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1 Introduction

The approximation properties of deep neural network models are among the most tantalizing problems in

machine learning. It is widely believed that deep neural network models are more accurate than shallow

ones. Yet convincing theoretical support for such a speculation is still lacking. Existing work on the

superiority of the deep neural network models are either for very special functions such as the examples

given in [7], or special classes of functions such as the ones having a specific compositional structure.

For the latter, the most notable are the results proved by Poggio et al. [6] that the approximation error

for deep neural network models is exponentially better than the error for the shallow ones for a class of

functions with specific compositional structure. However, given a general function f , one cannot calculate

the distance from f to such class of functions. In the more general case, Yarotsky [8] considered Cβ-

differentiable functions, and proved that the number of parameters needed to achieve an error tolerance

of ε is O(ε−
d
β log 1

ε ). Montanelli and Du [5] considered functions in the Koborov space. Using connection

with sparse grids, they proved that the number of parameters needed to achieve an error tolerance of ε

is O(ε−
1
2 (log 1

ε )
d).

For shallow networks, there has been a long history of proving the so-called universal approximation

theorem, going back to the 1980s (see [2]). For networks with one hidden layer, Barron [1] established

a convergence rate of O(n− 1
2 ) where n is the number of hidden nodes. Such universal approximation

theorems can also be proved for deep networks. Lu et al. [4] considered networks of width d + 4 for
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functions in d dimension, and proved that these networks can approximate any integrable function with

sufficient number of layers. However, they did not give the convergence rate with respect to depth. To

fill in this gap, we give a simple proof that the same kind of convergence rate for shallow networks can

also be proved for deep networks.

The main purpose of this paper is to prove that for analytic functions, deep neural network approxima-

tions converge exponentially fast. The convergence rate deteriorates as a function of the dimensionality

of the problem. Therefore the present result is only of significance in low dimension. However, this result

does reveal a real superior approximation property of the deep networks for a wide class of functions.

Specifically, this paper contains the following contributions:

(1) We construct neural networks with fixed width d + 4 to approximate a large class of functions,

where the convergence rate can be established.

(2) For analytic functions, we obtain exponential convergence rate, i.e., the depth needed only depends

on log 1
ε instead of ε itself.

2 The setup of the problem

We begin by defining the network structure and the distance used in this paper, and proving the corre-

sponding properties for the addition and composition operations.

We will use the following notation:

(1) Colon notation for subscript: Let {xm:n} = {xi : i = m,m+ 1, . . . , n} and {xm1:n1,m2:n2} = {xi,j :

i = m1,m1 + 1, . . . , n1, j = m2,m2 + 1, . . . , n2}.
(2) Linear combination: Denote y ∈ L(x1, . . . , xn) if there exist βi ∈ R, i = 1, . . . , n, such that

y = β0 + β1x1 + · · ·+ βnxn.

(3) Linear combination with ReLU activation: Denote ỹ ∈ L̃(x1, . . . , xn) if there exists y ∈ L(x1, . . . , xn)

and ỹ = ReLU(y) = max(y, 0).

Definition 2.1. Given a function f(x1, . . . , xd), if there exist variables {y1:L,1:M} such that

y1,m ∈ L̃(x1:d), yl+1,m ∈ L̃(x1:d, yl,1:M ), f ∈ L(x1:d, y1:L,1:M ), (2.1)

where m = 1, . . . ,M , l = 1, . . . , L − 1, then f is said to be in the neural nets class FL,M

(
Rd

)
, and

{y1:L,1:M} is called a set of hidden variables of f .

A function f ∈ FL,M can be regarded as a neural net with skip connections from the input layer to

the hidden layers, and from the hidden layers to the output layer. This representation is slightly different

from the one in standard fully-connected neural networks where connections only exist between adjacent

layers. However, we can also easily represent such f using a standard network without skip connection.

Proposition 2.2. A function f ∈ FL,M

(
Rd

)
can be represented by a ReLU network with depth L+ 1

and width M + d+ 1.

