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2Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Email: arnaud.cheritat@math.univ-toulouse.fr, A.L.Epstein@warwick.ac.uk

Received April 28, 2018; accepted July 17, 2018; published online November 20, 2018
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Douady-Ghys-Herman-Świ ↪atek. We also give sufficient conditions for which, instead, ∆ has not compact closure
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1 Introduction

1.1 Singular values and finite type maps

The origin of the notion of singular values is hard to trace back. It seems to date from Hurwitz or before

(see [4, 18,19]).

Definition 1.1. Let f : S → S ′ be an analytic map between Riemann surfaces. A regular value

is a point z ∈ S ′ which has an evenly covered neighbourhood V , i.e., V is open and the restriction

f : f−1(V ) → V is a covering. A point z ∈ S ′ which is not a regular value is called a singular value. An

asymptotic value is a point z ∈ S ′ which is the limit of the image by f of a continuous path in S going

to infinity1). A critical value is the image by f of a critical point of f .

The following is well known; see for example Proposition 1 in [12]2).

Proposition 1.2. The set of singular values Sing f is the closure of the union of the set C(f) of critical

values and of the set A(f) of asymptotic values:

Sing f = C(f) ∪A(f).

*Corresponding author
1) In the sense of Alexandrov, i.e., leaving every compact set.
2) The notation Sing f is not used in [12]. Instead, he uses Sing f−1 to refer to C(f) ∪A(f), not to its closure.
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Remark 1.3. Some authors use the term singular values to denote C(f) ∪ A(f), not its closure. Of

course if this union is finite then it equals its closure.

Definition 1.4 (See [6, 10, 11]). A finite type map is an analytic map f : dom f = S → S ′, where S
and S ′ are two Riemann surfaces, S ′ is compact, f is open, f has no removable isolated singularities, and

the set of singular values of f is finite.

Being open for an analytic map is equivalent to not being constant on any connected component of

the domain.

1.2 Statement

Theorem 1.5. Let Ĉ be the Riemann sphere, U be an open subset, and f : U → Ĉ be a finite type

map such that

• Sing f ⊂ {a, b, c} for some a, b, c ∈ Ĉ,
• a ∈ U and a is a neutral fixed point of f , with eigenvalue e2πiθ with θ ∈ R,
• θ is a bounded type irrational,

• either c ∈ Ĉ− U or f(c) = c.

Let ∆ be the Siegel disk of f at a. Consider the lift γ starting from a of any injective path γ′ going from a

to b while avoiding {a, b, c} in between. Then either

(1) γ ends on a non-critical point in U , in which case U = Ĉ and f is a homography3),

(2) or γ ends on a critical point, called the main critical point and then ∆ is a quasidisk whose boundary

going through the main critical point, and through no other critical point,

(3) or γ leaves every compact subset of U and then ∆ has not compact closure in U .

Kneser [20] proved that the set of homeomorphisms of Ĉ is connected. Using the group of homographies,

the set of homeomorphisms of Ĉ that fix three given points is also connected. It implies that any two

paths γ′ as in the theorem above are homotopic relative to {a, b, c}. By homotopy lifting (Lemma 5.2

applied to X = [0, 1] or X = [0, 1)) this implies that the three cases are exclusive even for different γ′. It

also implies that in Case (2), the endpoint is independent of the choice of γ′. It is called the main critical

point.

The three cases cover all possibilities because if the path does not leave every compact subset of U then

it has to converge for otherwise its set of accumulation would be a continuum bigger than one point but

then since γ′ converges, f would map such a continuum to one point, which contradicts the fact that f

is analytic and open.

In Subsection 3.2, we give some information on the quasiconformal constant of ∆ (see Proposition 3.7).

1.3 About isolated removable singularities and restrictions of finite type maps

In the definition of finite type maps there is the requirement that no isolated singularity is removable.

Our proof does not require this condition and would work with a modified definition of finite type maps

that omits this requirement. However, this would not have any advantage.

Indeed, removing an isolated point z from the domain of f requires adding f(z) to Sing f . In particular

if the restricted map satisfies the condition of our theorem, then the initial map also does. Moreover, the

conclusion of the theorem on the initial map is more informative as on the restricted map (if the main

critical point turns out to be removed, we pass from Case (2) to Case (1) and hence loose the quasicircle

property for instance).

Remark 1.6. More generally, how much can we restrict a finite type map into finite type maps?

Assume that we have a finite type map f , and want to take a restriction g that is still a finite type

map, except that we do not require for f nor g that there is no isolated singularity. Note that f(dom f

∩ ∂ dom g) ⊂ Sing g. Since Sing g is finite, this implies that dom f ∩ ∂ dom g is discrete, and hence we

3) This case does not require all the assumptions: as we will see in the proof, it is enough for instance to keep the first

assumption (Sing f ⊂ {a, b, c}), to assume that a ∈ U is fixed and non-critical, and of course that γ ends on a non-critical

point in U .
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can only remove isolated points. If instead we use the full definition of finite type maps (i.e., requiring

that there is no isolated singularity) it follows that restricting the domain of a finite type map without

restricting its range never gives a finite type map. Note also that if the range is connected there is no

way to restrict it, because in the definition of the finite type map, the range must be compact.

1.4 Applications

Our main result covers some families for which it was already known, but also many new cases. It does

not cover some other families for which it is known by different methods. Let us detail this here.

Let us denote by (i) and (ii) the following cases:

(i) The boundary of the Siegel disk is a quasicircle containing a critical point.

(ii) The Siegel disk is not compactly contained in the domain of f .

If the rotation number has bounded type, then (i) and (ii) cover all the cases by a theorem of Graczyk

and Świ ↪atek (see [13]). Recall that we call U the domain of f and that f must be a finite type map from

U to Ĉ with Sing f ⊂ {a, b, c}.
That a bounded type Siegel disk of period one of a quadratic polynomial satisfies (i) has been known

to follow from work of Herman and Świ ↪atek from the Douady-Ghys surgery (see [8]). This result has

been extended (to all periods) for all polynomials of degree > 2 by an unpublished work of Shishikura,

and to all rational maps of degree > 2 by Zhang [26]. Our result applies only to period one Siegel disks

of specific polynomials or rational maps and of course always yields (i) when the degree is at least two,

so it brings no novelty there. For polynomials we take c = ∞ in the statement of our main theorem. The

polynomial must be either unicritical or have at most two finite critical values (but can have possibly

more critical points). If it has two finite critical values, one of them must be the Siegel disk center.

Concerning rational maps, we should assume that a is a critical value, for otherwise the map would

either be a homography or a bicritical rational map, and b and c would both have only one preimage

and since c is fixed, the rational map would be conjugate to a polynomial. We do not enumerate here

the rational maps to which our theorem applies, because it would be long and probably pointless given

it is superseded by the work of Zhang, yet we give an example. Let us fix a = 0, b = ∞, c = 1 and

let f : z 7→ P ◦ µ(z) where P (z) = 3z2 − 2z3 is the cubic polynomial whose finite critical points are 0

and 1 and are fixed (the other preimage of 0 is 3/2 and the other preimage of 1 is −1/2), and µ(z) is a

homography that satisfies µ(0) = 3/2, P ′(3/2) × µ′(0) = e2πiθ and µ(1) = either 1 or −1/2. This gives

two possible functions µ which yield two non-conjugate rational maps f = P ◦ µ, one for which the fixed

critical value c is a critical point, the other for which it is not a critical point.

