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1 Introduction

Stimulated by discontinuous phenomena in the real world, such as biology [9], nonlinear oscillations [18],

impact and friction mechanics [1], great interest has appeared for studying the number of limit cycles and

their relative positions of discontinuous differential systems. Similar to the smooth differential system,

one of the main problems in the qualitative theory of non-smooth differential systems is the study of their

limit cycles, and many methodologies have been developed, such as the Abelian integral method (or the

first order Melnikov function) [11,12,19,20], and the averaging method [2,3,10,13–15]. This problem can

be seen as an extension of the infinitesimal Hilbert’s 16th problem to the discontinuous world.

The list of quadratic centers at (0,0), almost all the orbits of which are cubic, looks as follows [8, 21]:

The Hamiltonian system QH
3 : ż = −iz − z2 + 2|z|2 + (b+ ic)z̄2.

The Hamiltonian triangle: ż = −iz + z̄2.

The reversible system: ż = −iz + (2b+ 1)z2 + 2|z|2 + bz̄2, b ̸= −1.

The generic Lotka-Volterra system: ż = −iz + (1− ci)z2 + ciz̄2, c = ± 1√
3
.

Under the perturbations of continuous polynomials of degree n, Horozov and Iliev [7] proved that

the number of limit cycles for QH
3 and the Hamiltonian triangle does not exceed 5n + 15, and Zhao et

al. [21] proved that the number of limit cycles for reversible and generic Lotka-Volterra systems does not

exceed 7n.
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Let z = x+ iy and by a linear transformation, the reversible system can be written [21] asẋ = xy,

ẏ =
3

2
y2 + ax2 − 2(a+ 1)x+ a+ 2,

(1.1)

where a ∈ R. When a = −2, System (1.1) corresponds to the nongeneric case of the reversible

system (1.1): ẋ = xy,

ẏ =
3

2
y2 − 2x2 + 2x,

(1.2)

whose first integral is

H(x, y) = x−3

(
1

2
y2 − 2x2 + x

)
= h, h ∈ (−1, 0) (1.3)

with the integrating factor µ(x, y) = x−4.

In the present paper, by using the Picard-Fuchs equation and the property of the Chebyshev space,

we investigate the number of limit cycles of System (1.2) under discontinuous polynomial perturbations

of degree n. System (1.2) has a center (1,0) and h = −1 corresponds to the center (1,0) (see Figure 1).

The perturbed system of (1.2) is

(
ẋ

ẏ

)
=



(
xy + εf+(x, y)

3
2y

2 − 2x2 + 2x+ εg+(x, y)

)
, y > 0,

(
xy + εf−(x, y)

3
2y

2 − 2x2 + 2x+ εg−(x, y)

)
, y < 0,

(1.4)

where 0 < |ε| ≪ 1,

f±(x, y) =

n∑
i+j=0

a±i,jx
iyj , g±(x, y) =

n∑
i+j=0

b±i,jx
iyj , i, j ∈ N.

Figure 1 (Color online) The phase portrait of System (1.2)
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From [12, Theorem 1.1] and [5, Theorem 1.1], by linear transformations, we know that the first order

Melnikov function M(h) of System (1.4) is

M(h) =

∫
Γ+
h

x−4[g+(x, y)dx− f+(x, y)dy]

+

∫
Γ−
h

x−4[g−(x, y)dx− f−(x, y)dy], h ∈ (−1, 0), (1.5)

where
Γ+
h = {(x, y) |H(x, y) = h, h ∈ (−1, 0), y > 0},

Γ−
h = {(x, y) |H(x, y) = h, h ∈ (−1, 0), y < 0},

and its number of zeros gives an upper bound of the number of limit cycles of System (1.4) bifurcating

from the period annulus.

Our main results are the following two theorems.

Theorem 1.1. Suppose that h ∈ (−1, 0).

(i) If n = 2, 3, then the number of limit cycles of System (1.4) bifurcating from the period annulus is

not more than 40 (counting multiplicity).

(ii) If 4 6 n 6 7, then the number of limit cycles of System (1.4) bifurcating from the period annulus

is not more than 24n− 56 (counting multiplicity).

(iii) If n > 8, then the number of limit cycles of System (1.4) bifurcating from the period annulus is

not more than 22n− 64 (counting multiplicity).

Theorem 1.2. Suppose that h ∈ (−1, 0), a+i,j = a−i,j and b+i,j = b−i,j.