Proof. Let {y1:L,1:M} be the hidden variables of f that satisfies (2.1), where

f = α0 +
d∑

i=1

αixi +
L∑

l=1

M∑
m=1

βl,myl,m.

Consider the following variables {h1:L,1:M}:

hl,1:M = yl,1:M , hl,M+1:M+d = x1:d

for l = 1, . . . , L, and

h1,M+d+1 = α0 +

d∑
i=1

αixi, hl+1,M+d+1 = hl,M+d+1 +

M∑
m=1

βl,mhl,m

for l = 1, . . . , , L − 1. One can see that h1,m ∈ L̃(x1:d), hl+1,m ∈ L̃(hl,1:M+d+1), m = 1, . . . ,M + d + 1,

l = 1, . . . , L− 1, and f ∈ L(hL,1:M+d+1), which is a representation of a standard neural net.
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Proposition 2.3 (Addition and composition of neural net class FL,M ). (1) We have

FL1,M + FL2,M ⊆ FL1+L2,M , (2.2)

i.e., if f1 ∈ FL1,M

(
Rd

)
and f2 ∈ FL2,M

(
Rd

)
, then f1 + f2 ∈ FL1+L2,M .

(2) We have

FL2,M ◦ FL1,M+1 ⊆ FL1+L2,M+1, (2.3)

i.e., if f1(x1, . . . , xd) ∈ FL1,M+1

(
Rd

)
and f2(y, x1, . . . , xd) ∈ FL2,M

(
Rd+1

)
, then

f2(f1(x1, . . . , xd), x1, . . . , xd) ∈ FL1+L2,M+1

(
Rd

)
.

Proof. For the addition property, denote the hidden variables of f1 and f2 as {y(1)1:L1,1:M
} and {y(2)1:L2,1:M

},
respectively. Let

y1:L1,1:M = y
(1)
1:L1,1:M

, yL1+1:L1+L2,1:M = y
(2)
1:L2,1:M

.

By definition, {y1:L1+L2,1:M} is a set of hidden variables of f1 + f2. Thus f1 + f2 ∈ FL1+L2,M .

For the composition property, denote the hidden variables of f1 and f2 as {y(1)1:L1,1:M+1} and {y(2)1:L2,1:M
},

respectively. Let

y1:L1,1:M+1 = y
(1)
1:L1,1:M+1, yL1+1:L1+L2,1:M = y

(2)
1:L2,1:M

,

yL1+1,M+1 = yL1+2,M+1 = · · · = yL1+L2,M+1 = f1(x1, . . . , xd).

One can see that {y1:L1+L2,1:M+1} is a set of hidden variables of f2(f1(x),x), thus the composition

property (2.3) holds.

Definition 2.4. Given a continuous function φ(x), x ∈ [−1, 1]d and a continuous function class

F([−1, 1]d), define the L∞ distance

dist(φ,F) = inf
f∈F

max
x∈[−1,1]d

|φ(x)− f(x)|. (2.4)

Proposition 2.5 (Addition and composition properties for distance function). (1) Let φ1 and φ2 be

continuous functions. Let F1 and F2 be two continuous function classes. Then

dist(α1φ1 + α2φ2,F1 + F2) 6 |α1|dist(φ1,F1) + |α2|dist(φ2,F2), (2.5)

where α1 and α2 are two real numbers.

(2) Assume that φ1(x) = φ1(x1, . . . , xd), φ2(y,x) = φ2(y, x1, . . . , xd) satisfy φ1([−1, 1]d) ⊆ [−1, 1].

Let F1([−1, 1]d) and F2([−1, 1]d+1) be two continuous function classes. Then

dist(φ2(φ1(x),x),F2 ◦ F1) 6 Lφ2dist(φ1,F1) + dist(φ2,F2), (2.6)

where Lφ2 is the Lipschitz norm of φ2 with respect to y.