In the realm of transcendental maps, we take c = ∞ in the statement of our main theorem. We then

recover the fact that the bounded type Siegel disks of period one in the exponential family z 7→ exp(z)+κ

are unbounded, i.e., satisfy (ii), which was first proved by Herman [17]. We also recover (i) in the case of

the map eiθ sin z, via a semi-conjugacy z 7→ z2 to the map z 7→ e2iθ(sin
√
z)2. Note that θ has bounded

type if and only if 2θ has bounded type. This case was first treated by Zhang [25], and the boundary of its

Siegel disk contains exactly two critical points. We also recover (i) for the maps studied by Chéritat [7]:

in particular the horn maps of parabolic points of quadratic polynomials, when the center of the Siegel

disk is one of the ends of the Écalle cylinder, and the uncountable family of entire maps with two critical

values and no singular values, when the center of the Siegel disk is one of these values.

In fact the present article can be seen as generalization of [7], and stems from a remark that the second

author made while reading it: in [7] the first author used specific properties of horn maps, the fact that

they descend through extended Fatou coordinates, to get rigidity; the second author realized that this

property was not needed, and introduced the homotopy arguments used here instead.

The set of finite type maps over Ĉ with only three singular values is quite big, much bigger than just

the set of all horn maps of finite type maps: for example we can deform such maps by the following

procedure, which can also be applied as soon as the domain of definition is not too big. More precisely

let f be a finite type map whose domain U is such that there exists an injective map ϕ : U → Ĉ different

from a homography. Fixing a and whose derivative equals one at the Siegel center of f , then if µ is
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any homography fixing a with derivative 1, then f̃ := f ◦ ϕ ◦ µ is still a finite type map. By choosing

µ appropriately, we can preserve the conditions of the theorem, in particular the condition f̃(c) /∈ U or

f̃(c) = c.

2 Proof of Case (1)

The assumption of Case (1) is that the path γ ends on a non-critical point of f .

Denote by b′ the endpoint of γ. Denote by V the connected component containing a of the preimage

by f of Ĉ− {c} and note that V contains b′. Denote

W = V − f−1({a, b}).

The restriction of f to W is a covering of Ĉ− {a, b, c}. Choose a point z0 on the curve γ close to a. Let

z1 = f(z0). Consider a small loop α winding once around a and based on z0. The image of this loop by

f is a small loop α′ = f ◦α winding once around a and based on z1. Let β be concatenation of γ followed

from z0 to a point w0 close to b′, of a small loop around b′ based on w0 and then the first portion followed

backwards. Let β′ = f ◦ β. The fundamental group G of Ĉ− {a, b, c} with basepoint z1 is generated by

α′ and β′. The covering

f :W → Ĉ− {a, b, c}

is characterized by the image of the fundamental group of W based on z0 by f , as a subgroup of G. This

image contains the two generators α′ and β′ and thus the covering is trivial, in the sense that it is a

homeomorphism. We saw that V contains a and b′. It cannot contain any other preimage of a or b for

otherwise there would be a point near such a preimage that is mapped to the same point as a point near a

or b′, contradicting injectivity of f on W . Hence V = W ∪ {a, b′} and f is bijective from V to Ĉ− {c}.
Recall that f is analytic, and thus f is an isomorphism from V to Ĉ − {c}. Now since V is a subset of

the Riemann sphere that is isomorphic to C, we necessarily have V = Ĉ− c′ for some c′ ∈ Ĉ. The map f

is an isomorphism from Ĉ−{c′} to Ĉ−{c} and thus a homography. This homography extends to Ĉ into

a map sending c′ to c. By hypothesis f has no isolated removable singularity, and hence dom f = Ĉ.

3 Proof of Case (2)

The assumption of Case (2) is that the path γ ends on a critical point of f .

We will use quasiconformal surgery. The initial idea is due to Ghys’ works on degree two polynomials

and starts from a Blaschke product, that induces a critical circle map of appropriate rotation numbers.

Then the Blaschke product is modified inside the disk into a quasiconformal rotation. An invariant

Beltrami form µ̃ is naturally defined, and a properly normalized straightening of µ̃ conjugates the Blaschke

product to a map that shares sufficiently many properties with the degree two polynomial z 7→ ρz + z2

for one to be able to prove it is equal to it.

Call b′ the main critical point, i.e., the endpoint of γ.

3.1 A surgery

The following diagram summarizes the process (see the text for details):

..f .β. β̃. f̃ = f ..

conformal map,

Schwarz reflection

.

surgery

.

straightening

.

given,

analytic

.

analytic,

commutes

with 1/z̄

.

quasiregular,

= β outside D

.

analytic,

same cover as f
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For a start, conjugating f by a homography we can assume that

a = 0, b = 1 and c = ∞.

3.1.1 A pre-model

We construct here a pre-model β, following the construction done in [7]. This is illustrated in Figure 1.

Let D denote the unit disk in C. Then D ∩ Sing f ⊂ {0}. Let ∆′ be the connected component

containing 0 of f−1(D). The set ∆′ is simply connected by Lemma 5.3 and since it contains 0 which

is a non-critical preimage of 0, it follows that we are in the case k = 1 of the lemma. By Lemma 5.4,

∆′ is a Jordan domain and f is injective on ∆′. By the Jordan-Schoenflies theorem, the set Ĉ − ∆′ is

homeomorphic to the unit disk too. There is thus a (non-unique) conformal map

ψ : Ĉ− D → Ĉ−∆′

fixing ∞ = c:

ψ(c) = c.

By Caratheodory’s theorem, ψ extends to the closures to a homeomorphism from Ĉ−D to Ĉ−∆′, that

we denote

ψ : Ĉ− D → Ĉ−∆′.

The critical point b′ of f lies at the end of the pull-back starting from a of the segment [a, b] = [0, 1].

In particular,

b′ ∈ ∂∆′.

Other critical points map to either 0, 1 or ∞, and hence by injectivity of f on ∆
′
, the point b′ is the only

critical point of f on ∆
′
.

Consider the map

βhalf = f ◦ ψ : U ′ → Ĉ,

where U ′ = ψ−1(U) = ψ−1(U \ ∆′). Since ψ is proper, the distance from f ◦ ψ(z) to D tends to 0 as

z → ∂D. It follows from the Schwarz reflection theorem that there exists a holomorphic extension of

f ◦ ψ to a map β : domβ → Ĉ defined on domβ = U ′ ∪ ∂D ∪ s(U ′) where s(1/z) = z; in other words, β

is the Schwarz reflection of βhalf. Note also that if c ∈ U and f(c) = c then, since c = ∞ /∈ D, we have

β(c) = βhalf(c) = f(ψ(c)) = f(c) = c:

β(c) = c. (3.1)

The point

b′β := ψ
−1

(b′) ∈ ∂D

is mapped to b by β and is a critical point of β of local degree 2d− 1 where d is the local degree of the

critical point b′ of f . We call it the main critical point of β. Note that if c ∈ dom f then β(c) = f(c) = c.

Following a wide-spread convention, we will call a critical circle map any map from a circle to itself

that is analytic, has at least one critical point, yet is a homeomorphism and last preserves orientation.

Assertion 3.1. The restriction of β to ∂D is a critical circle map.

Proof. The map β sends the circle ∂D to itself and is analytic by construction (this is one of the striking

conclusions of the Schwarz reflection theorem). Since f is injective on ∂∆′ it follows that β is injective on

the circle ∂D. It is orientation preserving because f maps ∆′ to D; more precisely pick any non-critical

point z of β in ∂D; then ψ−1(z) ∈ ∂∆′ is non-critical for f and f maps any nearby point outside ∆′

to a point outside D, and hence β maps any point close to z and outside D to a point outside D, so is

orientation preserving near this point, and hence everywhere since it is a homeomorphism. Since there is

at least one critical point of β on ∂D, it follows that the restriction of β to ∂D is a critical circle map.
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...f .βhalf. β.

