : CrB → CrW,

w̃ ◦ p−1 : BrS → R(r) → W.

Then q : CrS → CrY is a homeomorphism and hence can be extended to a quotient map of C with

q(S) = Y . Since F0 ◦ p = p ◦ g on CrW1 and g ◦ w̃ = w̃ ◦ g, we have g ◦ q = q ◦ F0 on Crq−1(W1).

Step 4. Construction of a marked semi-rational map. Each component E of W is a full continuum

which contains exactly one point of Pg. Pick a disk U(E) ⊃ E such that U(E)rE contains no critical

values of g and ∂U(E) is disjoint from Pg. We may assume that all these domains U(E) have disjoint

closures. Denote by U0 their union. Note that U(E) contains at most one critical value of g. Each

component of g−1(U0) is a disk containing exactly one component of g−1(W).

Let U1 be the union of components of g−1(U0) which contain a component of W1. Since W1 is disjoint

from P ′
g, once U0 is close enough to W, we may assume U1rW1 is disjoint from Pg.

Define a branched covering F of C such that

(a) F (z) = F0(z) on Crq−1(U1) and hence g ◦ q = q ◦ F on Crq−1(U1).

(b) F : q−1(U1) → q−1(U0) is a branched covering with at most one critical point in q−1(Y1) and

F (q−1(Y1)) ⊂ X, where Y1 = g−1(Y )rY .

It follows that

q−1(PgrY ) ∪Xa ⊂ PF ⊂ q−1(PgrY ) ∪X,

and

P ′
F = q−1(P ′

grY ) ∪Xa.

In particular, q(PF ) = Pg. Set P = Pf ∪X. Then q(P) = Pg, F (P) = P and #(PrPF ) <∞.
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Since F is holomorphic in Crq−1(U1) and each component of q−1(U1) contains at most one point

of PF , which is an isolated point of PF , we know that F is holomorphic in a neighborhood of P ′
F . By

Step 2, (F,P) is a marked semi-rational map.

Step 5. Lift of the quotient map. For each component D of U1, g : D → g(D) is proper with at most

one critical value in Y . On the other hand, F : q−1(D) → F (q−1(D)) is also a branched covering with at

most one critical value in S, and deg g |D = degF |q−1(D). Since q(S) = Y , there exists a quotient map

q̃ : q−1(D) → D that coincides with q on the boundary such that g ◦ q̃ = q ◦ F on q−1(D).

Define q̃ = q on Crq−1(U1). Then q̃ is a quotient map of C isotopic to q rel (Crq−1(U1)) ∪ P and

g ◦ q̃ = q ◦ F on C.

Lemma 10.3. If U is a fundamental set of F , then q(U) contains a fundamental set of g.

Proof. We only need to prove that q(U) contains an attracting flower of g at each point y ∈ Y . Let

S = q−1(y). For simplicity of notation we assume that each point in S ∩X is fixed by F .

Let x ∈ S ∩ Xa be a point. If it is attracting, then x ∈ U . Thus there exists a disk Dx ⊂ U with

x ∈ D such that f is injective on Dx and f(Dx) b Dx. Moreover, we may require that ∂Dx intersects

each component of Sr{x} at a single point. Then for each component U of DxrS, V = q(U) is a disk

and g(V ) ⊂ V ∪ {y}.
Now suppose that x is parabolic. Then there exists an attracting flower Vx of F at x such that Vx ⊂ U .

We may also require that each component of ∂Vxr{x} is either disjoint from S or intersects with each

component of Sr{x} at a single point. Then for each component U of VxrS, V = q(U) is a disk and

g(V ) ⊂ V ∪ {y}.
Denote by V1 the union of V = q(U) for all components U of DxrS if x ∈ S ∩Xc is attracting and for

all components U of VxrS if x ∈ S ∩Xc is parabolic. If {wn = gn(w)} is an orbit in CrU1 converging

to the point y as n → ∞ but wn ̸= y for all n > 1, then {zn = q−1(wn)} converges to a point x ∈ Xa

and F (zn) = zn+1. Thus once n is large enough, the point zn is contained in either Dx if x is attracting

or Vx if x is parabolic. So wn ∈ V1 once n is large enough. Therefore V1 is an attracting flower of g

at y.