Proof. The additional property obviously holds. Now we prove the composition property. For any

f1 ∈ F1 and f2 ∈ F2, one has

|φ2(φ1(x),x)− f2(f1(x),x)|
6 |φ2(φ1(x),x)− φ2(f1(x),x)|+ |φ2(f1(x),x)− f2(f1(x),x)|
6 Lφ2∥φ1(x)− f1(x)∥∞ + ∥φ2(y,x)− f2(y,x)∥∞.

Take f⋆
1 = argminf∥φ1(x)− f(x)∥∞ and f⋆

2 = argminf∥φ2(y,x)− f(y,x)∥∞. Then

|φ2(φ1(x),x)− f⋆
2 (f

⋆
1 (x),x)| 6 Lφ2dist(φ1,F1) + dist(φ2,F2).

Thus the composition property (2.6) holds.
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Now we are ready to state the main theorem for the approximation of analytic functions.

Theorem 2.6. Let f be an analytic function over (−1, 1)d. Assume that the power series f(x) =∑
k∈Nd akx

k is absolutely convergent in [−1, 1]d. Then for any δ > 0, there exists a function f̂ that can

be represented by a deep ReLU network with depth L and width d+ 4, such that

|f(x)− f̂(x)| < 2
∑
k∈Nd

|ak| · exp(−dδ(e−1L
1
2d − 1)) (2.7)

for all x ∈ [−1 + δ, 1− δ]d.

3 Proof

The construction of f̂ is motivated by the approximation of the square function φ(x) = x2 and multi-

plication function φ(x, y) = xy proposed in [3, 8]. We use this as the basic building block to construct

approximations to monomials, polynomials, and analytic functions.

Lemma 3.1. The function φ(x) = x2, x ∈ [−1, 1] can be approximated by deep neural nets with an

exponential convergence rate:

dist(φ = x2,FL,2) 6 2−2L. (3.1)

Proof. Consider the function

g(y) =

{
2y, 0 6 y < 1/2,

2(1− y), 1/2 6 y 6 1.

Then g(y) = 2y − 4ReLU(y − 1/2) in [0, 1]. Define the hidden variables {y1:L,1:2} as follows:

y1,1 = ReLU(x), y1,2 = ReLU(−x),

y2,1 = ReLU(y1,1 + y1,2), y2,2 = ReLU(y1,1 + y1,2 − 1/2),

yl+1,1 = ReLU(2yl,1 − 4yl,2), yl+1,2 = ReLU(2yl,1 − 4yl,2 − 1/2)

for l = 2, 3, . . . , L− 1. Using induction, one can see that |x| = y1,1 + y1,2 and

gl(|x|) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
l

(|x|) = 2yl+1,1 − 4yl+1,2, l = 1, . . . , L− 1

for x ∈ [−1, 1]. Now let

f(x) = |x| −
L−1∑
l=1

gl(|x|)
22l

.

Then f ∈ FL,2, and |x2 − f(x)| 6 2−2L for x ∈ [−1, 1].

Lemma 3.2. For the multiplication function φ(x, y) = xy, we have

dist(φ = xy,F3L,2) 6 3 · 2−2L. (3.2)

Proof. Notice that

φ = xy = 2

(
x+ y

2

)2

− 1

2
x2 − 1

2
y2.

Applying the addition properties (2.2), (2.5) and Lemma 3.1, we obtain (3.2).

Now we use the multiplication function as the basic block to construct monomials and polynomials.

Lemma 3.3. For a monomial Mp(x) of d variables with degree p, we have

dist(Mp,F3(p−1)L,3) 6 3(p− 1) · 2−2L. (3.3)



E W et al. Sci China Math October 2018 Vol. 61 No. 10 1737

Proof. Let

Mp(x) = xi1xi2 · · ·xip , i1, . . . , ip ∈ {1, . . . , d}.

Using induction, we assume that the lemma holds for the degree-p monomial Mp, and consider a degree-

(p+ 1) monomial Mp+1(x) = Mp(x) · xip+1 . Let φ(y, x) = yx. Then Mp+1(x) = φ(Mp(x), xip+1). From

the composition properties (2.3), (2.6) and Lemma 3.2, we have

dist(Mp+1,F3pL,3) 6 dist(φ(Mp(x), xip+1),F3L,2 ◦ F3(p−1)L,3)

6 Lφdist(Mp,F3(p−1)L,3) + dist(φ,F3L,2)

6 3p · 2−2L.