(i) If n = 2, 3, then the number of limit cycles of System (1.4) bifurcating from the period annulus is

not more than 4 (counting multiplicity).

(ii) If n > 4, then the number of limit cycles of System (1.4) bifurcating from the period annulus is not

more than 3n− 8 (counting multiplicity).

Remark 1.3. (i) By using the Picard-Fuchs equation, we greatly simplified the computation of the

first order Melnikov function. Then we can estimate the number of zeros of the first order Melnikov

function which controls the number of limit cycles of the corresponding perturbed system benefited from

the property of the Chebyshev space.

(ii) The perturbation as in (1.4) can be found in many practical applications, such as in the slender

rocking block model and nonlinear compliant oscillator (see [6, 16,17] and the references therein).

(iii) If h ∈ (−1, 0), a+i,j = a−i,j and b+i,j = b−i,j , then Zhao et al. [21] obtained that the number of limit

cycles of System (1.4) bifurcating from the period annulus is not more than 3n− 4 for n > 4; 8 for n = 3;

5 for n = 2 (counting multiplicity).

The rest of the paper is organized as follows: In Section 2, we obtain the algebraic structure of the

first order Melnikov function M(h) and the Picard-Fuchs equations satisfied by the generators of M(h)

are also obtained. Finally, we prove Theorems 1.1 and 1.2 in Section 3.

2 The algebraic structure of M(h) and the Picard-Fuchs equation

In this section, we obtain the algebraic structure of the first order Melnikov function M(h). For h ∈
(−1, 0), we denote

Ii,j(h) =

∫
Γ+
h

xi−4yjdx, Ji,j(h) =

∫
Γ−
h

xi−4yjdx.

We first prove the following results.

Lemma 2.1. Suppose that h ∈ (−1, 0), i = −1, 0, 1, . . . and j = 0, 1, 2, . . .
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(i) The following equalities hold:

I−1,1(h) =
1

7
[hI1,1(h) + 8I0,1(h)],

I0,0(h) =
1

3
[hI2,0(h) + 4I1,0(h)],

I−1,2(h) =
4

3
(h+ 1)I2,0(h),

I1,0(h) = I2,0(h),

I−1,3(h) = 12[I1,1(h)− I0,1(h)],

(2.1)



I−1,4(h) = 4[I1,2(h)− I0,2(h)],

I0,3(h) = 4[I2,1(h)− I1,1(h)],

I1,2(h) =
1

h
[2I0,2(h)− 3I−1,2(h)],

I2,1(h) =
1

h
[4I1,1(h)− 5I0,1(h)],

I3,0(h) =
1

h

[
1

2
I0,2(h)− 2I2,0(h) + I1,0(h)

]
.

(2.2)

(ii) If 4 6 n 6 7, then
Ii,2j+1(h) =

1

hn−3
[ᾱ(h)I0,1(h) + β̄(h)I1,1(h)], i+ 2j + 1 = n,

Ii,2j(h) =
1

hn−3
[γ̄(h)I2,0(h) + δ̄(h)I0,2(h)], i+ 2j = n,

where ᾱ(h), β̄(h), γ̄(h) and δ̄(h) are polynomials of h with deg ᾱ(h), deg δ̄(h) 6 n−4 and deg β̄(h), deg γ̄(h)

6 n− 3.

(iii) If n > 8, then
Ii,2j+1(h) =

1

hn−3
[ᾱ(h)I0,1(h) + β̄(h)I1,1(h)], i+ 2j + 1 = n,

Ii,2j(h) =
1

hn−3
γ̄(h)I2,0(h), i+ 2j = n,

where ᾱ(h), β̄(h) and γ̄(h) are polynomials of h with deg ᾱ(h) 6 n− 5 and deg β̄(h), deg γ̄(h) 6 n− 4.

Proof. Let D be the interior of Γ+
h ∪

−−→
AB (see the black line in Figure 1). Using Green’s formula, we

have for j > 0, ∫
Γ+
h

xiyjdy =

∮
Γ+
h ∪

−−→
AB

xiyjdy −
∫
−−→
AB

xiyjdy

=

∮
Γ+
h ∪

−−→
AB

xiyjdy = −i

∫∫
D

xi−1yjdxdy,∫
Γ+
h

xi−1yj+1dx =

∮
Γ+
h ∪−−→

AB

xi−1yj+1dx = (j + 1)

∫∫
D

xi−1yjdxdy.