ψ̄

.

reflect.

.

a

.

b′

.

c

.

a

.

b′β

.

c

.

b

.

c

.

∂D

Figure 1 Sketch of the objects in the construction of the premodel β (see Subsection 3.1.1). The non-hatched part

indicates domains of the maps from top to bottom. The graph inside the domains indicates a portion of the preimage

of (∂D)

3.1.2 A model

We turn to the construction of the model β̃. This is illustrated in Figure 2. By the theory of the

rotation number, there exists a unique τ ∈ R/Z such that β ◦ Rτ has rotation number θ on ∂D, where
Rτ (z) = e2πiτz. Replacing β by β ◦ Rτ amounts to replacing ψ by ψ ◦ Rτ , i.e., by another choice of

conformal map from Ĉ− D to Ĉ−∆′ fixing ∞. So from now on we assume that

β has rotation number θ on the unit circle.

We recall now one of the equivalent definitions of a quasisymmetric map from the circle to itself [14].

Definition 3.2. Let k > 1. Let f : ∂D → ∂D be a homeomorphism and f̃ : R → R a continuous lift

by the universal cover R → ∂D: x 7→ e2πix. The map f is termed k-quasisymmetric if it is orientation

preserving and if ∀x ∈ R and ∀h > 0,

k−1 6 |f̃(x+ h)− f̃(x)|
|f̃(x)− f̃(x− h)|

6 k.

With this definition, a 1-quasisymmetric self map of ∂D is necessarily an isometry (rotation or reflection

according to whether or not it preserves the orientation).

A theorem of Herman [15] and Świ ↪atek [24] (see Theorem 3.8 in the present article) ensures that a

critical circle map with a rotation number of bounded type is quasisymmetrically conjugate to a rotation:

there exists a quasisymmetric self map ϕ of ∂D such that

∀ z ∈ ∂D, β(z) = ϕ−1 ◦Rθ ◦ ϕ(z),

where Rθ(z) = e2πiθz. A theorem of Ahlfors and Beurling [3] ensures that a quasisymmetric circle map

has an extension to a quasiconformal homeomorphism of the disk that we still denote by ϕ. We can

assume moreover that ϕ(0) = 0, replacing ϕ if necessary by its composition with an appropriate self-

diffeomorphism of D equal to identity near ∂D. We now modify the pre-model β by surgery into a model

map β̃ as follows:

∀ z ∈ Ĉ− D, β̃(z) = β(z),

∀ z ∈ D, β̃(z) = ϕ−1 ◦Rθ ◦ ϕ.

These two definitions coincide on ∂D. Since a = 0 we have β̃(a) = a. If c ∈ dom f then since c = ∞ we

have β̃(c) = β(c), β̃(c) = c. We now make use of two theorems.
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...f .β. β̃.

ψ̃

.

surgery

.

a

.

b′

.

c

.

a

.

b′β

.

c

.

a

.

b

.

c

.

∂D

Figure 2 Sketch of the objects in the construction of the model β̃ (see Subsection 3.1.2). The set D is in dark grey to

indicate where β̃ is not analytic. The map ψ̃ is a quasiconformal homeomorphism of Ĉ

Theorem 3.3 (Quasiconformal removability of analytic curves, see [21, Theorem 3.2 p. 2024)]). If Γ

is an analytic simple arc or a simple closed curve and ϕ : U → V is a homeomorphism that is K-

quasiconformal on U − Γ, then ϕ is K-quasiconformal on U .

Theorem 3.4 (Rickman’s lemma, see [23]). Assume that C ⊂ V ⊂ U ⊂ Ĉ with U and V open and C

closed rel. U . Assume that ϕ : V → Ĉ and Φ : U → Ĉ are homeomorphisms to their images, that ϕ is

quasiconformal, that Φ is quasiconformal on U − C and that Φ = ϕ on C. Then

(1) Φ is quasiconformal,

(2) ∂Φ/∂z̄ = ∂ϕ/∂z̄ almost everywhere on C.

According to [5, Definition 1.34], a quasiregular map is a continuous map that is locally K-

quasiconformal for a uniform K on the complement of a discrete set. From this and Theorem 3.4 above,

we deduce that β̃ is quasiregular: the discrete set to remove from dom β̃ is the set of critical points of β

that do not lie in D (there is one such point b′ on ∂D, that we henceforth remove), and the only place

where Theorem 3.4 is used is in neighborhoods W in C of points z ∈ ∂D − {b′}, taking ϕ = β, Φ = β̃,

U = V =W , C =W − D.
By definition the relation β̃ = f ◦ ψ holds on U ′ ∪ ∂D. We want it to also hold on D: it is convenient

here, and will also be useful in some proof later.

Lemma 3.5. There is a unique extension of ψ into a homeomorphism ψ̃ of Ĉ, such that

β̃ = f ◦ ψ̃,

in the sense that the two hand sides have the same domain and are equal on it. Moreover ψ̃ is quasicon-

formal and ψ̃(a) = a.

Proof. Being a bijection, a homeomorphism ψ̃ satisfying the equation must satisfy ψ̃(D) = ∆′. The

map f restricts to a bijection from ∆′ to D, and in this proof we call g its inverse. In particular g(a) = a.

Note that ψ restricts to a bijection from ∂D to ∂∆′. Hence ψ̄ = g ◦ β̃ holds on ∂D. Also, we necessarily

have ψ̃ = g ◦ β̃ on D. This implies ψ̃(a) = a. Conversely if we set ψ̃ = g ◦ β̃ on D, this matches with

ψ̄ on ∂D, and hence we get a continuous bijection ψ̃ extending ψ̄. Since the range Ĉ is compact, ψ̃ is a

homeomorphism. By construction it is quasiconformal on the complement of ∂D. Finally by Theorem 3.3,

ψ is a quasiconformal homeomorphism of Ĉ.

4) In [21], the definition of F is in Subsection 9.1 of Page 47 completed with the definition of K in Subsection 8.3 of

Page 44, and M is the classical modulus of a (topological) quadrilateral in the complex plane.



2146 Chéritat A et al. Sci China Math December 2018 Vol. 61 No. 12

As an immediate consequence, f and β̃ have the same set of critical values and the same set of

asymptotic values and the same set of singular values:

Sing β̃ = Sing f.

Note that by construction D is a rotation domain for β̃.

3.1.3 Straightening

Recall that ϕ is a quasiconformal map used to define β̃ in D (see the previous section). Let µ be the

Beltrami form (ellipse field) on D, defined as the pull-back by ϕ of the null form (for which all ellipses

are circles). The restriction of β̃ to D, which is equal to ϕ−1 ◦ Rθ ◦ ϕ, preserves µ. By a standard

procedure, one extends the Beltrami form µ into a unique β̃-invariant Beltrami form µ̃ that vanishes

outside
∪

n∈N β̃
−n(D). Let S be the unique straightening5) of µ̃ that fixes a, b and c and let

f̃ = S ◦ β̃ ◦ S−1.

If c ∈ dom f then since f(c) = c ∈ {a, b, c} it is fixed by S and since β̃(c) = c we get in particular,

f̃(c) = c.

The null Beltrami form is invariant by f̃ , and hence f̃ is analytic. It is a finite type map with

Sing f̃ = Sing f ⊂ {a, b, c}.

