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Abstract Two optimal orthogonalization processes are devised to orthogonalize, possibly approximately, the

columns of a very large and possibly sparse matrix A ∈ Cn×k. Algorithmically the aim is, at each step, to

optimally decrease nonorthogonality of all the columns of A. One process relies on using translated small rank

corrections. Another is a polynomial orthogonalization process for performing the Löwdin orthogonalization.

The steps rely on using iterative methods combined, preferably, with preconditioning which can have a dramatic

effect on how fast the nonorthogonality decreases. The speed of orthogonalization depends on how bunched the

singular values of A are, modulo the number of steps taken. These methods put the steps of the Gram-Schmidt

orthogonalization process into perspective regarding their (lack of) optimality. The constructions are entirely

operator theoretic and can be extended to infinite dimensional Hilbert spaces.
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1 Introduction

This paper is concerned with optimal orthogonalization, possibly approximate, of the columns of a very

large and possibly sparse matrix A ∈ C
n×k with linearly independent columns. Preconditioning is

investigated to speed up orthogonalization processes. Denote by Q the set of n-by-k matrices with

orthonormal columns. By interpreting the steps of the Gram-Schmidt process as translated rank-one

corrections, among such methods they are far from optimal. For optimality, consider

min
X∈X , Q∈Q

‖AX −Q‖, (1.1)

where the subset X ⊂ C
k×k is determined by the constraints that X should satisfy. It is assumed

that X is set in such a way that the minimum exists. There should also exist a parameter j to increase

so as to improve approximations. Moreover, for moderate values of j, matrix-vector products with

X should be inexpensive. We are primarily interested in translated small rank corrections CI + Fj ,

where Fj ⊂ C
k×k denotes the set of matrices of rank j at most with j � n. Also a polynomial
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orthogonalization scheme is devised to perform a sparse Löwdin orthogonalization of quantum chemistry

[25,26]. In both cases the aim is, at each step, to optimally decrease nonorthogonality of all the columns of

A. Based on iterative methods, preferably combined with preconditioning, the schemes are parallelizable.

Orthogonalization may also take place implicitly, i.e., to retain sparsity, AX need not be explicitly formed.

Aside from computational harmonic analysis problems involving families of almost orthogonal wavelets

(Riesz sequences), the task arises naturally in preconditioning for the normal equations (see [20] for

polynomial preconditioning, i.e., polynomial orthogonalization). The problem occurs also in finite frame

theory in connection with the so-called frame inequality (see Example 3.3). In finite element method

(FEM) discretizations there is a balance; it is not acceptable to use elements giving rise to a very ill-

conditioned basis, although full orthogonality is not the goal either1). For approximate orthogonalization

deliberately avoiding the Gram-Schmidt process in signal processing applications, see [40].

Let X = CI + Fj . Then the speed of orthogonalization, as a function of the number of steps j, is

shown to depend on appropriately translated extreme singular values σj(A) of A such that (1.1) equals

ωj(A) = min
r∈R

max{|1− σj+1(rA)|, |1− σk−j(rA)|}

for j = 0, 1, . . . , �k−1
2 �. This is a non-increasing sequence such that the associated orthogonalization

process requires, unlike the Gram-Schmidt process, computational information about all the columns

of A. Besides optimality, it also retains locality since 2j columns get orthonormalized after j steps.

(In the Gram-Schmidt process j columns of A get orthonormalized after j steps.) In particular, zero is

attained after at most j = �k
2 � steps with an explicit connection to the Löwdin orthogonalization. For

the Löwdin orthogonalization and its applications, see, e.g., [9, 12, 27, 36, 40] and the references therein.

By requiring computing right singular vectors, in large scale problems the steps should rely on iterative

methods combined, preferably, with preconditioning. This is affordable if matrix-vector products with A

and its Hermitian transpose are inexpensive. In the square matrix case the orthogonalization process is

symmetric in the sense that ωj(A
∗) = ωj(A) holds, i.e., the speed is the same for the column and row

orthogonalization.