Hence, ∫
Γ+
h

xiyjdy = − i

j + 1

∫
Γ+
h

xi−1yj+1dx, j > 0. (2.3)

In a similar way, we have ∫
Γ−
h

xiyjdy = − i

j + 1

∫
Γ−
h

xi−1yj+1dx, j > 0. (2.4)
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By a straightforward calculation and noting that (2.3) and (2.4), we obtain

M(h) =

∫
Γ+
h

x−4(g+(x, y)dx− f+(x, y)dy)

+

∫
Γ−
h

x−4(g−(x, y)dx− f−(x, y)dy)

=

∫
Γ+
h

n∑
i+j=0

b+i,jx
i−4yjdx−

∫
Γ+
h

n∑
i+j=0

a+i,jx
i−4yjdy

+

∫
Γ−
h

n∑
i+j=0

b−i,jx
i−4yjdx−

∫
Γ−
h

n∑
i+j=0

a−i,jx
i−4yjdy

=
n∑

i+j=0

b+i,j

∫
Γ+
h

xi−4yjdx+
n∑

i+j=0

i− 4

j + 1
a+i,j

∫
Γ+
h

xi−5yj+1dx

+

n∑
i+j=0

b−i,j

∫
Γ−
h

xi−4yjdx+

n∑
i+j=0

i− 4

j + 1
a−i,j

∫
Γ−
h

xi−5yj+1dx

=
n∑

i+j=0,i>−1,j>0

ãi,jIi,j(h) +
n∑

i+j=0,i>−1,j>0

b̃i,jJi,j(h)

=:
n∑

i+j=0,i>−1,j>0

ρi,jIi,j(h), (2.5)

where in the last equality we have used that Ji,j(h) = (−1)j+1Ii,j(h).

Differentiating (1.3) with respect to x, we obtain

x−3y
∂y

∂x
− 3

2
x−4y2 + 2x−2 − 2x−3 = 0. (2.6)

Multiplying (2.6) by xiyj−2dx, integrating over Γ+
h and noting that (2.3), we have

(2i+ 3j − 6)Ii,j = 4j(Ii+2,j−2 − Ii+1,j−2). (2.7)

Similarly, multiplying (1.3) by xi−4yjdx and integrating over Γ+
h yields

hIi,j =
1

2
Ii−3,j+2 − 2Ii−1,j + Ii−2,j . (2.8)

Eliminating Ii−3,j+2 by (2.7) and (2.8) gives

(2i+ 3j − 6)hIi,j = (2i+ j − 10)Ii−2,j − 4(i+ j − 4)Ii−1,j . (2.9)

From (2.7) we have

I1,0 = I2,0, I−1,3 = 12(I1,1 − I0,1). (2.10)

From (2.8) we obtain

hI2,0 =
1

2
I−1,2 − 2I1,0 + I0,0. (2.11)

Taking (i, j) = (2, 0), (1, 1) in (2.9) we have

I0,0 =
1

3
(hI2,0 + 4I1,0), I−1,1 =

1

7
(hI1,1 + 8I0,1). (2.12)

Hence,

I0,0 =
1

3
(h+ 4)I2,0. (2.13)
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From (2.10)–(2.12) we get

I−1,2 =
4

3
(h+ 1)I2,0. (2.14)

(2.10) and (2.12)–(2.14) imply (2.1) holds. In a similar way, applying the equalities (2.7) and (2.9), we

can obtain (2.2). Hence, the conclusion (i) holds. By some straightforward calculations according to (2.7)

and (2.9), we can get the conclusion (ii).

(iii) Now we prove the conclusion (iii) by induction on n. Without loss of generality, we only show the

case i+2j +1 = n. With the help of Maple, from (2.7) and (2.9) and noting the conclusions (i) and (ii),

we obtain 

I−1,9 = − 768

46189h5
[(200h3 + 3000h2 + 2024h+ 512)I0,1

+(663h4 + 326h3 + 239h2 + 64h)I1,1],

I0,8 = − 2048

315h5
(h+ 1)4I2,0,

I1,7 = − 64

7293h5
[(385h3 + 1385h2 + 1480h+ 512)I0,1

+(139h3 + 171h2 + 64h)I1,1],

I2,6 = − 128

35h5
(h+ 1)3I2,0,

I3,5 = − 16

3003h5
[(480h2 + 1000h+ 512)I0,1 + (39h3 + 111h2 + 64h)I1,1],

I4,4 = − 32

105h5
(h+ 1)2(h+ 8)I2,0,

I5,3 = − 4

1001h5
[(77h2 + 584h+ 512)I0,1 + (59h2 + 64h)I1,1],

I6,2 =
4

15h5
(h+ 1)(3h+ 8)I2,0,

I7,1 = − 1

231h5
[(232h+ 512)I0,1 + (15h2 + 64h)I1,1],

I8,0 = − 1

5h5
(h2 + 12h+ 16)I2,0,

which imply that the conclusion holds for n = 8. Now assume that (iii) holds for i+2l+1 6 k−1 (k > 9).