Lemma 10.4. The marked semi-rational map (F,P) has neither Thurston obstructions nor connecting

arcs.

Proof. The proof of this theorem is similar to the proof of Theorem 7.3.

Assume for contradiction that Γ is an irreducible multicurve of (F,P) with λ(Γ) > 1. Assume futher

that for each γ ∈ Γ, #(γ∩S) is minimal in its isotopy class. Since F : S → S is bijective, k = #(γ∩S) <∞
is a constant for γ ∈ Γ.

If k = 0, then Γ1 = {q(γ) : γ ∈ Γ} is a multicurve of g since q : PrX → PgrY is injective and

q(X) = Y ∈ P ′
g. Noticing that g ◦ q̃ = q ◦ F on C and q̃ is a quotient map of C isotopic to q rel P, we

have λ(Γ) = λ(Γ1) < 1. This leads to a contradiction.

Now we assume that k > 0. Then there exists at most one component of F−1(γ) isotopic to a curve

in Γ rel P for each γ ∈ Γ since F : S → S is bijective. Thus for each γ ∈ Γ, there is exactly one curve

β ∈ Γ such that F−1(β) has a component isotopic to γ rel P, since Γ is irreducible. Therefore each entry

of the transition matrix M(Γ) is less than or equal to 1. Because λ(Γ) > 1, there is a curve γ ∈ Γ such

that γ is isotopic to a component δ of F−p(γ) rel P for some integer p > 1, and F p is injective on δ.

Let U be a fundamental set of F that is disjoint from every curve in Γ. Since q(U)rY contains a

fundamental set of g and q is injective on CrS, q(γ) is disjoint from a fundamental set of g.

Suppose γ intersects at least two components of S. Let β be a component of q(γ)rY such that β joins

two distinct points in Y . Then β is isotopic to a component of g−kp(β) rel Pg for some integer k > 0

since #(γ ∩ S) is minimal in its isotopy class and γ is isotopic to a component of F−p(γ) rel P. Thus β

is a connecting arc of g. This leads to a contradiction.

Suppose that γ intersects exactly one component S of S. We claim that at least two components of

Cr(γ ∪ S) contain points of PrX.

Let V0 and V1 be the components of Crγ. If both of them contain points of PrX, then both of them
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contain a component of Cr(γ ∪S) which contains points of PrX. The claim is proved. Now we assume

that one of them, say V0, contains no points of PrX. Since γ is non-peripheral, V0 contains at least two

points of P. Thus V0 contains two distinct points x0, x1 ∈ X. Since Xc ⊂ P ′
F , we have x1, x2 ∈ XrXc.

As S is a tree, there exists a unique arc l ⊂ S whose endpoints are (x1, x2). Let B0 and B1 be the

components of B intersecting l such that xi ∈ Bi. Then x0 = r(B0) and x1 = r(B1) since a(B) ∈ Xc

for each component B of B. Consequently, there exists a point x2 ∈ Xc ∩ l. Now V1rl has exactly two

components U0 and U1, whose closures contain the point x2. By Proposition 10.2, each of them contains

infinitely many points of P. Therefore, V1rS has at least two components U ′
0 and U ′

1, which contain

infinitely many points of P. The claim is proved.

Let y = q(S). Then there exists a component β of q(γ)r{y} such that β ∪ {y} separates q(U ′
0)

from q(U ′
1). In other words, each component of Cr(β ∪ {y}) contains at least one point of Q since

q(P) = Q. As above, β is isotopic to a component of G−kp(β) rel Q for some integer k > 0. Thus β is a

connecting arc of (G,Q). This leads to a contradiction. Thus (F,P) has no Thurston obstructions.

Suppose that β is a connecting arc of (F,P). We may assume that k = #(β ∩ S) is minimal in the

isotopy class of β. If k = 0, then q(β) is a connecting arc of G. This is a contradiction. Otherwise, by a

discussion similar to the one as above, there exists a component δ of βrS such that q(δ) is a connecting

arc of G. This is a contradiction. Therefore (F,P) has no connecting arc.

Proof of Theorems 10.1 and 1.6. With the previous preparation, the proof is the same as the proof of

Theorem 7.1. We omit it here.
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