Let X = {p(A∗A) | deg(p) � j − 1}. This provides a natural option to polynomially perform an

optimal incomplete orthogonalization (1.1). An approximate Löwdin orthogonalization can be performed

by solving a positive polynomial approximation problem on the spectrum of the Gram matrix A∗A. In

particular, this determines the speed of the process. This alternative is attractive also for preconditioning

the case X = CI + Fj . Both of these processes described are unitarily invariant, admitting an operator

theoretic interpretation in a natural manner. This is of importance since in applications the matrix A

typically results from a discretely sampled infinite dimensional system. Then, in large dimensions, the

speed of orthogonalization of these schemes depend to a lesser extent on the dimension of the discretiza-

tion. Moreover, X = {p(A∗A) | deg(p) � j − 1} can be regarded as providing a more general scheme,

allowing orthogonalizing infinite dimensional systems without any immediate barriers. As opposed to

this, X = CI + Fj requires certain compactness assumptions, natural though.

These orthogonalization processes can be accelerated by preconditioning. Preconditioning orthog-

onalization is needed, e.g., in [31]. Denote the preconditioner by M ∈ C
k×k. The aim is then to

attain a faster decrease in nonorthogonality with the matrix AM . Since the proposed algorithms

rely on performing matrix-vector products, explicitly forming AM is not necessary. For an obvious

and very inexpensive choice, take M to be the diagonal scaling of the columns of A. (Scaling is a classical

technique (see [13, 24, 38] and the references therein).) This can be improved by extending it, e.g., to

sparse upper triangular matrices. We propose formulating the task of finding the QR factorization as an

optimization problem. This can then be modified to compute an approximate upper triangular factor in

an optimal way. There are also other alternatives. We show with an example how in FEM discretizations

circulant-like preconditioning can result in tremendous speed-ups in orthogonalization.

The rest of the paper is organized as follows. Section 2 starts with a description of how constraints

1) Full orthogonality typically spoils sparsity of matrices. In addition, since the dimensions can be huge, full orthogonal-

ization by using the Gram-Schmidt process is unrealistic in practice.
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in orthogonalization processes arise. Thereafter, bearing in mind the Löwdin and Gram-Schmidt orthog-

onalizations, optimal orthogonalization processes are devised and algorithms are derived. In Section 3,

applications and examples are presented. Associated operator theoretic remarks are made. In Section 4,

options to preconditioning are addressed, primarily in terms of scaling and an optimal formulation of an

approximate QR factorization. Numerical experiments are conducted in Section 5. Finally, Section 6

concludes the paper.

2 Optimal orthogonalization processes

Consider the problem (1.1) of approximate orthogonalization of the columns of a large and possibly sparse

matrix A ∈ C
n×k with linearly independent columns. (See [3] for the problem of having a sparse basis

matrix.) Although we deal with matrices, the constructions that follow extend to infinite dimensions,

i.e., let

{h1, . . . , hk} ⊂ H,

whereH is a separable complex Hilbert space equipped with an inner product (·, ·). For orthogonalization,
consider the “matrix”

A = [ h1 · · · hk ], (2.1)

which can be regarded as a linear map from C
k to H. The adjoint operator is then

A∗ =

⎡
⎢⎢⎣
(·, h1)

...

(·, hk)

⎤
⎥⎥⎦ .

These suffice to carry out the computations analogously. In practice k can be huge. For example, in FEM

discretizations of 3D problems, the number of FEM basis elements can easily be hundreds of millions.

Then methods such as Gram-Schmidt are not really applicable for full orthogonalization.

2.1 Constraints of orthogonalization

Regardless of the method to attain zero in (1.1), the solution X must satisfy the following constraints.

Here, Q denotes the set of n-by-k matrices with orthonormal columns.

Proposition 2.1. Suppose the columns of A ∈ C
n×k are linearly independent. If AX = Q with

Q ∈ Q, then

‖X‖ =
1

σk(A)
and ‖X‖F =

√√√√ k∑
l=1

1

σl(A)2
(2.2)

in the spectral and Frobenius norms. Moreover, {X ∈ C
k×k | AX = Q with Q ∈ Q} is a connected

compact set of the real dimension k2.

Proof. We have AX = Q with orthonormal columns, i.e., if A = Q1ΣQ
∗
2 is the singular value decompo-

sition of A, then ΣY = Q∗
1Q with Y = Q∗

2X. This forces the last n− k rows of Q∗
1Q to be zero. Solving

for Y and using the unitary invariance of the spectral and Frobenius norms yields the claim.