Proposition 3.6. There exists a homography h with h(a) = a and h′(a) = 1 and such that f = f̃ ◦ h.
In particular dom f̃ = h(dom f). If moreover c /∈ U or f(c) = c then h = id, i.e., f̃ = f .

Proof. Consider the following commuting diagram:

.

The outer part reads

with T := S ◦ ψ̃−1 and Ũ := dom f̃ = T (U). Note that T is in fact a quasiconformal homeomorphism

of Ĉ and that the support of its Beltrami differential is contained in U .

Note that

∥µ̃∥∞ = ∥µ∥∞ < 1.

For t a complex number with |t| < 1/∥µ̃∥∞, let St be the unique straightening of tµ̃ that fixes a, b

and c: by a theorem of Ahlfors and Bers [2], the solution will depend continuously on t and better: for

each z ∈ Ĉ, the function t 7→ St(z) is analytic. It is a particular instance of holomorphic motion. The

restriction to values of t in [0, 1] gives an isotopy St rel {a, b, c} from S0 = IdĈ to S1 = S.

By homotopy lifting (Lemma 5.2 applied to gt = S1−t ◦ f) there exists a family Tt : U → Ũ for

|t| < 1/∥µ̃∥∞ with T1 = T but T0 not necessarily the identity, and satisfying St ◦ f = f̃ ◦ Tt, i.e., the
following diagram commutes:

5) S and ϕ may not coincide on D
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.

The family Tt ◦ T−1 is a holomorphic motion of Ũ that is constant on the set f̃−1({a, b, c}). Let us

extend Tt into a map T̃t : Ĉ → Ĉ by setting T̃t(z) = T (z) for z ∈ U and T̃t(z) = T (z) for z ∈ Ĉ− U , i.e.,

on Ĉ − U it is constant with respect to t and equal to T . We still have that T̃t ◦ T−1 is a holomorphic

motion. In particular T0 is quasiconformal. In fact, T0 is holomorphic in U and since it is equal to the

identity on Ĉ−U , T0 is holomorphic by the second claim of Rickman’s lemma (see Theorem 3.4). Hence

T0 = h for some homography h and since S0 = id: f = f̃ ◦ h.
Let us prove that h fixes a and that h′(a) = 1. First, f̃(a) = a ∈ {a, b, c} and hence the motion Tt◦T−1

is constant on a: h(a) = T0(a) = T (a) = S(ψ̃−1(a)) = a. Second, we have the relation S0 ◦ f = f̃ ◦ h.
Now S0 = id and f ′(a) = f̃ ′(a): this follows from the topological invariance of the rotation number (for

maps with a Siegel disk as f and f̃ , this invariance follows from the invariance of the rotation number of

circle maps). Hence h′(a) = 1 by the chain rule.

Now in the case that either c /∈ U or f(c) = c, let us prove that h(c) = c, from which it follows that

h = id and hence f̃ = f . In the first case the holomorphic motion Tt◦T−1 is immobile on the complement

of Ũ , we get T0 = T on U , and hence h(c) = T0(c) = T (c) = S(ψ̃−1(c)) = c. In the other case, we have

f̃(c) = f(c) = c ∈ {a, b, c} and hence the motion is constant on c and we conclude similarly.

3.2 Consequences

As a consequence, f has a Siegel disk ∆ whose boundary is a quasicircle, and contains the critical point b′

and its image b.

We have some information on the quasiconformal constant of ∂∆: let an be the entries of the continued

fraction expansion of the bounded type number θ.

Proposition 3.7. If d is the local degree of b′ and sup an 6 M then ∆ is a K-quasicircle with K =

K(d,M). Also, there exists an annulus separating ∆ from ∂ dom f and of modulus greater than or equal

to ε(d,M).

Let us justify this proposition. We will use the following theorem that controls the quasi symmetry

constant in the Herman-Świ ↪atek theorem.

Theorem 3.8 (See [15,16,24]). Let F be a set of holomorphic maps defined in a neighbourhood of the

unit circle and such that the following properties hold:

(1) there exists an open set A containing the unit circle C and contained in the domain of all f ∈ F ,

(2) f(C) = C and the restriction of f to C has at least one critical point, yet is a homeomorphism and

preserves the orientation,

(3) there exists M such that for every f ∈ F , the rotation number of f has all its entries less than or

equal to M ,

(4) the class F is precompact on A for the Euclidean metric.

Then there exists k > 1 such that all f ∈ F are k-quasi symmetrically conjugated to rotations.

It follows from [15] complemented by Herman [16]. Uniformity is stated in [16] only for Blaschke

fractions, but the proof works exactly the same for families satisfying the above assumptions.

Lemma 3.9. The set domβ contains an annulus A that contains ∂D, is symmetric with respect to ∂D,
and whose modulus is greater than some positive universal constant that depends only on the local degree d

of the main critical point b′. It follows that the set dom f − ∆′ contains an annulus A′ one of whose

boundary components is ∂∆′, and whose modulus is half the modulus of A. Moreover β factors on A as

β |A = gd ◦ ι where gd is a map independent of β, defined on an abstract Riemann surface homeomorphic

to an annulus and taking values in Ĉ, and ι is a conformal isomorphism. Moreover, A ∩ β−1(a) = {a},
A ∩ β−1(b) = {b′β} and A ∩ β−1(c) = ∅.
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Figure 3 Illustrations for the proof of Lemma 3.9. In the first frame, the sphere Ĉ is cut along the real line, that passes

through a = 0, b = 1, and c = ∞. We mark with respectively one, two and zero tick marks the segments [0, 1], [1,∞],

[∞, 0]. Each hemisphere has all its preimages by f complete and univalent. We can thus see dom f , as a Riemann surface

over Ĉ, as a collection of a finite or countable number of copies of the two simply connected sets depicted in the second

frame, that get glued together along their boundaries of the same colors. The conformal class of the two pieces, with their

three marked boundary points, is unique, and the way two boundaries are glued is unique too: it has to be the identity in

the chart represented in the first frame. Third frame: If d denotes the local degree of the critical point b′, there must be

exactly d distinct copies of each of the two pieces glued together around b′ along their one tick and two ticks marked lines.

Fourth frame: The fixed point a of f must be at the end of one of these one tick marked lines, and since a is not cricital,

the two corresponding pieces are also glued along their boundaries without tick marks. In the fifth frame we added the

dashed outline of ∆′, the component of f−1(D) that contains a. This component is removed in the sixth frame and the

set Ĉ−∆
′
is conformally mapped to Ĉ− D, represented on the seventh frame as half cylinder H/Z, unwrapped (one must

identify the left and right boundaries). A reflection is performed on the last frame and gives us an annulus contained in

domβ and whose conformal class depends only on d

Proof. Figure 3 illustrates the construction. Consider the upper and lower half planes H and H− as

subsets of Ĉ. They contain none of the singular values. Since they are simply connected, it follows

that for every connected component W of f−1(V ) with V = H or V = H−, the map f is an analytic

isomorphism from W to V . By studying the way the components W whose boundaries contain b′ must

be attached to each other along their boundaries, one can prove that f factors through a universal map

on some topological disk D ⊂ dom f containing b′ : fD = hd ◦ ιf , ιf : D → D0. Let A′ = D −∆′. The

abstract Riemann surface D0 is constructed using copies of H and H−, with the identity map as charts,

that are glued along the three open segments that 0, 1 and ∞ cut R into and possibly glued at 0, 1 and ∞
too. The gluing is the identity map in these charts. The map hd from a piece to Ĉ is also the identity

map in these charts. If we remove from D0 the component of h−1
d (D) that contains the preimage of a,

we obtain the union A′
0 of an annulus and one of its boundary components, which is an analytic curve

except at one corner. Then we can proceed to a reflection along this boundary minus the corner and

complete it there, and we get an abstract Riemann surface A0 that is homeomorphic to an annulus, and

on which the map hd |A′
0
extends holomorphically into a map that we call gd. Let A be the union of ∂D,

A′′ = ψ−1(A′) and the reflection of the latter with respect to ∂D. By the Schwarz reflection theorem, the

isomorphism ιf ◦ ψ from A′′ to A′
0 reflects into an isomorphism ι : A→ A0. By definition of β it follows

that β |A′′ = hd ◦ ιf ◦ ψ and by analytic continuation we get β |A = gd ◦ ι.

