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1 Introduction

One of the most important results in complex dynamics is Thurston’s topological characterization of
rational maps. It states that a post-critically finite branched covering of the 2-sphere with a hyperbolic
orbifold is combinatorially equivalent to a rational map if and only if it has no Thurston obstructions [11].
This condition has been proved to be necessary for geometrically finite rational maps [26]. McMullen [4]
proposed extending Thurston’s theorem to this case.

This problem has been solved for the sub-hyperbolic case [10,17]. In the first part of this work, we
solve this problem in the presence of parabolic points. The main tool is pinching.

In general, pinching provides a path of quasiconformal deformations of a hyperbolic Riemann surface,
whose Beltrami differential is supported in a neighborhood of a finite disjoint union of simple closed
geodesics. Along the deformations the lengths of these geodesics shrink to zero. The limit is a stable
curve in the Deligne-Mumford compactification.

One may perform such deformations on Riemann surfaces occurring as the quotient space of a Kleinian
group (see [23] for related results). Pinching has also been applied in order to study the parameter space
of the dynamics of rational maps [22], where the simple closed geodesics on the quotient space of the
rational maps are chosen such that their lifts to the dynamical space are simple closed curves.
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For our purpose, creating parabolic points from attracting points, we have to choose the simple closed
geodesics on the quotient space such that their lifts to the dynamical space are arcs which join attracting
periodic points to the Julia set. Such a choice makes the control of the distortion of quasiconformal
conjugacy more difficult.

In this work, we first study pinching on specific simple closed geodesics on the quotient spaces of
rational maps. We will call this type of pinching simple pinching. By using the length-area method to
control the distortion of quasiconformal conjugacy, we prove that the pinching path is convergent. This
result was generalized to other cases [15,16].

Plumbing is a surgery on a nodded Riemann surface which is like an inverse to pinching: it replaces
pairs of cusp neighborhoods by thin annuli. We will apply this surgery to create attracting points from
parabolic points in the dynamics of rational maps.

Begin with a semi-rational map with parabolic points. We start by constructing a sub-hyperbolic
semi-rational map by plumbing. We prove that if the original map has neither a Thurston obstruction
nor a connecting arc, which can be viewed as a degenerate Thurston obstruction, then the resulting
semi-rational map has no Thurston obstruction. Now applying the characterization theorem obtained
in [10,17] and the above result on simple pinching, we obtain a rational map that is c-equivalent to the
original semi-rational map.

Simple pinching can also be used to study a conjecture proposed by Goldberg and Milnor [12], which
states that if a polynomial has a parabolic cycle, then its immediate basins can be converted to be at-
tracting by a small perturbation without changing the topology of the Julia set. We prove this conjecture
in the setting of geometrically finite rational maps. Refer to [13—-16] and [18,19] for proofs of the same
conjecture in various settings, but with different methods.

The second part of this work is devoted to general pinching of rational maps. Unfortunately, the
distortion control for simple pinching is not valid in the general case. We start by studying plumbing
instead of pinching. We develop a new distortion control for univalent maps, and then show that any
plumbing of a geometrically finite rational map can be realized as a pinching path of a geometrically finite
rational map converging to the original map. Applying the characterization theorem obtained in the first
part, we prove that a pinching path is convergent if it satisfies the non-separating condition. This condition
has been proved to be necessary [37]. As a by-product, we show that the quasiconformal deformation of
a geometrically finite rational map supported on a non-separating multi-annulus is bounded in its moduli
space.

The above result is an analogue of Maskit’s theorem [23] for producing cusps. It is known that cusps
are dense in the space of boundary groups [24]. It has been asked whether cusps are dense in the boundary
of a hyperbolic component of rational maps [25]. Our results about pinching may be helpful in solving
this problem.

Main results. We now give definitions and statements. Let I’ be a branched covering of the Riemann
sphere C with degree deg F' > 2. Denote by Qr = {z € C : deg, F > 1} the critical set of F', by

Pr = U F"(QF)

n>0

the post-critical set of F' and by P the set of accumulation points of Pr. The map F is called
post-critically finite if Pp is finite, and geometrically finite if P}, is finite.

Let f be a rational map of C with deg f > 2. Denote by Fr the Fatou set of f and by J; the Julia set
of f; refer to [2] or [30] for the definitions. In the literature, the geometric finiteness of a rational map f
is defined by the condition that Py N Jy is finite. It turns out that the two definitions are equivalent
when f is a rational map [7].

A geometrically finite branched covering F' is called a semi-rational map if

(1) F is holomorphic in a neighborhood of Pf,

(2) each cycle in P} is attracting or super-attracting or parabolic, and

(3) any attracting petal at a parabolic periodic point in P} contains points of Pg.
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A semi-rational map F is called sub-hyperbolic if P} contains no parabolic cycles.

See [30] or Subsection 2.6 for the definitions of attracting petals and attracting flowers. The
condition (3) implies that any attracting petal at a parabolic periodic point in P contains infinitely
many points of Pp.

Let F be a semi-rational map. An open set & C C is called a fundamental set of F if & ¢ F~1(U)
and U contains every attracting and super-attracting cycle in P} and an attracting flower at each parabolic
cycle in Pp.

A fundamental set could be the empty set if F' is post-critically finite. It is contained in the Fatou set
if F'is a rational map.

Two semi-rational maps F' and G are called c-equivalent if there exist a pair of orientation-preserving
homeomorphisms (¢, ) of C and a fundamental set U of I such that

(a) g0 F = Go,

(b) ¢ is holomorphic in U,

(¢) ¥ = ¢ in U U Pp and 9 is isotopic to ¢ rel U U Pp.

Let G be a semi-rational map with parabolic cycles in P/,. An open arc 3 C C~\Pg which joins two
points 2o, z1 € P¢, is called a connecting arc if:

(i) either zg # z1, or zgp = 21 and both components of C~.3 contain points of Pg,

(ii) B is disjoint from a fundamental set of G, and

(iil) B is isotopic to a component 5 of GP () rel Pg for some integer p > 0, i.e., there exists an isotopy
H :[0,1] x C — C with H(0,-) = id and H(t,-) = id on Pg for t € [0, 1] such that H(1, ) = B
Theorem 1.1 (Unicity). Two c-equivalent geometrically finite rational maps with infinite post-critical
sets are holomorphic conjugate in the isotopy class of the c-equivalence.

Theorem 1.2 (Existence). A semi-rational map with infinite post-critical sets is c-equivalent to a
rational map if and only if it has neither Thurston obstructions nor connecting arcs.

See [11,27] or Section 4 below for the definition of Thurston obstructions. In order to prove Theorem 1.2,
we first establish the following two results which have independent interest. See Section 5 for the precise
definition of pinching.

Theorem 1.3 (Simple pinching).  Let f be a geometrically finite rational map and let f; = ¢ o0 fogf)t_l
(t = 0) be a simple pinching path starting from f = fo. Then the following properties hold:

(a) fi converges uniformly to a geometrically finite rational map g as t — oo.

(b) ¢ converges uniformly to a continuous onto map ¢ of C ast — oc.

() pof=gop and ¢ : Jr — T4 is a homeomorphism.

Theorem 1.4 (Simple plumbing).  Any geometrically finite rational map with parabolic cycles is the
limit of a simple pinching path starting from a sub-hyperbolic rational map.

Denote by 21, the space of holomorphic conjugate classes of rational maps of degree d > 2. For
[f] € My, define M[f] C M, by [g] € M[f] if g is quasiconformally conjugate to f.
Refer to Section 5 for the definition of non-separating.

Theorem 1.5 (Pinching).  Let f be a geometrically finite rational map. Let f; = ¢y o0 fo ¢yt (t = 0)
be a pinching path starting from f = fo and supported on a non-separating multi-annulus. Then the
following properties hold:

(a) fi converges uniformly to a geometrically finite rational map g as t — oo.

(b) ¢4 converges uniformly to a continuous onto map ¢ of C as t — oc.

(©) ¢(Ty) = Ty-

(d) Mg] C OM[f].

The pinching deformation can be reversed via a plumbing surgery on the limit rational map g. The
complete set of possibilities for plumbing can be encoded by a finite set of combinatorial data—plumbing
combinatorics (see Subsection 10.1 for the definition).

Theorem 1.6 (Plumbing). Let g be a geometrically rational map with parabolic cycles and let o be a
plumbing combinatorics of g. Then there exist a geometrically finite rational map f and a pinching path
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fi=¢i0foo;t (t =0) starting from f = fo such that f; is a plumbing of g along o and {f;} converges
uniformly to g as t — oo.

For each [f] € My and any non-separating multi-annulus & in its quotient space, define M[f, &7] C
M[f] by [g] € M[f, <] if there exists a quasiconformal map ¢ of C such that go ¢ = ¢ o f and the
Beltrami differential of ¢ is supported on 7'(']71(&7 ). In general, M[f] need not have compact closure
in M4. However, we have the following theorem.

Theorem 1.7 (Boundedness). Let f be a geometrically rational map and let &/ be a non-separating
multi-annulus. Then M[f, 7] is compactly contained in My and any rational map in the closure of
M[f, ] is geometrically finite.

Outline of the paper. In Section 2, we recall some basic results which will be used in the sequel.
Most of them are known except for some lemmas whose proofs are not difficult. In Section 3 we prove
Theorem 1.1 by considering local conjugacy at parabolic points and the boundary dilatation of a c-
equivalence. In Section 4 we begin by recalling Thurston’s theorem. Then we show that geometrically
finite rational maps have no connecting arcs, which is the necessary part of Theorem 1.2. We also show
that Thurston’s algorithm is convergent. In Section 5 we give the definition of the pinching path of a
rational map through a favorable model. The proof of Theorem 1.3 is given in Section 6.

In Section 7 we prove Theorem 1.4 and complete the proof of Theorem 1.2. The strategy is to make
a detour to sub-hyperbolic semi-rational maps via plumbing and pinching: Starting with a semi-rational
map G, we first construct a sub-hyperbolic semi-rational map F' from G by simple plumbing. Then we
show that F' has no Thurston obstructions and thus is c-equivalent to a rational map f. Finally we show
that the simple pinching limit of f is a rational map c-equivalent to G.

In the last three sections, we study general pinching and plumbing. In Section 8 we define a new
type of distortion for univalent maps and give a control for it using a property of the domains of the
univalent maps. Then we apply this distortion control to the dynamics of rational maps. The proofs of
Theorems 1.5-1.7 are given in the last two sections.

The proof of Theorem 1.5 is different from the proof of Theorem 1.3 and is quite involved. This is
because the distortion control in the proof of Theorem 1.3 cannot be applied to general pinching. We
start with a rational map f and its pinching path; instead of showing directly that the pinching path is
convergent, we first construct a semi-rational map G from the limit of truncated quasiconformal maps
whose convergence is easy to prove. Then we show that the map G has neither Thurston obstructions
nor connecting arcs, and hence is c-equivalent to a rational map g by Theorem 1.2. This provides us the
candidate limit map ¢ of our pinching path. Now using a similar strategy as in the proof of Theorem 1.2,
we plumb ¢ and then pinch. We have to check that we get exactly the same pinching path, and that it
converges uniformly to g by the distortion control established in Theorem 8.5.

Notation. The following notation and conventions will be used in this paper:

D(zp,7) ={2€C:|z—2z| <r} for 2€C and r >0,

D(r) =D(0,7) and D =1D(0,1),

D*(r) =D(r)~{0} and D* =D*(1),

A(zp;r,m2) ={2€C:ry <|z—20| <re} for 2p€C and 0<r; <ro,
A(ri,m) ={z€C:r <|z| <ra} for 0<ry <re,
A(ry={zeC:1/r<|z|<r} for r>1.

C = CU {oo} is the Riemann sphere and C* = C~{0}.

UeVifUCV for open sets U,V c C.

A disk is a Jordan domain in C.

An annulus A; is contained essentially in another annulus As if Ay C Ay and A; separates the two
boundary components of As.
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2 Preliminaries

2.1 Modulus and extremal length

Let A C C be an annulus such that each of its two complementary components contains at least two
points. Then there exist a constant » > 1 and a conformal map x4 : A — A(r), where r is unique and x 4
is unique up to post-composition of a rotation and the inversion z — 1/z.

e The modulus of A is defined by mod A = (logr) /.

e x1'{z:argz = 0} is a vertical line in A for 0 < 6 < 27,

e x1'{z : |2| = p} is a horizontal circle in A for 1/r < p < r and

e c(A) = x;'{z : |2| = 1} is the equator of A.

Refer to [26, Theorem 2.1] for the next lemma (the statement is slightly different but with the same
proof).

Lemma 2.1. Let A C C be an annulus with mod A > 51;7152 and let zg be a point in the bounded

component of C\A. Then there exists an annulus A(zo;71,1r2) contained essentially in A such that

5log2

mod A(zp;r1,72) > mod A —
2w

The modulus of an annulus is related to extremal length as follows. Let p(z) be a non-negative Borel
measurable function on A satisfying

0 < Area(p, A) = // P (2)dzdy < .
A

The p-length of a locally rectifiable arc o C A is

L(p.a) = / p(2)ldz].

Let Height(p, A) be the infimum of L(p, ) over all locally rectifiable arcs @ C A which join the two
components of C\A. Let Width(p, A) be the infimum of L(p,~) over all locally rectifiable Jordan curves
v C A which separate the two components of C\ A. The following classical inequalities (refer to [20]) will
be used several times in this paper.

Lemma 2.2. It holds that

Height(p, A)?
Area(p, A

Area(p, A)
SmodA < ——F 5.
o Width(p, A)2

)
Both equalities hold for p(z) = |(log xa)'(2)|, which is called an extremal metric of A.

A (topological) quadrilateral Q = Q(«, ') is a Jordan domain @ in C together with a pair of open
arcs a, o’ C 9Q that have disjoint closures. We will call the two arcs o and o’ the horizontal sides
of Q, and the two arcs dQ~(a U ') the vertical sides of Q. There exist a unique constant b > 0 and a
conformal map

XQ: Q@ >Ry={z=2+iy:0<z<1,0<y<b}

such that the continuous extension of x¢o maps the two horizontal sides («, @’) onto the two horizontal
sides (0,1) and (ib, 1 + ib) of the rectangle Rj.

e The modulus of @ is defined by mod @ = b.

° Xél{x +iy:xz ==x0} is a vertical line of @ for 0 < zp < 1 and

. Xél{x +1iy:y = yo} is a horizontal line of Q for 0 < yy < b.

Lemma 2.2 also holds for the quadrilateral @, where Height(p, A) and Width(p, A) are replaced by the
following: Height(p, Q) is the infimum of the p-length of all locally rectifiable arcs in @ which join the
two horizontal sides of @), whereas Width(p, Q) is the infimum of the p-length of all locally rectifiable
arcs in @ which join the two vertical sides of Q). The following two lemmas will be used in the proof of
Lemma 5.9.
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(b)

Figure 1 (a) Four quadrilaterals form an annulus. (b) Sub-quadrilaterals

Lemma 2.3 (From quadrilaterals to an annulus).  Let Q;(ay, o) (1 < i < n) be quadrilaterals such that

Ui, Qi = A is an annulus and
n

J0Qina)) =0, 4=, (2.1)

i=1 i=1

where 04 A is one of the two components of 0A (see Figure 1(a)). Then

1 - 1
< -
mod A ; mod Q;

Proof.  Set pi(z) = ‘:flgé(gn on Q; and p;(z) = 0 otherwise for 1 < ¢ < n. Then

Area(p;, Q;) = and Height(p;, Q;) = 1.

mod Qz

Set p(z) = max{p;(z)}. Then

n

Area(p, A) < Z
i=1

_
mod Q;

By (2.1), the other component of A is contained in (Jof. Let ¢ : (0,1) — A be a locally rectifiable
arc in A which joins the two components of JA. By the second equation of (2.1), one end of § must
be contained in «; for some 0 < j < n. By the first equation of the condition, either ¢ is totally
contained in @; and hence the other endpoint of ¢ lands on a;-, or ¢ intersects a;. In both cases, we have
L(p,0) > L(p;,9) > 1. So Height(p, A) > 1. Now the lemma follows from Lemma 2.2. O

A quadrilateral Qo (o, @) is a sub-quadrilateral of a quadrilateral Q(«, o) if Qo C Q and (o U ap)
C (aUda).

Let @Q be a quadrilateral and let 1, Q3 C @ be disjoint sub-quadrilaterals of ) such that each of the
two vertical sides of @ is a vertical side of 1 or @3. Let 81 and (3 be vertical lines in @7 and Qs3,
respectively. Then we get a sub-quadrilateral Q2 of @ such that (51, 33) are vertical sides of Q2. Let
Q12 = Q1NQ2, which is a sub-quadrilateral of @1 and Q3. Let Q23 = Q3N Q2, which is a sub-quadrilateral
of Q3 and Q2 (see Figure 1(b)). Let

M = max{mod Q12, mod Q23,1}.

Lemma 2.4 (Three overlapping quadrilaterals). It holds that
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Proof.  Set pi(z) = ‘:(ni(li(czg)il

on @; and p;(z) = 0 otherwise for i = 1,2,3. Then

Area(p;, Q;) = and  Height(p;, @) = 1.

1
mod Qz
Set

p(z) = max{p;(z) : i = 1,2,3}.
Then Q = E; U Ey U E5, where E; is defined by

Ei={€Q:p(x) = pi(2)}, i=123,
Since p(z) > 0 for z € Q, we have E; C @; and
Area(p, Q) < Area(p, E1) + Area(p, Eq) + Area(p, E3)

= Area(p1, E1) + Area(psa, E) + Area(ps, E3)

< Area(pr, Q1) + Area(pz, Q2) + Area(ps, Q3)
I S
- modQ@; modQ; modQs

Since (7 is a vertical line in @)1, the quadrilateral Q12 becomes a rectangle in the rectangle model
of Q1. Therefore p; restricted to @12 is an extremal metric of (J12. Thus

. 1
Area(p1, Q12) = Width(p1, Q12) = ‘modQyy
Similarly,
. 1
Area(p3, Q23) = Wldth(pS’ Q23) = m.

For any arc a in @Q which joins the two horizontal sides of @, either « is contained in @); for some
1 € {1,2,3} and joins the two horizontal sides of @;, or « intersects the two vertical sides of either Q12
or Q23. In the former case,
L(p,a) > L(p;, ) > Height(p;, Q;) = 1.

In the latter case, suppose « intersects the two vertical sides of Q12. Then there is a sub-arc o’ of «
which stays in Q12 and joins the two vertical sides of @12. Thus

1 1

L(p,a) > L(p,a’) > L(p1, @) > Width(p1, Q12) = mod Oy Z
1

In summary, we have L(p,a) > 1/M and hence Height(p, Q) > 1/M. Applying Lemma 2.2, we obtain
3

2
1 < A'rea(p, Q) < Z M .
mod Q ~ Height(p, Q)2 mod Q;

i=1
This completes the proof. O

Theorem 2.5.  Let {¢} (t = 0) be a family of homeomorphisms of C which converges uniformly to a
homeomorphism ¢ of C as t — oo. Let A C C be an annulus with mod (A) < co. Then

tllr&mod d:(A) = mod ¢p(A).

Proof.  We may assume that ¢ is the identity by considering the sequence {¢; o $~1}. Then {¢;(A)}
converges to A as t — oo in the sense of Carathéodory, i.e.,

(1) any compact subset E C A is contained in ¢:(A) once ¢ is large enough, since {¢;} converges
uniformly to the identity as ¢ — oo, and

(2) if U C C is an open set and to > 0 is a constant such that U C ¢;(A) for t > tg, then U C A.
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In fact, for any point z € U, since ¢;(z) converges to the point z as t — oo, there exists a constant
t1 > 0 such that ¢(z) € U for ¢t > t1. Thus ¢.(z) € U C ¢4(A) for t > max{to,t1}. So z € A. Therefore
UcCA.

Each of the two components Ej, By of C\A contains more than one point since mod (A) < oo.
Since {¢¢} converges uniformly to the identity, for i = 1, 2,

tlim diamy¢;(E;) = diam,E; > 0.

Therefore,
lim sup mod ¢ (A) < oo

t—o0

by Teichmiiller’s theorem (refer to [1, Theorems 4-7]). Let
Xt : ¢t(A) — Bt = {Z : 1/7“t < |Z‘ < Tt}

be a conformal map, where
(logry)/m = mod ¢¢(A).

Then there exists a constant to > 0 such that the family {x:} (¢ > to) is uniformly bounded.

For any sequence t,, € (tp,o0) (n € N) with ¢, — oo as n — oo, by the Motel principle, there exist a
subsequence (also denoted by {t,,}) and a holomorphic map x on A such that for any compact set E C A,
Xt, converges uniformly to x on E.

By Carathéodory’s theorem (refer to [32, Theorem 1.8]), either the map y is constant or it is univalent,
and in the latter case, { By, } converges to x(A) as n — oo, i.e.,

(a) any compact subset F C x(A) is contained in B;, once n is large enough, and

(b) if U C C is an open set and ng > 0 is an integer such that U C B, for n > ng, then U C x(A).

Obviously, the map x is not constant since x fixes the unit circle. Thus {B;, } converges to x(A) as
n — oo. It follows that

X(A)={z:r<|z|<1/r} with r= lim 7 .
n—oo

Therefore,
lim mod ¢;, (4) = lim mod B, = mod x(A4) = mod A.

n— oo n—00

This completes the proof. O

2.2 Quotient maps

A continuum E C C is full if C\E is connected. By a quotient map of C we mean a continuous onto
map ¢ of C such that for any point w € C, ¢~ *(w) is either a single point or a full continuum.

We will call two quotient maps go and g1 of C isotopic rel a closed subset E C C if there exists a
continuous map H : [0,1] x C — C such that H(0,-) = qo, H(1,-) = q1, ¢ = H(t,-) is a quotient map
of C for t € [0,1] and ¢; ' (w) = g5 *(w) for w € go(E) and ¢ € [0,1]. Refer to [8] or [31] for the following
lemma.

Lemma 2.6. Let ¢ be a continuous onto map of C. The following conditions are equivalent:

(i) The map q is a quotient map.

(ii) ¢~ 1(E) is a full continuum if E C C is a full continuum.

(iii) ¢~ Y(E) is a continuum if E C C is a continuum.

(iv) ¢~ 2(U) is an n-connected domain if U C C is an n-connected domain (n > 1).

(v) There exists a sequence of homeomorphisms {¢,} of C such that ¢,, converges uniformly to q as
n — 0o.

The following lemma will be used in the proof of Lemma 9.12.
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Lemma 2.7. Let 2 be a family of quotient maps of C. Then 2 is equicontinuous if, for any point
wo € C and any disk U C C with wy € U, there exist a constant d(wo) > 0 and a disk V 3 wy with
V C U, such that for any q¢ € 2, the spherical distance

dists (¢~ (0U), ¢ (V) > 6(wp).

Proof.  If 2 is not equicontinuous, then for any € > 0, there exist a sequence {¢,} in 2 and a sequence
of pairs (2,, 2.,) of points in C such that dist,(z,,2,,) — 0 as n — oo but

dists(qn(2n), qn(2),)) > €. (2.2)

Passing to a subsequence, we assume that {g,(z,)} converges to a point wg. Let U = D(wp,e/2). By
hypothesis, there exist a constant J(wp) > 0 and a disk V' 3 wy with V' C U, such that

dists(q,, 1 (OU), q; 1 (V) > 6(wp).
When n is large enough, ¢,(z,) € V. Thus ¢,(z),) ¢ U by (2.2). Therefore,
§(wg) < dist(q, 1(U), q; (V) < dist(z,, 2,).
This contradicts the fact that dists(zn,2,,) — 0 as n — oo. O

2.3 Convergence of rational map sequences

If a sequence of rational maps {f,} is uniformly convergent on C, then it converges to a rational map g.
Moreover, deg(f,) = deg(g) once n is large enough. The next lemma will be used in Subsections 6.2
and 9.2.

Lemma 2.8.  Let {f,} be a sequence of rational maps with constant degree d > 1. Suppose that U CC
is a non-empty open set and { f,} converges uniformly to a map g on U as n — co. Then g is a rational
map and deg g < d. Moreover, deg g = d implies that {f,} converges uniformly to g on C as n — .

Proof. By composing Mobius transformations, we may assume that co € U and f,,(c0) — 1. Thus,
once n is large enough, the function f, has the form

(z—a1n) (2 —agn)
(z—=bin) (2 —ban)’

fn(z) =kn

and k, — 1 as n — oo. Since {f,} converges uniformly in a neighborhood of co and f,,(c0) — 1, both
{ain} and {b;,} are bounded in C. Passing to a subsequence {f,, }, we have

(@1mps -3 Qdng; Olngs - - 5 Odny ) = (@1, .., a4501, ... ,bg) as ny — oo.

If a; # b for 1 <, < d, let
(z—a1) (2 —aq)
z) = ;

then {f,,} converges uniformly to g; on C. Since {f,} converges uniformly to g on U, we have g = g;
on U, and {f,} converges uniformly to g on C.
Otherwise, suppose a; # b; for 1 < 4,j < dp and ay = by, for dg < k < d. Let

B (Z_al)...(z—ado)
gl(z)— (Z_bl)...(z—bdo).

Then {f,, } converges uniformly to g; on any compact subset of C~\{agy+1,--.,a4}. So g = g1 on U and
hence g is a rational map with degg = dy < d. O
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2.4 Shrinking lemma

Let f be a rational map with deg f > 1. The following lemma is well-known (refer to [21]) and will be
used several times throughout this paper.

Lemma 2.9. Let U C C be a simply-connected domain disjoint from P and rotation domains. For
any domain D € U and any integer n > 1, denote by C,, the mazimum of the spherical diameters of all
the components of f~™(D). Then Cp, — 0 as n — co.

Proof.  If #f71(Py) < 3, then f is holomorphically conjugate to the power map z — 2% The lemma
is easy to check in this case.

Now we assume that #f~1(Ps) = 3. If C,, / 0 as n — oo, there exists a sequence {n;} in N with
nk — 0o as k — 0o, and there exists a component Dy of f~"™* (D), such that the spherical diameter

diam,Dy, - C >0 as k — oo.