Regarding the dimension of the solution set, let qj for j = 1, . . . , n denote the columns of Q1. Since

the last n − k rows of Q∗
1Q are zero, Q = [q1 · · · qk]V with V ∈ C

k×k unitary. Any unitary V yields a

solution

X = Q2Σ̃
−1V, (2.3)

where Σ̃ ∈ R
k×k consists of the first k rows of Σ. Hence the real dimension is k2, the dimension of k-by-k

unitary matrices. Consider the representation (2.3) of the orthogonalizations of A. Connectedness and

compactness follow from the continuity of the associated map V �→ Q2Σ̃
−1V .
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In this sense we are dealing with a compact factorization problem. For non-compact factoring, see [18]

where the problem formulation is conceptually similar except that the dimension of the solution set is

strongly problem dependent.

Practical algorithms have led to some elegant additional constraints, i.e., the QR factorization2) and

the polar decomposition3) are the best-known alternatives to solve the problem. (For the QR factorization

and Gram-Schmidt orthogonalization process, see [2,22]. See also [29, Chapter 4] for a concise introduc-

tion to applications of orthogonality.) Then X is of real dimension k2 consisting of upper triangular

matrices with non-negative diagonal entries and positive definite matrices, respectively. The associated

orthogonalizations are Gram-Schmidt and Löwdin.

In very large scale problems (typically discretizations of infinite dimensional problems) constraints

arise in abundance because of computational complexity, i.e., then X can end up being chosen such

that zero is not attained in (1.1), so that the columns of A can get only incompletely orthogonalized.

There are typically two reasons for this. First, it may be too time-consuming to perform a complete

orthogonalization, i.e., to complete the task within a certain time frame, one must accept a nonorthogonal

set of vectors. Second, for the sake of storage limitations, X may be allowed to have only O(k) nonzero

entries. These both take place in preconditioning [33, Subsection 10.8.3]. For another example, retaining

sparsity is the reason for not using orthonormal bases in discretizing PDE with FEM, imposing restrictions

on how to compute X.

These remarks give rise to the following sparse orthogonalization problem (see also [3]).

Definition 2.2. Let X = C
k×k. Then the sparsest X yielding zero in (1.1) is said to be a sparsest

orthogonalization of the columns of A ∈ C
n×k.

Solving this problem appears difficult. Since there is a lot of freedom to define X , more accessible

alternatives exist requiring only O(k) parameters to fully orthogonalize the columns of A. One such

orthogonalization is the polynomial orthogonalization process for square matrices devised in [20]. It

also admits performing an incomplete orthogonalization. Another polynomial process is described in the

section that follows.

2.2 Orthogonalization with respect to X = {p(A∗A) | deg(p) ��� j − 1}
Let us first focus on the Löwdin orthogonalization [25] since it admits a polynomial interpretation for

computing approximations in a natural way. Related with Hermitian orthogonalizations, Löwdin [25]

designed his method to solve the matrix nearness problem on the left-hand side in (2.4).

The following is well known where σ1(A) � · · · � σk(A) � 0 denote the singular values of A ∈ C
n×k

(see, e.g., [17]).

Proposition 2.3. Let A ∈ C
n×k. Then in the spectral norm,

min
Q∈Q

‖A−Q‖ = max{|1− σ1(A)|, |1− σk(A)|}. (2.4)

Proof. Let A = Q1ΣQ
∗
2 be the singular value decomposition of A. By the unitary invariance of the

spectral norm, minQ∈Q ‖A−Q‖ = minQ̂∈Q ‖Σ− Q̂‖ holds. Choosing Q̂ such that its first k-by-k block is

the identity matrix yields ‖A−Q‖ = max{|1− σ1(A)|, |1− σk(A)|}. On the other hand, Q is any n-by-k

matrix with orthonormal columns, then ‖Σ− I‖ � ‖A−Q‖ by [17, Theorem 7.4.9.1].

There exists a polynomial orthogonalization process to perform the Löwdin orthogonalization in terms

of the Gram matrix A∗A ∈ C
k×k. It also provides a rapid way to optimally perform an incomplete

orthogonalization as follows, where Λ(M) denotes the eigenvalues of a matrix M ∈ C
n×n.