Note that the Lipschitz norm Lφ = 1 since xip+1 ∈ [−1, 1].

Lemma 3.4. For a degree-p polynomial

Pp(x) =
∑
|k|6p

akx
k, x ∈ [−1, 1]d, k = (k1, . . . , kd) ∈ Nd,

we have

dist(Pp,F(p+d
d )(p−1)L,3) < 3(p− 1) · 2−2L

∑
|k|6p

|ak|. (3.4)

Proof. The lemma can be proved by applying the addition properties (2.2), (2.5) and Lemma 3.3.

Note that the number of monomials of d variables with degree less than or equal to p is
(
p+d
d

)
.

Now we are ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let

ε = exp(−dδ(e−1L
1
2d − 1)).

Then L = [e( 1
dδ log

1
ε + 1)]2d. Without loss of generality, assume

∑
k |ak| = 1. We will show that there

exists f̂ ∈ FL,3 such that ∥f − f̂∥∞ < 2ε.

Denote

f(x) = Pp(x) +R(x) :=
∑
|k|6p

akx
k +

∑
|k|>p

akx
k.

For x ∈ [−1+ δ, 1− δ]d, we have |R(x)| < (1− δ)p, thus truncation to p = 1
δ log

1
ε will ensure |R(x)| < ε.

From Lemma 3.4, we have dist(Pp,FL,3) < 3(p− 1) · 2−2L′
, where

L′ = L

(
p+ d

p

)−1

(p− 1)−1 > L

[
(p+ d)d

(d/e)d

]−1

p−1

= L

[
e

(
1

dδ
log

1

ε
+ 1

)]−d(
1

δ
log

1

ε

)−1

=

[
e

(
1

dδ
log

1

ε
+ 1

)]d(
1

δ
log

1

ε

)−1

≫ log
1

ε
+ log

1

δ

for d > 2 and ε ≪ 1, and then

dist(Pp,FL,3) < 3(p− 1) · 2−2L′
≪ ε.

In the case of d = 1, note that the polynomial

Pp(x) = a0 + a1x+ · · ·+ apx
p = a0 + x(a1 + x(· · · (ap−1 + apx) · · · )).

Following the proof of Lemma 3.3, one can see that

dist(Pp,F3(p−1)L′,3) 6 3(p− 1) · 2−2L′
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for d = 1 and
∑p

k=1 |ak| 6 1. Thus

L′ =
L

3(p− 1)
=

1

3

[
e

(
1

δ
log

1

ε
+ 1

)]2(
1

δ
log

1

ε
− 1

)−1

≫ log
1

ε
+ log

1

δ

still holds, and dist(Pp,FL,3) ≪ ε.

Therefore, there exists f̂ ∈ FL,3 such that ∥Pp − f̂∥∞ < ε, and

∥f − f̂∥∞ 6 ∥f − Pp∥∞ + ∥Pp − f̂∥∞ < 2ε.

The proof is completed.

One can also formulate Theorem 2.6 as follows:

Corollary 3.5. Assume that the analytic function f(x) =
∑

k∈Nd akx
k is absolutely convergent in

[−1, 1]d. Then for any ε, δ > 0, there exists a function f̂ that can be represented by a deep ReLU

network with depth L = [e( 1
dδ log

1
ε + 1)]2d and width d+ 4, such that |f(x)− f̂(x)| < 2ε

∑
k |ak| for all

x ∈ [−1 + δ, 1− δ]d.

4 The convergence rate for the general case

Here, we prove that for deep neural networks, the approximation error decays like O((N/d)−
1
2 ) where N

is the number of parameters in the model. The proof is quite simple but the result does not seem to be

available in the existing literature.