Denote by U the component of f~™(U) containing Dy and by gj the inverse map of the univalent
map f" : Uy — U. Then {gx} is a normal family on U since gy (U) = Uy is disjoint from f~(Py).
Thus there is a subsequence of {gx}, which we will also denote by {gx}, which converges uniformly to a
holomorphic function g on D. Moreover, g is not a constant since diamggi(D) — C > 0 as k — co. Thus
g: D — g(D) is a univalent map.

We claim that g(D) C Fy. Otherwise, there is a domain V' € ¢(D) such that V. NJ; # 0. So f™(V)
covers C with at most two exceptional points once n is large enough. This contradicts the fact that
f™(V) C D for infinitely many n € N. Thus g(D) C Fy.

Since U is disjoint from rotation domains, for any domain W € g(D), f™(W) converges to a periodic
orbit in Ps. On the other hand, once k is large enough, W & gx(D) and f™ | = g~* |/ converges
uniformly to the univalent map g~! on W. This is a contradiction. Thus C,, — 0 as n — oo. O

2.5 Parabolic points

By a parabolic fixed point we mean (g,y) where g is a holomorphic map from a neighborhood of y € C
into C with g(y) = ¥, such that if y # oo, ¢'(y) = ™4 where p and ¢ are co-prime positive integers with
p < ¢, and

9 (2) —y=( -y A+ crg(z =)+ )

with cgq # 0 for some integer k > 1; or if y = oo, f(z) = 1/g(1/%) satisfies the above conditions at the
origin. Its rotation number is p/q and its multiplicity is kg+ 1. Refer to [30, Section 10], for the following
results, with a little modification.

Attracting/repelling petals and flowers.  Let (g, y) be a parabolic fixed point with rotation number
p/q and multiplicity kg + 1. Let N C C be a neighborhood of the point y such that g is injective on N.
Suppose that V; € N (i = 1,...,kq) are pairwise disjoint disks such that their union V satisfies the
following conditions:

(a) g(V) cVU{y}.

(b) {¢™(2)} — y as n — oo uniformly on any compact subset of V.

(c) If {g"(2)} — y as n — oo for z € N~ {y}, then ¢"(z) € V once n is large enough.

We will call these domains V; attracting petals and their union V an attracting flower of (g,y). A
repelling petal and a repelling flower of g are defined as an attracting petal and an attracting flower

1

of g7+, respectively.

Theorem 2.10 (Leau-Fatou flower theorem).  Let (g,y) be a parabolic fized point. Then there exist an
attracting flower V and a repelling flower V' such that V U V' U {y} is a neighborhood of the point y.

Theorem 2.11 (Cylinder theorem). Let V be an attracting flower of the parabolic fixed point (g,y).
Then the quotient space V/(g) is a disjoint union of k cylinders.
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Denote %, = V/{(g). We will call it the attracting cylinder of (g,y). The repelling cylinder
of (g,y) is defined to be the quotient space €, =V’ /(g) of a repelling flower V'. Then %, is also a disjoint
union of k cylinders. The following corollary is easy to prove from the fact that every univalent map from
a cylinder to itself is surjective.

Corollary 2.12. Let V € N be a disjoint union of kq disks satisfying Conditions (a) and (b) in the
definition of attracting flowers. If the quotient space V/{(g) is a disjoint union of k cylinders, then V is
an attracting flower.

The existence of an attracting flower is a complete characterization of a parabolic fixed point, by the
following lemma.

Lemma 2.13. Let N C C be a domain and let g : N — C be a univalent map with a fixed point y € N.
Suppose that V € N is a finite disjoint union of disks with y ¢ V satisfying the following conditions:

(a) g(V) c VU {y}.
(b) {9™(2)} = y as n — oo uniformly on any compact subset of V.
(c) If {g"(2)} = = as n = oo for z € N~{z}, then ¢"(z) € V once n is large enough.

Then (g,y) is a parabolic fized point.

Proof.  There exist a component V of V and an integer p > 1 such that g?(V) C V U {y}, by (a). Pick
a point z € AV ~{y} and a Jordan arc &y in V'~ g?P(V) joining the point z with gP(z). Let &, = g"?(do)
for k > 1. Then §; converges to the point y as k — oo, by (b). Let

7= U{g"G)).

k>1

Then ~ is an arc joining the point ¢g?(z) with the point y, and g?(y) C . Thus by the Snail lemma (refer
to [30]) the fixed point y is not a Cremer point. Obviously, it is neither repelling nor Siegel. Consequently,
it is parabolic or attracting.

If the fixed point is attracting, then there exists a disk D € N with y € D such that g(D) € D. Let
Wo =V Ng(D). Then g(Wy) C Wy. Let Wy = g~ (W) N g(D). Then g(W;) = Wy C Wi. Inductively,
let W11 =g Y (W,)Ng(D) for n > 1. Then g(W,11) = W,, C Wi1.

Let E, = 9g(D)~g ' (W,) for n > 1. Then E, is closed and E,y; C E,. In particular, E, is
non-empty. Otherwise, we would have dg(D) C ¢g~'(W,). It follows that g(dg(D)) C W,. Since
g(W,,) € W, for all n > 1, we obtain ¢"*1(dg(D)) C Wy C V. Since each component of V is simply
connected and g(D) € D, we get g"*2(D) C V. This is a contradiction since y € g"*2(D) but y € V.

Set Eoo = (1,51 En- It is non-empty. Pick a point z € Es. Then z € dg(D) and hence g"(z) € g(D)
for all n > 1, and {g"(2)} — y as n — oo. On the other hand, 2 ¢ g~1(W,,) for all n > 1. Thus
g(2) € g(D)~W,. We claim that g"(z) € W, for all n > 1. Otherwise, we would have g"~!(z) € Wy by
the definition of W;. Inductively, g(z) € W,—_1 and hence g(z) € W,,. This is a contradiction. By the
claim and the definition of Wy, ¢"(z) ¢ V for all n > 1. This contradicts Condition (c). Therefore (g,y)
is a parabolic fixed point. O

Sepals, calyxes and horn maps. Consider the map z — z+1. The infinity is a parabolic fixed point.
For any two constants y; > 0 and yo < 0, the two half planes {z = x+iy,y > y1} and {z = z+iy,y < ya2}
are invariant under the map.

Such invariant domains exist for general parabolic points. The proof is easy and we omit it.

Let (g,%) be a parabolic fixed point with rotation number p/q and multiplicity kg + 1. Let N C C be
a neighborhood of the point y such that g is injective on N.

Theorem 2.14 (Sepal).  There exist 2kq disjoint disks W; € N such that g is a conformal map from
their union W onto itself and {g"(2)} — y as n — oo uniformly on any compact subset of W.

We will call these domains W, sepals and their union W a calyx. There are exactly two sepals of W
intersecting with an attracting petal; we call them a left sepal and a right sepal, as viewed from the
parabolic fixed point to the attracting petal.
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Denote by m, (7, respectively) the natural projection from an attracting (repelling) flower to the
attracting (repelling) cylinder. For the sake of simplicity, we do not specify the domain of the projection
m, or m.. This does not cause confusion since if a point is contained in two different attracting flowers
(or repelling flowers), then its projection is independent of the choice of flower. Consequently, both 7,
and 7, are well-defined on a calyx.

Let W be a calyx. Then both 7,(W) and w,.(W) are the disjoint union of 2k one-punctured disks.
Define

Ty:m(W) = m,(W) by Yy(m(2)) =m(z) for zeW.

This is a well-defined conformal map and it is called a horn map of (g, y).

Regular flowers. Let (g,y) be a parabolic fixed point with rotation number p/q and multiplicity
kq+ 1. Let V be an attracting flower of (g,y). Then the projection m,(0V~{y}) is a disjoint union of kq
arcs and each of the k attracting cylinders contains ¢ such arcs. Each arc lands on punctures at both ends,
or else the limit set of each arc is disjoint from punctures, or else the limit sets of the arcs are complicated
sets. On the other hand, ()~ g™ (V) is empty, or else contains a calyx, or else is a complicated set. To
avoid the complexity, we will need a further requirement for attracting flowers in this paper.

An attracting flower V is called regular if (), ¢" (V) is empty, or equivalently, each arc in 7, (OV~{y})
lands on punctures at both ends. A regular repelling flower is defined similarly. The following proposition
will be used in Section 3.

Proposition 2.15. (1) Any attracting flower contains a reqular attracting flower.

(2) Let o, C 6, (1 < n < kq) be pairwise disjoint arcs connecting two punctures such that each
of the k attracting cylinders contains q arcs. Then there exists a regular attracting flower V such that
Ta(OV{y}) = UpLy an-

(3) For any attracting flower V of (g,y), there exists a reqular repelling flower V' of (g,y) such that
VU {y} UV is a neighborhood of the point y.

Proof.  We only prove the proposition in the case that kg = 1. The proof for the general case has no
essential difficulty.

(1) Let V be an attracting flower of the parabolic fixed point (g,y) and let 7, : V — %, = C* be the
natural projection to the cylinder. Pick a bi-infinite sequence {w,, } in C* (n € Z) such that |w,| < |w,11],
|lwn| = 0 as n = —oo and |wy,| = 00 as n — oo. Let 8, C C* be a round circle with center zero and
radius |w,| for n € Z. Then w,, € §,.

By Condition (c) in the definition of attracting flower, for each point w € ,,, there exists a point z € V
such that 7, (z) = w. Moreover, there exists a disk D, C V with z € D, such that 7, is injective on D,.
Set Uy, = mq(D,). The sets U, form an open cover of §,. Thus there is a finite open sub-cover. This
fact shows that there exists an arc «y,, C V joining a point z, € 7, *(w,,) with the parabolic fixed point ¥,
such that 7, (vn) = Bn, and hence g(yn) C Yn.

Let 6, C C* be an arc in the annulus bounded by By and B,4+1 which joins the point w,, With Wy t1-
As above, there exist an integer i, > 0 and an arc 8, C V which j joins the point g'n (zn) with g (2,41)
such that ﬂ'a(én) = 0,,. This implies that the domain bounded by Jn, Yn and 7,41 is contained in V.

Start from the point zy € V. From the existence of 5n, we know that there exists an integer k; > 0
such that the Fatou line segment o (a line segment in Fatou coordinates), which joins the point z
with g¥1(21), is contained in V. Inductively, there exists a sequence of non-negative integers {k,} (n > 1)
such that the Fatou line segment «,, which joins the point gk»~1(z,_1) with g*»(z,) is contained in V.

Repeating this argument for n < —1 and setting ko = 0, we get a sequence of non-negative integers
{k,} (n < 0) such that the Fatou line segment «,, which joins the point gF=+!(z,,1) with gk~ (z,) is
contained in V.

These arcs {a,} for n # 0 are pairwise disjoint. The union of them together with their endpoints
forms an arc o whose endpoints are both the parabolic fixed point y. Thus o U {y} bounds a disk in V,
which is a regular attracting flower.

(2) We assume that kg = 1 for simplicity. Let W be a calyx of the parabolic fixed point (g,y). Then
7o (W) is the disjoint union of two once-punctured disks. The arc o7 can be cut into three arcs 7o, 71
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and 7, such that both 7 and 77 are contained in 7, (W) and the endpoints of v, stay on a.

By a similar argument to that in the proof of (1), there exists an arc 75 in an attracting flower of (g, y)
such that 7,(72) = v2. Let 7; C W be a lift of ~; that has a common endpoint with 2 for ¢« = 0, 1.
Then the union of 7; (i = 0, 1,2) together with their endpoints bounds a regular attracting flower ¥ and
T (OV~{y}) = aq.

(3) Pick a calyx W of (g,y) such that OW~{y} is two horizontal lines in the Fatou coordinate. Then
there exists a regular repelling flower Vi of (g,y) such that 9V; N W is two vertical lines in the Fatou
coordinate. Denote by zp and z{ the two endpoints of these two lines on OW~{y}.

Pick a sequence of calyxes {W,} (n > 1) in W such that W,,,1 C W, U {y}, OW,~{y} is two
horizontal lines in the Fatou coordinate and {W, } converges to the point y. Then there exists a pair
of points (2, z},) in OW,~{y} for each n > 1 such that z, is contained in the same sepal as zg, 2,
contained in the same sepal as z{), and the Fatou line segments d,, ¢/, which join z, with z,1, and 2z,

ny¥n

is

with z;, ., respectively, are contained in V. Since {W,} converges to the point y, both {z,} and {z},}
converge to y as n — oo.

Let dp and 4, be the Fatou line segments which join zy with 21, and 2z, with z{, respectively. Let a be
the union of 4,, and 0], together with their endpoints for n > 0. Then o U {y} bounds a regular repelling
flower V' and VU {y} UV’ is a neighborhood of the point y. O

2.6 Quotient space of rational maps and periodic arcs

Let f be a rational map with attracting or parabolic domains. Define @f C Fy by z € @f if its
forward orbit {f"(z)} is infinite, disjoint from P; and contained in parabolic or attracting (but not
superattracting) domains. Define the grand orbit equivalence relation by z1 ~ zg if f(z1) = f™(22)
for integers n,m > 0. Then the quotient space Z; = @f / ~ has only finitely many components.
Each of them is either a punctured torus with at least one punctures (but only finitely many punctures)
corresponding to an attracting basin, or a punctured sphere with at least three punctures (but only finitely
many punctures) corresponding to a parabolic basin (refer to [29]). We will call Z; the (punctured)
quotient space of f and denote by 7 : @f — %y the natural projection.

Let /3 be an open arc in the attracting or parabolic domains of f with NPy = (). We call § a periodic
arc if 8 coincides with a component of f~P(8) for some integer p > 1, or an eventually periodic arc if
f¥(B) is a periodic arc for some integer k > 0. In that case the projection 7¢(f3) is a simple closed curve
in %f.

Conversely, let v C #Zy be a Jordan curve. Then either each component of W;l(’y) is a Jordan curve
or each component of 71';1(7) is an eventually periodic arc.

Lemma 2.16. A periodic arc lands at both ends.

Proof.  Let 8 be a periodic arc of a rational map f with period p > 1. Then g := f? |g is a homeomor-
phism on 3. Pick a point y € 3 and denote by «,, the closed arcs in 3 with endpoints g™ (y) and g"2(y),
for each integer n. Then g(a,) = ay41 and U a, = 6.

Since [ is contained in an attracting or parabolic periodic domain, «, converges to the attracting or
parabolic point zg in the basin as n — co. Thus § lands on xy from one direction.

Denote by 7(/3) the limit set of the other end of 8. It is connected and f?(r(8)) = r(8). For any
point x € r(8), let {z,} (n = 1) be a sequence of points in 8 converging to z. Then for each point x,,
there exists an integer k, such that both z, and g(z,) are contained in «y,. Moreover k, — —oo as
n — oo since {x,} converges to the point 2 € (). By Lemma 2.9, diam(ay) — 0 as k — —oo. Thus
dist(xy, g(zn)) = 0 as n — oo. So fP(x) = . Therefore r(3) can only be a single point. O

Let S be a periodic arc with period p > 1. Denote by a(3) and r(8) the limit points of the forward and
backward orbits on 8 under fP, respectively. We call a(8) the attracting end and r(3) the repelling
end of 8. They may coincide if both of them are parabolic.

If 3, is a pre-periodic arc, let & > 0 be an integer such that f*(3;) is periodic. We will denote by a(3;)

and r(531) the two endpoints of 31 so that f*(a(B1)) = a(f*(B1)) and f*(r(B1)) = r(f*(B1)). Both a(51)
and r(f3) are pre-periodic.
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3 Unicity

We will prove Theorem 1.1 in this section. It is known that a parabolic fixed point has infinitely many
analytic invariants, e.g., the power series representations of the horn maps. This fact makes our attempt
to analytically conjugate two parabolic points a delicate issue. Our approach is to modify c-equivalency
to be a local quasiconformal conjugacy with a small distortion.

3.1 A lemma about quasiconformal maps

Let ¢ : R — R’ be a quasiconformal homeomorphism between Riemann surfaces. We denote by

& _ 0:0 _ L+ gl _

the Beltrami differential, the dilatation and the maximal dilatation of ¢, respectively.
A quasiconformal map ¢ is extremal if K(¢) < K(¢) for all the quasiconformal maps 1 isotopic

w(p) = pg(2)

o ¢ rel the boundary. There always exists an extremal quasiconformal map in the isotopy class of a
quasiconformal map.

A quasiconformal map ¢ is called a Teichmiiller map associated with an integrable holomorphic
quadratic differential w(2)dz?

_ o, w(z)
pe(2) =k ()

for some constant 0 < k < 1. It is known that a Teichmiiller map is the unique extremal quasiconformal
map in its isotopy class. Refer to [35] or [33] for the following theorems.

Theorem 3.1. Let ¢g : R — R’ be an extremal quasiconformal map between open Riemann surfaces
with K(¢o) > 1. If there exists a quasiconformal map ¢ isotopic to ¢g rel the boundary such that
Ky(z) < K(¢o) in some neighborhood of OR, then ¢g is a Teichmiiller map associated with an integrable
holomorphic quadratic differential and hence is the unique extremal quasiconformal map in its isotopy
class.

Theorem 3.2 (Main inequality). Let ¢,% : R — R’ be quasiconformal maps between open Riemann
surfaces which are isotopic rel the boundary. Let w(z)dz? be an integrable holomorphic quadratic differ-
ential on R. Then

‘ 2

M¢ w(z
[lw]l 7/ |w(2)|dzdy < /|w 1_‘L(|2| K -1 0 ¢(z)dxdy.

From these known results we obtain the following lemma.

Lemma 3.3. Let ¢ be a homeomorphism of C*. Assume that ¢ is quasiconformal in C*~\A(ry) for
some constant rg > 1. Then for any ¢ > 0 and any r1 > 710, there exist a constant r > r1 and a
quasiconformal map v of C* such that

(1) ¥ = ¢ on E(r) .= C*\A(r),

(2) 1/)|A(T) is isotopic to ¢ ‘A(r) rel the boundary, and

(3) K(¥) < K(¢|p(r)) + e
Proof.  For any r > r1 , let ¢, : A(r) — ¢(A(r)) be an extremal quasiconformal map isotopic to ¢ |A(r)
rel the boundary. If

K(y) < K(o|pp)) +e
for some r > rq, set ¥ = 1), on A(r) and ) = ¢ on E(r); then ¢ satisfies the conditions.
Now we assume

K(d)r) > K(¢ |E(7"1)) + €

for r > r1. By Theorem 3.1, 1, is a Teichmiiller map associated with an integrable holomorphic quadratic
differential w,(2)dz%. We may assume ||w,|| = 1. Then w, converges to zero uniformly on any compact
subset of C* as r — oo since there is no non-zero integrable holomorphic quadratic differential on C*.
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Let U, = ¢, 0 ¢(A(r1)). Then there exists a compact subset V C C* such that U, C V for all r > rq,
since K (1) < K(¢). Since w, converges uniformly to zero on V as r — oo, we obtain

| dzd €
/UT'“'”<K<¢>)

when 7 is large enough. Applying Theorem 3.2 for ¢ | Adry? ¥, and w,, we get

1 = ] = / oy |ddy
Ar)

11— py, \i” 2
h /A(r) |wr|wK¢fl  Yrddy

N

|wr|
Ky O'(/)le‘dy.
Ay K(¥r) ¢
Thus
KW < [ forlfys o vrdudy
A(r)
</ |ewr | K g1 owrdxdy—&—/ lwr| K g-1 0 ¢pdady.
U, AU,
Note that

Ve (A(r)N\U,) C ¢(E(r1)).
Therefore when r is large enough,

K(r) < e+ K(¢|g(ry))-

This leads to a contradiction. O
3.2 Local conjugacy between parabolic points

Lemma 3.4 (From petal conjugacy to local conjugacy).  Let (f,z) and (g,y) be parabolic fized points.
Let ¢ : V(f) = V(g) be a K-quasiconformal conjugacy between reqular attracting flowers of (f,x) and
(9,y). Then for any € > 0, there exist a neighborhood N of the point x with V(f) C N and a (K + ¢€)-
quasiconformal map ¢o on N U f(N) such that ¢g = ¢ on V(f) and ¢pgo f =go ¢y on N.

Proof.  Let W(f) be a calyx at the parabolic fixed point (f,z) such that each arc of OW(f)~{z}
intersects OV(f) at exactly one point. Once the calyx W(f) is small enough, ¢(W(f)NV(f)) is contained
in a calyx Wi (g) of (g,y). Thus the union of the backward orbit of ¢(W(f) N V(f)) under g |y, ) forms
a calyx W(g) of (g,y). The map ¢ can be extended to a quasiconformal map from W(f) to W(g) by the
equation ¢ o f = g o ¢ (see Figure 2).

By Proposition 2.15(2), there exists a regular repelling flower V'(f) of (f, x), disjoint from V(f), such
that each arc of OV'(f)~{x} intersects OW(f) at exactly two points and there exists an integer k& > 1
such that

FROV' () nW(f)) = aV(f) nW(F).

Similarly, there exists a regular repelling flower V'(g) of (g,y), disjoint from V(g), such that each arc of
V' (g)~{y} intersects OW(g) at exactly two points and there exists an integer k; > 1 such that

g* (V' (9) N W(g)) = V(g) N W(9g).

We may assume that k; = k. Otherwise, if k1 > k, we may use f*=%1(V'(f)) to replace V'(f).
Denote by (4, ¢, 7y, ¢) and (7,4, 7y g) the projections to attracting and repelling cylinders (€5 (f), €-(f))
of (f,z) and attracting and repelling cylinders (¢,(g), €-(g9)) of (g,y), respectively. Denote by

Ty W) = ma s OV(f) and Ty :mpg(V(9)) = Tag(W(9))
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Figure 2 From petal to local conjugacy

the horn maps. Let ® : €,(f) — %.(g) be the projection of ¢ to the attracting cylinders. It is well-defined
since ¢ is a conjugacy. Composing with the horn maps T, and T4, we get a K-quasiconformal map

U= T;l o®o Yy :m s W(S)) = mrg(W(g)).
By the choices of V'(f) and V'(g), we have
o, (OV'(f) WW(f)) = mrg(0V'(9) N W(g))-

Note that the boundaries of m, (W(f)) and 7, ,(W(g)) are disjoint unions of simple closed curves. Thus
the map ¥ can be extended continuously to a homeomorphism ¥ : €,.(f) — %, (g) such that

Vo f(OV'(f){x}) = 700 (OV'(9)N{y})-

By Lemma 3.3, for any € > 0, there exist a smaller calyx Wy(f) C W(f) and a (K + €)-quasiconformal
map ¥y : 6.(f) — %-(g9) such that ¥y = ¥ on m s(Wo(f)), and restricted to the complement of
e, fWo(f)), ¥ is isotopic to ¥ modulo the boundary. Let 1)y be the lift of ¥ through the isotopy from
Ty to W. It is well-defined on

V() =f"0V())
for some integer n > 0, and (V. (f)) € V'(g).
Because ¥y = ¥ on 7, ;(Wy(f)), and restricted to the complement of 7, ;(Wy(f)), ¥y is isotopic to ¥
rel the boundary, we have 1o = ¢ on V,,(f) N Wo(f). Set ¢o = ¢ on V(f) UWy(f) and ¢o =2 on V,,(f).
Then ¢y is a (K + €)-quasiconformal map and g o ¢g = ¢g o f on V(f) UW(f) UV, 1 (f). O

The following result, which was first proved by McMullen in the case of one petal [28, Theorem 7.1],
is a corollary of the previous lemma.

Corollary 3.5. Two parabolic fixed points with same rotation number and multiplicity are locally
(1 + €)-quasiconformal conjugate for any € > 0.

3.3 Proof of Theorem 1.1

Let F' and G be semi-rational maps and let (¢,%) be a c-equivalence between them on a fundamental
set U of F, i.e., (¢,7)) is a pair of orientation-preserving homeomorphisms of C such that

(a) o F = Go,

(b) ¢ is holomorphic in U, and

(¢) ¥ = ¢ in U U Pp and 9 is isotopic to ¢ rel U U Pp.

The relation c-equivalence is an equivalence relation by the following lemma.
Lemma 3.6. ¢(U) is a fundamental set of G.

Proof.  Obviously, ¢p(U) C G~ (¢(U)) and ¢(U) contains all the attracting or super-attracting points
in P/,. We only need to prove that if z € P} is a parabolic periodic point of F' with period p > 1 and
V C U is an attracting flower of FP at the point z, then ¢(x) is a parabolic periodic point of G and ¢(V)
is an attracting flower of G? at the point ¢(z).
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By Theorem 2.11, the quotient space V/(FP) is a disjoint union of cylinders. If ¢(z) is attracting,
then ¢ induces a holomorphic injection from the cylinders into a torus. This is impossible. So ¢(z) is
parabolic. Since each attracting petal of GP at the point ¢(z) contains points of Pg, the multiplicities
of the parabolic fixed points (GP,¢(z)) and (FP?,z) are equal. The quotient space ¢(V)/(GP) is also a
disjoint union of cylinders. By Corollary 2.12, ¢(V) is an attracting flower of GP at the point ¢(x). O

The following totally topological lemma will be used when we deal with c-equivalence. It implies that
c-equivalence may be defined with a weaker condition; the condition (c) can be replaced by: 1 = ¢ in
U U Pr and v is isotopic to ¢ rel Pp.

Lemma 3.7. Let Ey, Ey be closed subsets of C. Let 6 be an orientation-preserving homeomorphism
of C isotopic to the identity rel By with § =id on Ey. Assume that

(1) (E1NEs) is a finite set,

(2) Es has only finitely many components and each of them contains points of E1, and

(3) each component of Es is a either a closed Jordan domain, or finitely many closed Jordan domains
intersecting at a single point.
Then 0 is isotopic to the identity rel Fy U Fs.

Proof.  Assume Ey # (). Otherwise the lemma is trivial. Let H : I x C — C, where I = [0, 1], be an
isotopy such that H(0,:) =id, H(1,-) = 6 and H(t,z) = z for z € E; and t € I. Pick one point of E;
in each component of Fs, and denote by Ej the set of them together with all points of E; outside of Fjs.
Then Fy C F1 and Eg U Ey = E1 U Es.