We need the following extension lemma, a variation of a theorem of Ahlfors and Beurling [3] (see

also [9]).

Lemma 3.10 (See [3]). Let ϕ be a k-quasisymmetric orientation preserving homeomorphism of ∂D.
Then ϕ has a continuous extension on D to a homeomorphism that is K-quasiconformal on D and fixes 0,

where K depends only on k.

Proof. We list two remarks. First, the Ahlfor-Beurling theorem [3] is stated in a half plane H, not in

the unit disk. Second, the map they construct does not necessarily fix a point decided in advance, like

0 ∈ D or i ∈ H. However our claim is an easy consequence, using the exponential map. We justify it

below for completeness.

Indeed, let ϕ̃ be the lift of ϕ by R → ∂D: x 7→ e2πix. It commutes with T1 because ϕ is an orientation
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preserving homeomorphism of ∂D. By the definition of k-quasisymmetric that we chose earlier, ϕ̃ satisfies

the inequality

k−1 6 |ϕ̃(x+ h)− ϕ̃(x)|
|ϕ̃(x)− ϕ̃(x− h)|

6 k.

The following map ϕ̂ : H → H is defined [3]:

ϕ̂(x+ iy) =
1

2

∫ 1

0

[ϕ̃(x+ ty) + ϕ̃(x− ty)]dt

+
ir

2

∫ 1

0

[ϕ̃(x+ ty)− ϕ̃(x− ty)]dt

for some appropriate value of r that depends on k. Ahlfors and Beurling [3] proved that this gives a

K-quasiconformal extension of ϕ̃ with K 6 k2. It is easy to see from the formula defining ϕ̂ that this

extension commutes with T1 too, so it pushes down by z 7→ e2πiz to a homeomorphism of D∗
= D− {0}

that is K-quasiconformal on D∗ and has a continuous extension f : D → D fixing 0. By quasiconformal

removability of 0 (see Theorem 3.3), f is K-quasiconformal on D.

We consider now the set F of all possible functions β obtained by our construction from maps f and

satisfying the assumptions of Theorem 1.5, and with θ whose continued fraction entries are all less than

or equal to M . Let us check that F satisfies the assumption of Theorem 3.8. Number (2) holds by

construction (there is one and only one critical point of β̃ on ∂D). Number (3) holds by hypothesis

on θ. For Number (1), recall that we assume that either c /∈ dom f or f(c) = c. In the first case, since

domβ − D = ψ−1 dom f and ψ(c) = c, it follows that c /∈ domβ. In the other case, where f(c) = c, note

that β(c) = c by Equation (3.1) but by the last sentence of Lemma 3.9, A contains no preimage of c by β,

and hence A cannot contain c. In both cases, since c = ∞ we get

∞ /∈ A.

It is known6) that an annulus contained in C − D, with one of whose boundary components being ∂D,
and not containing some other point z ∈ C−D, has a modulus less than or equal to ε(|z|) with ε(R) → 0

as R → 1. We can apply this to Ahalf = A − D where A is given by Lemma 3.9. We have modAhalf

= 1
2 modA = modAhalf 6 ε(|c|). Since modA depends only on d, it follows that |z| cannot be too

close to 1: A contains “r < |z| < 1/r” for some r that depends only on d. Hypothesis (1) follows.

Hypothesis (4) follows from this and from the fact that β factors on A through a universal map as proved

in Lemma 3.9, β |A = gd ◦ ι.
So we can apply Theorem 1.5 to our family F : the conjugacies ϕ to a rotation of β on ∂D are k-

quasisymmetric for a common k that depends on d and M . By Lemma 3.10, it follows that ϕ has a

continuous extension on D to a homeomorphism that is K-quasiconformal on D and fixes 0, where K

depends only on k. It follows that ∥µ̃∥ 6 K−1
K+1 , and hence S is K-quasiconformal. This proves the first

part of Proposition 3.7. For the second part, one can take the annulus S(Ahalf). A lower bound ε(d,M)

on its modulus follows from S being K(d,M)-qc and from the fact that the modulus of Ahalf depends

only on d.

4 Proof of Case (3)

Here, we assume that γ leaves every compact subset of U .

Case 1. c /∈ U .

By way of contradiction let us assume that the Siegel disk ∆ is compactly contained in U = dom f .

By using [13] it follows that there is a critical point p ∈ ∂∆ ∩ U . Its image f(p) is singular, and hence

f(p) ∈ {a, b, c}. Now f(∂∆) ⊂ ∂∆. Indeed f is proper on ∆ since it is conjugate there to a rotation on

6) [1, Chapter III, Section A]: Three extremal problems, Problem I: Grötzsch.
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a disk. Hence f(p) belongs to the boundary of ∆ relative to U . It follows that f(p) ̸= a and also that

f(p) ∈ U . Since we assume c /∈ U this implies f(p) ̸= c. Hence

f(p) = b.

Consider then an injective path α starting from a, contained in the Siegel disk and ending at a point z0
close to p. Note that f ◦ α is also injective, because f is injective on the Siegel disk. We endow Ĉ with

a spherical metric and we may assume (shortening the path if necessary) that f(z0) is the closest point

to b in the path. Locally, analytic maps are equivalent to z 7→ zd for some d ∈ N. Hence there exists a

lift of the geodesic segment from f(z0) to b that starts from z0 and ends on p. The concatenation of f ◦α
and this segment is injective, goes from a to b, avoids c and the path γ = α · β is its unique lift starting

from a. We get a contradiction with the hypothesis.

Case 2. f(c) = c.

Assume by way of contradiction that ∆ is compactly contained in dom f .

Lemma 4.1. It holds that b /∈ ∂∆.

Proof. Otherwise, consider ε > 0 small. By compactness, there is only finitely many preimages b′i of b

on ∂∆ and any point in ∆ that maps in B(b, ε) must be close to one of these preimages. By connectedness

of ∆ there is an injective path γ that starts from a and goes to ∂B(b, ε) while staying in ∆. Complete

it with a straight segment to b. It is still injective provided the first part is stopped as soon as it meets

∂B(b, ε). On one hand, by what has been mentionned above, the preimage of the completed path will

be contained in ∆∪ a finite union of small neighbourhoods of the b′i. On the other hand the preimage of

this segment must leave every compact subset of dom f by the paragraph following Theorem 1.5. This

leads to a contradiction

By assumption on Sing f , a critical point is mapped to either a, b or c. Recall that7) f(∂∆) ⊂ ∂∆.

Since neither a nor b is in ∂∆, we get the following corollary.

Corollary 4.2. All critical points in ∂∆ map to c in one iteration of f .

The main result of [13] tells us that ∂∆ contains at least one critical point of f . By compactness there

is only finitely many of them on ∂∆, called c′1, . . . , c
′
m,m > 1.