Theorem 2.4. Assume A ∈ C
n×k has linearly independent columns and let

X = span{I, A∗A, (A∗A)2, (A∗A)3, . . . , (A∗A)j−1}. (2.5)

2) Algorithmically the Gram-Schmidt orthogonalization process (or applications of Householder transformations) yields

A = QR. Because of our problem formulation, this means X = R−1.
3) With P being the positive definite polar factor of A, take X = P−1.
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Then (1.1) in the spectral norm equals

min
deg(p)�j−1

max
λ∈Λ(A∗A)

|
√
λp(λ)− 1|. (2.6)

Proof. Let A = Q1Σ̃Q
∗
2 be the reduced singular value decomposition of A, where Q1 ∈ C

n×k with

orthonormal columns and Q2 ∈ C
k×k is unitary while Σ̃ ∈ R

k×k is diagonal with non-increasing nonneg-

ative diagonal entries. To have an element of X , take a polynomial p of degree j − 1 at most. Then we

have p(A∗A) = Q2p(Σ̃
2)Q∗

2, so that

Ap(A∗A) = Q1Σ̃p(Σ̃
2)Q∗

2. (2.7)

Then (1.1) reads

min
deg(p)�j−1, Q∈Q

‖Q1Σ̃p(Σ̃
2)Q∗

2 −Q‖ = min
deg(p)�j−1, Q∈Q

‖Σ̃p(Σ̃2)−Q‖

by the unitary invariance of the spectral norm. The claim then follows by using Proposition 2.3 and the

fact that the singular values are non-negative.

Recall that the degree of a matrix M ∈ C
n×n is the degree of the monic polynomial of the least degree

annihilating M . Because of (2.7) and the freedom of choosing p, the real dimension of orthogonalizations

of A with X is deg(A∗A). It seems natural to restrict to using positive polynomials4) since then the

corresponding elements of X are positive definite.

Corollary 2.5. There exists a polynomial p of degree deg(A∗A)−1 such that Ap(A∗A) has orthonormal

columns. Choosing, in addition, p to be positive on Λ(A∗A) yields the Löwdin orthogonalization of A.

Proof. Let D be any diagonal unitary matrix. By the Lagrange interpolation, there exists a unique

polynomial p of degree deg(A∗A)− 1 yielding Σ̃p(Σ̃2) = D. Imposing p to be positive forces D to be the

identity matrix, so that

Ap(A∗A) = Q1Q
∗
2, (2.8)

the Löwdin orthogonalization of A.

Generically, Hermitian orthogonalizations are based on X as follows.

Corollary 2.6. Suppose deg(A∗A) = k. If AX = Q with Q ∈ Q and a Hermitian matrix X, then

X = p(A∗A) for a polynomial p.

Proof. If X is Hermitian, then, by (2.3), V Q2Σ̃
−1 = Σ̃−1Q∗

2V
∗, so that Σ̃V Q2Σ̃

−1 is unitary. Thereby

Σ̃V Q2Σ̃
−2Q∗

2V
∗Σ̃ = I

which gives V Q2Σ̃
−2Q∗

2V
∗ = Σ̃−2, i.e., V Q2Σ̃

−2 = Σ̃−2V Q2. Since deg(A∗A) = k, it follows that

V = DQ∗
2 with a diagonal matrixD. By using (2.3) and the Lagrange interpolation, the claim follows.

This is clearly a unitarily invariant orthogonalization process, i.e., the value of (1.1) is independent on

applying A with unitary matrices from the left and right. In particular, it seems natural to call deg(A∗A)

the degree of the basis (2.1). Moreover, since X is polynomially generated, the process is particularly

well suited for producing an incomplete Löwdin orthogonalization in terms of (2.6). Then only some

information about the singular values is needed, i.e., there is a lot flexibility to use incomplete data.

Example 2.7. In large scale problems Λ(A∗A) cannot be assumed to be available. Instead, suppose we

have E ⊂ R such that Λ(A∗A) ⊂ E. (For example, it is very inexpensive to estimate the largest and the

smallest eigenvalue of the Gram matrix A∗A with the Hermitian Lanczos method. This does not require

forming A∗A and consumes a fixed amount of storage.) Find p solving the polynomial approximation

problem

min
deg(p)�j−1

max
λ∈E

|
√
λp(λ)− 1|.

4) A positive polynomial on a given set is a polynomial whose values are positive on that set.
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This can be accomplished by executing the Remez algorithm (see, e.g., [6, p. 478]). Then Ap(A∗A) yields

an incomplete Löwdin orthogonalization. Observe that it need not be explicitly formed. However, if it

is formed, then A∗A should be sparse and p should be of moderate degree. (For polynomial evaluation,

see [15, Chapter 5].)