Consider the path H(I,z) C C\Ey for each point z € U := C\(Ey U E3). Its two endpoints (z,0(z))
are contained in U. Since each component of Fs contains exactly one point of Ej, there exists a path
B(z) C U connecting (z,6(z)) which is homotopic to H(I,z) in C\ Ey, and such paths are homotopic to
each other in U.

When 6(z) = z, define 6,(2) = z for t € I. Otherwise, let v(z) C U be the unique geodesic under
the Poincaré metric on U connecting (z,6(z)) and homotopic to 8(z) in U. Define 6;(z2) by 6p(2) = z,
01(z) = 0(z) and 6,(z) € (=) with

L(0(0,t)) t
Lot 1) 1-t

where L(-) denotes the length under the Poincaré metric. Then 6; is a homotopy in U connecting the
identity with 6 and 6; = id on the boundary of U for ¢t € I.

By [3, Theorem 1.12], two homotopic homeomorphisms between compact surfaces with finitely many
punctures and holes are isotopic. Thus there exists an isotopy Gt on U connecting the identity with 6
such that 9,5 id on QU for t € I. Define 0,5 id on F71 U Ey. Then Ht is an isotopy of C rel E; U Ey
connecting the identity with 6. O

Lemma 3.8. Let F and G be semi-rational maps. Let ($,1) be a c-equivalence from F to G. Then
for any € > 0, there exist a c-equivalence (¢g, o) between F and G in the isotopy class of ¢ and an open
set U D P} such that 1o = ¢ on U, ¢q is quasiconformal in C and K(¢o|v) < 1 +e.

Proof Let z € P be a parabolic periodic point of F' with period p > 1. Assume p = 1 for snnphmty
Let V, be an attracting flower of (F,z) such that ¢ is holomorphic in V, and 1 is isotopic to ¢ rel V,.
By Lemma 3.4, there exist an attracting flower V, of (F,x) with V, C Vx, a disk D, with V, € D, and

a (1 4 €)-quasiconformal map &, defined on a domain containing the closure of D, U F'(D,) such that
& (/)onV and {, 0 F=Go¢, on D,.

Let U C C be a disk such that V, € U and U \V, is disjoint from Pr. By choosing D, close enough
to V,, one may assume that D, U ¢! o &, (D,) € U$ since ¢~ ' o0&, = id on V,. Thus there exists a
homeomorphism 6, of C isotopic to the identity rel (C~\U,) UV, such that 6, = ¢~ 0 &, on Dy~V;.

Choose 0, as above for all parabolic periodic points x € Pf. Let 6 be the composition of all these
maps and let ¢; = ¢ 0. Then there exists a small fundamental set U; of F' such that ¢; is isotopic to ¢
rel Uy U Ppr. Let ¢ be the lift of ¢1, i.e., ¢1 0o F = G o1)1. Then (¢1,11) is also a c-equivalence from F'
to G and there exists an open set U O P such that ¥ = ¢1 on U and K(¢1]5) <1+e
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Pick a quasi-disk U, € U with z € U, for each point © € P} such that they have disjoint closures. Then
their images under ¢ are also quasi-disks. Thus ¢; can be further modified to be a global quasiconformal
map without changing it on any U, such that the modified map ¢q is isotopic to ¢ rel UU, UPg. Let 1
be the lift of ¢g. Then they satisfy the conditions. O

Let f and g be rational maps. Let (¢,) be a pair of quasiconformal maps of C such that ¥ is isotopic
to ¢ rel Py and po f=goq on C. Let

Kyl¢] = inf{K(<;|U) : ¢ is isotopic to ¢ rel Py and U D Pj is open}.

Theorem 3.9.  With the above assumption, there exists a quasiconformal conjugacy h between f and g
in the isotopy class of ¢ rel Py such that K(h) < K(¢). Moreover, if f has no Thurston obstructions,
then h can be chosen such that K(h) < Ky[g].

The existence of the quasiconformal conjugacy h is proved in [27, Theorem A.1]. The second part of
the theorem comes from Lemma 3.8 and [6, Theorem 2]. Refer to the next section for the definition of
Thurston obstruction.

Proof of Theorem 1.1.  Let f and g be geometrically finite rational maps with infinite post-critical sets.
Suppose that (¢,1) is a c-equivalence between them. One may choose ¢ to be quasiconformal, and hence
K9] = 1 by Lemma 3.8. Thus there exists a holomorphic conjugacy between f and g in the isotopy class
of ¢, by Theorem 3.9, since f has no Thurston obstructions (refer to Theorem 4.2 in the next section). O

4 Thurston obstructions and connecting arcs

4.1 Thurston obstructions

By a marked branched covering (F,P) we mean a branched covering F of C with deg F > 2 and a
closed set P C C such that Pr C P and F(P) C P. A marked branched covering (F,P) will be written
as F if P =Pp.

A simple closed curve on C\P is called essential if it does not bound a disk in C\P, or peripheral
if it encloses a single point of P.

A multicurve I' of (F,P) is a finite nonempty collection of disjoint simple closed curves in C\P,
each essential and non-peripheral, and no two isotopic rel P. It is called stable if for any v € T', every
essential and non-peripheral component of F~1(7) is isotopic rel P to a curve in I

A multicurve determines a transition matrix M (I") = (agy) by the formula

1
aﬁv_z(s:deg(Fzéﬁw)’

where the sum is taken over all components § of F~1(v) which are isotopic to 3 rel P. Let A(I') > 0
denote the spectral radius of M(I'). A stable multicurve I on C~\P is called a Thurston obstruction
of (F,P)if AM(T") > 1.

Two marked semi-rational maps (F,P) and (G, Q) are called c-equivalent if there exist a fundamental
set U of F and a pair of orientation-preserving homeomorphisms (¢, ) of C such that
(a) 6o F = Goy,
(b) ¢ is holomorphic in U, and
(c) ¥ =¢ in UUP and 9 is isotopic to ¢ rel Y U P.

This definition coincides with the definition in [5] of combinatorial equivalence when P is finite. Refer
to [11,26] for the definition of hyperbolic orbifold and [5] for the following theorem.
Theorem 4.1 (Marked Thurston’s theorem).  Let (F,P) be a marked branched covering of C with
hyperbolic orbifold and with #P < oco. Then (F,P) is c-equivalent to a marked rational map (f, Q) if

and only if (F,P) has no Thurston obstructions. Moreover, the marked rational map (f, Q) is unique up
to holomorphic c-equivalence.
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Theorem 4.2 (See [5]).  Let (f,P) be a marked rational map and let T' be a multicurve on C\P. Then
AT) < 1. The equality \(T') = 1 holds only in the following cases:

o f is post-critically finite and the signature of the orbifold of f is (2,2,2,2).

o Ps is an infinite set, and I' includes the essential curves in a finite system of annuli permuted by f.
These annuli lie in Siegel discs or Herman rings for f, and each annulus is a connected component of
E\'Pf,

Refer to [5,26] for the above theorem. If f is a geometrically finite rational map, then f has no rotation
domains. Hence if P} # (), then \(I') < 1 for any multicurve I' on C\P.

Theorem 4.3 (Sub-hyperbolic version).  Let (F,P) be a marked sub-hyperbolic semi-rational map with
Pl # 0 and #(P~Pr) < oo. Then (F,P) is c-equivalent to a marked rational map (f, Q) if and
only if (F,P) has no Thurston obstructions. Moreover, the marked rational map (f, Q) is unique up to
holomorphic c-equivalence.

This theorem was proved for the case P = P in [10,17]. One may easily check that the proof in [10,
Subsection 3.3] still works in this slightly stronger version. The theorem will be used in Sections 7 and 9.
We will prove the following theorem, which is stronger than Theorem 1.2. Refer to Subsection 4.2 for the
definition of connecting arcs for marked semi-rational maps.

Theorem 4.4. Let (G, Q) be a marked semi-rational map with P, # 0 and #(Q~Pg) < co. Then
(G, Q) is c-equivalent to a marked rational map if and only if (G, Q) has neither Thurston obstructions
nor connecting arcs.

The following lemma (refer to [26]) is useful for checking if there is a Thurston obstruction. A multic-
urve I' is called irreducible if for each pair (v,3) € I' x I, there is an integer n > 1 such that F~"(53)
has a component § isotopic to v rel 2 and F¥(4) is isotopic rel Zr to a curve in I for 1 < k < n.

Lemma 4.5.  For any multicurve T' with A(T') > 0, there is an irreducible multicurve Tyg C T such that

A(To) = A(D).

4.2 Connecting arcs

Let (G, Q) be a marked semi-rational map with #(9O\Pg) < oo and with parabolic cycles in Pj. An
open arc 3 C C~Q which joins two points zp, z; € P, is a connecting arc if

e cither zy # 21, or zp = z; and both components of C~\./3 contain points of Q,

e 3 is disjoint from a fundamental set of G, and

e [ is isotopic rel Q to a component of G™P(3) for some integer p > 0.

Example 4.6.  Let G be the formal mating of the quadratic polynomial P(z) = 22+ % with itself (refer
to [36] for a detailed definition of mating). It will be a semi-rational map with two points in Pf, if we
preserve its complex structure near P(;. Consider two external rays, each with angle zero. They form
an invariant arc and hence the arc is a connecting arc of G. It is easy to check that G has no Thurston
obstructions since it is combinatorially equivalent to a Blaschke product.

A connecting arc is invariant under c-equivalence by Lemma 3.6. The following lemma gives a stronger
version of the definition.

Lemma 4.7. Let 3 C C\Q be a connecting arc. Then there exist a connecting arc « isotopic to
rel Q@ and an integer p > 1 such that G7P(«) has a component & isotopic to « rel Q and & coincides with
a in a neighborhood of its endpoints.

Proof.  Denote by 3 : (0,1) — ( a parametrization, which is a homeomorphism. Let zg,2; € P¢; be
the two endpoints of 8, with 5(t) — zo as t — 0. Then there exists an integer p > 1 such that G7?(53)
has a component B isotopic to 8 rel Q@ and GP(z;) = z; for i = 0,1. Denote by B : (0,1) — 5 the
parametrization such that GP o B(t) = B(t).

Since f is disjoint from a fundamental set, both zy and z; are parabolic periodic points of G. By
Proposition 2.15(3), there exist constants 0 < tg < t; < 1 and regular repelling flowers V{, V| C C\Q at



2176 Cui G et al. Sct China Math  December 2018 Vol. 61 No.12

the parabolic fixed points (GP, zp) and (GP, z1), respectively, such that 5(0,ty) C V) and B(t1,1) C V.
Obviously, V| is disjoint from V] if zg # 2z1. If 29 = 21 we may require that V) = V.

By the definition of semi-rational maps, there are critical orbits converging to the point z; between
any two adjacent repelling petals of V. Thus there exist constants 0 < sg < s1 < 1 such that either

(1) both B(0, s¢] and B(0, to] are contained in the same petal of V), and both S[s1,1) and B[t1,1) are
contained in the same petal of Vj, or

(2) 20 = 21, both E(O, so] and B[t1,1) are contained in the same petal of Vj = V], and both 5[51, 1)
and 3(0,t1] are contained in the same petal of V.

If Condition (2) holds, we replace E by the component of G~2P(3) that is isotopic to 3 rel Pg. Then
Condition (1) holds. Thus we may assume that Condition (1) holds. Consequently, the rotation numbers
of GP at zy and z; are both equal to 1.

Denote by g; (i = 0,1) the inverse map of GP restricted to the repelling flower V/. Then there exists

an integer m > 1 such that S(to,t1) is disjoint from ¢*(V/). Thus there exists an arc v; C V/\g"(V})

3
connecting 3(¢;) with a point w; € g™ (V}) such that ~; is disjoint from S(t¢,¢1). Obviously, 7o is disjoint
from ~y; if zg # z1. Otherwise we may assume that they are disjoint by a suitable choice of w;.

Since the rotation number of GP at zp and at z; is equal to 1, there exists an arc a; C ¢/™(V))
connecting z; with w; such that g;(a;) C o and « is disjoint from «;. Set

a = Qg U%UB(tg,tl)UﬂUal.

Since V! is disjoint from Q, « is isotopic to 8 rel Q. Moreover, G P(a) has a component & isotopic
to a rel Q, and both go(ag) and g1(c;) are contained in &. Now the lemma follows from the fact that
gi(e) C q;. O
Theorem 4.8 (No connecting arcs).  Any marked geometrically finite rational map has no connecting
arcs.

Proof.  Let (g, Q) be a marked geometrically finite rational map. Assume that 5y C C\.Q is a connecting
arc, i.e., B joins two parabolic periodic points zg,z1 € 73;, Bo is disjoint from an attracting flower of z
and one of z1, and Sy is isotopic rel Q to a component of g~?(f8,) for some integer p > 1.

There exist repelling flowers Vy, V| at zp and 21, respectively, such that 8y is cut into three arcs Sy g,
Bo,1 and By where By, C Vi for i« = 0,1 and the closure of fyo is disjoint from Q. Let 5, be the
component of g~"?(3) isotopic rel Q to By for n > 1. Then §, is also cut into three arcs B, 0, Sn,1 and
Bn,2 such that ¢g"P (B, ;) = Bo; for j = 0,1,2. Thus B,,; C V, and hence diam,f3,; — 0 as n — oo for
i =0,1. By Lemma 2.9, diam,3,, 2 — 0 as n = oco. So diam;f3,, = 0 as n — oo. This shows that zp = 2;
and one component of C~\.(3U {z}) is disjoint from Q. This leads to a contradiction. O

4.3 Thurston’s algorithm

This part is not needed until Section 9; one may skip it on a first reading. Let (F,P) be a marked
semi-rational map with Pj # 0 and #(P~\Pr) < cc.

Thurston sequences. Let z; (i = 1,2,3) be three distinct points in P. Then there exists a unique
homeomorphism 6; of C normalized by 60;(z;) = x; such that f; := F o 0;1 is a rational map by the
uniformization theorem. There is also a unique normalized homeomorphism #y of C such that fo :=
f10F o6, !is a rational map. Continuing this process inductively, we produce a sequence of normalized
homeomorphisms {f,,} of C and a sequence of rational maps {f, } such that f,, 06, = 6,,_1 o F. We call
that {f,} is a Thurston sequence of (F,P).

Lift of the c-equivalence. Denote by P} the set of super-attracting periodic points of F'. Then
Pi. C Pr and F(P}) = Pi. Assume that F' is holomorphic in a neighborhood of P§. and c-equivalent to
a marked rational map. Then there exists a normalized c-equivalence (¢o, ¢1) from (F,P) to a marked
rational map (f, Q) on a fundamental set U of F' such that Pj, C U. Refer to [34] for the construction of
¢o near PipN\Pp.
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Let ¢ be the lift of ¢;. Then ¢ is isotopic to ¢y rel F~1(P UU). Inductively, we obtain a sequence
of homeomorphisms {¢,} of C such that ¢, is isotopic to ¢, rel F~"(PUU) and f o ¢p11 = ¢y, 0 F.
See the diagram below:

Let (o = qbo_l. Then ( is holomorphic in ¢o(U). Let ¢, = 0,06, forn > 1. Then f,0(, = (u10 f.
Consequently, ¢, is holomorphic in f~" (o (U)).

Theorem 4.9. The sequence {f,} converges uniformly to the rational map f and {(,} converges
uniformly to the identity as n — oo.

To prove this theorem, we need the lemma below, which is more general than needed here but which
will be used in Section 9.

Combinatorial quotient maps. Let (f, Q) be a marked geometrically finite rational map with
P} # 0 and #(Q\Py) < co. Let U be a fundamental set of f with P; C U. Let {h,} (n > 0) be
a sequence of quotient maps of C such that f o hy41 = h, o f and h,, is isotopic to the identity rel
fUuUQ).

Lemma 4.10.  The sequence {h,} converges uniformly to the identity as n — oo.

Proof.  Let hy, t € I =10,1], be an isotopy of quotient maps connecting hg ¢ = id with hy g = hg such
that hy o is a quotient map of C for all ¢ € I and ht__é(w) =w forw € YU Q and t € I. Let hy1 be the
lift of hyo. Then hygo f = fohy, hoa =id, ki1 — hy and ht_ll(w) =wforwe fFYUUQ) and t € I.
Inductively, let h; ,, be the lift of h; ,_;. Then

hO,n = ld, hl,n = hna
hip(w)=w forwe fFUUQ)andte I,

ht,nfl © f = f © ht,n~
Let 5,,(2) = {htn(2) : t € I}. Then f: Bpt1(2) = Bn(f(2)) is injective, and
dists(hn(2), z) < diamgf,(2).

We want to prove that diam,/3,,(z) — 0 as n — oo uniformly for z € C.

For any disk U C C and any integer n > 0, we denote by C,(U) the maximum of the diameters of
the components of f~"(U). Then C,(U) — 0 as n — oo if the closure of U is disjoint from Py, by
Lemma 2.9.

Let w € C\(U U Q) be a point. Then By(w) is disjoint from Q. If it is simple, then there exists a disk
U D Bo(w) such that U N Q = (. Thus there exists an open set D,, > w such that By(z) C U for all
points z € D,,. Therefore diam;3,(z) < C,(U) = 0 as n — oo for z € f~"(Dy).

In general, let d := dists(8p(w), P) > 0. We can cut the path Sy(w) into k sub-paths such that each of
them has diameter less than d. Thus each sub-path is contained in a disk U; (1 < ¢ < k) whose closure
is disjoint from Q. Denote their union by U. Similarly, there exists an open set D,, > w such that
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Bo(z) C U for all points z € D,,. Therefore

diam, B, (2) <> Co(U;) = 0

i=1

as n — oo for z € f"(D,,).

Assume that w € QU is not periodic. Let U > w be a disk whose closure is disjoint from O~ {w}.
Then Cp,(U) — 0 as n — oo. Since fy(w) = w, there exists an open set D,, > w such that Sy(z) C U for
z € Dy,. Thus diamg8,(z) < Cp(U) — 0 as n — oo for z € f7(Dy).

Assume w € O~\U is a repelling periodic point with period p > 1. Let U > w be a disk whose
closure is disjoint from O~ {w} such that the component of f~P(U) containing the point w is compactly
contained in U. Then C,(U) — 0 as n — oco. As above, there exists an open set D,, 3 w such that
diam, 3, (2) < ¢, (U) = 0as n — oo for z € f~"(D,,).

Suppose now w € O~U is a parabolic periodic point with period p > 1. Let V,, be a repelling flower
of (FP,w) such that its closure is disjoint from O~{w} and V,, UU is a neighborhood of w. Then
Crn(Vw) — 0 as n — oo. Since fBy(w) = w, there exists an open set D,, > w such that By(z) C V,, UU for
z € D,,. In particular, fo(z) C Vy, if z € Dy~\U. Therefore diam,5,(z) < C,,(Vw) — 0 as n — oo for
z € fT(Dy\U).

The union of these open sets D, forms an open cover of C~\U{. Hence there is a finite cover. Thus
diamg 3, (z) — 0 as n — oo uniformly for z € C\. f~™(U). On the other hand, 3,,(z) = z for z € f~"(U).
Therefore

diam;f3,(2) =0 as n— o0

uniformly for z € C. This completes the proof. O

Let f be a geometrically finite rational map with 73} # (0. Let U be a fundamental set of f with
Py cU. Assume that jp is a quasiconformal map of C which is holomorphic in & and normalized by
fixing three points in Py. Then there exists a unique normalized quasiconformal map j; of C such that
fi=Joofoj; 1'is a rational map. Inductively, there exists a sequence of normalized quasiconformal
maps {jn} (n > 1) such that

= dnr0 fogyt
is a rational map.

Lemma 4.11.  The sequence {jn} converges uniformly to the identity and {f,} converges uniformly
to f asn — 0.

Proof.  Since f,, = jn_10 foj, ! is a rational map, the sequence {4, } is uniformly quasiconformal. So
it has a subsequence which converges uniformly to a quasiconformal map j... Since j, is holomorphic
in f~™(U), the map joo is holomorphic in F; and hence is holomorphic on the whole sphere since Jr
has zero Lebesgue measure [38]. Thus it is the identity since it fixes three points in Py. It follows that
the whole sequence {j,} uniformly converges to the identity as n — oco. Consequently, {f,} converges
uniformly to f. O
Proof of Theorem 4.9. By Lemma 3.8, there exist a fundamental set U; C U of F' with P C U; and a
quasiconformal map v of C normalized by fixing 2; (i = 1,2, 3), such that 1y is isotopic to ¢g rel U; U P.
Let 1,11 be the lift of v,. Then ¢g oy " is isotopic to the identity rel ¢o(U) U P and

(n o) o f=fo(bnt10wntys)

Thus {¢, 0, '} converges uniformly to the identity as n — oo, by Lemma 4.10.
Set j, = (o ¢y 0ty ! for n > 0. Then jo = ¢y ! is quasiconformal in € and holomorphic in ().
Moreover,
Jn+10Jnt1 =Jno f.
By Lemma 4.11, {j,,} converges uniformly to the identity and {f,} converges uniformly to f as n — occ.
Thus {(,} also converges uniformly to the identity as n — oo. O
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5 Basic properties of pinching
5.1 Definition of pinching
Pinching model. For any » > 1 and ¢ > 0, define a quasiconformal map
wy ., =wy : A(r) — A(r'T)
by argw;(z) = arg z and log |w:(z)| = o(log |z|), where
0:(—logr,logr) = (—(1+t)logr, (1+1t)logr)

is defined by o(—z) = —p(x) and

1
ey, if 0<2< %,
1 2z .. logr 1
o(z) = 2<log10gr+1+2t)logr, if 520 <;1c<§logr7
o1
x +tlogr, if §logr<x<logr.

The family {w:} (¢ > 0) is called a pinching model.
Let v¢ be the Beltrami differential of w;. Let r(t) = P/ 2% and ¢ = r(0) = /r. The following
proposition is easy to check.

Proposition 5.1.  The pinching model w.(z) satisfies the following properties:

(1) we(z) is conformal on A(r)~NA(r').

(2) (2) = v (2) on A(r)NA(r(to)) fort = tg = 0.

(3) For any tg = 0, let E;, be a component of A(r)~A(r(tg)). Then

2t +1
mod wy(E},) = 04+ mod A(r)

fort > to and hence mod wi(Ey,) — 00 as t — 0o.
(4) The map wy(rz)/r*Tt restricted to A(1/r,1) converges uniformly to a homeomorphism w : A(1/r,1)
— D" as t — oo, where w is defined as

w(z) = z, if /1/r <]z <1,

argw(z) = arg z, if 1/r <|z| <+/1/r,
1 logr .

1 =—(1+log—"——=]1 1 1/r.

og |w(z)] 2( + log 210g(r|z|)> ogr, if 1/r<|z| <+/1/r

Remark 5.2. The pinching model w; has usually been defined as w;(z) = |z|'z (refer to [23]). We
choose the above technical definition to ensure the convergence of the quasiconformal conjugacy path
{¢+} defined below.

Multi-annuli.  Let f be a rational map with non-empty quotient space % (refer to Subsection 2.6
for its definition). A multi-annulus &/ C %y is a finite disjoint union of annuli whose boundaries are
pairwise disjoint simple closed curves in &y such that each component of 7'(';1(6(,527 )) is an arc, where
e(«7) denotes the union of the equators of the annuli in 7.

A multi-annulus &/ C Zy is called non-separating if for any choice of finitely many components
of W;l(ﬂ), the union T of their closures does not separate the Julia set Jy, i.e., CA\.T has exactly one
component intersecting Jy (refer to [37, Example 3’| for a non-separating case, and [37, Examples 6
and 8] for two separating cases).

Let o C %y be a multi-annulus. Then each component of 7r]71(e(£/ )) is an eventually periodic arc.
The multi-annulus 7 is called starlike if for each component 3 of 77]71 (e()), () is eventually repelling,
a(B) is eventually attracting, and a(f1) # a(f2) for any two distinct components f31, 82 of w)?l(e(.szf)).
Obviously, a starlike multi-annulus is non-separating.
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Pinching paths. Let f be a rational map with Z; # 0. Let &/ = UA; C %5 be a non-separating
multi-annulus. Let x; be a conformal map from A; onto A(r;) and let ; be the Beltrami differential
of wy r, o x;, where wy ,, is the pinching model on A(r;). Set uy = p;; on each A; C &7. Let fi, be the
pullback of py, i.e.,

, forze ﬂ';l(ﬁf),

F
O
Il
3

~

0, otherwise.

Then there exists a quasiconformal map ¢; : C — C whose Beltrami differential is fi;. Set f; = ¢;0fop; '
Then f; is a rational map. The quasiconformal map ¢; has a natural projection

P, Z%f —>L@ft.

We call the path f; = ¢, 0 fo (;5{1 (t > 0) the pinching path starting from f supported on 7, or a
simple pinching path if o/ is starlike.

Note that the family {f;} is defined only up to holomorphic conjugation and hence represents a family
in My, the complex orbifold of holomorphic conjugate classes of rational maps with degree d = deg f. It
is convenient to consider {f;} as a family in the space of rational maps when we study its convergence
in My. For this purpose, we need to make a normalization for the map ¢;.

One favorite choice of a normalization of ¢, is fixing three points in P;. There always exists a compo-
nent Uy of @\W;l(d) such that both Uy NPy and AUy N Jy are infinite sets. Throughout this paper we
always make a normalization for the map ¢; by fixing three distinct points in Uy N Ps. Then both {¢;}
and {f;} are continuous families.

Such a choice of Uy is necessary. As we will see later, some components of @\W}l(% ) may touch Jy at
only finitely many points, and images of the components under ¢; will shrink to single points as t — oc.

Let A;(t) = x; '(A(ri(t))) for t > 0 and A, = x; "(A(r})) = A;(0). Then A;(t;) C Ai(ta) if t; > to.
Denoted by &’ and &7(t) the union of A} and A;(t) for all components A; of 7, respectively. The
following proposition is a direct consequence of Proposition 5.1.

Proposition 5.3.  Let A; be a component of o/. Then the following conditions hold:
(1) pe(2) =0 on A;NAL.
(2) p(2) = pe, (2) on AiNAi(to) fort >t > 0.