Since c′1 ∈ ∂∆ and f(∂∆) ⊂ ∂∆, we get that c ∈ ∂∆. It follows that c cannot be critical for otherwise

it would be a critical fixed point, and thus have an attracting basin which would be an open set disjoint

from ∆ and containing c, preventing c ∈ ∂∆. As a consequence for all integers k with 1 6 k 6 m, we

have c′k ̸= c.

At this point we need to refine the result of [13]. Let S denote the Schwarzian derivative operator:

Sf = D(Nf)− (Nf)2/2 = f ′′′/f ′ − (3/2)(f ′′/f ′)2, where Df = f ′ and Nf = (D2f)/Df = f ′′/f ′. One

important fact in [13] was that, in the absence of critical points on ∂∆, the quantity Sf is bounded from

above on ∆. This is not anymore true in our case, because Sf has double poles at all the critical points.

Let h : D → ∆ be a conformal map fixing 0, so that

f ◦ h = h ◦Rθ (4.1)

holds on D. Since f has at least one critical point, its degree as a cover over Ĉ− {a, b, c} is at least two.

Hence the fixed point a has at least one preimage a′ different from a. A neighbourhood of a′ will be

disjoint from ∆. We will work in a coordinate system where a = 0 but where a′ = ∞ (as opposed to the

choice c = ∞ made in the previous section). In this case ∆ is a bounded subset of C. We will use the

following area form:

dA = ρ(z) dx ∧ dy = max

(
{1} ∪

{
1

|z − c′k|2
; 1 6 k 6 m

})
dx ∧ dy. (4.2)

7) For completeness, we justify this well-known fact: f being continuous we have f(∆) ⊂ ∆. Hence if we had a point

z ∈ ∂∆ such that f(z) /∈ ∂∆ we would have f(z) ∈ ∆. By definition of ∆, f is a bijection of ∆. Let g : ∆ → ∆ be its

inverse, which is holomorphic too. Consider zn ∈ ∆ such that zn → z. Then f(zn) → f(z) by continuity of f and hence

zn = g(f(zn)) −→ g(f(z)) by continuity of g. Hence z = g(f(z)) ∈ ∆ contradicting the assumption z ∈ ∂∆.
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Figure 4 Illustration for the area form dA. Left: the continuous curve represents ∂∆; however one has to imagine that

it is non-locally connected. The fixed point c is indicated, together with its critical preimages c′k. Right: a representation

of the same scene mapped in 3D space to a surface whose metric induces the area form dA; the three critical preimages of

the fixed point c that were on ∂∆ have been blown up into infinite half cylinders

Note that we use a power two exponent no matter what the multiplicity of c′k is. This is designed so that

|Sf(z)|/ρ(z) is bounded from above on h(D):

∀ z ∈ h(D), |Sf(z)| 6 Cρ(z). (4.3)

Indeed, the Schwarzian derivative near a critical point is a meromorphic function with a double pole, whose

leading coefficient depends on the multiplicity of the critical point. Such an area form dA corresponds

to a conformal metric
√
ρ(z)|dz| that is isometric to an infinite cylinder near each c′k (see Figure 4). We

will use the coordinate log(z − c′k)/2πi.

Let λ = e2πiθ so that

Rθ(ζ) = λζ.

Lemma 4.3. For ζ ∈ D let

H(ζ) = Sh(ζ)ζ2.

Then for all K > 1, there exist Q1 > 0 and r0 < 1 such that ∀ ζ ∈ D with |ζ| > r0 and ∀ i with

0 6 i 6 K/(1− |ζ|),

|H(λiζ)−H(ζ)| · (1− |ζ|)2 6 Q1 AreadA h(ring(1− |ζ|)),

where

ring(ε) =

{
ζ ∈ D ;

1

2
ε < 1− |ζ| < 3

2
ε

}
and the area is measured using the area form dA defined in Equation (4.2).

Proof. We reproduce here the result of first computation done in the proof of [13, Lemma 2.1], which

holds for any map satisfying Equation (4.1): for all i ∈ N, and ζ ∈ D,

|H(λiζ)−H(ζ)| = |Sf i(h(ζ))||ζh′(ζ)|2. (4.4)

Here, Sf i denotes the Schwarzian derivative of the i-th iterate of f . Denote zj = f j(z). Similar to [13],

we get from the chain rule for the Schwarzian that

|Sf i(z)| 6
i−1∑
j=0

|Sf(zj)||(f j)′(z)|2. (4.5)

We will estimate the following area: AreadA
[
h(B(ζ, (1− |ζ|)/Q))

]
where the area is measured using dA

defined in Equation (4.2) instead of the Euclidean metric (this is the main difference with [13]). We have

AreadA[h(B(ζ, (1− |ζ|)/Q))] =

∫
ζ′∈B(ζ,(1−|ζ|)/Q)

ρ(h(ζ ′))|h′(ζ ′)|2dλ(ζ ′),
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where dλ refers to the Lebesgue measure in C. By Koebe’s distortion theorems, there exists κ > 1 such

that ∀ ζ ∈ D, ∀ ζ ′ ∈ B(ζ, (1 − |ζ|)/2), we have 1/κ < |h′(ζ ′)/h′(ζ)| < κ. Also, using the Schwarz-Pick

metric (a.k.a. hyperbolic metric) of ∆ and its comparison with the distance to ∂∆ there exists α > 1 such

that ∀ ζ ′ ∈ B(ζ, |1−ζ|/2) and for all z ∈ C\∆: d(h(ζ ′), z) > d(h(ζ), z)/α (indeed the hyperbolic distance

in D from ζ to ζ ′ is bounded by a universal constant; the geodesic segment from ζ to ζ ′ is mapped by h

to a curve in ∆ whose hyperbolic length is shorter or equal; since z /∈ ∆, it follows that the element

u(w)|dw| of hyperbolic metric of ∆ satisfies u(w) > 1
4|w−z| by Koebe’s one quarter theorem; it follows

that the curve has a length at least of 1
4 | log

|h(ζ′)−z|
|h(ζ)−z| |). It follows that ρ(h(ζ ′)) > ρ(h(ζ))/α2. Hence

∀Q > 2,

ρ(h(ζ))|h′(ζ)|2π(1− |ζ|)2/Q2 6 (κα)2 AreadA[h(B(ζ, (1− |ζ|)/Q))]. (4.6)

Now given K > 0 we impose that 0 6 i 6 K/(1− |ζ|). As in [13], there exist then r0 < 1 and Q > 2 that

depend on K and on the upper bound Θ on the continued fraction entries of θ and such that if |ζ| > r0
then the balls B(λjζ, (1 − |ζ|)/Q) are disjoint for j varying from 0 to i, and thus must be their images

by h. Putting everything together we get

|H(λiζ)−H(ζ)|(1− |ζ|)2 6 Q1 AreadA[h(ring
′)], (4.7)

where ring′ = {ζ ′ ∈ D ; (1− 1
Q )(1− |ζ|) < 1− |ζ ′| < (1 + 1

Q )(1− |ζ|)}, and Q1 is some constant that

depends on Q, i.e., only on K and on Θ. Note that we assume Q > 2 so the ring for Q is included in the

ring for Q = 2

If we can prove that, for a given Q, this area tends to 0 as |ζ| → 1 (this claim is independend from Q),

then the rest of the argument of [13] carries on and we get that ∂∆ is a finite union of quasiconformal

arcs, hence locally connected. But then ∂∆ cannot contain a fixed point8), leading to a contradiction

with f(c) = c.

According to the discussion above there only remains to prove the following lemma.

Lemma 4.4. For the area form defined in Equation (4.2),

AreadA h(ring(ε)) → 0

as ε→ 1.