For i+ 2l + 1 = k, if k is an even number, then taking

(i, 2l + 1) = (−1, k + 1)

in (2.7) and

(i, 2l + 1) = (1, k − 1), (3, k − 3), . . . , (k − 3, 3), (k − 1, 1)

in (2.9), respectively, we have

A



I−1,k+1

I1,k−1

I3,k−3

...

Ik−3,3

Ik−1,1


=

1

h



4(k+1)
5−3k hI0,k−1

1
3k−7

[
(k − 9)I−1,k−1 − 4(k − 4)I0,k−1

]
1

3k−9

[
(k − 7)I1,k−3 − 4(k − 4)I2,k−3

]
...

1
2k−3

(
2k − 13)Ik−5,3 − 4(k − 4)Ik−4,3

1
2k−5

(
2k − 11)Ik−3,1 − 4(k − 4)Ik−2,1


, (2.15)
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where

A =



1 4(k+1)
5−3k 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


is a k+2

2 × k+2
2 matrix and detA = 1. If k is an odd number taking (i, 2l + 1) = (0, k) in (2.7) and

(i, 2l + 1) = (2, k − 2), (4, k − 4), . . . , (k − 3, 3), (k − 1, 1) in (2.9), respectively, we have

B



I0,k

I2,k−2

I4,k−4

...

Ik−3,3

Ik−1,1


=

1

h



4k
6−3khI1,k−2

1
3k−8

[
(k − 8)I0,k−2 − 4(k − 4)I1,k−2

]
1

3k−10

[
(k − 6)I2,k−4 − 4(k − 4)I3,k−4

]
...

1
2k−3

(
2k − 13)Ik−5,3 − 4(k − 4)Ik−4,3

1
2k−5

(
2k − 11)Ik−3,1 − 4(k − 4)Ik−2,1


, (2.16)

where

B =



1 4k
6−3k 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


is a k+1

2 × k+1
2 matrix and detB = 1. Hence, we can get that Ii,2l+1 can be expressed by I0,1 and I1,1

for i+ 2l + 1 = k by the induction hypothesis.

From (2.15) and (2.16), we have for (i, 2l + 1) = (−1, k + 1) or (i, 2l + 1) = (0, k),

I−1,k+1(h) =
1

hk−3
[hα(k−1)(h)I0,1 + hβ(k−1)(h)I1,1]

=:
1

hk−3
[α(k)(h)I0,1 + β(k)(h)I1,1], k even,

I0,k(h) =
1

hk−3
[hα(k−1)(h)I0,1 + hβ(k−1)(h)I1,1]

=:
1

hk−3
[α(k)(h)I0,1 + β(k)(h)I1,1], k odd,

where α(k−1)(h) and β(k−1)(h) are polynomials in h. By the induction hypothesis we obtain that

degα(k−1)(h) 6 k − 6, deg β(k−1)(h) 6 k − 5.

Therefore,

degα(k)(h) 6 k − 5, deg β(k)(h) 6 k − 4.

In a similar way, we can prove the cases for (i, 2l + 1) = (1, k − 1), (3, k − 3), . . . , (k − 3, 3), (k − 1, 1)

or (i, 2l + 1) = (2, k − 2), (4, k − 4), . . . , (k − 3, 3), (k − 1, 1). This completes the proof.

Lemma 2.2. Suppose that h ∈ (−1, 0).
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(i) If n = 2, 3, then

M(h) = α(h)I0,1(h) + β(h)I1,1(h) + γ(h)I2,0(h) + δ(h)I0,2(h), (2.17)

where α(h) is a constant, and β(h), γ(h) and δ(h) are polynomials of h with deg β(h),deg γ(h),deg δ(h)

6 1.

(ii) If 4 6 n 6 7, then

M(h) =
1

hn−3
[α(h)I0,1(h) + β(h)I1,1(h) + γ(h)I2,0(h) + δ(h)I0,2(h)],

where α(h), β(h), γ(h) and δ(h) are polynomials of h with degα(h),deg δ(h) 6 n−4 and deg β(h), deg γ(h)

6 n− 3.