(3) Let tg > 0 and let E be a component of A;~\A;(ty). Then

2t 1
mod &;(F) = 04+ mod A;

fort >ty and hence mod ®,(E) tends to infinity as tog — 0.
5.2 Bands and skeletons

We now need to analyze in more detail the structure of the lifts of a multi-annulus. Let f be a geometrically
finite rational map and let &/ C Z; be a non-separating multi-annulus. A component B of 77171(527 ) is
called a band. It is of level 0 if it is periodic, or level n with n > 1 if f"(B) is periodic but f"~*(B) is
not periodic.

Any band B is bounded by two eventually periodic arcs with a common attracting end and a common
repelling end. We denote them by a(B) and r(B), respectively. A band B is periodic if and only if both
of its endpoints are periodic. Consequently, bands of different levels have disjoint closures.

The core arc of a band B is the lift of the equator of 7(B) to B. Its two endpoints are exactly the
endpoints of B. A skeleton of level n is a component of the union of core arcs of all the level n bands
together with their endpoints.

By the non-separating condition, each skeleton has exactly one complementary component intersect-
ing J¢. The fill-in of a skeleton S, denote by S , is the union of S together with all its complementary
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Figure 3 A band-tree

components disjoint from Jr. Thus S is a full continuum, i.e., C~.S is connected. A filled-in skeleton
is the fill-in of a skeleton. Each component of f *1(§ ) is a full continuum by the non-separating condition
and thus is also a filled-in skeleton.

There is an integer ng > 1 such that for any skeleton S of level n > ny, SN Py = 0. Thus one need only
check finitely many levels of skeletons to see whether 7 is non-separating. The following proposition is
easy to verify.

Proposition 5.4. Let S be a periodic filled-in skeleton and x € S be a periodic point. Let k > 1 be
the number of components of §\{x} Let D, > z be a sufficiently small disk, such that Dm\g has k
components U; whose closures contain the point x. Then U; contains infinitely many points of Py if there
exists a periodic band B such that a(B) = x and U; N B # ().

In general, the map f need not be injective on a filled-in skeleton. However, f is injective on periodic
filled-in skeletons.

Proposition 5.5. Let S be a periodic filled-in skeleton. Then f is injective in a neighborhood of S.

Proof. ~ We need only consider the case that S # S. Let U be a component of S~.S. Then U is a
component of C~.S by the definition of S. We claim that U is bounded by either two periodic arcs
a, C S with a(a) = a(B) and (o) = 7(5), or one periodic arc v C S with a(y) = r(7). Otherwise,
if U is bounded by distinct periodic arcs v1,...,7, with n > 3, let p > 1 be an integer such that f?
fixes all these arcs; then fP(U) = U C F; by the non-separating condition. Thus all the v; have the
same attracting ends. This leads to a contradiction. Therefore f is injective on U. This implies that f
is injective in a neighborhood of S. O

By a band-tree of level n we mean a connected component of the closure of the union of all the level n
bands and filled-in skeletons (see Figure 3).

Pick pairwise disjoint disks N(T') D T for all periodic band-trees T such that N(T)\T is disjoint from
the critical values of f and ON(T)NP¢ = (). Then each component of f~!(N(T)) is also a disk containing
exactly one component of f~1(T).

For each level 1 band-tree Ty with f(Ty) = T, denote by N(7}) the component of f~!(N(T)) that
contains 77. Then N(T7) is disjoint from all periodic band-trees. Since 77 is disjoint from 73}, taking
N(T) small enough, we may assume that N(77)\T; is disjoint from Py.

For each n > 1 and each component T}, of f~""(T}), let N(T},,) be the component of f~"*1(N(T}))
that contains T,. Then N(T,) is a disk disjoint from band-trees of level k& < n except for T, and
N(T,)\T, is disjoint from Py.

Note that there is an integer ng > 1 such that each band-tree of level n > ng is disjoint from Py. By
Lemma 2.9, diam,N(7,,) — 0 as n — oo uniformly for all n-level band-trees T;,. We have proved the
following proposition.

Proposition 5.6.  There exist a constant M > 0 and a disk N(T) D T for each band-tree T satisfying
the following conditions:

(a) ON(T)NPy =0.

(b) f: N(T)\T — N(f(T))~f(T) is a covering if T is not periodic.

(¢) mod (N(T)\T) > M.
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(d) N(T,) is disjoint from all band-trees of level k < n except for T,,.

(e) diamsN(Ty,) — 0 as n — oo uniformly for all n-level band-trees Ty, .

We will call such a choice of the neighborhood N(T') a Koebe space of the band-tree T', and the
collection {N(T)} a Koebe space system. For a band B or a skeleton S, we also use N(B) or N(S)
to denote the Koebe space N(T)if BCT or SCT.

For any point zy € C, its w-limit set w(zg) is defined to be the set of points z € C such that there
exists a sequence of positive integers {ny} — oo as k — oo such that {f™*(z9)} — 2z as k — co.
Proposition 5.7. (1) For any compact set E C C with Eﬂwfl(%) = (), there is a Koebe space system
{N(T)} such that N(T)NE = for every band-tree T

(2) Let z € C be a point such that w(zg) is disjoint from all periodic band-trees. Then there is a Koebe
space system {N(T)} such that zg ¢ N(T) for every band-tree T.

Proof. (1) This is a direct consequence of Proposition 5.6(e).
(2) Choose the Koebe space system {N(T')} such that for every periodic band-tree Ty, N (Tp) is disjoint
from the closure of the orbit of zg. Then zy ¢ N(T') for every band-tree T'. O

5.3 Nested neighborhoods of a skeleton

Denote by B,, the union of all bands of level k¥ < n for n > 0. Let ¢, be the normalized quasiconformal
map of C whose Beltrami differential () is the truncation of y; up to the n-level bands, i.e.,

Bny
i) = {uwt), on

0, elsewhere.

Lemma 5.8.  For any fired t > 0, {¢1n} converges uniformly to ¢, as n — 0.

Proof.  For any fixed t > 0, the sequence {¢; ,,} is uniformly quasiconformal and hence a normal family.
Let v, be one of its limits. Then the Beltrami differential of 1 o ¢; ! vanishes everywhere. So 1, o ¢;
is conformal on C and thus v; = ¢; by the normalization. O

The main objective in this sub-section is to prove the following lemma.

Lemma 5.9. Fizn > 0. Let S be a skeleton of level j < n. Then there exist a constant M > 0, a
sequence of positive numbers {t;} — 0o as k — oo, and a sequence of nested disks {Uy} in C such that

(a) m C Uk, N

(b) ﬂk>0 U, =S, and

(¢) mod ¢y (U ~\Ugs1) > M fort > ty.
Proof.  Let N(T') be a Koebe space system such that N(T') for all the band-trees T of level k < n are
pairwise disjoint. Begin by assuming that j = 0, i.e., S is periodic. Then there is an integer p > 1 such
that each periodic arc on S is fixed under fP. Then each periodic point z € S is fixed under fP. Let
9= f?Incs)-
Nested sub-bands and the choice of {tx}. For each component A; C <7, let

Ai70:A¢@Ai71§’)"'@Ai7k@"'

be a sequence of nested annuli such that the equator e(4; ;) coincides with the equator e(A;) and JA; j
consists of horizontal circles in 4;. By Proposition 5.3, there exists a sequence of constants {¢; > 0} such
that A;(tx) C Ai k. Thus for each component E of A; \m, the modulus of ®;(F) is a constant for
t > tp. Therefore we may further assume that

mod ®,(F) = 3% for t>t.

Denote by 47, the union of A; j for all components A; of &/. Then

() “h = e().

k>0



Cui G et al. Sci China Math  December 2018 Vol. 61 No.12 2183

Let By be the union of all bands intersecting S. Let By = By N 77171(;27;6). Then the {By} (k > 0) are
nested sub-bands with
() Bi=S5.

k>0

Nested calyxes. Let x € S be a parabolic fixed point of g. Pick a calyx Wy(xz) C N(S) of g at
the point z such that Wy(x) N By = {x}. Noticing that 7(Wp(z)) is the disjoint union of finitely many
once-punctured disks, there is a holomorphic map &, : #(Wy(x)) — D* such that &, is a conformal map
on each component.

Pick a constant 7 € (0,1). Set 7o = 1,71 = r and ry = #1338 for k > 2. Let
Wh(z) =7 o &, H(D*(r)) N Wh(z) for k> 0.

Then the {Wy(z)} are nested calyxes at the point z. Let W), = UWj(z), the union over all parabolic
periodic points x € S.

Nested attracting/repelling flowers. Let 2 € S be a parabolic fixed point of g. By Proposition 2.15,
there exist a regular attracting flower Vy (r) and a regular repelling flower V; (z) of g at the point z in
N(S), such that

e for each band B C By, Vi (z) is disjoint from B if z ¢ B, and 7(dVi(z) N B) is a vertical arc in
m(B) if a(B) = z (or r(B) = x),

e for each component § of V5 (z) N Wy(x), &, o w(f) is a straight line in D*, and

e the sets VSE (z) for all parabolic periodic points € S, are pairwise disjoint.

Define V,al(z) = g3 (ViE(x)) for k > 0 inductively. Then {V{(z)} (k > 0) are nested attracting and
repelling flowers at the point z. Let Vi = UV,E.t (z), the union over all parabolic fixed points x € S.

Nested disks at hyperbolic points. Let z € S be an attracting or repelling fixed point of g. Pick
a disk D, C N(S) with € D, satisfying the following conditions:

e g(D,) C D, (or g~ (D) C D, if x is repelling).

e D, N Vai = 0.

e The sets D, for all periodic attracting and repelling points x € .S, are pairwise disjoint.

Note that the quotient space T, = D,./{g) is a torus. Denote by 7, the natural projection from D,
to T,. Then 7, (D, N By) are mutually isotopic annuli. Pick a Jordan curve v C T, such that its lift are
Jordan curves and the intersection of 7 with each annulus is a vertical line. Then v has a lift in D, that
bounds a disk V{(z) C D,.

Define V', (z) = g% (Vi (x)) (or g% (VI(z)) if = is repelling) for k > 0 inductively. Then {V}'(x)}
(k > 0) forms nested disks with

(| Vi(2) = {«}.

k>0

Let V' = JV}(z), the union over all attracting and repelling points = € S.
Nested disk neighborhoods of S. Let Vi =V N V,;F UV, and let

UkZBkUVkUW}CUS'\.

Then {Ux} (k > 0) are nested disks with Uy41 C Uy, and (5 Uk = S (see Figure 4).

Proposition 5.10. Let Q be a component of (Br—i~Bxs1) N (Ve~Vii1) where k > 0 and i = 0, 1.
We obtain a topological quadrilateral by setting the horizontal sides to be

] = (Bk,i\BkJrl) NOV. and «ag = (Bk—i\Bk:+1) N 8Vk+1.
Then when t > tg11,

1, if i=0,



2184 Cui G et al. Sct China Math  December 2018 Vol. 61 No.12

Figure 4 Nested disks

Proof. By the choice of Vg, ms(a1) = my(ae) is a vertical line in the annulus m¢(By). By the choice
of By, m(0By) are horizontal circles in 7¢(Bpy). Thus Q N ¢°(0Vy) is a horizontal line in @ for s € Z
whenever it is not empty, and 0Bs N (Q is a vertical line in @ for k < s < [ if it exists. Recall that for each
component E of By\Bj 1, mod s, 0¢y(E) = 3 for t > ty41, and V' (z) = g% (VI (z)) (or g3 (Vi (x))
if 2 is repelling) for k > 0. Thus when ¢ > tx41,

3k
mod ¢, (Q) = 3= 1, if i =0,
3k 3 ¢,
m0d¢t7n(Q) = m = 17 I 7 = 1.
This completes the proof. O

Modulus control.  Let N = Up~\Ug41. In the following we always assume ¢ > ¢. Then mod ¢ ,,(Ng)
is independent of . We want to show that there exists a constant M > 0 such that

mod ¢y n(N) = M.

The intersections of Nj with By, with W), and with V; are topological quadrilaterals. Their moduli are
bounded from below by the following discussion:

Case 1.  For each component B of Bo\§ , there is a unique component of By N Nj contained in B
(denote it by Qr(B)) which becomes a quadrilateral by setting its horizontal sides to be 0Qx(B) N IBy
and 0Qk(B) N 0By41. Let My(B) = mod ¢t (Qk(B)).

The set Qx(B) is cut into three sub-quadrilaterals by 9Vj. Denote the left, right and middle pieces
by QL(B), Qi(B) and Q' (B), respectively. Denote by My, ;(B), My, (B) and My, ,,(B) the moduli of
their ¢; ,-images, respectively. Note that ¢; ,(0Vr N Qx(B)) are still vertical arcs in ¢, (Qr(B)). By
the choices of By and V., we have

My m(B) = 3Mp_1(B).

By Proposition 5.10,
Mk’l(B) = Mk,T(B) =1 for k 2 0.

Thus

It follows that
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Case 2. For each component W of W0\§ , there is a unique component of Wy N Ny, contained in W
(denote it by Qx(W)) which becomes a quadrilateral by setting its horizontal sides to be Q. (W) N oW
and 0Qr (W) N OWyy1. Similar to Case 1, we may show that there exists a constant Ms > 0 such that

mod ¢, (Qx(W)) = My for k > 0.

Case 3.  For each component V' of Vg NG , there is a unique component of V), N Nj contained in V
(denote it by Q(V')) which becomes a quadrilateral by setting its horizontal sides to be 9Qx (V) N OV
and 0Qk (V) N OVi11. Let My (V) = mod ¢4 n(Qr(V)).

For k > 1, there are exactly two components of Bj_; intersecting Qx(V). Denote the intersections by
QL (V) and Q% (V) for k > 0. These are quadrilaterals whose vertical sides lie on OBj41 and dBj_1. By
Lemma 5.10, we have

mod ¢, (Q%(V)) = mod ¢4, (QL(V)) =3/4 for k=>1.

Set QT (V) = Qr(V)\By for & > 0. By the choice of Vi, we get three pairwise disjoint sub-
quadrilaterals of Q7*(V) whose moduli equal to that of Qr_1(V'), and whose vertical sides as subsets
of the vertical sides of Q7*(V). Then we can apply the standard Grétzsch inequality to get

mod ¢y, (Q(V)) = 3 mod ¢y (Qr—1(V)) = 3M_1(V) for k=1
Let
(V) =QpNQE(V) and  Q™(V) = QN QiH(V).
Also by Proposition 5.10,
mod ¢, (Q" (V) = mod ¢y, (@}, (V)) = 1.

As above, ¢, ,(QT(V)NQL(V)) is a vertical line in ¢; ., (Q%(V)); and ¢y, (0Q7(V)NQL(V)) is a vertical
line in ¢ ,,(Q%4(V)). By Lemma 2.4, we have

L1 o1 4
Mp(V) ~3M,_1(V) 3 3
1 1 1 1 8 1 1
3161\4()(‘/)+(1+3+.“+3k_1>3<Mo(V)+4:]\43'

The numbers of components of N N By, N N Wy and N NV, are independent of k£ > 0; denote them
by n1,n9 and ng, respectively. Applying Lemma 2.3, we conclude that

1 ny o ns 1

mod N, S My My M M
Now suppose that S is a skeleton of level j with 0 < j < n. Let Uy be the domain chosen as above for
the periodic skeleton f7(S). Let Ui (S) be the component of f=7(U}) containing S. Then

f7 2 Ug(S)NUx(S) — Uo~TUy,

is a covering of degree d > 1. Thus

mod 91, (Up(S)\Tx(8)) = & mod éu.u (UpT).

This completes the proof of Lemma 5.9. O

6 Simple pinching

In this section, we will prove Theorem 1.3. Let f be a geometrically finite rational map and let &/ C Z;
be a starlike multi-annulus. Let f; = ¢, 0 fo ¢, ! (t = 0) be the simple pinching path supported on <.
Recall that the map ¢, is normalized by fixing three distinct points 21, z2 and z3 in Uy NPy, where Uy
is a component of @\7‘(;1(%) such that both Uy NPy and dUy N J; are infinite sets. By making a
holomorphic conjugacy, we may assume that z3 = oo, for the sake of simplicity.
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<

D(B)
Figure 5 The angular space D(B) of B’

6.1 The angular space system

Recall that for each component A of &/, A’ € A is an annulus essentially contained in A whose boundary
consists of horizontal curves in A. Denote by A” the annulus bounded by the equators of the two annular
components of ANA’. Then A’ € A” € A, and JA” consists of smooth curves. Denote by 7" the union
of A” for each component A of «/. For each band B, we denote by B” the component of 7~!(a")
contained in B.

Let {N(T)} be a Koebe space system of the band-trees. For each periodic band B, pick a smooth disk
Up 3 a(B) such that

e U NPy =0,

eUp CN(T)ifBeT,

° f(UB) C Uf(B) and

e OUp NOB" contains exactly two points.

Let D(B) = B” UUp. Then {D(B)} are pairwise disjoint disks, due to the assumption that the
multi-annulus 7 is starlike. For each level n band B, f"(B,,) = B is a periodic band. Let D(B,,) be
the component of f~"(D(B)) containing a(B,). Then D(B) € N(B) and {D(B)} are pairwise disjoint
disks for all bands B.

For each band B, denote by B’ C B the band of &7’. Then B’ € D(B) Ur(B). We call that D(B) is
the angular space of B’ and {D(B)} is an angular space system (see Figure 5).

Lemma 6.1.  There is a constant Ko < 0o such that for any band B, any point z € 0D (B)~r(B) and
any holomorphic injection ¢ from N(B) into C, there exists an arc § C D(B) — B’ which joins z to r(B),
such that

L(¢(9)) < Ko - dist(¢(2), ¢(B")),
where L(-) denotes the Euclidean length and dist(-,-) denotes the Euclidean distance.

Proof.  We only need to prove the lemma for bands B with r(B) € f~!(P) and for the holomorphic
injection ¢ = id, by the Koebe distortion theorem.

Let B be a periodic band with period p > 1. Since r(B) is repelling, there exists a disk V' C N(B)
with 7(B) € V such that 9V intersects OB at exactly two points on dD(B), fP is injective on V and
Ve fP(V).

Let A be the multiplier of fP at the fixed point r(B). Then |A\| > 1. By the Linearization theorem,
there exists a conformal map ¢ : fP(V) — ¢(fP(V)) C C such that ¢(r(B)) = 0 and o fP(z) = X-9(2)
onV.

Let § = 0D(B)~{r(B)}. Denote by 1 and S the two arcs of (0B”~{r(B)})NV. Then fP(5;) D B;.
Let v, = ©¥(B;). Then one endpoint of ~; is the origin and the other endpoint of ~;, denote it by w;, is
on (V).

For any two distinct points w,w’ € 7;, denote by v;(w,w’) the arc on v; with endpoints w and w’.
Since f3; is smooth, the Euclidean length L(v;(w;/\, w;)) is bounded. Moreover,

(e 3) e Gom))
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Thus Lo = L(v;(0,w;)) is bounded and for any point w € ;(0, w;),

L(7:(0,w)) = [Al - L(7:(0, w/X)).

There exists a constant rg > 0 such that D(w,ry) C fP(V~\B’) for all points w € ~;(w;/A, w;). For
each k > 1 and any point w € ~;(w;/ N+ w; /), since X o y(V N B') = ¢(fP(V) N B’), we have
D(w,ro/|A\*) C fP(V~B').

By the Koebe distortion theorem, there exists a constant K; < oo such that for any point z € 3,

L(BZ(T(B), Z)) < K; diSte(Z, B/)

For each point z € SNV, dist(z, B') is bounded from below, while L((r(B), z)) is bounded from above
since ODg(py is smooth. Thus there exists a constant K3 such that

L(B(r(B),z)) < Kadiste(z, B').

Combining the two inequalities above, we prove the lemma for the periodic band B.

Now let By be a band of level k > 1 with 7(By) € f~'(Pf). Let V be the disk defined as above for
the periodic band B = f¥(By) and let p > 1 be the period of B. Let U and W be the components of
f78(V) and f=%(fP(V)) that contain By, respectively. Then there exists a conformal map ¢ : U — W
such that f¥o¢ = f¥o fP on U and &(By NU) = By N W. This shows that r(By) is a repelling fixed
point of £. By the same argument as the above, we may verify the lemma for the band Bj. O

6.2 Modulus control

Applying Lemmas 2.2 and 6.1, we will control the modulus of ¢;(A) for certain annuli A C C in the
following lemmas.
Lemma 6.2. Let A C C be an annulus which contains 7T;1(J27). Then there exists a constant K > 1
such that 1
74 mod A < mod ¢(A) < Kmod A

fort>=0.
Proof.  Since 71?1(,52{) C A, there exists a Koebe space system {N(T)} such that N(T) C A for every
band-tree T', by Proposition 5.7. Let D(B) be an angular space system such that D(B) C N(B).

Let p be an extremal metric on the annulus A. It can be chosen to be p(z) = |(logx)’(%)|, where
X : A — A(r) is a conformal map for some r > 1. For each n > 0, denote by B/, the union of bands of
the multi-annulus &7’ with level £ < n . Define

0, on the closure of B/,
pn(2) =

p(z), otherwise.

Let B be a band of level k < n and let B’ C B be a band of «/’. Let a be an arc in D(B) which joins
two boundary points z1, 20 € D(B). If a N B’ = (), then L(p,,a) = L(p, ).

Now we assume that « intersects B’. Consider the map log x(z); it has a univalent branch ¢(z) on
the disk N(B). By Lemma 6.1, there exist two arcs 61,02 C D(B) — B’ which join 21,29 with 7(B),
respectively, such that

L(¢(8;)) < Ko - dist(¢(2),¢(B")) for i=1,2,

where Ky < oo is the constant from Lemma 6.1. Set § = §; U{r(B)}Uds. Then § C (D(B)~B’)U{r(B)}
and

L(p,6) = L(C(61)) + L(¢(62)) < Ko - L(py, ).
It follows that

Width(p,, A) > KLWidth(p, A) and Height(p,,A) > KLHeight(p,A).
0 0
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Let p; ,, be the pushforward of p,, by ¢, ie.,

0, on the closure of ¢¢ ,,(B),),
ptvn(w) = 1\ -1 .
[(¢1,0) (W) pn (¢ n(w)), otherwise.

Then p;,, is a conformal metric on ¢ ,(A) since ¢y, is holomorphic in C~\B/,. Therefore

Area(pyn, $1,n(A)) = Area(pn, A) < Area(p, A),
1
Width(py, s, 61.0(A)) = Width(p,, 4) > 7—Width(p, 4), and
0

Height(p¢ n, ¢t.n(A)) = Height(p,, A) > KLHeight(p, A).
0

By Lemma 2.2, we have

1
ﬁmodA < mod ¢y ,(A) < Kgmod A.
0

Letting n — oo and applying Lemma 5.8 and Theorem 2.5 completes the proof. O
From Lemma 6.2 and the normalization condition, we have the following corollary.

Corollary 6.3.  For each domain D compactly contained in @\ﬂ‘;l(&{), there exists a constant C' > 0
such that diamggy (D) > C fort = 0.

Lemma 6.4. Let S be a skeleton. Then for any disk U D S and any constant M > 0, there exist a
disk D O S with D € U and a constant tqg > 0, such that

mod ¢¢(UND) > M for t>t.

Proof.  We only need to prove the lemma for periodic skeletons. Let S be a periodic skeleton. Let

{N(T)} be a Koebe space system and let {D(B)} be an angular space system with D(B) C N(B). Since
N(B) is disjoint from periodic bands for each band B with level n > 1, by the Koebe distortion theorem,
there exists a constant M; < oo such that for any band B with level n > 1,

diaméyo(D(B)) < Midist(d1,0(D(B)), 061.0(N(B))).

By Lemma 5.9, for any constant M < oo, there exist a constant ¢ty > 0 and disks V; and V5 with
S CcVy@Vy CcUNN(S), such that

mod ¢y 0(ViNVz) > My for t > to.

Given any t > tg, by Lemma 2.1, there exists a round annulus A; = A(wq,r1,7r2) with center wy €
¢1.0(S) and with A; contained essentially in ¢; o(V1~\Vz2) such that

log(ra/71) > M, - 510g2.
27 27
Denote by Cy and Cy the outer and the inner boundary components of A;, respectively. Since wq ¢
b10(N(B)), if ¢1.0(D(B1)) N Cqy # O for some band By with level n > 1, then

mod A; =

d.iSt(U}O7 ¢t,O(D(Bl))) 2 Tg/(l + Ml)
Similarly, if ¢ o(D(Bz)) N C1 # 0 for some band By with level n > 1, then
diSt(wo, ¢tQ(D(Bg))) g 7“1(1 + Ml)

Given any n > 1, the map ¢, o ¢y, é is holomorphic except on the closure of the union of all bands of
level 1 < k < n. Define a conformal metric on A; by

0, on the closure of ¢; o(B},),

n(W) = d
pu(1) plw) = A, otherwise.
|w — wo
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Then
Area(p,, As) < Area(p, A;) = 2w log(ry/r1) = 4n% mod A;.

For any arc « in A; joining its two boundary components, as in the proof of Lemma 6.2,

1 T2
L(pp,a) > — | log —= — 2log(1 + M) |,
(pmva) > - (108 2 = 210g(1-4 211 )
where K| is the constant in Lemma 6.1. Thus

Height(p,,, A;)? - mod Ay ( _ log(1 + M1)>2

—1 >
mod (Qf’t,n o ¢t,0)(At) = Area(pm Ayp) - K02

7 mod Ay

Combining these inequalities with the fact that ¢, é(At) is contained in V;\V5 essentially, we get

mod ¢y (ViNV2) >

Ms — (5log 2)/(27) L 2log(1 + My)

K2 2 My — 5log 2
Note that both constants M; and K{ are independent of the choice of n. Let n — co. We get the lemma
by Theorem 2.5 and Lemma 5.8. O

Lemma 6.5. Let zg € C be a point which is not contained in any skeleton. Then for any disk U C C
with zg € U and any constant M > 0, there exist a constant tg > 0 and a disk D € U with zy € D,
such that

2
) for t=>tg.

mod ¢;(U~ND) = M for t > to.
Proof. 1If zp € Fy, then {¢,} is uniformly quasiconformal in a neighborhood of zg for ¢ > 0. The lemma
is trivial in this case. Now we assume that zg € Jf.