Proof. Consider the sequence of annuli An = h(ring(3−n)). The An are disjoint. It is enough to prove

AreaAn → 0: indeed ∀ ε < 1, ring(ε) is contained in two consecutive such annuli union their common

boundary which is a smooth curve.

..

Figure 5 Left: preimage near a critical point of attracting petals of a parabolic fixed point. Right: their image in cylinder

coordinates. In the latter, the width of the fjord between two petals decreases exponentially with respect to the height

8) This follows from [22, Lemma 18.7]. The lemma in this reference is stated for rational maps but holds in fact for any

map as soon as the Siegel disk is compactly contained in the domain of the map.
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In [13] the total area available was finite, and hence
∑

AreaAn = Area∆ < +∞ whence AreaAn → 0.

In our case there is an infinite amount of area available because of the cylindrical parts near the c′k. We

will prove that

AreadA ∆ < +∞

still holds in our case. There are several cases according to the nature of the fixed point c.

- It cannot be attracting nor Siegel since c ∈ ∂∆.

- If c is parabolic, it leaves too little room between its attracting petals: indeed the Siegel disk must

be disjoint from the attracting petals and therefore for each of the critical points c′k, ∆ is disjoint from

the preimage of the petals near this critical point. These petals have an order of tangency > 1, which in

cylinder coordinate (for which the area form becomes proportional to the Lebesgue measure) means that

the space between two consecutive petals is decreasing exponentially with the distance as we proceed

along the cylinder. Hence there is only a finite amount of area available to ∆ (See Figure 5).

- If c is repelling, consider its linearizing coordinate ϕ defined in a neighbourhood V of c: ϕ ◦ f(z) =
f ′(c) × ϕ(z). We may assume for convenience that ϕ(V ) is a round disk. Consider the quotient map

π : C∗ → C∗/Λ, where Λ is the group generated by the map z 7→ λz. The range is a torus. Consider

the map Π = π ◦ ϕ ◦ f , which is defined in a neighbourhood V ′
k of c′k. We take V ′

k small enough so that

f(V ′
k) ⊂ V and V ′

k ∩ V = ∅.
Assertion 4.5. The map Π is injective on ∆ ∩ domΠ.

Proof. Assume Π(z) = Π(z′). Consider the points w = f(z) and w′ = f(z′). From π(ϕ(w)) = π(ϕ(w′))

we deduce that one of w or w′ is an iterated image of the other, say w′ = f j(w), for some j > 0, with

fn(w) ∈ V for all n with 0 6 n 6 j. So f(z′) = f(f j(z)) and because f is injective on ∆ which contains

both z′ and f j(z), we get z′ = f j(z). If j > 1 we get a contradiction because z′ ∈ V ′
k and f j(z) ∈ V and

these sets are disjoint. So j = 0, i.e., z = z′.

As a corollary, the area of ∆ in the cylinders is finite.

- If c is Cremer, consider a ball B(c, ε) where f is injective. There is no more a linearizing coordinate ϕ.

However, by a similar argument to the repelling case, for each k, the set Uk := f(∆ ∩ B(c′k, ε
′)) with ε′

small enough has the property that for all z ∈ Uk, f(z) ∈ B(c, ε) and the forward orbit fn(z), n > 0 is

disjoint from Uk as long as it remains in B(c, ε). Now slice the cylinder of c′k into finite cylinders Cn of

equal height. The set f(Cn) is close to c where we do not have a cylinder. However, let us temporarily look

at a neighbourhood of c in a cylinder coordinate log(z − c)/2πi. The set f(Cn) is close to a sub-cylinder

with straight boundaries and its height increases linearly with n. On f(Cn) the map f is very close to

a horizontal translation: the error term is exponentially small with respect to n. It implies that a point

in f(Cn) needs a number of iterates that is at least exponential in n to leave B(c, ε). The disjointness

implies that the area of ∆ ∩ Cn has to be exponentially small.

5 Ramified coverings

This section is a collection of known facts about coverings and ramified coverings. For completeness,

we provide a proof for each. Below, S and similar notation refer to arbitrary Riemann surfaces. Recall

that C(f) denotes the set of critical values of f , A(f) the set of asymptotic values and that Sing f =

C(f) ∪A(f). Recall that a holomorphic map is open if and only if it is not constant on any of the

connected components of its domain.

Lemma 5.1 (Path lifting). Let f : dom f → S be holomorphic, open with dom f ⊂ S ′, γ : [0, 1] → S
be a path such that γ((0, 1)) ∩ (C(f) ∪A(f)) = ∅, and z0 ∈ dom f with f(z0) = γ(0). Then

• There exists a lift on [0, 1) of γ starting from z0, i.e., ∃ γ̃ : [0, 1) → dom f continuous with f ◦ γ̃ = γ

and γ̃(0) = z0.

• If z0 is not critical then the lift is unique.

• If γ(1) /∈ A(f) then γ̃(s) has a limit as s tends to 1.
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Proof. Let d be the local degree of f at z0. According to basic complex analysis, near z0 the map f

is equivalent to z 7→ zd, i.e., there exist open neighborhoods U of z0 and V of f(z0) and analytic

isomorphisms ϕ : U → D and ψ : V → D such that ∀ z ∈ D, ψ ◦ f ◦ ϕ−1(z) = zd. By continuity of γ

there exists ε > 0 such that γ([0, ε]) ⊂ V . By hypothesis γ((0, ε]) ⊂ V − {f(z0)}. Since f : U − {z0} →
V − {f(z0)} is a cover, it follows that there are exactly d lifts γ̂ of the restriction of γ to (0, ε] if we

require γ̂(ε) to belong to U . Moreover, since f : U → V is equivalent to zd as above, it follows that γ̂(t)

necessarily tends to z0 as t→ 0, so we can extend γ̂ to a continuous function at 0 with value z0.

Choose one such γ̂, defined on [0, ε] and consider the set E of continuous extensions γ̃ : [0, u) → dom f

of γ̂, with ε 6 u 6 1, such that ∀ t ∈ [0, u), f ◦ γ̃(t) = γ(t). Let U be the set of possible u. Then ε ∈ U
because γ̂ ∈ E . By restriction, it is immediate that if ε 6 u′ 6 u ∈ U then u′ ∈ U .

Next, we show that if γ̃1 : [0, u1) → dom f and γ̃2 : [0, u2) → dom f both belong to E then they

coincide on [0, u3) with u3 = min(u1, u2). It is enough to show that the set {t ∈ (0, u3) ; γ̃1(t) = γ̃2(t)}
is open, closed in [0, u3) and non-empty. It is closed by continuity; non-empty because it contains (0, u);

open because γ((0, 1)) does not meet the set of critical values of f and hence f is locally injective near

γ1(t) = γ2(t) for all t ∈ (0, u3).

Let u∞ = sup U . Then u∞ ∈ U because by the previous paragraph we can take γ̃ : [0, u∞) → dom f

to be the join of any sequence γ̃n : [0, un) → dom f with un ∈ U such that un → u∞.

It remains to show that u∞ = 1. Otherwise, consider the map γ̃ : [0, u) → dom f we just construct.

Since f ◦ γ̃ = γ on [0, u), since γ has a limit at t = u and since f is holomorphic and nowhere locally

constant, it follows by the isolated zero theorem that γ̃(t) either has a limit at t = u or leaves every

compact subset of dom f . In the second case, γ(u) is an asymptotic value, contradicting our assumption

that γ((0, 1))∩A(f) = ∅. Hence γ̃ has a continuous extension at t = u. By the same arguments as in the

first paragraph, we can then extend γ̃ further, leading to a contradiction with the definition of u∞. Note

that if γ(1) /∈ A(f) then the same argument proves that γ̃ has an extension to t = 1 as a continuous lift

of γ; this proves the third point of the lemma.