Theorem 4.1. Given a function f : Rd → R with the Fourier representation

f(x) =

∫
Rd

eiω·xf̂(ω)dω,

and a compact domain B ⊂ Rd containing 0, let

Cf,B =

∫
B

|ω|B |f̂(ω)|dω,

where |ω|B = supx∈B |ω ·x|. Then there exists a ReLU network fL,M with width M + d+1 and depth L,

such that ∫
B

|f(x)− fL,M (x)|2dµ(x) 6
8C2

f,B

ML
, (4.1)

where µ is an arbitrary probability measure.

Here, the number of parameters N satisfies

N = (d+ 1)(M + d+ 1) + (M + d+ 2)(M + d+ 2)(L− 1) + (M + d+ 2) = O((M + d)2L).

Taking M = d, we will have L = O(N/d2) and the convergence rate becomes

O((ML)−
1
2 ) = O((N/d)−

1
2 ).

Note that in the universal approximation theorem for shallow networks with one hidden layer, one can

prove the same convergence rate

O(n− 1
2 ) = O((N/d)−

1
2 ).

Here, n is the number of hidden nodes and N = (d+ 2)n+ 1 is the number of parameters.

Theorem 4.1 is a direct consequence of the following theorem by Barron [1] for networks with one

hidden layer and sigmoidal type of the activation function. Here, a function σ is sigmoidal if it is

bounded measurable on R with σ(+∞) = 1 and σ(−∞) = 0.
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Theorem 4.2. Given a function f and a domain B such that Cf,B is finite, given a sigmoidal func-

tion σ, there exists a linear combination

fn(x) =
n∑

j=1

cjσ(aj · x+ bj) + c0, aj ∈ Rd, bj , cj ∈ R,

such that ∫
B

|f(x)− fn(x)|2dµ(x) 6
4C2

f,B

n
. (4.2)

Notice that

σ(z) = ReLU(z)− ReLU(z − 1)

is sigmoidal, so we have the following corollary.

Corollary 4.3. Given a function f and a set B with Cf,B finite, there exists a linear combination of n

ReLU functions

fn(x) =
n∑

j=1

cjReLU(aj · x+ bj) + c0,

such that ∫
B

|f(x)− fn(x)|2dµ(x) 6
8C2

f,B

n
.

Next, we convert this shallow network to a deep one.

Lemma 4.4. Let fn : Rd → R be a ReLU network with one hidden layer (as shown in the previous

corollary). For any decomposition n = m1 + · · · +mL, nk ∈ N⋆, fn can also be represented by a ReLU

network with L hidden layers, where the l-th layer has ml + d+ 1 nodes.

Proof. Denote the input by x = (x1, . . . , xd). We construct a network with L hidden layers in which

the l-th layer has ml + d+ 1 nodes {hl,1:ml+d+1}. Similar to the construction in Proposition 2.2, let

hL,1:d = hL−1,1:d = · · · = h1,1:d = x1:d, hl,d+j = ReLU(al,j · x+ bl,j)

for j = 1, . . . ,ml, l = 1, . . . , L, and

h1,d+m1+1 = c0, hl+1,d+ml+1+1 = hl,d+ml+1 +

ml∑
j=1

cl,jhl,d+j

for l = 1, . . . , L − 1. Here, we use the notation al,j = am1+···+ml−1+j (the same for bl,j and cl,j). One

can see that

h1,m ∈ L̃(x1:d), hl+1,m ∈ L̃(hl,1:d+ml+1), m = 1, . . . , d+ml + 1, l = 1, . . . , L− 1

and

hl,d+ml+1 = c0 +

m1+···+ml−1∑
j=1

cjReLU(aj · x+ bj).

Thus

fn = hL,d+mL+1 +

mL∑
j=1

cL,jhL,d+j ∈ L(hL,1:d+mL+1)

can be represented by this deep network.

Now consider a network with L layers where each layer has the same width M+d+1. From Lemma 4.4,

this network is equivalent to a one-layer network with ML hidden nodes. Applying Corollary 4.3, we

obtain the desired approximation result for deep networks stated in Theorem 4.1.
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