(iii) If n > 8, then

M(h) =
1

hn−3
[α(h)I0,1(h) + β(h)I1,1(h) + γ(h)I2,0(h) + δ(h)I0,2(h)],

where α(h), β(h), γ(h) and δ(h) are polynomials of h with degα(h) 6 n − 5, deg β(h), deg γ(h) 6
n− 4 and deg δ(h) 6 3.

Lemma 2.3. (i) The vector function (I0,1, I1,1)
T satisfies the following Picard-Fuchs equation:(

I0,1

I1,1

)
=

(
4
5h+ 16

15
4
15h

4
3

4
3h

)(
I ′0,1

I ′1,1

)
. (2.18)

(ii) The vector function (I2,0, I0,2)
T satisfies the following Picard-Fuchs equation:(
I2,0

I0,2

)
=

(
2h+ 2 0

4h+ 4 h

)(
I ′2,0

I ′0,2

)
. (2.19)

Proof. From (1.3) we get
∂y

∂h
=

x3

y
,

which implies

I ′i,j = j

∫
Γ+
h

xi−1yj−2dx. (2.20)

Hence,

Ii,j =
1

j + 2
I ′i−3,j+2. (2.21)

Multiplying the both sides of (2.20) by h, we have

hI ′i,j =
j

2(j + 2)
I ′i−3,j+2 − 2I ′i−1,j + I ′i−2,j . (2.22)

From (2.3) and (2.20) we have for j > 1,

Ii,j =

∫
Γ+
h

xi−4yjdx = − j

i− 3

∫
Γ+
h

xi−3yj−1dy

= − j

i− 3

∫
Γ+
h

xi−3yj−1 3hx
2 + 4x− 1

y
dx

= − 1

i− 3
(3hI ′i,j + 4I ′i−1,j − I ′i−2,j). (2.23)
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(2.21)–(2.23) imply

Ii,j = − 4

2i+ j − 6
(hI ′i,j + I ′i−1,j), j > 1. (2.24)

From (2.21) and noting (2.14) we obtain

I2,0 =
1

2
I ′−1,2 =

2

3
I2,0 +

2

3
(h+ 1)I ′2,0.

Hence,

I2,0 = 2(h+ 1)I ′2,0. (2.25)

From (2.24) we have

I0,1 =
4

5
(hI ′0,1 + I ′−1,1), I1,1 =

4

3
(hI ′1,1 + I ′0,1), I0,2 = hI ′0,2 + I ′−1,2, (2.26)

and noting (2.12) and (2.14) we obtain the conclusions (i) and (ii). This completes the proof.

Lemma 2.4. For h ∈ (−1, 0),

I2,0(h) = c1
√
h+ 1, I0,2(h) = 2c1

√
h+ 1− c1h ln

1−
√
h+ 1

1 +
√
h+ 1

,

where c1 is a constant.

Proof. From (2.19) we have I2,0(h) = c1
√
h+ 1, where c1 is a constant. Therefore, we have for

h ∈ (−1, 0),

I0,2(h) = c2h+ 2c1
√
h+ 1− c1h ln

1−
√
h+ 1

1 +
√
h+ 1

,

where c2 is a constant. Since I0,2(−1) = 0, we have c2 = 0. Hence, I0,2(h) = 2c1
√
h+ 1− c1h ln

1−
√
h+1

1+
√
h+1

.

This completes the proof.

Taking (i, j) = (4, 1), (3, 1) in (2.9) respectively and bearing in mind (2.2), we get

I3,1(h) = − 1

h
I1,1(h), I4,1(h) = − 1

5h
[I2,1(h) + 4I3,1(h)].

Hence, I0,1(h) = h2I4,1(h). Using Green’s formula, we have

I4,1(h) =

∫
Γ+
h

ydx =

∮
Γ+
h ∪−−→

AB

ydx =

∫∫
D

dxdy ̸= 0,

where D is the interior of Γ+
h ∪ −−→

AB (see Figure 1). Thus, I0,1(h) ̸= 0 for h ∈ (−1, 0). Noting that
∂y
∂h = x3y−1 and dx = xydt, we have

I ′0,1(h) =

∫
Γ+
h

x−4 ∂y

∂h
dx =

∫ t0

0

dt ̸= 0,

where t0 is the time from the left end point to the right end point of Γ+
h . So we can get the following

lemma.