The second point stated in the lemma concerns uniqueness in the case where z0 is not critical. If another

lift γ̃′ exists with the same properties, then since γ̃′t is close to z0 when t is small, the first paragraph

above proves that γ̃′ and γ̃ are equal near 0. Uniqueness then follows from the third paragraph.

Lemma 5.2 (Homotopy lifting). The following commuting diagram illustrates the statement:

.

Let X be a topological space. Let f : S̃ → S be holomorphic and open. Let g : [0, 1] ×X → S : (t, x) 7→
gt(x) be continuous. Assume that h0 : X → S̃ is continuous, that f ◦ h0 = g0, that for every x ∈ X

with g0(x) ∈ Sing f , the function t 7→ gt(x) is constant, and that for every t ∈ (0, 1], gt(x) ∈ Sing f

⇒ g0(x) ∈ Sing f . Then there exists a unique extension h : [0, 1] ×X → S̃, (t, x) 7→ ht(x) of h0 that is

continuous and lifts g, i.e., such that ∀ t, gt = f ◦ ht. It is constant with respect to t for all x ∈ X such

that g0(x) ∈ Sing f .

Proof. Existence: Since Sing f is closed, its complement in S̃ is open. By the basic theory of singular

values, f is a covering from f−1(S − Sing f) to S − Sing f . Hence by the theory of coverings, there is a

unique continuous lift t 7→ ht of t 7→ gt starting from h0, if we restrict to S − Sing f in the range and to

f−1(S − Sing f) in the domain. Let us extend ht to every x ∈ Sing f by decreting that ht(x) = h0(x).

By the hypotheses, it automatically satisfies f ◦ ht = gt and is constant with respect to t for all x such

that g0(x) ∈ Sing f , but it is less obvious that the map h we obtain is continuous.

We already know that h is continuous in the open subset X − g−1
0 (Sing f) of X. Consider x∞ ∈ X

with g0(x∞) ∈ Sing f and let z∞ = g0(x∞) and z′∞ = h0(x∞). Note that by construction, the function

t 7→ ht(x∞) is constant, equal to z′∞. Let us show that the functions t 7→ ht(x) converge uniformly to this
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constant function as x→ x∞. Since f is holomorphic and nowhere locally constant, for all neighborhood U

of z′∞, there is a connected open neighborhood V of z∞ such that the connected component V ′ of f−1(V )

containing z′∞ is contained in U . Since g is continuous, [0, 1] compact and since t 7→ gt(x∞) is constant

equal to z∞, it follows that there exists a neighborhood W of x∞ such that gt(x) takes value in V

whenever x ∈ W and t ∈ [0, 1]. By taking a smaller W we can also assume that h0(W ) ⊂ V ′. It then

follows that for all x ∈W , ht(x) ∈ U .

Uniqueness: Because f is holomorphic and nowhere locally constant, any time the function t 7→ gt(x)

is constant, its lifts t 7→ ht(x) will be constant too. Hence h is determined when g0(x) ∈ Sing f . In

addition, on X − Sing f , uniqueness follows from the theory of coverings.

Let us define a family of models ρk and ρ∗k as follows. Let ρ0 : D → D, z 7→ 0 and for 0 < k < +∞,

ρk : D → D, z 7→ zk. Let ρ∞ : H → D, z 7→ exp z where H is defined by “Re(z) < 0”. If k < +∞
let ρ∗k be the restriction to D∗ = D− {0}. Note that all the models have the same range: D. Not all are

surjective, though.

Lemma 5.3. Assume f : dom f → S ′ is holomorphic, W ′ is an open subset of S ′ isomorphic to D,
a′ ∈ W ′ and W ′ ∩ Sing f ⊂ {a′}. Let ψ be any isomorphism from W ′ to D mapping a′ to 0. Then

for all connected components W of f−1(W ′), the restriction f : W → W ′ is equivalent to one of the

models ρ = ρk or ρ∗k above, and more precisely there exists an isomorphism ϕ : W → dom ρ such that

f = ψ−1 ◦ ρ ◦ ϕ on W .

Proof. The map f is a covering over W ′ − {a′}. If f is constant on W then this constant is a singular

value, thus equal to a′ so f is equivalent to ρ0 via ψ and any choice of the isomorphism ϕ : W → D.
Otherwise, we use the classification of coverings. The fundamental group of W ′−{a′} is isomorphic to Z.
The group of deck transformations is a subgroup completely characterized by its index k ∈ N∗ ∪ {∞}.
The restriction of f to W − f−1(a′) is equivalent via ϕ and some homeomorphism ϕ to one of the ρ∗k
or to ρ∞. This function ϕ must be analytic (this can be checked locally using ψ ◦ f = ρ∗k ◦ ϕ as every

other map in this diagram is analytic and locally invertible away from points corresponding to a′). If

W ∩ f−1(a′) = ∅ then we are done. Otherwise, consider a point a ∈ W such that f(a) = a′ and let d

be the local degree of f at a. Consider a simple loop around a in a small neighbourhood of a. Its image

by f winds d times around a′, and so does its image by ψ ◦ f around 0. Hence its image by ϕ, which is

injective, is a simple loop whose image by ρ winds d times. It follows that k = d, in particular k ̸= +∞.

Then, from the commutative diagram, it follows that ϕ extends continuously with ϕ(a) = a′, and the

extension is analytic by the erasable singularity theorem. Since the preimage of a small neighbourhood

of 0 by ρ∗k is connected, and f is continuous and f−1(a) is discrete, it follows that a is the only preimage

of a′ in W .

Recall that a Jordan curve is the image of an injective loop in a topological surface. We use here

the term Jordan domain to refer to open subsets W of a topological surface S for which there exists a

homeomorphism from the closed unit disk of C to W mapping the open unit disk to W . If W is a Jordan

domain then W −W is a Jordan curve, whence the name. With this terminology, the Jordan-Schoenflies

theorem can be restated as follows: any Jordan curve in the plane bounds a Jordan domain.

Lemma 5.4. Assume that we are in the case k = 1 of the previous lemma, i.e., f : W → W ′ is a

bijection. Call a the unique preimage of a′ in W . Assume also that W ′ is a Jordan domain as per the

definition above. Last, assume that for all v ∈ Sing f ∩ ∂W ′ there exists a path γ from a′ to v within W ′

whose lift γ̃ starting from a has an endpoint in dom f . Then W is a Jordan domain and the restriction

of f to ∂W is a bijection to ∂W ′.

Proof. By homotopy lifting (see Lemma 5.2), the endpoint of γ̃ depends only on the endpoint of γ. It

follows that f−1 :W ′ →W has a continuous extension g to W ′ taking values in dom f , for otherwise one

could construct a path γ whose lift does not converge in dom f . The map f ◦ g is defined on W ′ and is

the identity on W ′, and hence on W ′ by continuity. The map g must thus be injective. As an injective

continuous map defined on a compact set, g is a homeomorphism to its image. Its image is a closed set

hence must contain W , and by continuity is contained in W .
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21 Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane, 2nd ed. New York-Heidelberg: Springer-Verlag, 1973

22 Milnor J. Dynamics in one complex variable, 3rd ed. Annals of Mathematics Studies, vol. 160. Princeton: Princeton

University Press, 2006

23 Rickman S. Removability theorems for quasiconformal mappings. Ann Acad Sci Fenn Ser A, 1969, 449: 1–8
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