Case 1.  Assume that w(zp) is disjoint from the closures of all periodic bands. By Proposition 5.7,
there exists a Koebe space system {N(T')} such that zg ¢ N(T') for every band-tree T. Let {D(B)} be
an angular space system with D(B) C N(B). Then there exists a constant M; < oo such that for each
band B and any holomorphic injection ¢ : N(B) — C,

diam¢(D(B)) < Mydist(C(D(B)), 9C(N (B))).

For any M > 0, let A be a round annulus with modulus mod A = M, and contained essentially in
U~{z0}. Using the argument in the proof of Lemma 6.4, we have a constant K, < oo such that
M, log(1+ M)\ >
mod.u(4) > 2 (1 SREMN o 30
Note that both constants M; and Kj are independent of the choice of n. Let n — co. We get the lemma
by Theorem 2.5 and Lemma 5.8.

Case 2.  Assume that r(S) € w(zp) for some periodic skeleton S. Let {N(T)} be a Koebe space
system. By Lemma 6.4, there exist a constant M > 0, two disks Uy and U; in N(S) with S C U; € Uy
and a constant ty > 0, such that

mod ¢y (Up~Uy) = M for t > t.

Without loss of generality, we may assume that S is fixed, i.e., f(S) = S. Then f~!(U;) has exactly one
component U’ such that S C U’. Since r(S) is repelling, we may assume that (U’ N J¢) C Uy (recall the
construction of U,, in Lemma 5.9).

Now let f™*(z0) € Uy be the first return of the orbit {f™(z0)}. Then f™*~!(zo) ¢ U;. Let Vi and V!
be the components of f~™(Uy) and f~"*(U;) that contain zy along its orbit, respectively. Then V} \7,;
is an annulus around zg, which shrinks to the point zy by Lemma 2.9. Note that

mod ¢4 (V, \71;) for t>to,

M
2 -
K
where K = maxy>1 deg,, f* over all point z, with f*(z;) = r(S) but f*~!(z;) # r(S). Therefore, we
may choose as many of them as possible such that they are pairwise disjoint, which forms the desired
annulus. O
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6.3 Proof of Theorem 1.3

Lemma 6.6. The family {¢:} (t > 0) is equicontinuous. Let ¢ be a limit of the family as t — oo.
Then ¢(S) is a single point for each skeleton S. Conversely, for any point w € C, ¢~ (w) is either a
single point or a skeleton.

Proof.  We begin by proving that {¢;} is equicontinuous. Pick a disk Dy C C such that 77;1(;2% ) C Dy.
From Lemma 2.1 and Corollary 6.3, we only need to prove that for any M > 0 and point 2y € Dy, there
exists a disk D, 3 2o such that mod ¢;(Do~D,,) > M for all t > 0.

Assume that zp is contained in an m-level skeleton S. By Lemma 6.4, there exist a disk D D S with
D C Dy and a constant to > 0, such that

mod ¢;(Do~\D) > M

for t > to. Since {¢s,t < to} is uniformly quasiconformal, there exists a disk D,, 3 z¢ with D,, C D,
such that mod ¢;(Do~D.,) = M for t < tg. Combining these facts we get mod ¢;(Do~D,,) = M for all
t>0.

Now we assume that 2y is not contained in any skeleton. By Lemma 6.5, there exists a disk D,, 3 2o
with D, C Dy such that

mod ¢¢(Do~D,,) > M

for all t > 0.

Now we have proved that {¢;} is equicontinuous in Dy and thus is also equicontinuous in C since ¢;
is holomorphic in C\Dy. Let ¢ be a limit of the family as t — co. From Lemma 2.6, ¢ is a quotient
map of C. By Lemma 6.4, for each skeleton S, ((9) is a single point. Conversely, for each point w € C,
if = (w) contains at least two points, we claim that ¢~!(w) is a skeleton. Otherwise, let z; and 2o be
two distinct points in ¢! (w) which are not contained in one skeleton. By Lemmas 6.4 and 6.5, there
exist constants ¢y > 0 and M > 5log2/(27), and an annulus A C C, such that the two components D
and D, of C~\ A are disks which contain the points z; and z, respectively, and

mod ¢, (A) = M for t>tp.

Note that both Dy and D5 intersect @\71’;1(%). Thus neither (D7) nor ¢(Ds) is a single point. There-
fore, there is a positive distance between them and hence ¢(z1) # ¢(22). This leads to a contradiction. O

Let ¢ be a limit of the family {¢;} as ¢ — oo. Let B be a periodic band with period p > 1 and let E
be a component of B\.S, where S is the periodic skeleton with S C B. Let x : ms(E) — A(1/r,1) be a
conformal map such that |y o 7s(2)] = 1 as z = IB~\.S. Let W = ¢(E). Then

g:(pofpogp_l:W%W

is a well-defined conformal map. From Proposition 5.1, we have the following lemma.
Lemma 6.7. There exists a universal covering w : W — D* with w(w1) = m(ws) if and only if

wy = g¥(ws) for some integer k € 7 such that the following diagram commutes:

E—*% -w

-

A(l/r,1) Z— D¥,

where w is the map defined in Proposition 5.1(4).

Proof of Theorem 1.3.  From Lemmas 6.6, {¢:} (t > 0) is equicontinuous. Let {t,} be a sequence
in [0,00) with {¢,} — 00 as n — oo such that {¢;, } converges uniformly to a quotient map ¢. Let
ft, =¢t, 0fo0 (/);}. By Corollary 6.3, ¢ is injective on

W= @\W?l(e(ﬂ)).
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So {fi,} converges uniformly to a map g on any compact set in W and deg(g|,w)) = degf. By
Lemma 2.8, g is a rational map and {f; } converges uniformly to g on C.

Each skeleton S intersects Jy at exactly one point r(S). So ¢ is injective on J; and hence it is a
homeomorphism from J; to ¢(Jy).

Since ¢(Jy) is a completely invariant perfect set and is contained in the closure of the periodic point
set, we have p(Jy¢) = J,. Since J, NPy = (T NPy) and f is geometrically finite, g is a geometrically
finite rational map.

If there exists another sequence {t;,} in [0,00) with {t;,} — oo as n — oo such that {¢s } converges
uniformly to @, then {¢ o fo (bt_,l} converges uniformly to another rational map g. Set 1 = g o 1.
It is a well-defined homeomorphisr% and 1 o g = g o). Moreover, v is holomorphic on the Fatou set F.
Thus v is a conformal map of C by Theorem 1.1. By the normalization condition, we have ¢ = id and
hence ¢ = ¢. Thus {¢:} converges uniformly to ¢ and {f;} converges uniformly to g as t — co. O

7 Simple plumbing

In this section we will prove the following theorem. Theorem 1.4 and the sufficiency part of Theorem 1.2
are direct consequences of this theorem.

Theorem 7.1. Let (G, Q) be a marked semi-rational map with parabolic cycles in Py and #(Q\Pg)
< 00. Suppose that (G, Q) has neither Thurston obstructions nor connecting arcs. Then there exist a
marked rational map (g, Q1), a sub-hyperbolic rational map f and a simple pinching path {f;} (t = 0)
starting from f such that {f;} converges to g uniformly on C as t — oo and (G, Q) is c-equivalent

to (97 Ql)

7.1 Simple plumbing surgery

Step 1.  The cut-glue surgery. Let (G, Q) be a marked semi-rational map with parabolic cycles in P(,
and #(Q\Pg) < oo. Denote by Y C P/, the set of parabolic cycles. Pick a calyx for each cycle in Y’
such that the closure of their union W is disjoint from O\Y. The quotient space W/(G) is a disjoint
union of once-punctured disks. Thus there is a natural holomorphic projection w : W — D* such that for
each sepal W of W with period p > 1, 7 : W — D" is a universal covering and m(z1) = m(z2) if and only
if 21 = G*P(zy) for some integer k € Z.

Given any 0 < r < 1, let W(r) = 7= (D*(r)) and R(r) = W-IV(r). Then G(R(r)) = R(r). Thus
there is a conformal map 7 : R(r?) — R(r?) such that

(i) 7(#) and z are contained in the same attracting petal but in different sepals.

(ii) 72 =id and GoT =T 0 G.

The map 7 is unique up to composition with some iterates of G.

Define an equivalence relation on C~\V(72) by 21 ~ 2y if 7(21) = 22. The equivalence relation is trivial
in the set C~\W. Then the quotient space is a punctured sphere with finitely many punctures. Thus
there exist a finite set X C C and a holomorphic surjective map

p:C\W(r?) - C~\ X

such that p(z1) = p(z2) if and only if either 2; = 23 or z; € R(r?) and 2z = 7(21) (see Figure 6).
Let S = p(OW(r)\Y)UX. It is a finite disjoint union of trees whose vertex set is X. Let B = p(R(r?)).
It is a finite disjoint union of disks, and SU X C B.

Step 2.  The induced map after surgery. The semi-rational map can be pushed forward to the quotient
space C~W(r2) except on Wy := G~ (W)~ W since GoT = 70G on R(r?), i.e., there is continuous map
Fy : C\p(W1) — C such that

Foop=poG on C~G'W).

Since G is holomorphic in a neighborhood of W, Fy is holomorphic in a neighborhood of B since the
points in the set X are removable singularities of Fy. Obviously, Fy(X) = X, Fy(S) = S and Fo(B) = B.
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plumbing

w(r2) ) -

Figure 6 Simple plumbing

For each component B of B, BN X contains exactly two points. Let p > 1 be the period of B. The
sequence {F(fp(z)} converges to a point in BN X for any point 2 € B. Denote it by a(B). Since each
attracting petal of G at a point in Y contains infinitely many points of Pg, a(B) is an accumulation
point of p(Pa\Y).

Denote by 7(B) the other point in BN X. By Condition (i) in the definition of the map 7, 7(B) is not
an accumulation point of p(Pg\Y). Moreover, the closures of any two distinct components By, B of B,
are either disjoint or touch each other at r(B;) = r(Bz). Consequently the set X can be decomposed
into X = X, U X, such that a(B) € X, and r(B) € X, for each component B of B. Both X, and X,
are fixed by Fj. In the following we want to prove that cycles in X, are attracting and cycles in X,. are
repelling.

Let y € Y be a point with period p > 1. Pick an attracting flower V of G at the point y such that each
component of IR (r?)~{y} intersects 9V at exactly two points and

7(OV N R(r?)) = 0V N R(r?).

Then D = p(V~W(r2)) is a disjoint union of once-punctured disks whose punctures are contained in X,
and F}'(D) C D. This shows that each cycle in X, is attracting. On the other hand, pick a repelling
flower V' at y such that each component of OR(r?)~{y} intersects 9V’ at exactly two points and

(V' NR(1r?)) = OV N R(r?).
Then D’ = p(V'~\W(r?)) is a once-punctured disk with puncture z € X,., and F; ”(D’) C D', where the
inverse branch is taken along F}'(z) = . This shows that each cycle in X, is repelling.

Step 3. Extension of the inverse map of the projection. Note that restricted to C~\JV the holomorphic
projection p is injective and p(C~ V) = C~B. We want to extend its inverse map to be a quotient map
of C (refer to Subsection 2.3 for its definition) as follows.

Note that 7(W) = D* and 7n(R(r)) = A(r,1). Let w: A(r,1) — D" be the homeomorphism defined in
Proposition 5.1(4), i.e.,

w(z) = z, if r <zl <1,
argw(z) = arg z, if r < |z| < /1,
log [1(2)] = £ (1 + 1og 221/ Y4, if r < |2| < V7
Z) = = - T I r z T.

&I 2 & 2log(|z|/7) &7

Then there exists a unique homeomorphism w : R(r) — W such that mow = won and w = id on R(+/r).
It follows that G ow = w o G on R(r). Define

. p*1 :C~B— @\W,
! wop t:iBNS = R(r) > W.
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Then ¢ : C\S — C\Y is a homeomorphism. It is quasiconformal on any compact subset of C\S and
holomorphic in C\B’, where B’ C B is the interior of g~ (W(y/7)). It can be extended to a quotient map
of C by setting ¢(S) = Y. See the following commutative diagram:

BS —L = w

o

A(r,1) 2= D*.
From G ow = w o G on R(r), we obtain that

Gog=gqolFy on @\q_l(Wl).

Step 4. Construction of a marked sub-hyperbolic semi-rational map. Each component E of W is a full
continuum which contains exactly one point of Q. Pick a disk U(E) D E such that U(E)~\E contains no
critical values of G, QU(E) is disjoint from Q and all these domains U(F) have disjoint closures. Denote
by Uy their union. Then U(E) contains at most one critical value of G. Thus each component of G~*(Up)
is a disk containing exactly one component of G~ (W).

Let U; be the union of all components of G~ (Uy) which contain a component of Wi. Since W), is
disjoint from P¢, once Uy is close enough to W, we may assume that Uy WV, is disjoint from Q.

Define a branched covering F of C satisfying the following conditions:

(a) F(2) = Fy(z) on C~g~1(U;) and hence G o q = go F on C~qg }(Uy).

(b) F : ¢ 1(U1) — ¢ '(Up) is a branched covering whose critical points are contained in Y; :=
G~HY)\Y and F(q¢ (V1)) C X,..

Then F is a geometrically finite branched covering of C. Since any attracting petal at a point in Y’
contains points of Pg (refer to the definition of semi-rational maps in Section 1), we have

¢ H(Pe\Y)UX, CPpCq (PeY)UX,
and P = ¢ 1 (P5\Y) U X,. In particular, ¢(Pr) = Pg. Set
P=qg ' (Q\Y)UX.

Then ¢(P) = Q, (PrUF(P)) C P and #(P~\Pr) < .

Note that F is holomorphic in a neighborhood of ¢~*(Pf). Since each cycle in PL\Y is either
attracting or super-attracting for G, each cycle in ¢7'(P5\Y) is either attracting or super-attracting
for F. On the other hand, Fy is holomorphic in a neighborhood of B and each cycle in X, is attracting.
Thus (F,P) is a marked sub-hyperbolic semi-rational map.

Step 5.  Lift of the quotient map. For each component D of Uy, G : D — G(D) is a covering with at
most one critical value. On the other hand, F : ¢~}(D) — F(¢~ (D)) is also a branched covering with
at most one critical value, and they have the same degree. Thus the quotient map

¢: F(g~'(D)) = ¢ (G(D)) = G(D)

can be lifted to a quotient map ¢ : ¢~!(D) — D that coincides with ¢ on the boundary, i.e., Gog = qo F
on ¢~ (D).
Define § = g on C~q~!(U}). Then § is a quotient map of C and

Gog=gqoF.

Since each component of ¢~ 1(U;) is a disk containing at most one point of P, ¢ is isotopic to g rel
(C~qg Y (Uy))uUP.

Lemma 7.2. IfU is a fundamental set of F, q(U) contains a fundamental set of G.
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Proof.  We only need to show that (/) contains an attracting flower at each cycle in Y. Pick a disk

D, around each point # € X, in U~q 1 (U;) such that 9D, NS is a single point, F is univalent and

holomorphic in D, and F(D) C D, where D denotes the union of the D,. Then V = ¢(D)\Y is a disjoint
union of disks, G is holomorphic in ¥V and G(V) C VUY.

Let {G™(w)} (n > 0) be an orbit converging to a cycle in Y but with G"(w) ¢ Y for all n > 0. Let

n = q 1(G™(w)). Then F(2,) = 2,41 once n is large enough and {z,} converges to an attracting cycle

in X, as n — oo. Thus z, € D and hence G™(w) € ¢(D) once n is large enough. Therefore V contains

an attracting flower at each cycle in Y. O

Lemma 7.3.  The marked semi-rational map (F,P) has no Thurston obstructions.

Proof.  Assume by contradiction that I' is an irreducible multicurve of (F,P) with A(T') > 1. Recall
that S = ¢~ 1(Y) is a star. Thus we may further assume that for each v € ', #(y N &) is minimal in its
isotopy class. Since F': § — S is bijective, k := #(yNS) < oo is a constant for v € I'.

If k = 0, then for each v € T, g(7) is essential and non-peripheral in C\.Q since ¢ : P~X — O\Y
is injective and ¢(X) =Y C P,. Thus I't = {q(v) : v € T'} is an invariant multicurve of (G, Q).
Noticing that G o ¢ = g o F' and that q is isotopic to g rel P, we have A(I') = A(I';) < 1. This leads to a
contradiction.

Now we assume that k > 0. Then there exists at most one component of F~!() isotopic to a curve
in I' rel P for each v € I" since F' : S — S is bijective. Thus for each « € T", there is exactly one curve
B € T such that F~1(3) has a component isotopic to y rel P since I is irreducible. Therefore each entry
of the transition matrix M (T") is less than or equal to 1. Because A(I') > 1, there is a curve v € T" such
that ~ is isotopic to a component § of F~P(v) rel P for some integer p > 1 and F? is injective on 4.

Let U be a fundamental set of F' that is disjoint from every curve in I'. Since ¢(U/)\Y contains a
fundamental set of G and ¢ is injective on C\.S, ¢(7) is disjoint from a fundamental set of G.

Suppose v intersects at least two components of S. Let 8 be a component of ¢(v)\Y such that 8 joins
two distinct points of Y. Then § is isotopic to a component of G=7P(3) rel Q for some integer j > 0 since
#(yNS) is minimal in its isotopy class and + is isotopic to a component of F~P(y) rel P. Thus 3 is a
connecting arc of (G, Q). This leads to a contradiction.

Suppose that v intersects exactly one component S of §. Let U; and Us be the two components of
C~~. Since v is non-peripheral, each U; contains at least two points of P. Either one of them is not
contained in S or one of them is contained in Pf since S contains exactly one isolated point of P. In the
latter case, U; contains infinitely many points of P. Consequently, each U; contains at least one point of
P~.S. Thus U;\.S has a component U/ which contains at least one point of P~.S.

Let y = ¢(S). Then there exists a component 5 of ¢(y)~{y} such that S U {y} separates ¢(U;) from
q(U}). In other words, each component of C~.(3U {y}) contains at least one point of Q since ¢(P) = Q.
As above, 3 is isotopic to a component of G=P(f3) rel Q for some integer j > 0. Thus 3 is a connecting
arc of (G, Q). This is a contradiction. Thus (F,P) has no Thurston obstructions. O

7.2 Proof of Theorems 1.2 and 1.4

Proof of Theorem 7.1. Let (G, Q) be a marked semi-rational map with parabolic cycles in P, and
#(O~Pg) < oo. Suppose that (G, Q) has neither Thurston obstructions nor connecting arcs. Let
(F,P) be the marked sub-hyperbolic semi-rational map constructed in Step 4. By Lemma 7.3 and
Theorem 4.3, there exist a marked rational map (f,P1) and a c-equivalence (¢g, ¢1) from (F,P) to (f, P1)
on a fundamental set U of F.

Recall that F(B) = B and F is conformal in a neighborhood of B. Pick a disk D, C U around each
point z € X, such that D, N B is an arc and W C D, where D denotes the union of the D,. Then
of =mpopo(DNB)is a multi-annulus in Zy. From Step 1 and Condition (b) in Step 4, we know that &7/

is starlike.

Proposition 7.4.  For each component B of B, let B be the component of 7;1(.5%) such that a(B') =
¢o(a(B)). Then r(B’) = ¢o(r(B)).
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Proof.  Let p > 1 be the period of B. Let B = ¢o(B). Then B coincides with B’ in a neighborhood
of a(B'). Since deg, (g fP =1, there is a unique component By of f‘k”(g) whose closure contains the
point a(B’) for k > 1. Consequently, By, coincides with B’ in a neighborhood of a(B’).

Note that ¢o(r(B)) € P; is a repelling periodic point of f. Cut B into three disks B =U UV UW
such that U C B’, V N P1 = () and W is contained in a linearizable disk of the repelling periodic point
¢o(r(B)). Then each Bk is also cut into three domains Bk = Uy U Vi, U W, such that f*7(U,) = U,
fF (V) = V and f*?(W}) = W. Since fP(B') = B’, we have U, C B’ for k > 1. On the other hand,
diamgVj; — 0 as k — oo by Lemma 2.9 and diamsWy, — 0 as k — oo since W is contained in a linearizable
disk. Thus r(B’) = ¢o(r(B)). O

By this proposition, we may assume by modification that ¢q is holomorphic in BUU and ¢; is isotopic
to ¢p rel BUU UP. Then ¢(B) is the union of periodic bands of o7, ¢o(S) is the union of periodic
skeletons of &7 and ¢ (F~1(S)) is the union of skeletons of level at most 1 by the equation ¢pgo F' = fod;.

Let fy = ¢y 0 fo¢;* (t = 0) be the simple pinching path of f supported on «/. By Theorem 1.3,
{f+} converges uniformly to a rational map g and {¢;} converges uniformly to a quotient map ¢ of C as
t—o0,and gop =po f. Let Q1 = p(P1). Then (g, Q1) is a marked rational map.

For any point w € C, ¢~ (w) is either a single point or a component of S, and §~!(w) is either a single
point or a component of F~1(S). Let

Go=¢odooq ' and (1 =¢pogoq "
These are well-defined quotient maps of C, and (y 0 G = go (3.

From the definitions of ¢ and ¢, there exists a fundamental set U; C U of F such that gog™" is isotopic
to the identity rel ¢y U BU P). By Lemma 7.2, there exists a fundamental set Ug of G such that
Uc C q(U). Note that ¢~ (Ug U Q) C Uy UBUP. Thus (; is isotopic to

1

Go(@og ') =poprog!
rel Ug U Q. Since ¢, is isotopic to ¢g rel Uy UBU P, ( is isotopic to ¢ o ¢ 0 ¢~ ' rel Ug U Q. Therefore
(i is isotopic to (o rel Ug U Q.

By Lemma 3.6, ¢o(U1) is a fundamental set of f. Recall that ¢o(B) is the union of all periodic bands
of &/. Let B’ C B be the domain defined in Step 3. Then ¢o(B’) is the union of all periodic bands of
o' C of (refer to Proposition 5.3 for the definition of <7’), and ¢(B’) = W(y/r). Once U is small enough,
we may assume that

G0 (U ~\B') C Fy~mp ' ().

Then ¢ is holomorphic in ¢o (U ~B’). Thus (p is holomorphic in Ug~W(/T).

By the definition of ¢ in Step 3, ¢ is quasiconformal on any domain compactly contained in C\.S and
holomorphic in C\B. Moreover, there exist holomorphic universal coverings 71 : BNS — A(r,1) and
ma : W = ¢(B\S) — D* such that

o m1(21) = m1(22) if and only if 2; = F(z2) for some integer i € Z,

o mo(wy) = ma(wy) if and only if w; = G7(ws) for some integer j € Z, and

o |m1(2)] = 1 as z — OB\S and the following diagram commutes:

BS —L =W

|

A(r,1) ~— D*,

where w is the map defined in Proposition 5.1(4). Note that the map w commutes with any rotation of
D*. Since ¢g(B) is the union of all periodic bands of <7, by Lemma 6.7, {; is holomorphic in W and
hence in WU U~ W(/T)) = Ua\Y = Ug. The last equality is because (o(Ug) is a fundamental set
of g and hence is contained in the Fatou set of g.
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Obviously, ¢y : @ — Q; is bijective. Thus there exists a homeomorphism vy of C such that 1y is
isotopic to (p rel Ug U Q. Let 11 be the lift of 1. Then it a homeomorphism of C isotopic to 1y rel
Uc U Q by [3, Theorem 1.12], and

govr=1p0G.
Therefore (G, Q) is c-equivalent to (g, Q1). See the following diagram:

¢1
_m_
C C C C

This completes the proof. O

Proof of Theorems 4.4 and 1.2.  Let (G, Q) be a semi-rational map with P/, # 0 and #(9~\Pg) < oo. If
(G, Q) is c-equivalent to a marked rational map (g, Q1), then (g, Q1) has neither Thurston obstructions
nor connecting arcs, by Theorems 4.2 and 4.8. Neither does (G, Q). Conversely, if (G, Q) has neither
Thurston obstructions nor connecting arcs, then (G, Q) is c-equivalent to a marked rational map, by
Theorems 7.1 and 4.3. O

Proof of Theorem 1.4.  This is a direct consequence of Theorem 7.1. O

8 Distortion of univalent maps

8.1 Modulus difference distortion
Let V C C be an open set and let ¢ : V — C be a univalent map. Define

Do(9,V) = . SI;lpCV | mod A(E1, E2) — mod A(¢(E1), ¢(Es))l,

where E; and F, are disjoint full continua in V and A(E;, Ey) := C~(E; U Ey). Define

¢/ ()¢ (w2 — wl?
6(2) — p(w)|?

P1(9)(z,w) = |log
for (z,w) € V xV, z # w, and define

21(¢,V) = [[21(6)(2, w)]|oo-

Obviously, for ¢ =0, 1,
9i(¢717 ¢(V)) = @z((ﬁ» V)7

and for any Méobius transformations 3 and + of C,

Fi(yodoB,B7H(V)) = Zi(e,V).

Theorem 8.1.  Suppose that Zy(¢, V) =6 < co. Then

(a) Z1(¢,V) < 2m6.

(b) Assume that V' contains 0,00 and D(1,7¢) for some rg > 0. If ¢ fizes 0,1 and oo, then there exists
a constant C(ro) > 0 depending only on ro such that

dists(¢(2), z) < C(ro)d.
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Proof.  (a) We want to prove that Z;(¢)(z,w) < 2m6 for z,w € V and z # w. Since Z1(¢,V) is
invariant under Mobius transformations, we may assume that z = 0,w = 1, ¢(0) = 0 and ¢(1) = 1. Then

Z1(9)(z,w) = [log[¢'(0)¢' (1)]]-
Let My(r) and mo(r) be the supremum and infimum of |¢(z)| on the disk D(r), and let M;(r) and
mq (r) be the supremum and infimum of |¢(z) — 1| on the disk D(1,r). Then

A(D(Mo(r)), D(1, My(r))) € A(G(D(r)), o(D(1,7))) C A(D(mo(r)), D(1,m1(r))).