Lemma 2.5. Let ω1(h) =
I1,1(h)
I0,1(h)

and ω2(h) =
I′
1,1(h)

I′
0,1(h)

for h ∈ (−1, 0). Then ω1(h) and ω2(h) satisfy

the following Riccati equations:

G(h)ω′
1(h) =

1

4
hω2

1(h)−
1

2
(h− 2)ω1(h)−

5

4
(2.27)

and

G(h)ω′
2(h) = −1

4
hω2

2(h)−
1

2
hω2(h)−

1

4
, (2.28)
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respectively, where G(h) = h(h+ 1).

Proof. From (2.18), we have

G(h)

(
I ′0,1(h)

I ′1,1(h)

)
=

(
5
4h −1

4h

−5
4

3
4h+ 1

)(
I0,1(h)

I1,1(h)

)

and

G(h)

(
I ′′0,1(h)

I ′′1,1(h)

)
=

(
1
4h −1

4h

−1
4 −1

4h

)(
I ′0,1(h)

I ′1,1(h)

)
,

where G(h) = h(h+ 1). Noting that G(h) ̸= 0 for h ∈ (−1, 0) and

ω′
1(h) =

I ′1,1(h)

I0,1(h)
− ω1(h)

I ′0,1(h)

I0,1(h)
, ω′

2(h) =
I ′′1,1(h)

I ′0,1(h)
− ω2(h)

I ′′0,1(h)

I ′0,1(h)
,

we obtain (2.27) and (2.28). This completes the proof.

3 Proof of the main results

In order to prove Theorem 1.1, we first introduce some helpful results in the literature. Let V be a

finite-dimensional vector space of functions, real-analytic on an open interval I.
Definition 3.1 (See [4]). We say that S is a Chebyshev space, provided that each non-zero function

in S has at most dim(S)− 1 zeros, counted with multiplicity.

Proposition 3.2 (See [4]). The solution space S of a second order linear analytic differential equation

x′′ + a1(t)x
′ + a2(t)x = 0

on an open interval I is a Chebyshev space if and only if there exists a nowhere vanishing solution

x0(t) ∈ S (x0(t) ̸= 0, ∀ t ∈ I).
Proposition 3.3 (See [4]). Suppose the solution space of the homogeneous equation

x′′ + a1(t)x
′ + a2(t)x = 0

is a Chebyshev space and let R(t) be an analytic function on I having l zeros (counted with multiplicity).

Then every solution x(t) of the non-homogeneous equation

x′′ + a1(t)x
′ + a2(t)x = R(t)

has at most l + 2 zeros on I.
In the following we denote by #{φ(h) = 0, h ∈ (a, b)} the number of isolated zeros of φ(h) on (a, b)

taking into account the multiplicity, and we also denote by Θk(h) the polynomial of degree at most k.

Lemma 3.4. Suppose that h ∈ (−1, 0).

(i) If n = 2, 3, then there exist polynomials P 1
2 (h), P

1
1 (h) and P 1

0 (h) of h with degree respectively 4, 3

and 2 such that L1(h)Φ(h) = 0.

(ii) If 4 6 n 6 7, then there exist polynomials P 2
2 (h), P

2
1 (h) and P 2

0 (h) of h with degree respectively

2n− 4, 2n− 5 and 2n− 6 such that L2(h)Φ(h) = 0.

(iii) If n > 8, then there exist polynomials P 3
2 (h), P

3
1 (h) and P 3

0 (h) of h with degree respectively 2n−6,

2n− 7 and 2n− 8 such that L3(h)Φ(h) = 0, where

Φ(h) = α(h)I0,1(h) + β(h)I1,1(h)
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and

Li(h) = P i
2(h)

d2

dh2
+ P i

1(h)
d

dh
+ P i

0(h), i = 1, 2, 3. (3.1)

Proof. Without loss of generality, we only prove (iii). (i) and (ii) can be shown similarly. By (2.18), we

have

V ′(h) = (E −B)−1(Bh+ C)V ′′(h),

where V (h) = (I0,1(h), I1,1(h))
T, and

E =

(
1 0

0 1

)
, B =

(
4
5

4
15

0 4
3

)
, C =

(
16
15 0
4
3 0

)
.

Hence,

Φ(h) = τ(h)V (h) = τ(h)(Bh+ C)V ′(h)

= τ(h)(Bh+ C)(E −B)−1(Bh+ C)V ′′(h)

=: Θn−3(h)I
′′
0,1(h) + Θn−2(h)I

′′
1,1(h),

where τ(h) = (α(h), β(h)), Θn−3(h) denotes a polynomial in h of degree at most n − 3, etc. For Φ′(h),

we have

Φ′(h) = τ ′(h)V (h) + τ(h)V ′(h)

= [τ ′(h)(Bh+ C) + τ(h)](E −B)−1(Bh+ C)V ′′(h)

=: Θn−4(h)I
′′
0,1(h) + Θn−3(h)I

′′
1,1(h).

In a similar way, we have

Φ′′(h) = Θn−5(h)I
′′
0,1(h) + Θn−4(h)I

′′
1,1(h).

Next, suppose that

P2(h) =
2n−6∑
k=0

p2,kh
k, P1(h) =

2n−7∑
m=0

p1,mhm, P0(h) =
2n−8∑
l=0

p0,lh
l (3.2)

are polynomials of h with coefficients p2,k, p1,m and p0,l to be determined such that L(h)Φ(h) = 0 for

0 6 k 6 2n− 6, 0 6 m 6 2n− 7, 0 6 l 6 2n− 8. (3.3)

By a straightforward computation, we have

L(h)Φ(h) = P2(h)Φ
′′(h) + P1(h)Φ

′(h) + P0(h)Φ(h)

= [P2(h)Θn−5(h) + P1(h)Θn−4(h) + P0(h)Θn−3(h)]I
′′
0,1(h)

+ [P2(h)Θn−4(h) + P1(h)Θn−3(h) + P0(h)Θn−2(h)]I
′′
1,1(h)

=: X(h)I ′′0,1(h) + Y (h)I ′′1,1(h),

where X(h) and Y (h) are polynomials of h with degX(h) 6 3n− 11 and deg Y (h) 6 3n− 10.

Let

X(h) =

3n−11∑
i=0

xih
i, Y (h) =

3n−10∑
j=0

yjh
j ,

where xi and yj are expressed by p2,k, p1,m and p0,l in (3.2) linearly, k, m and l satisfy (3.3). Let

xi = 0, yj = 0, 0 6 i 6 3n− 11, 0 6 j 6 3n− 10. (3.4)
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Then System (3.4) is homogenous linear equations with 6n− 19 equations and about 6n− 18 variables of

p2,k, p1,m and p0,l for k, m and l satisfying (3.3). It follows from the theory of linear algebra that there

exist p2,k, p1,m and p0,l such that (3.4) holds, which yields L(h)Φ(h) = 0. This completes the proof.

Lemma 3.5. Let Φ(h) = α(h)I0,1(h) + β(h)I1,1(h).

(i) If n = 2, 3, then Φ(h) has at most 4 zeros on (−1, 0), taking into account the multiplicity.

(ii) If 4 6 n 6 7, then Φ(h) has at most 3n− 8 zeros on (−1, 0), taking into account the multiplicity.

(iii) If n > 8, then Φ(h) has at most 3n− 11 zeros on (−1, 0), taking into account the multiplicity.

Proof. We only prove (iii). (i) and (ii) can be proved in a similar way. Let χ1(h) = α(h) + β(h)ω1(h).

So Φ(h) = I0,1(h)χ1(h) which implies

#{Φ(h) = 0, h ∈ (−1, 0)} = #{χ1(h) = 0, h ∈ (−1, 0)}.

By (2.27) we know that χ1(h) satisfies

G(h)β(h)χ′
1(h) =

1

4
hχ1(h)

2 + F1(h)χ1(h) + F0(h) (3.5)

with degF0(h) 6 2n− 8. Recall that the inequality (4.8) in [22] is

ν 6 σ + λ+ 1,

where ν, σ and λ correspond here to #{χ1(h) = 0, h ∈ (−1, 0)}, #{F0(h) = 0, h ∈ (−1, 0)} and

#{β(h) = 0, h ∈ (−1, 0)}, respectively. Hence, we have for h ∈ (−1, 0),

#{χ1(h) = 0} 6 #{β(h) = 0}+#{F0(h) = 0}+ 1 6 3n− 11.

Hence,

#{Φ(h) = 0, h ∈ (−1, 0)} = #{χ1(h) = 0, h ∈ (−1, 0)} 6 3n− 11.

This completes the proof.

Proof of Theorem 1.1. We only prove (iii). (i) and (ii) can be proved similarly.

Let M1(h) = hn−3M(h). Then M1(h) has the same zeros as M(h) on (−1, 0). For the sake of clearness,

we split the proof into three steps.