By a direct computation, we have
1
mod A(D(r1),D(1,73)) = by log(k(ri,72) + /Kk(r1,7m2)% — 1),

where k(ry,m9) = (1 —rf —r2)/(2r172). Since both My(r)/r and mg(r)/r converge to |¢'(0)|, and both
M (r)/r and mq(r)/r converge to |¢'(1)] as r — 0, we get

_ Jlog|¢/(0)¢' (1)

o + O(r).

| mod A(D(r), D(1, 7)) — mod A(¢(D(r)), ¢(D(1,7)))]

Letting » — 0, we deduce that |log|¢’(0)¢'(1)|] < 274.
(b) Set Ao = |¢’(0)], Ay = |¢'(1)| and Ay = lim,_, |2/é(2)|. Then |log \;\;| < 276 for i # j. It follows
that |log A;] < 374 for i =0,1,2.
For any point 2z € V~{oo}, we have 2(¢)(z,w) < 276 for w € V~{z}. Letting w — oo, we get
|log [Aa¢’ (2)]| < 27, Thus
|log|¢'(2)]] < 5md for z € V~{oo}. (8.1)

Therefore
log |¢(21) - ¢(Z2)|2

Tl | S 1076 (8.2)

for any points 21, z2 € V~{oo} with z; # z2. Applying (8.2) for the pairs (z,0) and (z,1) with |z| < 2,
we obtain

l6(2)I? — |2 < 4(e'°™ 1),
ll6(2) = 11 = |z = 12| < 9™ —1).

It follows that

IRe(¢(z) — 2)| < 7(e'™ — 1), (8.3)
Im(¢(2) — 2)| - [Im((2) + 2)| < 18(e*™ —1).

Let s = max{1,7o/7}. Without loss of generality, we assume that %™ — 1 < s/21. Then

|¢'(w)] <™ < \/1+5/21<2 for we V~{oo}.

For each point w € D(1,s), we have D(w,6ry/7) C D(1,79). Applying Cauchy’s integral formula on
OD(w, 619 /7), we get |¢" (w)| < 1/(3s). Thus

[Re(¢(w) — ¢'(1))] < [¢'(w) = ¢'(1)] < ’/1 ¢”(C)dC‘ <1/3. (8.5)
Applying (8.3) for z = 1+ s, we get

1+s
’ /1 Re (¢/(¢) — 1)d<‘ = [Reg(1+s) — (1 + )| < 7(e!°™ —1) <

[SCRRVA

By (8.5), we have

Red/(1) — 1] = 1\ / M Reo(1) - 1)d<‘
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<

[ et - vac + 2 [ rew10) - swac

<

Wi » |~

Thus
[Re’(w) — 1] < [Re¢’(1) — 1] + [Re(¢'(w) — ¢’ (1)) < 1

for w € D(1, s). It follows that Re¢’(w) > 0 for w € D(1,s). Therefore
Tm(1 + is) = /0 Reg/(1+iC)d|C| > 0.
Applying (8.4) for z = 1 + is, we obtain
[Tm(p(1 +is) — s)| < 18(e*°™ —1)/s. (8.6)

For each point z e DNV, let wy = z — (1 +1is) and wy = ¢(z) — ¢(1 +1is). Applying (8.2) and (8.3) for
the points z and 1 + is, we get

[[w| — [wi]] < 9(e!*™ — 1),
IRe(w — ws)] < 14(e'0 —1).

It follows that
[Tm(wy — w1)| - [Im(wy 4+ wy)| < 51(e*°™ —1). (8.7)

Since
Im(¢(z) + z) — Im(wy + we) = Ime(1 +is) + s > s,

we have either [Im(w; + wq)| = s/2 or [Im(é(z) + 2)| = s/2. In the former case,
[Tm (wq — w)| < 102(e*°™ —1)/s
by (8.7). Combining with (8.6), we obtain
T (p(2) — )| < [fm(ws — wy)| + [Tm(é(1 +is) — s)] < 120(e207 — 1)/,
Applying (8.4) in the latter case,
Tm(g(2) — 2)| < 36(2°% — 1)/s.

In summary, we have
[Im(p(z) — 2)| < 120(e2°™0 — 1) /s.

Combining with (8.3), we get
|p(2) — 2| <127(e*°™ —1)/s for zeDNV.

By considering 1/¢(1/z) and comparing spherical distance with Euclidean distance, we can get the
constant C(rg). O

Corollary 8.2. Let V C C be an open set and let a; (i = 0,1,2) be three distinct points in V. Let {¢,}
be a sequence of univalent maps from V into C such that ¢, (a;) = a; fori=0,1,2. If Do(¢n,V) — 0 as
n — oo, then {¢n} converges uniformly to the identity on V as n — oo.

Remark 8.3. Denote by S, the Schwarzian derivative of ¢ and by A(z)|dz| the Poincaré metric on V
if C\V contains at least three points. It is proved in [9] that

155(2)A2(2) 0 < C5(|logd|* +1)

for a universal constant C' > 0, where § = Zy(¢, V).
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In order to estimate Z(¢, V) we need the following quantity.

Lemma 8.4. Let W C C be an open set with #(C~W) > 2. Suppose that E is a measurable set with
E CW. Then
Area,(E, W) := sup Area(ps, h(E)) < o0,
h

where the supremum is taken over all univalent maps h : W — C* and p.(z) = 1/|z| is the density of a
planar metric on C*.

Proof.  We may assume that W C C. Denote by d > 0 the Euclidean distance between FE and 0W, and
by M the Euclidean area of E. Let h: W — C* be a univalent map. Applying Koebe’s 1/4-theorem for
the disk D(z,d) with z € E, we have |h/(z)/h(z)| < 4/d. Thus

Area(p., h(E)) = //E };ll((z))

This completes the proof. O

16M
-

2
dxdy <

8.2 Nested disk systems

Let X C C be a finite set. For each point € X, let D, C C be a disk with z € D,. We will call
{D;}zex anested disk system if D, # D, for distinct points =,y € X, and D, N D, # () for z,y € X
implies that either D, C Dy or D, C D,.

For any r € (0,1), let D,(r) = x *(D(r)), where x is a conformal map from D, to D such that
x(z) = 0. Let s(r) : (0,1] — (0,1] be a (non-strictly) increasing function with s(r) > r and s(r) — 0
as 7 — 0. A nested disk system {D,},cx is called s(r)-nested if for any two disks with D, C D,,
D, N Dy(r) # 0 for some r € (0,1], we have D, C Dy(s(r)).

Let {D,}.ex be a nested disk system. Let W C C be an open set with C\W # () such that
Uzex Do € W. For each point x € X, denote by V, the union of all domains D, with y # 2 and
D, C D,, and by W, the component of W containing the point z. Then V, C D, € W,. Let A € (0,1)
be a constant. We will call that the nested disk system {D,},cx is A-scattered in W if for any point
2z € X and any univalent map h : W, — C*,

Area(p., h(Vy)) < A - Area(p., h(D,)).

Let {D,}.ex be an s(r)-nested disk system A-scattered in W. Obviously, for any subset Xy C X,

{D.}.sex, is also an s(r)-nested disk system A-scattered in W. For any univalent map ¢ : W — C,
{#(Dz)}rex is an s(r)-nested disk system A-scattered in ¢p(W).
Theorem 8.5.  Suppose that {Dy}zex is an s(r)-nested disk system A-scattered in W. Let D =
Uzex Dz and D(r) = U,ex Do(r). Then there exist a constant ro € (0,1) and an increasing function
C(r) on (0,79) with C(r) — 0 as r — 0, which depend only on X and s(r), such that for any r € (0,7¢)
and any univalent map ¢ : C\D(r) — C,

PDo(¢,C~W) < C(r) - Area,(D, W),

and for any annulus A C C with ODANW = () and mod A < oo,

’ mod A’

1l < 5
mod A ‘ cr)

where A" is the annulus bounded by ¢p(0A).

Proof.  For each point x € X, let k(zx) = #{y € X : Dy, D D,}. Then k(z) > 1 and D, is disjoint
from D, if k(xz) = k(y). Denote by I and Iy(r) the union of D, and D,(r), respectively, for all points
x € X with k(z) = k. Let n = max{k(z) : z € X}. Then

D=I>L>---21I,_1D1,.
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Let 71 € (0,1) be a constant with s(r;) < min{(1 — v/A)3,1/64}. Given any r € (0,71), let X| = {z €
X : k(z) = k} and let

X, ={zxeX:k(x)=kand D,NI;(r) =0 for all j <k}
for 2 < k < n. Let I;, and I;(r) be the union of D, and D,(r), respectively, over z € X;. Then I] = I,
and I (r) = I (r).
Let A C C be an annulus with W C A and mod A < co. Let x4 be a conformal map from A to a

round annulus in € whose core curve is the unit circle. Then po(z) = |(log xa)'(2)|/27 is an extremal
metric on A, Width(pg, 4) =1 and

Height(pg, A) = Area(pg, A) = mod A.

Define pi(z) for 1 < k < n inductively by

pr-1(2) on AN,
/00(2) / /
0 on I (s(r)).

Claim 1. We have pi(z) =0 on Ij(s(r)) for k > 1.

Proof.  Claim 1 is true for k = 1 since I{ = I,. For k > 2, we assume by induction that p;(z) = 0 on
I;(s(r)) for j < k. Let x € X be a point with k(z) = k. By definition, px(z) = 0 on D,(s(r)) if z € X;..
Now we assume that = ¢ X}, i.e., there is an integer 1 < j < k such that D, N I;(r) # (. Let

D,CD, ,C--CD

Tj41

be the unique sequence with k(z;) =4 (j < ¢ < k). Then D,, C I; — I/. Thus

pr(2) = pr-1(2) = -+ = p;(2)

on D, by the definition of p;. Since D, N I;(r) # 0, we have D, C I;(s(r)) and hence py(z) = p;(z) =0
on Dy(s(r)) C D,. O
Claim 2. We have pi(z) =0 on Ule Ii(r) for k > 1.

Proof. By definition, p1(z) = 0 on I1(s(r)). Thus p1(z) = 0 on I;(r) since r < s(r). Assume that
pr—1(z) =0 on Uf;ll I;(r) for k > 2. Then pr(z) = pr—1(2) =0 on Uf;ll I;(r) since Ui:ll I;(r) is disjoint
from Ij, by the definition of X}. Now Claim 2 follows from Claim 1. O
Claim 3. It holds that

o)

(1= /s(r)*

<
pr(z) < 14

(=)

—~
N

~—

——————— on I;~NI;1;, 1<j5<Ek,
(1 _ S(’I"))J J Jj+1 J
= po(2) on A~I;.
Proof. By definition, p;1(2) = p;(2) on ANI7,, and
ANIi Ly D ANTjp = (ANT) U (L) U U (L)

Thus pi(2) = po(z) on ANI; and pi(z) = pj(2) on I;NIj41. Now the claim is proved by induction. [
Claim 4. Foreach1l <k <n,

Height(pk, A) > Height(pr—1,4) and Width(pg, A) > Width(pr—1, A4).
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Proof.  For each point x € X}, the map logox 4 has a univalent branch h, on D, and

mod hy(Dy~D,(s(r))) = _1%;(7“).

Since s(r) < s(r1) < 1/64, by Lemma 2.1, there exists an annulus B, C D,~\D,(s(r)) which separates
D, (s(r)) from 0D, such that h,(B;) is bounded by concentric Euclidean circles and

—1
mod hy(By) > M_
47

Denote by C, C D, the disk bounded by the outer boundary of B,,.

Let v C A be a locally rectifiable simple closed curve or arc which separates (joins) the two components
of C\A. Assume that 3 is a component of v N C, such that 3N D,(s(r)) # 0. Then there is an arc 3’
in C, which joins the two endpoints of 5 such that h,(8’) is a straight line segment, since h,(C) is a
Fuclidean disk.

Denote by d; > ds the diameters of the two circles of Oh,(B,). Then ds < d; m By the definition
of pr(z) and Claim 3,

L(pr—1,8") < (1= /s(r) " dy < (1= V/s(r)) " (dr — d2) < L(p, B)-

Modifying every component of v N C, as above and making the modification for each point = € X,
we get a simple closed curve (or an arc) 7/ which separates (joins) the two components of C\A. Since
pi(2) = pr—1(z) on A —I;(s(r)), we have L(px,7v) = L(pr—1,7"). The claim is proved. O

By Claim 4,
Height(p,,, A) > Height(pg, A) and Width(p,, A) > Width(pg, 4) = 1.

Thus Area(pn, A) > Area(pg, A) by Lemma 2.2. We know {D, },cx is A-scattered in W. Since x4 : W C
A — A(R) C C* is univalent and the metric pg is the pullback of the metric p. by x4, we deduce that
for x € X with k(z) = k <n,

Area(po, Ir+1 N Dy) < A - Area(pg, Dy).

It follows that
Area(pg, Ix+1) < A+ Area(pg, Ix)

and
Area(po, Ir) < \i71Area(pg, I1) < \*"!Area, (D, W).

Therefore

0 < Area(p,, A) — Area(pg, A)

< / / (o7, — pp)ddy + / / (p7, — po)dady
Ik\Ik+1 In

1

i
.

E
Il

NE

<

(u—lﬁ» _ 1)Area<p0,fk>

1
( - 1) M= Area(po, I).

(1= /50

Since s(r) is increasing and s(r) — 0 as r — 0, there exists a constant rq € (0,71) such that (1 —

\/8(r0))? > A. Thus

0 < Area(p,, A) — Area(pg, A)

k=1

VA
hE

>
Il

1
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2\/@*5(7") Area, I —- C(r) - Area I,
S TN )z e ) = Ol Avealpo, 1)

Let A’ C C be the annulus bounded by ¢(0A). Let p(w)|dw| be the pullback of the metric p,(z)|dz|

under the map ¢ on AND(r) and zero otherwise, i.e., p(¢(z)) = pn(2)/|¢'(2)| for z € AND(r). Then
Area(p, A’) = Area(p,, A),

Height(p, A’) = Height(p,, A) and Width(p, A") = Width(p,, A).
By Lemma 2.2,
|mod A" — mod A| < |Area(pn, A) — Area(pg, A)| < C(r) - Area(po, I1). (8.8)
Because Area(po, [1) < Area,(D, W), we obtain
Do(¢p, C\W) < CO(r) - Area, (D, W).

Now assume that A C C is an annulus with A N W = (). Then W is split into two disjoint open sets,
W =W'"UW”, such that W C A and W’ N A = (). Consider the nested disk sub-system {D,} where
x € XNA. Tt is s(r)-nested and A-scattered in W’. Thus the inequalities (8.8) still hold with I; replaced
by I N A. Obviously, Area(pg, 11 N A) < Area(pg, A) = mod A. We obtain

‘ mod A’

-1 < .
mod A 1‘ <o)

This completes the proof. O
8.3 Application to rational maps

Let g be a geometrically finite rational map with Fy, # 0. Let X, be a finite set with g(Xo) = Xo.
Let X = U,509 "(Xo). For each point z € X, denote by n(z) > 0 the minimal integer such that
g"®)(z) € Xo.

Pullback system of X. Pick a disk U, > z for each point x € Xj such that U,~{z} contains no
critical values of g and U, NU, =0 if = # y.

For each point z € X with n(z) = 1, let y = g(x) and U, be the component of g~!(U,) that contains
the point #. Then U, is also a disk and U,~{x} is disjoint from g~!(Xj). Since z ¢ P}, we may require
that U,~{z} is disjoint from P, if U, is chosen to be small enough.

For each point # € X with n(z) = n, let y = ¢”(z) and let U, be the component of ¢~"(U,) that
contains the point z. Then U, is also a disk and U,~{y} is disjoint from P,. Obviously, U,~{z} is
disjoint from g7"(Xo). By Lemma 2.9, max,,)—p{diam,U,} — 0 as n — oo. We have proved the
following proposition.

Proposition 8.6.  There exist disks U, > x for all points x € X satisfying the following conditions:

(a) U.~A{z} contains no critical values of g.

b) U,~{x} is disjoint from P, if n(x) > 1.

c) Uy~{z} is disjoint from g~™(Xy) if n(z) =n > 0.

d) U, is a component of g~1(Uy) if g(x) = y and n(z) > 1.
e) max,(z)—p{diam,U,} — 0 as n — oco.

We will call {U,} a pullback system of X.

Let {U,}sex be a pullback system of X. Given any r € (0,1], for each point z € Xy, let U,(r) =
x~H(D(r)), where x : U, — D is a conformal map with x(z) = 0.

For each point z € X with n(z) =1, let y = g(z) and let U,(r) be the component of g=!(U,(r)) that
contains the point . For each point x € X with n(x) = n, let y = ¢"(z) and let U, (r) be the component
of g7 (Uy(r)) that contains the point x. Then {U,(r)} satisfies Conditions (a)—(d) and hence is also a
pullback system of X.

(
(
(
(
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The notation U, (r) may cause misunderstanding. For each point z € X let

i) = deg, g"®), if n(z) > 1,
1, if xe Xy
and
d(X) =sup{d(z):x € X} < c0.
Let # € X with n(z) > 1. Let y = ¢"®(z). Then ¢g"® : U,~{z} — U,~{y} is a covering of
degree d(z). Let x, and x, be conformal maps from U, and Uy, respectively, to the unit disk D, such
that y.(r) = xy(y) = 0. Then y, o g"(® o x;! is a covering of D* of degree d(z). It follows that
Xa (U (r?®)) = D(r).
Nested disk system. Let {U,}.cx be a pullback system of X. Let n > 0 be given.
Set D, = U, if n(x) = n. For each point x € X with n(z) =n —1, let
b(z) ={y € X : n(y) =n and D, NOU, # 0}.

Set D, to be the component of Uy~ U, ey (,) Dy that contains the point z. Then D, is a disk. Inductively,
for each point z € X with 0 < n(z) =k <n—1, let

b(z) ={y € X : k <n(y) <nand D, NOU, # 0}.

Set D, to be the component of U, Uyeb(x
{Dz}n(z)<n is a nested disk system. The following properties are easy to check.

)ﬁy that contains the point z. Then D, is a disk. Obviously,

Properties of the nested disk system. Let x € X be a point.

(1) D, C U,.

(2) If D, C D, and y # x, then n(y) > n(x).

(3) Given ro € (0,1), if any U, with n(y) > n(z) and U, N OU, # 0 is disjoint from U,(ro), then
U,;(ro) c D,.

Recall that for a nested disk system {D,} and for r € (0,1), D,(r) is defined by D,(r) = x~1(D(r))
for a conformal map x : D, — D. Applying the Schwarz lemma, we have

(4) D, (r) C Uy(r*@®) for r € (0, 1).

(5) If Uy (ro) C Dy, then U, (rq - r¥®)) C D, (r) for r € (0, 1).
Proposition 8.7.  Let {U,}.ex be a pullback system of X. There exist constants ro, A € (0,1) and an
increasing function s(r) : (0,1] — (0,1] with s(r) > r and s(r) — 0 as r — 0, such that for any integer
n > 0, the nested disk system {D,} generated from the pullback system {U,(ro)} at step n is s(r)-nested
and A-scattered in \J,, ()<, Uz- Moreover, there exists a constant v € (0,10) such that for x € g7"(Xo)
and r € (0,1],

Uy (rh - @) € D, (r).

Proof.  Denote by p(X) > 1 the maximum of the periods of cycles in Xy. By Proposition 8.6(e), there
exists a constant r € (0,1) such that U, (r1) NUy(r1) = 0 if z # y and n(z),n(y) < p(X).

Let x € Xy be a parabolic or repelling periodic point with period p > 1. Let V be a repelling flower
of (¢gP,x) if x is parabolic, or a linearizable disk at the point x if x is repelling, i.e., gP is injective in V'
and V C gP(V). Since F, # (), there exists a disk Ey C F, NV such that Ey N (X UP,) = 0. Let {Ey}
(k > 1) be the backward orbit of Fy in V under ¢?, i.e., g?(Ex11) = Ey for k > 0. Then FE is also a disk
and {Ej} converges to the point x as k — oco. Thus there exists an integer ko > 0 such that Ej, C U, (r1)
for k > ko. For simplicity, we write E) in place of Eyg,.

Again by Proposition 8.6(e), we have U,(r1) N Ey = 0 if n(y) is large enough, since Ey N X = (.
Therefore there exists a constant r(z) € (0,r1) such that Uy(r(z)) N Ey = 0 for all points y € X~{z}.
It follows that Uy (r(x)) N Ey = 0 if n(y) > p. Hence Uy(r(z)) N Ey = ( for all points y € X~ {z} since
Ey CUg(r1) and Uy(r1) NUL(r1) = 0 if y # x and n(y) < p. Inductively, for each k > 1,

Uy(r(z))NEp =0 for all points y € X~{z}.
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Let ro = min{r(x)}, the minimum over all parabolic and repelling points € Xy. Then for each
parabolic or repelling point € Xo, we have a sequence of disks {E, x} in U, which converge to the
point z such that E, j are disjoint from Uy (rz) for all points y € X~ {x}.

Let no > 2 be an integer such that = & g=*(Py) if n(z) = ng. Then there exists a constant ro € (0,72)
such that the U,(r¢) are pairwise disjoint for all points € ¢~ "°(Xjy). In the sequel we will write
Ul .= U,(ro) for simplicity.

For each point € g~"°(Xp) and each point y € X, if dists(x,U;) — 0 then n(y) — oo and hence
diam,U,;, — 0 uniformly. Thus there exist a constant r3 € (0,70) and an increasing function s; : (0, 73] —
(0,1] with s1(r) > r and s1(r) — 0 as r — 0, such that for each point z € g~"°(X() and each point
y € X, if Uy NU(r) # 0 for some r < 7y, then n(y) > ng and U;, C Uy (s1(r)).

Let € X be a point with n(x) > ng. Set k = n(z) — ng. Then n(g*(x)) = n(x) — k = ny. For any
point y € X with n(y) > n(z), if U, N U,(r) # 0 for some r < 71, then

Ups () N Uy (r) = 6" (U, N U (7)) # 0.

Thus g"(U)) = Ugr e U, (z)(sl( r)) = g*(U,(s1(r))) and hence U, C U} (s1(r)).
For any 1nteger n >0, 1et {D.} be the nested disk system generated from the pullback system {U.}
at step n. From Property (3), we know that U, (r3) C D, if n(z) < n. Set vy, = ro - r3. By Property (5),

U (rh - 7@y = Ul (r5 - +¥®) € D,(r) for re (0,1].

Because s1(r) — 0 as r — 0, there exists a constant r4 € (0,73) such that s;(rs) < rs. For any
two points x,y € X with n(y) > n(z) > n, if D, N D, # 0, then D, C D, by Property (2). Assume
further that Dy, N Dy (r) # () for some r < ry. Then U, NUL(r) # 0 since Dy (r) C UL(r?®) C Uy (r) by

Property (4). Thus
1
d(x)
D, C U, C Ul(s:(r)) C Dz<(5;(r)> )
3

Set s(r) = (sl(r)/rg)ﬁ if0<r<rgand s(r)=1ifry <7 < 1. Then {D,} is an s(r)-nested disk
system.

Now we want to prove that the nested disk system {D,} is A-scattered in (J,(,)<, Us- Let x € X be
a point with n(x) < ng. If it is eventually attracting or super-attracting, then there exists a constant
r(z) € (0,1) such that D,(s(r(z)))~{z} contains no eventually periodic points. Set E, := D,(r(x)).
Then for any disk D, with y # = and D, C D,, E; N D, = (. Otherwise y € D,, C Dy(s(r(x))). This
leads to a contradiction.

Assume that the point = € X with n(z) < ng is eventually parabolic or repelling. Set z = ¢™*)(z).
From the discussion at the beginning of the proof, there exists a sequence of disks {E, } in U, which
converges to the point z such that the disks are disjoint from U, (r¢) for all points y € X~{z}.
particular, there exists an integer £ > 1 such that F, ; C g"(w) (D;). Let E, C D, be a component of
g™ @) (E, ). Then for any disk D, C D, with y # x, D, N E, = (. Otherwise, g"(*)(D,) intersects
g"®)(E,). Tt follows that g™ (U, (ro)) = Ugn(a) (y)(r0) intersects Ey k, since n(y) > n(z). This leads to
a contradiction.

In summary, for each point € X with n(z) < ng, there exists a disk F, C D, such that for any disk
D, C Dy withy # z, DyNE, = 0.

For any univalent map h : U, — C*, applying the Koebe distortion theorem for h, we get a constant
Az € (0,1) such that

Area(ps, h(Ez)) > (1 — Ag)Area(ps, h(Uy,)). (8.9)

It follows that
Area(p., h(Ey)) = (1 — Ag)Area(ps, h(D;)) and  Area(p., h(Dy\Ey)) < Ay - Area(ps, h(D;)). (8.10)

Set A = max{\,}, the maximum over all points z € X with n(z) < no. If n < ng, the lemma is
proved. Otherwise, for each point z € X with ng < n(x) < n, let k = n(x) — ng and 2z = g*(z). Then
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n(z) = n(x) — k = ng. Let E, C D, be a component of g~*(E,), where E, is defined above. Then for
any disk D, C D, with y # z, we have D, N E, = (.

For any univalent map h : U, — C*, applying the Koebe distortion theorem again for hog
get the inequality (8.9), where A, should be replaced by A. The inequality (8.10) follows. This completes
the proof. O

% onU,, we

Combining Proposition 8.7 and Theorem 8.5, we have the following theorem.

Theorem 8.8.  Let {U,}zex be a pullback system of X. Let V be an open set compactly contained in
C~X. Then there exist a constant ro € (0,1) and an increasing function C(r) on (0,70) with C(r) — 0
as r — 0, such that for any constant r € (0,1¢), if

¢:C~ U m%@

n(z)<n

is univalent for some integer n > 0, then Zy(¢, V) < C(r).