(1) For h ∈ (−1, 0), L3(h)M1(h) = R(h), where L3(h) is defined by (3.1),

R(h) = Θ2n−4(h) ln
1−

√
h+ 1

1 +
√
h+ 1

+Θ3n−9(h)
1

h(h+ 1)
3
2

. (3.6)

In fact, from Lemma 2.4, we have

Ψ(h) := γ(h)I2,0(h) + δ(h)I0,2(h)

= c1[γ(h) + 2δ(h)]
√
h+ 1− c1hδ(h) ln

1−
√
h+ 1

1 +
√
h+ 1

:= Θn−4(h)
√
h+ 1 + hΘ3(h) ln

1−
√
h+ 1

1 +
√
h+ 1

,

Ψ′(h) = Θn−4(h)
1√
h+ 1

+Θ3(h) ln
1−

√
h+ 1

1 +
√
h+ 1

,

Ψ′′(h) = Θn−3(h)
1

h(h+ 1)
3
2

+Θ2(h) ln
1−

√
h+ 1

1 +
√
h+ 1

.

(3.7)

From Lemma 3.4(iii), we have

L3(h)M1(h) = L3(h)Ψ(h) = P 3
2 (h)Ψ

′′(h) + P 3
1 (h)Ψ

′(h) + P 3
0 (h)Ψ(h). (3.8)

Substituting (3.7) into (3.8) gives (3.6).
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(2) Zeros of R(h) for h ∈ (−1, 0).

Denote that U = {h ∈ (−1, 0) |Θ2n−4(h) = 0}. For h ∈ (−1, 0)\U , by detailed computations, we get(
R(h)

Θ2n−4(h)

)′

=
Θ5n−12(h)

Θ2
2n−4(h)h

2(h+ 1)
5
2

. (3.9)

Since h2(h+ 1)
5
2 ̸= 0 for h ∈ (−1, 0), we have

#{R(h) = 0, h ∈ (−1, 0)} 6 7n− 15. (3.10)

(3) Zeros of M(h) for h ∈ (−1, 0).

By Lemma 3.5, we have Φ(h) has at most 3n− 11 zeros on (−1, 0). We assume that

P 3
2 (h̃i) = 0, Φ(h̄j) = 0, h̃i, h̄j ∈ (−1, 0), 1 6 i 6 2n− 6, 1 6 j 6 3n− 11.

Denote h̃i and h̄j by h∗
m, and reorder them such that h∗

m < h∗
m+1 for m = 1, 2, . . . , 5n− 17. Let

∆s = (h∗
s, h

∗
s+1), s = 0, 1, . . . , 5n− 17,

where h∗
0 = −1, h∗

5n−16 = 0. Then P 3
2 (h) ̸= 0 and Φ(h) ̸= 0 for h ∈ ∆s and L3(h)Φ(h) = 0. By

Proposition 3.2, the solution space of

L3(h) = P 3
2 (h)

(
d2

dh2
+

P 3
1 (h)

P2(h)

d

dh
+

P 3
0 (h)

P2(h)

)
= 0

is a Chebyshev space on ∆s. By Proposition 3.3, M1(h) has at most 2 + ls zeros for h ∈ ∆s, where ls is

the number of zeros of R(h) on ∆s. Therefore, we obtain for h ∈ (−1, 0),

#{M(h) = 0} = #{M1(h) = 0}
6 #{R(h) = 0}+ 2 · the number of the intervals of ∆s

+ the number of the end points of ∆s

6 22n− 64.

This completes the proof.

Proof of Theorem 1.2. If a+i,j = a−i,j and b+i,j = b−i,j , i.e., the system (1.4) is smooth. Since Γh is

symmetric with respect to the x-axis for h ∈ (−1, 0), Ai,2l(h) =
∮
Γh

xi−4y2ldx = 0, l = 0, 1, 2, . . . , where

Γh = Γ+
h ∪ Γ−

h , Ai,j(h) = Ii,j(h) + Ji,j(h).

Hence, from Lemma 2.2 we have

M(h) =


1

hn−3
[α̃(h)A0,1(h) + β̃(h)A1,1(h)], n = 2, 3,

1

hn−3
[α(h)A0,1(h) + β(h)A1,1(h)], n > 4,

where α̃(h) is a constant, and β̃(h), α(h) and β(h) are polynomials of h with deg β̃(h) 6 1, degα(h) 6 n−4

and deg β(h) 6 n− 3. By the same proof of Lemma 3.5, we have

#{M(h) = 0, h ∈ (−1, 0)} 6
{
4, n = 2, 3,

3n− 8, n > 4.
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