Recall that if ¢ is a quotient map of C and A C C is an annulus, then ¢~ (A) is also an annulus. The
following lemma will be used in Section 9.
Lemma 8.9. Let {U,} be a pullback system of X. Then there exists a constant ro € (0,1) such that if

(a) Ay C Ay are annuli in C such that Ay is contained essentially in Ag and for any point v € X,
U, NOAy # 0 implies that U, N A1 =0, and

(b) q is a quotient map of C such that

is univalent for some integer n > 0, then mod ¢~!(Ap) > (mod A1) /2.

Proof. By Proposition 8.7, there exist constants 0 < r; < rj < 1 such that for any integer n > 0, we
have U,(r1) C D, if n(z) < n, where {D.} is the nested disk system generated from the pullback system
{U.(r])} at step n.

Applying Proposition 8.7 for the pullback system {U,(r1)}, there exist constants A € (0,1) and 0 <
ro < rh < 11 and an increasing function s(r) : (0,1] — (0,1] with s(r) > r and s(r) — 0 as r — 0, such
that for any integer n > 0, the nested disk system {D,} generated from the disk system {U,(r})} at
step n is s(r)-nested and A-scattered in W := U, (,)<,, Ux(r1) and Uy (rz -7 A=)y C D,(r) if n(z) < n.

Fix any n > 0. Then U,(r1) C D, C U, if n(z) < n. Since {D.} is a nested disk system, by
assumption, there exists an annulus B,, C Ag such that 9B, N (Un(m)<n ') =0 and A; C B,. In
particular, 8B, N W = () since W C | D..

By Theorem 8.5, there exists a constant r3 € (0, ry), which is independent of the choice of n, such that

U D.(rs)—>C

n(z)<n

n(z)<n

for any univalent map

we have
mod B},

mod B, B

where B!, is the annulus bounded by ¢(9B,,).
Set rg =190 rg(X). Then U,(rg) C Dy(r3) if n(x) < n. Let ¢ be a quotient map of C such that ¢~ ! is
univalent in C~\ Un(z)<n Us(ro). Then g1 is univalent in C~\ Un(z)<n Da(r3). Therefore,

mod ¢~ (Ag) = mod ¢ (B,) = (mod B,,)/2 > (mod A;)/2.

This completes the proof. O
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9 Hyperbolic-parabolic deformation

In this section, we will prove Theorem 1.5. Let f be a geometrically finite rational map and let &/ C %y
be a non-separating multi-annulus. Then there exists an integer ng > 1 such that all the filled-in skeletons
of level ng are disjoint from Py U Q. Thus all the filled-in skeletons of level n are disjoint from f~!(Py)
for n > ng. We will prove the theorem under the assumption nyg = 1 for simplicity. The proof in the case
ng > 1 has no essential difficulty. The following notation will be used in this section: For n > 0,

B, is the union of all bands of level k£ < n,

§n is the union of all filled-in skeletons of level k < n,

T, is the union of all band-trees of level k < n, and

7T, is the interior of 7,,.

9.1 Piecewise pinching

Recall that ¢y, is the normalized quasiconformal map of C with Beltrami differential 1u(¢¢.n) = p(¢r)
on B3, and zero otherwise.

Lemma 9.1. Let n > 0 be fized. Then {¢r.n} converges uniformly to a quotient map ¢, ast — oo.
For each filled-in skeleton S C S,,, vn(S) is a single point. Conversely, for any point w € C, ¢, (w) is
either a single point or a filled-in skeleton in S, .

Proof.  We begin by proving that {¢; ,} is equicontinuous for the given n. For each filled-in skeleton
S; c §m by Lemma 5.9, there exist a constant M > 0, a sequence {t; > 0} (k > 0) with ¢, — oo as
k — oo, and a sequence of nested disks {Uy } such that Uy 1 C Uy, ﬂk>0 U, = §z and mod ¢y, (U ~\Up+1)
> M for t > t;,. Thus

mod ¢, (Ug~Ug41) = kM for t>ty.

For any ¢ > 0, by the normalization condition and the above inequality, there is an integer £ > 0 such
that
diams(bt’n(Uk) <e for t>t. (9.1)

Let D; = Ugy1. Since {¢y,,} is uniformly quasiconformal for ¢ < tj, there exists a constant ¢; > 0 such
that for any two points z; € D; and 2o € C with dist,(z1, 20) < &,

dists(¢r.n(21), Prn(22)) <e for ¢=0. (9.2)

Let D be the union of all the domains D; taken above for all filled-in skeletons :5'\1 - §n Let W = @\«SA'”.
Then W is connected and C~.D C W. Thus there exists a domain V' € W such that D C V. The family
{¢,n} is uniformly quasiconformal on V' and hence is equicontinuous by the normalization condition. Thus
there exists a constant 6y < 0 such that for any points z; € C~D and z, € C with dist,(z1, 29) < dp, the
inequality (9.2) holds.

Set § = min{4;}. Then (9.2) holds for any two points z1, 2o € C with dists(21, z2) < 6. Thus {pen}is
equicontinuous.

Let ¢, be a limit of ¢ ,, as ¢ — co. By (9.1), gpn(:S'\Z) is a single point for each filled-in skeleton §Z C §n
Since ¢, is a quasiconformal map on any domain compactly contained in W, it is injective on W.

If @, is also a limit of {¢¢ .}, then @, 00, ! is a well-defined homeomorphism of C, which is holomorphic
except on a finite set. Thus it is a global conformal map. So @, = ¢, by the normalization. Therefore
{¢t.n} converges uniformly to ¢, as t — oco. O

9.2 The candidate pinching limit and the proof of Theorem 1.5

Let n > 1 be fixed. Then {¢;,—10 fo o ,1L} are rational maps which converge uniformly to a rational
map g, as t — 0o, by Lemmas 9.1 and 2.8. Obviously,

Spnfl Of :gnown
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Pick a Koebe space system {N(T)} for the band-trees. Denote by N,, the union of the Koebe spaces
of the level n band-trees. Then N, is disjoint from Pr Uy by the assumption. Note that ¢ o goo
a well-defined quotient map of C, which is univalent in C~\q(N1). Thus there exists a homeomorphlsm
01 of C such that 6; = ¢ 0 5" on Cxipp(Ny).
Define G = g; 0 ;. Then G is a branched covering of C which is holomorphic in Cx\¢(Ny). Let
Po=0"top;. Then
poof=Gogy on C,
Do = o on C~NV;.

Thus @y is isotopic to g rel C\NN; since N; is a disjoint union of disks whose closures are disjoint
from Pg. Obviously, P = ¢o(Pf) C C\yo(N1). See the commutative diagram:

Tttt T
1ok
T2, T

Recall that P& C Pg is the set of super-attracting periodic points of G.

Lemma 9.2.  The map G is a semi-rational map which is holomorphic in a neighborhood of PS. If U
is a fundamental set of f, then po(U) contains a fundamental set of G.

Proof.  Note that Pg = ¢o(P;) is contained in C\po(N7) and G is holomorphic in Cxo(N7). Thus G
is geometrlcally finite and holomorphic in a nelghborhood of Pg. Let Y = goo(go) Then Y C P¢, and
G(Y) Y. We only need to show that each point y € Yisa parabolic periodic point of G and that there
exists an attracting flower at y in po(U) such that each of its petals contains points of Pg.

Let S = 0y '(y). This is a periodic filled-in skeleton. Denote by X the set of attracting or parabolic
periodic points in S. This is a non-empty finite set. For simplicity, we may assume that each point in X
is a fixed point of f.

Let U € C~N; be a fundamental set of f. For each point z € X, if x is attracting, then x € U. Thus
there exists a disk D, C U with x € D, such that f is injective on D, and f(D,) C D,. Moreover, we
may require that 0D, intersects each component of S ~{z} at a single point or a closed arc. Then for
each component U of D5, we see that V = ¢o(U) is a disk and G(V) € V U {y}. By Proposition 5.4,
the domain U contains infinitely many points of P;. Thus the disk V' contains infinitely many points
of PG.

Now suppose that z € X is parabolic. Then there exists an attracting flower V, of f at x such that
V., C U. We may also require that each component of 9V, ~{x} is either disjoint from S or intersects each
component of §\{x} at a single point or a closed arc. Then for each component U of Vm\g, V =¢o(U)
is a disk and W C VU {y}. By Proposition 5.4, the domain U contains infinitely many points of Py.
Thus the disk V' contains infinitely many points of Pg.

Denote by V, the union of ¢o(U) for all components U of D,~S and V,~.8 for all point x € X. Let
{w, = G™(w)} be an orbit in C\¢o(N;) converging to the point y as n — oo. Then {z, = ¢y (w,)}
converges to a point ¢ € X and f(z,) = z,+1. Thus once n is large enough, z,, is contained in D, if x is
attracting, or V, if x is parabolic. So w,, is contained in V, once n is large enough. Therefore the point y

is a parabolic fixed point of G and V,, C ¢o(U) is an attracting flower of (G,y) by Lemma 2.13. Since
each component of V, contains infinitely many points of Pg, the branched covering G is a semi-rational
map and o (i) contains a fundamental set of G. O

Lemma 9.3.  The semi-rational map G has neither Thurston obstructions nor connecting arcs.

Proof.  Let I' be a multicurve in C\Pg. Since opo(N1) is a disjoint union of disks whose closures are
disjoint from Pg, we may assume that v is disjoint from o (N7) for eachy € T. Let T" = {¢y*(y) : v € T'}.
Then I" is a multicurve of f and A(I') = A\(I) since g o f = G o ¢y on C\N; and Pg = ¢o(Py). Thus
A(T") < 1 since f has no Thurston obstructions. Therefore G has no Thurston obstructions.
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Assume that 3y C C\Pg is a connecting arc which connects two points y* in PL,, i.e., either y~ # y™T
or y~ =y and both components of C~.(8yU{y ™ }) contain points of Pg; By is disjoint from a fundamental
set of G and G7P(f3y) has a component 31 isotopic to By rel Pg for some integer p > 1. We may assume
that both By and ; are disjoint from ¢q(Ny).

By Lemma 4.7, we may further assume that £ coincides with By in a neighborhood of the endpoints
{y*}. Then By can be divided into three arcs: 53’ , By and the middle piece 3§, such that ﬁf =
(G? |5,)" 1 (BF) € B Thus {B,:f = (GP |,) " (BF)} converges to the endpoints {y*} as k — oco.

Set 0 = cpo_l(ﬁff) for all £ > 0. Then 5,;—L+1 C & and fp(dlirl) = 8. Thus &7 lands on a repelling
or parabolic periodic point a* of f by Lemma 2.16 and {5%} converges to a* as k — oco. Note that
y* = po(a™). Thus a*t € P USo.

Let 6o = ¢y ' (Bo). Then f~P(dp) has a unique component d; isotopic to &y rel Py U {a®} since @y is
isotopic to ¢qg rel Py. So (51i C dy. For each k > 2, f~*P(8y) has a unique component &, isotopic to dg rel
Ps U {a*}. Therefore §iF C dx. Set 69 = 6, (5, U4, ). Then its spherical diameter converges to zero as
k — oo by Lemma 2.9. Thus a~ = a™ and §;, converges to the point a™. In particular, the Jordan curve
o U {at} does not separate the points of Py. Thus y~ = y* and one component of Cx\ (8 U {y*}) is
disjoint from Pg. This leads to a contradiction. O

Lemma 9.4.  There exist a rational map g, a sequence of normalized quotient maps {£,} (n = 0) of C,
a fundamental set Uy of f and a fundamental set U, of g such that the following conditions hold:
(a) fo(go) consists of some parabolic cycles of g.
(b) Zo U Py C Uy and EUy) = Uy U Eo(So)-
(C)gOfn+1=§nOf. -
(d) &nsa is isotopic to &, rel f="(Us U Py).
(e) @n o0&t is quasiconformal on C and holomorphic in g~™(U,).
Proof. Let Yg = <p0(§0) and Wg = ¢q (Io\go). Then Yo C Pf and ¢o(Zy) = We U Y. Each cycle
in Yg is parabolic and each component of We is a sepal of G at a point in Y.

Applying Theorem 1.2 and Lemma 9.3 to G, we get a normalized c-equivalence (g, 1) from G to a
rational map g. By Lemma 3.8, we may choose the c-equivalence such that vy is quasiconformal on C
and 1 = 1o in a neighborhood N of P,.

Since W¢g N Pg = Yg, using a similar argument to that in the proof of Lemma 3.8, we may require
further that Wg € N, g is holomorphic in Wg and 17 = 19 on Wg. Thus there exists a fundamental
set Ug of G with Wg C Ug such that 1) is quasiconformal on C and holomorphic in Ug, and v is
isotopic to g rel Ug U Pg by Lemma 3.7. We may also assume that P2 C Ug since G is holomorphic in
a neighborhood of Pg.

Set Uy = <p51(uc) UZy. Then ¢po(Uy) = Ug UYq. Thus Uy is a fundamental set of f. Set o = 1o © ¢
and & = 1 0 @p. Then go & = & o f and & is isotopic to & rel Uy U Py. Set U, = 1o(Uc). This is a
fundamental set of g by Lemma 3.6. We have 50(30) = Yo (Ye) and & (Uy) = Uy Uho(Ye). Obviously,
wo o0&y L= Yo ! is quasiconformal on C and holomorphic in Uy.

Let &,41 be the lift of &, for n > 1. Then go&,+1 = &, 0 f and &,41 is isotopic to &, rel f~"(Us UPy).
Recall that

In+10 (Pns10& 1) = (Pno&rt) og.

Thus ¢, o &, is quasiconformal on C and holomorphic in g ™"(U,). See the following commutative
diagrams:

@ ®o E Y1 @ @ Pn+1 @ Ent1 @
RN
c-2-c-.C T c- T

This completes the proof. O

Set &, =& 0 ¢;* for t,n > 0. For each periodic filled-in skeleton §, 50(5’\) is a parabolic periodic
point in 73;. Let Yy = &(Sp). Then g(Yy) = Yo. Let Y = Un>0 Y,,. We will prove the following lemma
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in Subsections 9.3 and 9.4.

Lemma 9.5. (1) For fitedt > 0, {&.,} converges uniformly to a quotient map q; of C as n — oo, and
qgoft=goq.

(2) For each filled-in skeleton §, q: © ¢t(§) is a single point. Conversely, for each point w € C,
(gt 0 &)~ H(w) is a single point if w & Y, or else is a filled-in skeleton.

(3) The sequence {q;} converges uniformly to the identity as t — co.

Proof of Theorem 1.5. By Lemma 9.5, ¢; o fy = go ¢ and {¢:} converges uniformly to the identity as
t — oo. It follows that {f;} converges uniformly to g as t — occ.

Because &, =& 0 qbt_l and {&.,} converges uniformly to ¢; as n — oo, we get go = ¢ o ¢;. Thus {¢,}
converges uniformly to gg as t — oo since {¢;} converges uniformly to the identity as ¢ — co.

Let Xo = &N Jr and X =50 f"(Xo). Then go(X) =Y by Lemma 9.5(2). Thus qo(Jf) = J,
since X is dense in Jy and Y is dense in J,.

Denote by M(g) the space of g-invariant Beltrami differentials 1z on F; with ||ft]lcc < 1. For each
i€ M(g), let ¢ be a quasiconformal map of C whose Beltrami differential is 1. Then gz := ¢z 0go gi)/;l
is a rational map whose holomorphic conjugate class [g;] is contained in 9M[g]. Conversely, since J, has
zero area [38], each element of M([g] is represented by such a rational map gj.

Define an equivalence relation on M(g) by p1 ~ fg if ¢z, o ¢511 is isotopic to a conformal map of C
rel Py, . Then fi1 ~ fiz if and only if there exists a holomorphic conjugacy between gz, and gz, in the
corresponding isotopy class (refer to Lemma 3.9 or [29]).

Recall that Q?g is the set of wandering points in the attracting and parabolic basins of g whose orbits
contains no points of Py, and 7 : ,@g — 4 is the natural projection. Each 11 € M(g), restricted to Z,,
can be pushed forward to be a Beltrami differential 1 on %, which is exactly the Beltrami differential
of the pushforward ®,, : Z, — %, of the quasiconformal conjugacy ¢z. If fi1 ~ fiz, then @, o <I>;11 is
isotopic to a conformal map. Conversely, if ®,, o <I>;11 is isotopic to a conformal map and gy = iz in
all super-attracting basins of g, then there exists a holomorphic conjugacy between gz, and gz, in the
corresponding isotopy class.

Let W = &(Zo)~\Y,. This is a disjoint union of calyxes of g, and m,(W) C %, is a finite disjoint
union of once-punctured disks whose closures are pairwise disjoint. We claim that for each Beltrami
differential 1 on Z4 with ||p||s < 1, there exists a Beltrami differential v on %2, with |||~ < 1, such
that v = 0 on 7,(W) and ®,, o ;" is isotopic to a conformal map.

Pick a large once-punctured quasi-disk for each component of 7, (W) such that they also have disjoint
closures and m,(W) C 2, where £ is their union. Then there exists a quasiconformal map ¥ : Z, —
(%) such that ¥ = &, on Z,~\£2 and ¥ is holomorphic in m4(W). Thus ¥ is isotopic to ®,. Let v
be the Beltrami differential of . Then v satisfies the conditions in the claim.

For each 11 € M(g), by the claim, there exists a Beltrami differential 7 € M(g) such that 7 = i on
@\@g, v = 0 on the grand orbit of W and gz = gz. Recall that qgl is a univalent map from C~\Ug—"(W)
into C. Let 7* be the pullback of v by go. Then 7* is f-invariant. It is easy to verify that gy is the limit
of the pinching path starting from f5.. Therefore M[g] C IM([f]. O

9.3 Factoring of quotient maps by surgery

We will prove Lemma 9.5 in the following two sub-sections. By Lemma 9.4(c), the sequence {&, } converges
uniformly on any compact subset of F,. However, we have to take a long detour to prove its global
convergence.

The quotient map &, is uniquely determined on band-trees up to step n, which contains all its non-
trivial fibers. In the remaining part, &, is only determined up to isotopy and asymptotic conformal
rigidity near the band-trees. This observation suggests factoring the quotient maps into hard factors
which are uniquely determined quotient maps, and soft factors which are uniformly quasiconformal maps
with a certain sort of asymptotically conformal rigidity. We will achieve this factoring through a surgery.
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Denote by 7, (t) C T, the union of all band-trees of .7 (t) with level k& < n. Let W,, and W, (¢) be the
interiors of &,(7,) and &, (7, (t)), respectively. Then W,, = &,(Z,~\Sn),

Eim t Gt (T NTn(t)) = Wi W, (t)

is a conformal map and &; 41 = &, on ¢(7), by Lemma 9.4.
Given any n > 0, glue ¢4(Z,,) with C~\W,,(t) by & . The space obtained is a punctured sphere. Thus
there exist a unique normalized univalent map

Din C\W,(t) = C

and a univalent map

jt,n : qbt(In)) —

such that jin(21) = pen(22) if and only if 21 € ¢u(Z,~\Tn(t)) and 23 = & ,(21). Thus there exists a
unique rational map f;,, of C such that

ftn410Ptmy1 =penog on C\W,yi(t), and
ft,n+1 © jt,n+1 = jt,n oft on ¢f,(In+1)-

Define j¢ n = ptn 0 & o0 C~¢¢(Z,). Then Jt,n is a normalized homeomorphism of C and

ft,n+1 o jt,n+1 = jt,n o ft~

By Lemma 9.4(e), ¢, 0 &, ! is a quasiconformal map of C and is holomorphic in g~"(,). Recall that
¢n 0 ¢; * is holomorphic in C\¢y(7,,(t)). Thus & ,, is quasiconformal in C\¢(7,,()). So is js.n. By the
definition, j; . is holomorphic in ¢;(Z,). Note that 7, (¢)\Z, consists of finitely many points. Hence j;
is quasiconformal in C. Meanwhile, &, is holomorphic in Uy\T,, since &, (Us) = & (Us) = Uy UYy. Thus
&..n is holomorphic in ¢ (UN\T,(t)) and so is j . Therefore jy ,, is holomorphic in ¢, (UN (T (t)NZ,,)) and
hence in ¢, (Uy).

The map p;_ i can be extended to a quotient map of C by defining

o — Pim on pen(C\Wal(t)),
t,n — - .
€ ©Jim 00 Jrn 0 Gi(Tn)-

By definition, & ,, = g;.n © ji.n on C for t,n > 0. We have proved the following lemma.

Lemma 9.6.  For anyt,n > 0, there exist a fundamental set Uy of f with (77]5c UZy) C Uy, a normalized
quasiconformal map j; n of C and a normalized quotient map qin, of C such that the following conditions
hold:
(1) gt,n =dtn Ojt,n-
(2) jin is holomorphic in ¢ (Us).
(3) g;.n is univalent in C\W,(t).
(4) There exists a rational map fin+1 such that the following diagram commutes:

Jt,n+l —  qt,n+1
—/ C ——

al

g9

-

Jt,n = qt,n —
—_—

C
ftl ft,n+1
C C.

e T

Since jt., is quasiconformal in C and holomorphic in ¢;(Uy), applying Lemmas 4.11 and 9.6(4), we
have the following lemma.

Lemma 9.7.  For a firedt > 0, {fin} converges uniformly to the rational map fi and {ji n} converges
uniformly to the identity as n — oo.
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Recall that Yy = £O(§0) consists of some parabolic cycles of g and Y is the grand orbit of Yy. Thus
Y = J,. Let {U,} be a pullback system of ¥ as defined in Subsection 8.3. Set n(y) = 0 if y € ¥, and
n(y) = n if g"(y) € Yy but g"(y) € Yy. Since Wy(t) converges to Yy as t — oo, for any r € (0, 1),
there exists a constant to > 0 such that Wo(t) C U, ()= Uy(r). It follows that Wy, (t) C U, <n Uy(r)-
Applying Lemma 9.6(3) and Theorem 8.8, we have the following lemma.

Lemma 9.8.  For any non-empty open set V. € F,, there exist a constant to > 0 and a decreasing
function C(t) on (to,00) with C(t) — 0 ast — oo such that VW, (to) =0 forn > 0 and

@O(qgwa) <C(t) for t>ty and n>=0.
9.4 Convergence of the hard factors

We want to start by comparing the maps {q,} if they share same parameter ¢ or same step n. Note
that ¢ n 0 jin 0 ¢r = &, For ti,ta,n > 0, set

. —1 —1
Pty tan = Jti,n © Pty © Ppy” © Jpy -

Then g4, +,:n is a homeomorphism of C and Gt1,n © Pty,tan = Gto,n- NOte that

Pt1,ta;m qt_g,ln(@\wn) - q;,ln (@\Wn)
is holomorphic since ¢, t,.n = qiln 0 Gty n- On the other hand,

ptl,tz;n = jtl,n o (bt] o ¢t_21 o jtg,’n . jtz,n o ¢t2 (7;) _> jtl,n o ¢t1 (771)
is quasiconformal and its maximal dilatation is equal to the maximal dilatation of ¢;, o ¢, ! since both
Jt,,n and jy, ,, are holomorphic.

Proposition 9.9.  For t1,to > 0 and n > 0, there exists a quasiconformal map ©¢, t,:n of C whose
mazimal dilatation is equal to the mazimal dilatation of ¢, o ngt;l, such that qi, m © ©t, tom = Qtan-

By Lemma 9.4(d), there exists a quotient map ¢, of C such that ¢, is isotopic to the identity rel
f (P UUys) and &, = &n—1 0 (. It follows that f o (11 = (o f. By Lemma 4.10, {¢,} converges
uniformly to the identity as n — oco. Set

Nt = (t.n—100t) 0 Cu o (Jen 0 pr) "L

Then for a fixed t > 0, {n:,} also converges uniformly to the identity as n — oo by Lemma 9.7. From
qt,n © jt,n o ¢t = gn and gn = gnfl o Cnv we get

qdt,n © jt,n oy = dt,n—1© jt,n—l o¢o Cn = qt,n—1°"Mt,n © jt,n o ¢y.

Thus gt = Gt,n—1 © Nt.n- We have proved the following proposition.

Proposition 9.10.  For t,n > 0, there exists a quotient map 1 p of C such that Gt;n = Qtn—1° Nen-
For a fized t > 0, {n.n} converges uniformly to the identity as n — oco.

Now we want to control the distortion of {¢; ,} using the results obtained in Section 8.

Proposition 9.11.  Let w € C be a point and let U > w be a disk. Then for any M > 0, there exist a
constant tyg = 0 and a disk V € U with w € V such that

mod ¢, (UNV) > M

forn =0 and t > tg. Moreover, the constant tog can be chosen to betg =0 if w €Y.

Proof.  If w € Fg, then {¢,} is uniformly quasiconformal in a neighborhood of w by Lemmas 9.6
and 9.9. The lemma is trivial in this case. Now we assume w € Jj.

Case 1.  Assume that the w-limit set w(w)NY = (. By Proposition 8.6, there exists a pullback system
{U,} of Y such that w ¢ U, for y € Y. By Lemma 8.9, there exists a constant ry € (0,1) such that if
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(a) Ay C Ag are annuli in C such that A; is contained essentially in Ay and for any point y € Y,
Uy N0Ay # () implies that Uy, N Ay = 0, and
(b) q is a quotient map of C such that

¢ ':C~ U Uy(ro) = C

is univalent for some integer n > 0,
then mod ¢~ 1(Ap) > (mod A7) /2.

Let o > 0 be a constant such that W(to) C U, =9 Uy(ro). By Proposition 9.9, for any 0 < t < to,
there is a quasiconformal map @, +. » such that g, = ©¢,,t;n ©qt,,n, whose maximal dilatation is bounded
by a constant K > 1 depending only on ¢y.

For any constant M > 0, since the diameter of U, tends to zero as n(y) — oo, there exist a disk Ve U
with w € V and an annulus A; contained essentially in A := U~V such that mod A; > 2K M and for
any point y € Y, U, N A # () implies that U, N A; = . Now applying Lemmas 8.9 and 9.6(3), we have

1
mod g; ,(Ag) > gmod Ay > KM for n>0 and t>to.

It follows that
mod gy A(UNV) > M for t,n>0.

Case 2. Assume w = y € Yi. We may assume further that y, = 0 for simplicity. Set r1 = inf{|z] :
z € QU}. For any constant M > 0, let € € (0,71) be a constant such that 2ee*™ < 7| —¢. Let

V={z:]z]<e} and A ={z:2e<|z| <ri —¢€}.

Then A; C UNV and mod 4; > 2M.

Let {U,} be a pullback system of ¥ such that the Euclidean diameter diamU, < e for any y € Y.
Applying Lemma 8.9 for this pullback system, we obtain a constant ¢y, € (0, 1) such that for any quotient
map q of C, if ¢~ : C~\ W, (ty) — C is univalent for some integer n > 0, then

mod ¢~ H(U~V) = (mod A;)/2.

In particular,

— 1
modqt_?é(U\V)>§modA1>M for n>0 and t>tp.

Case 3. Assume w(w)NY # (. Then there exists a point z € Yj such that x € w(w). Without loss of
generality, we may assume that g(x) = z. Since w € Jy\Y, w(w) # {z}. Thus we may choose a pullback
system {U, } of Y such that w(w)\U; # 0.

By Proposition 8.7, there exists a small pullback system {U,} of Y with U, € Ug’J for y € Y such that
for each point y € Y,,, if 0U;, N Uy, # 0 and n(y') > n(y), then U;, N U, = 0.

Applying Case 2 for the point z and the domain U,, we obtain a constant ro € (0,1) and a disk
Vi € Uy with z € V; such that W(to) C U, ()= Uy and for any quotient map g of C, if

¢ :C\W,(ty) = C

is univalent for some integer n > 0, then mod q_l(Um \71) > M.

Since x is a parabolic fixed point, we may assume that W N7, C V, N J,, where W is the component
of g=1(V,) containing the point x.

Let {¢g"*(w)} (k > 0) be the first returns to V, of the orbit {¢g™(w)}n>1. It is defined as follows: ny > 1
is the minimal positive integer such that g™ (w) € V. Since w(w)~\U, # 0, there exists an integer n > ng
such that g"(w) ¢ V,. Let ny > ng be the minimal integer such that g™ (w) € V, but g™ ~(w) & V..
Inductively, ng > ng_1 is the minimal integer such that g™ (w) € V, but g"k_l(w) Z V.
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Recall that w € Jy and W N J, C V, N Jy. Thus for £ > 1, we have g™ Y(w) ¢ W and hence
g™~ H(w) € Uy, for a certain point y; € ¥; with g(y1) = z.

For each k > 1, let V}, and U,, be the components of g~"*(V,,) and g~ "™* (U,) containing the point w,
respectively. Then g"* : U,, — U, is conformal by the assumption at the beginning of this section.

Given any integer n > 0, let ¢ be a quotient map of C such that ¢! is univalent in C~\ W, (o). For
each component W of W, (to) with W N oU,, =0, g"(W) is also a component of W,,(to) which is not
periodic since g"* is the first return map. Thus there exists a disk Uy € U;k with Uy, C Uy such that if
W is a component of W, (to) with W N oU,, =0, then W C Uj. Define hy, to be equal to g"* o g on U
and quasiconformal otherwise. Then hy, is also a quotient map of C. By the Riemann mapping theorem,
there exists a quasiconformal map ¢ of C which is holomorphic in Uy, such that ¢ o h,;l is univalent in

CTg™ Wh(to) NUy) € T W, (to).

Thus
mod ¢ o hy ' (U,~\V;) = mod ¢ 0 ¢ (U, \Vi) = M.

Note that ¢ is conformal in Uy D U,,. Therefore mod ¢~*(U,, \V;) > M. In particular,
modqt_ﬁll(Uyk Vi) =M for n>0 and t>t.

By Proposition 9.9, there exists a constant K > 1 such that

— M
mod g; , (Uy, ~\Vi) > 7

for t,n > 0. Choose an integer ky > 1 such that ko/K > 1. Since the diameter of U,, converges to zero
as k — oo, there are ko annuli Uy, \V}, contained in U that are pairwise disjoint. Set V' to be the smallest
one of these kg domains V. Then

mod g, A(UNV) > M for t,n>0.

This completes the proof. O
Lemma 9.12.  The family {q»} (t,n > 0) is equicontinuous.

Proof.  We claim that for any point wy € C and any disk U C C with wg € U, there exist a constant
§(wp) > 0 and a disk V 3 wg with V C U, such that for any g, the spherical distance

dists(q,;;(aU),qfl(V)) > 0(wo).

The claim holds for wy € F,; by Lemma 9.8, Proposition 9.9 and the normalization condition. Now we
assume wy € Jy.

Assume oo € F, for simplicity. Choose a constant M > 5log2/(27). Then there exist a constant
to > 0 and a disk V 3 wy with V C U, such that

mod q[’%(U\V) > M
for n > 0 and t > tg, by Proposition 9.11. From Lemma 2.1, we have
dist(g;,, (9U), 4o (V) > C(M)diam g , (V)

for all n > 0 and ¢ > t5. On the other hand, there exists a disk D C V such that D € F,. Thus there
exists a constant t; > to such that D is disjoint from ¢g="(W,) for n > 0 and ¢ > ;. So there exists a
constant C' > 0 such that

diamq{é(ﬁ)}C for n>0 and t>t;.

Take 61 (wg) = C - C(M). Then the claim holds for ¢t > ;.



2214 Cui G et al. Sct China Math  December 2018 Vol. 61 No.12

By Proposition 9.9, there exists a normalized quasiconformal map gy, ., of C whose maximal dilatation
is equal to the maximal dilatation of ¢, o ¢¢, such that g, » © @, t:n = @¢,n. Thus ptj}t;n is uniformly
Holder continuous for all n > 0 and t € (0,¢1). In particular, there exists a constant §(wg) < d1(wp)
such that dist(pt_l}tm(zl), pt_jtm(zg)) > 0(wp) if dist(z1, 22) = d1(wo) for all n > 0 and ¢ € (0,¢1). Now
the claim is proved. By Lemma 2.7, the family {¢: } is equicontinuous. O

Lemma 9.13.  For fized t > 0, {q.»} converges umformly to a quotient map q; of C as n — oo, and
qio fr = goqy. For each filled-in skeleton S, qrod (S ) is a single point. Conversely, for each point w € C,
(qe 0 ¢¢)~H(w) is a single point if w ¢ Y, or else is a filled-in skeleton of level n if w € Yy,.

Proof. Let ¢; be the limit of a subsequence {g;n,} as ny — oco. Then the subsequence {& ,, =
Qt.ny, © Jtn, ) also converges uniformly to ¢; as ny — oo since the sequence {j; n} converges uniformly to
the identity as n — oo by Lemma 9.7. By Proposition 9.10, g1, = G.n—1 © M., Where {n;,} converges
uniformly to the identity. Thus the sequence {&; n,—1 = @t,ni—1 © jt,ne—1} also converges uniformly to ¢,
as ng — 00. From & n—10 ft = go&n, we get gt o ft = goq.

Let w € Y;y be a periodic point with period p > 1. Then &, n( ) is the ¢;-image of a periodic filled-in
skeleton S, by Lemma 9.4. Thus qe(o+(S )) = w since {4, } converges uniformly to the identity as n — oo.
It follows that ¢(3) C q Hw )

Consider the continuum g¢; *(w). For any point z € Fy, with ¢;(z) = w, there exists an integer N > 0
such that f'(z) € ¢.(U) for n > N, where U is a fundamental set of f as defined in Lemma 9.4. Thus
&n(2) = q(2) = w for n > N by Lemma 9.4. Therefore,

a7 (w) N Fy, = ¢(S) N Fy,.

Note that E := ¢(S ) N Jy, contains only finitely many points, each of which is periodic. There are
finitely many dleOlIlt disks in Fy, such that their union D contains ¢t( ) NFy, and 9D N ¢, (S ) = FE.
Thus 9D N g; *(w) = E. We claim that each component of K := ¢; '(w) N J}, contains a point of E.
Otherwise, assume that Wy, W; C C are disjoint domains that both contain points of K, K C Wy U W;
and WyNE = (. Then Wy~.D has a component W’ such that W/ N K # (). Moreover, W’ N K is compact
since W' C AW, U OD has positive distance from Wy N K. On the other hand, W’ N ¢, ' (w) = W' N K
since q; (w) N Fy, = ¢4(S S)n Fj, € D and W' N D = . Tt follows that ¢, *(w) is disconnected. This
leads to a contradiction.

By the claim, ¢, 1(w) N Jy, has only finitely many components and each of them is eventually periodic.
From the equation ¢; o f; = go q;, we see that ¢; ' (w) is a component of f; *(g; ' (w)) and f? is univalent
in a neighborhood of ¢; *(w) since gP(w) = w and deg,, g* = 1. Thus each component of q{ Yw) N Jy,
must be a single point by Lemma 2.9. Therefore ¢, ! (w) N J}, = ¢t( )N Jy, and hence ¢; ' (w) = d(S).

Let w € C\Y be a point. For contradiction we assume that ¢; *(w) is not a single point. Let U C C
be a disk with w € U. Then

mod ¢; H(U~{w}) = M < oo.
Pick a disk U; > w such that U; C U. From Proposition 9.11, there exists a disk V 5 w with V C Uj,
such that
modqtfrll(Ul\V) >M for t,n=>0.

Since {g¢.n, } converges uniformly to ¢; as n, — 0o, there exists an integer N > 0 such that ., ,1 L(U1) C
¢; 1(U) and q[ﬁk (V) D ¢; *(w) for ny, > N. Thus

mod q;,é(Ul\V) > M = mod ¢~ (U~{w}) > mod q{i(Ul\V).

This leads to a contradiction.

If g; is another limit of the sequence {q; .}, then 6 := g, o ¢, !is a well-defined homeomorphism of C
and go 6 = 6 o g. Moreover, 6 is holomorphic in F,;. Thus 6 is holomorphic on C by Theorem 1.1 and
hence is the identity by the normalization condition. Therefore ¢, = ¢; and hence the whole sequence
{qt,n} converges uniformly to ¢;. O

Proof of Lemma 9.5. Parts (1) and (2) are direct consequences of Lemmas 9.6, 9.7 and 9.13. Part (3)
comes from Lemma 9.8 and Corollary 8.2. O
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9.5 Proof of Theorem 1.7

The proof of Theorem 1.7 is a small modification of the proof of Theorem 1.5. We continue to use the
notation from the proof of Theorem 1.5.
Proof of Theorem 1.7.  Let g be the limit of the pinching path {f; = ¢; o f o ¢; '} supported on 7.
Let ¢ be the limit of {¢:}. Denote by W the interior of ¢(By).

Let D € C\U, 50 Whn be a disk. Then

From Theorem 8.8 and Lemma 9.6, there exist constants § < co and ¢y > 0 such that for any n > 0 and

any univalent map ¢ : C\W,,(tg) — C,
Fo(6, DU g1 (D)) <5 < oo,

Define Mi[g, D, §] C My (d = deg g) by [h] € Mg, D, d] if there exists a univalent map

¢:DUg (D) —C
such that ho ¢ = ¢ o g on g~ (D) and Zy(¢p, DU g~1(D)) < 4. Since
deg(g: g~ (D) = D) =4,

Mg, D, d] is compactly contained in M, by Lemma 2.8.

Let © : Z5 — %fto be the quasiconformal map whose lift is ¢;,. Let v be a Beltrami differential
supported on ©(<7 (tp)) with ||v||e < 1. Let ¢ be a quasiconformal map of C whose Beltrami differential
is the lift of v. Then h = ¢ o f;, 0 ¢~ ! is a rational map. Repeat the proof of Theorem 1.5 with &,
replaced by &, o ¢. We again obtain a sequence of quotient maps {¢,} and a Thurston sequence {h,}
of h such that g, 0h,, = gogy+1 and g; ! is holomorphic and injective in C~\W,, (to). Thus [h] € Mg, D, d].

From the definition of a multi-annulus, there exists a quasiconformal map ® from % to itself such
that @ (7 (t9)) C /. Then

© 0@~ (/) C O( (t))-

For any Beltrami differential 1 on % supported on <7, let ®,, : Z(f) — Z(fa) be the quasiconformal
map with Beltrami differential p. Let

V=®,00007": A(fy) > A(f).

Then (V) = u(® 0 ©7') on Zy, ~O((to)) and hence p(¥) is independent of the choice of . Let ¥y
be a quasiconformal map on Z(f,) such that pu(¥o) = u(®) on O( (t9)) and u(¥y) = 0 otherwise. Set
U, =Vo \Ilal. Then the maximal dilatation of ¥, depends only on ® o ©~! and hence is bounded by a
constant K < oo.

Let h be the quasiconformal deformation of f;, with Beltrami differential p(¥p). Then h € Mg, D, d]
and h is K-quasiconformally conjugate to f;. Define Mg, D, §; K] C My by [h1] € Mg, D, §; K] if hy is
K-quasiconformally conjugate to a rational map h with [h] € 9M[g, D, §]. Then

[fa] € Mg, D, d; K].

Obviously M[g, D, 0; K] is compactly contained in 4. It is easy to check that each rational map in the
closure of M[f, o7] is geometrically finite. O
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10 Parabolic-hyperbolic deformation

Let g be a geometrically finite rational map with parabolic cycles. Let 20 be a collection of pairwise
disjoint sepals such that the closure of their union W is disjoint from Py~\P, and g(WW) = W. A bijection
o : 0 — W is called a plumbing correspondence if it satisfies the following conditions:

(1) 02 = id but ¢ has no fixed element.

(2) o is compatible with g, i.e., o(g(W;)) = g(a(W;)) for each sepal W.

(3) If o(W;) = W;, then W; and W; touch each other and W; is a left sepal if and only if W; is a right
pal.
(4) (Non-crossing condition) If W; touches W; at y € P, but o(W;) # W, then both W; and o(W;)
lie on the same side of W; U {y} U o(W;).

Two plumbing correspondences ¢ : 20 — 20 and o’ : ' — W' are called equivalent if there is a
plumbing correspondence ¢ : 23” — 25” such that all of them have same number of sepals and for each
sepal W' € 20", there are sepals W € 20 and W’ € 20’ such that

se

g:

W"ewnw'" and o’ (W")Cao(W)ndo' (W').

A plumbing combinatorics is an equivalence class of plumbing correspondences.
In this section, we will prove the following theorem—a precise version of Theorem 1.6.

Theorem 10.1. Let g be a geometrically finite rational map and let Y be a set of parabolic cycles of
g. Let W = {Wy,...,Wa,,} be a collection of pairwise disjoint sepals of cycles in'Y such that the closure
of their union W is disjoint from Py\Y and g(W) =W. Let o : 20 — W be a plumbing correspondence.
Then there exist a geometrically finite rational map f and a non-separating multi-annulus o/ C Zf such
that the following conditions hold:

(1) The pinching path f; = ¢;ofop; t (t = 0) starting from f = fo supported on o/ converges uniformly
to the rational map g.

(2) Let ¢ be the limit of the conjugacy ¢¢ ast — oo. Let By and Sy be the unions of all periodic bands
and skeletons, respectively. Then o(Bo~Sp) =W and for any two distinct components By, Bs of Bo~So,
o(B1) = o(p(B2)) if and only if By and Bs are contained in the same periodic band.

Step 1. Plumbing surgery. Note that the quotient space W/{(g) is a finite disjoint union of once-
punctured disks. Thus there is a natural holomorphic projection 7 : YW — D™ such that for each sepal W
of W with period p > 1, 7 : W — D” is a universal covering and m(z1) = 25 if and only if z; = gkp(zg)
for some integer k € Z.

Given any 0 < r < 1, let W(r) = 7~ *(D*(r)) and R(r) = W~ W(r). Then g(R(r)) = R(r). Thus
there is a conformal map 7: R(r?) — R(r?) such that

o 7(z) € c(W;) if z € W;, and

er?=idand gor=71o0g.

Define an equivalence relation on C~\W(r2) by 21 ~ 25 if 7(21) = 22. Then the quotient space is a
punctured sphere with finitely many punctures. Thus there exist a finite set X C C and a holomorphic
onto map

p: CW(r?) - C\X

such that p(z1) = p(z2) if and only if z; = 7(22).
Let S = p(OW(r)\Y) U X. This is a finite disjoint union of trees whose vertex set is X. Let
B = p(R(r?)). This is a finite disjoint union of disks.

Step 2. The induced map after surgery. Let W; = g~ (W)~ W. Since g o7 = 7 o g, there is a unique
holomorphic map Fy : C\p(W;) — C, such that

Foop=pog on @\gil(W).

Obviously, all the sets X, S and B are fixed by Fj.
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Define X. C X by z € X, if « is an accumulation point of p(Py\Y'). Then Fy(X.) = X,. For each
component B of B, BN X contains exactly two points. Let p > 1 be the period of B. Then {F(fp(z)}
converges to a point in B N X for any point z € B. Denote the point by a(B). Since each attracting
petal of G at a point y € Y contains infinitely many points of Pg, we have a(B) € X.. Denote the other
point of BN X by r(B).

Pick an attracting flower of g at each point y € Y whose union V satisfies the following conditions:

(1) g(V) c VYUY c C~Wy, and

(2) each component R of R(r?) intersects OV at exactly two open arcs and 7(R(r?)NdV) = R(r?)NoV.

Then each component of p(OV~WW(r?)) is either a Jordan curve, or an open arc whose two endpoints
land on the same point in X. Denote by U the union of disks enclosed by these closed curves and open
arcs together with their endpoints. Then m cCUUX.

Let x € X, be a point. If x € U, then x is an attracting point of Fj. Otherwise, let V, be the union
of the components of U touching the point x. Then V, satisfies the conditions of Lemma 2.13. Thus the
point x is a parabolic point of Fjy and V, is an attracting flower of Fyy at the point z. Obviously, each

component of V, contains infinitely many points of p(P,~\Y). The following proposition is easy to verify.

Proposition 10.2.  Let S be a component of S and let x € SN X, be a point. Let k > 1 be the number
of components of S\{x}. Let D, > x be a sufficiently small disk such that D,~.S has k components U;
whose closures contain the point x. Then U; contains infinitely many points of p(Py) if there exists a
component B of B such that a(B) = x and U; N B # 0.

Step 3. Quotient extension of the inverse map of the projection. Note that the map p : C~\ )V — C~B
is a conformal map. We want to extend its inverse map to be a quotient map of C as follows. Let
w : A(r,1) — D* be the homeomorphism defined in Proposition 5.1(4). Then there exists a unique
homeomorphism @ : R(r) — W such that mow = wom, gow = wo g and the continuous extension of w
to

OW C OR(r) — OW

is the identity. Define
p*1 :C~B— @\W,
q=9 _
wop l:B\S — R(r) = W.

Then ¢ : C~\S — C\Y is a homeomorphism and hence can be extended to a quotient map of C with
q(S) =Y. Since Fyop=pogon C~\W; and gow = w o g, we have go g = qgo Fy on C~qg *(W)).
Step 4. Construction of a marked semi-rational map. Each component £ of W is a full continuum
which contains exactly one point of P,. Pick a disk U(E) D E such that U(E)\FE contains no critical
values of g and OU(FE) is disjoint from P,. We may assume that all these domains U(E) have disjoint
closures. Denote by Up their union. Note that U(E) contains at most one critical value of g. Each
component of g=1(Up) is a disk containing exactly one component of g=1(W).

Let U; be the union of components of g~ (Uy) which contain a component of W;. Since W is disjoint
from 73!’7, once Uy is close enough to W, we may assume U;~V; is disjoint from Py.

Define a branched covering F of C such that

(a) F(2) = Fy(z) on C~g~1(U;) and hence go g = qo F on C~q~1(U).

(b) F : ¢ Y(Uy) — ¢ 1(Up) is a branched covering with at most one critical point in ¢~!(Y;) and
F(g7'(Y1)) € X, where Y; = g1 (Y)\Y.

It follows that

¢ HP,NY)UX, CPrCq  (PY)UX,

and
Pp=q H(P,\Y)UX,.

In particular, ¢(Pp) = P,. Set P =Py U X. Then ¢(P) = P,, F(P) =P and #(P~Pr) < .
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Since F is holomorphic in C~q¢~!(U;) and each component of ¢~1(U;) contains at most one point
of Pr, which is an isolated point of Pr, we know that F' is holomorphic in a neighborhood of Pf. By
Step 2, (F,P) is a marked semi-rational map.

Step 5.  Lift of the quotient map. For each component D of Uy, g : D — g(D) is proper with at most
one critical value in Y. On the other hand, F : ¢~1(D) — F(¢~*(D)) is also a branched covering with at
most one critical value in S, and degg|p = deg F'|;-1(p). Since q(S) =Y, there exists a quotient map
q:q (D) — D that coincides with ¢ on the boundary such that go g = qgo F on ¢~ (D).

Define ¢ = ¢ on C~g~!(Uy). Then § is a quotient map of C isotopic to ¢ rel (C~g~*(U1)) U P and
gog=gqoF onC.
Lemma 10.3. IfU is a fundamental set of F, then q(U) contains a fundamental set of g.

Proof.  We only need to prove that ¢(i/) contains an attracting flower of g at each point y € Y. Let
S = ¢ (y). For simplicity of notation we assume that each point in S N X is fixed by F.

Let z € SN X, be a point. If it is attracting, then x € U. Thus there exists a disk D, C U with
x € D such that f is injective on D, and f(D,) € D,. Moreover, we may require that 9D, intersects
each component of S~\{z} at a single point. Then for each component U of D,~\S, V = ¢(U) is a disk
and g(V) Cc VU {y}.

Now suppose that x is parabolic. Then there exists an attracting flower V,, of F' at x such that V, C U.

We may also require that each component of 9V, ~{x} is either disjoint from S or intersects with each
component of S\ {z} at a single point. Then for each component U of V,~\S, V = ¢(U) is a disk and
g(V) cVuiy}

Denote by V; the union of V' = ¢(U) for all components U of D,~\.S if x € SN X, is attracting and for
all components U of V,~\.S if x € S N X, is parabolic. If {w,, = g"(w)} is an orbit in C\U; converging
to the point y as n — oo but w, # y for all n > 1, then {2, = ¢~ !(w,)} converges to a point z € X,
and F(z,) = zn41. Thus once n is large enough, the point z, is contained in either D, if x is attracting
or V, if = is parabolic. So w, € V; once n is large enough. Therefore V; is an attracting flower of g

at y. O
Lemma 10.4.  The marked semi-rational map (F, P) has neither Thurston obstructions nor connecting
arcs.

Proof.  The proof of this theorem is similar to the proof of Theorem 7.3.

Assume for contradiction that I is an irreducible multicurve of (F,P) with A(T') > 1. Assume futher
that for each v € T', #(yNS) is minimal in its isotopy class. Since F': § — § is bijective, k = #(yNS) < oo
is a constant for v € T'.

If k=0, then Iy = {q(v) : v € T'} is a multicurve of g since g : P~X — Py\Y is injective and
gX)=Y ¢ P;. Noticing that go ¢ = qgo F on C and ¢ is a quotient map of C isotopic to ¢ rel P, we
have A(I') = A(I'y) < 1. This leads to a contradiction.

Now we assume that k > 0. Then there exists at most one component of F'~!(7) isotopic to a curve
in I' rel P for each v € I" since F' : S — § is bijective. Thus for each « € T, there is exactly one curve
B € T such that F~1(3) has a component isotopic to 7 rel P, since I is irreducible. Therefore each entry
of the transition matrix M (T") is less than or equal to 1. Because A(T') > 1, there is a curve v € T" such
that ~y is isotopic to a component § of F~P(y) rel P for some integer p > 1, and F? is injective on §.

Let U be a fundamental set of F that is disjoint from every curve in I'. Since ¢(U)\Y contains a
fundamental set of g and ¢ is injective on C\.S, ¢(v) is disjoint from a fundamental set of g.

Suppose v intersects at least two components of S. Let 8 be a component of ¢(v)\Y such that  joins
two distinct points in Y. Then 8 is isotopic to a component of g=*7(3) rel P, for some integer k > 0
since #(y N S) is minimal in its isotopy class and = is isotopic to a component of F~P(y) rel P. Thus
is a connecting arc of g. This leads to a contradiction.

Suppose that v intersects exactly one component S of S. We claim that at least two components of
C~(yUS) contain points of P~ X.

Let V and Vi be the components of C~+. If both of them contain points of P~ X, then both of them
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contain a component of C~(yU.S) which contains points of P~.X. The claim is proved. Now we assume
that one of them, say V{, contains no points of P~X. Since y is non-peripheral, Vj contains at least two
points of P. Thus V} contains two distinct points zg,z1 € X. Since X, C P, we have z1,z2 € X~ X..

As S is a tree, there exists a unique arc I C S whose endpoints are (z1,22). Let By and Bj be the
components of B intersecting [ such that z; € B;. Then xq = r(Bp) and x; = r(B;) since a(B) € X,
for each component B of B. Consequently, there exists a point zo € X.NI. Now Vi\l has exactly two
components Uy and Uy, whose closures contain the point z5. By Proposition 10.2, each of them contains
infinitely many points of P. Therefore, V1S has at least two components U} and Uj, which contain
infinitely many points of P. The claim is proved.

Let y = ¢(S). Then there exists a component S of g(v)~{y} such that 8 U {y} separates q(U{)
from ¢(U{). In other words, each component of C~ (3 U {y}) contains at least one point of Q since
q(P) = Q. As above, f3 is isotopic to a component of G~*7(3) rel Q for some integer k > 0. Thus 3 is a
connecting arc of (G, Q). This leads to a contradiction. Thus (F,P) has no Thurston obstructions.

Suppose that § is a connecting arc of (F,P). We may assume that k = #(6 N S) is minimal in the
isotopy class of 8. If k = 0, then ¢(8) is a connecting arc of G. This is a contradiction. Otherwise, by a
discussion similar to the one as above, there exists a component ¢ of S\.S such that ¢(d) is a connecting
arc of G. This is a contradiction. Therefore (F,P) has no connecting arc. O

Proof of Theorems 10.1 and 1.6. With the previous preparation, the proof is the same as the proof of
Theorem 7.1. We omit it here. O
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