If the degree of A∗A is small, then Corollary 2.5 provides a remarkably swift way to perform the

Löwdin orthogonalization, i.e., Λ(A∗A) is quickly found by executing the Hermitian Lanczos method,

requiring storing only three vectors. Then (2.8), when not formed explicitly (store only the coefficients

of p), does not consume any more storage than storing A. Finding the Fourier coefficients of a vector

x ∈ C
k consists of computing the matrix-vector product (Ap(A∗A))∗x. This is impressive since, by the

implicit orthogonalization process described, one can then reap all the benefits of optimal sparse matrix

computations. For non-optimal iterations, requiring some assumptions on the Gram matrix, see [30]. For

the Taylor expansions of Löwdin, see [31, Equation (10)].

2.3 Orthogonalization with respect to X = CI +Fj

Let us now focus on making the Gram-Schmidt orthogonalization process optimal. This interpretation

relies on assessing how far the columns of A are from being orthogonal under translated small rank

corrections5). In assessing optimality it is useful to bear in mind, aside from the optimality condition (1.1),

the constraints (2.2) that any solution must satisfy.

Denote by Fj ⊂ C
k×k the set of matrices of rank j at most with j � 1.

Theorem 2.8. Suppose A ∈ C
n×k has linearly independent columns and let X = CI + Fj for j �

�k−1
2 �. Then (1.1) in the spectral norm equals

ωj(A) = min
r∈R

max{|1− σj+1(rA)|, |1− σk−j(rA)|} (2.9)

with a solution X = rjI + Fj satisfying ‖X‖ = 1
σk(A) and

‖X‖F =

√√√√ j∑
l=1

(
1

σl(A)2
+

1

σk−l+1(A)2

)
+

4(k − 2j)

(σj+1(A) + σk−1(A))2

such that AX has 2j orthonormal columns. Moreover, zero is attained for j = �k
2 �.

Proof. We have

min
α∈C, rank(Fj)�j,Q∈Q

‖A(αI + Fj)−Q‖ � min
α∈C, rank(Gj)�j,Q∈Q

‖αA+Gj −Q‖. (2.10)

(Now Gj ∈ C
n×k.) To solve the minimization problem on the right, we use the singular value decompo-

sition of A. It is clear that α can be real and non-negative. For any fixed r ∈ R
+ and Gj of rank j at

most, the value of

min
Q∈Q

‖rA+Gj −Q‖ (2.11)

is determined by Proposition 2.3. For j � �k−1
2 �, apply now the singular value inequalities [16,

Theorem 3.3.16(a)] to rA+Gj to have

σj+1(rA) � σ1(rA−Gj) + σj+1(Gj) = σ1(rA−Gj)

and

σk(rA−Gj) � σk−j(rA) + σj+1(−Gj) = σk−j(rA).

5) Only when the Gram-Schmidt orthogonalization process is completed, the set of upper triangular matrices with non-

negative diagonal entries is reached and available. When the process is under execution, one exclusively deals with CI+Fj

for 1 < j < k.
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Consequently, no matter how r and Gj are chosen,

max{|1− σ1(rA−Gj)|, |1− σk(rA−Gj)|} � max{|1− σj+1(rA)|, |1− σk−j(rA)|}
� min

r∈R

max{|1− σj+1(rA)|, |1− σk−j(rA)|}

holds. Next, it is shown that there exist choices such that the equalities hold.

Choose first rj ∈ R
+ such that the right-hand side of (2.9) is attained, i.e., by imposing 1− rjσk−j(A)

= rjσj+1(A)− 1 we obtain

rj =
2

σj+1(A) + σk−j(A)
. (2.12)

Next, let us construct Gj . To this end, let A = Q1ΣQ
∗
2 be the singular value decomposition of A with

Σ ∈ R
n×k having the (l, l) entries σl(A), for l = 1, . . . , k. By the unitary invariance of the spectral norm,

consider

min
Q∈Q

‖rjA+Gj −Q‖ = min
Q∈Q

‖rjΣ+ Ĝj −Q‖ (2.13)

with Ĝj = Q∗
1GjQ2 ∈ C

n×k. To have Ĝj , we resort to the construction devised in [19, Proposition 2.1]

(see Appendix A). Choose ul ∈ C
n all zeros except the l-th entry to be

−rj

√
1− 1

r2jσ
2
l

(
√

σ2
l − σ2

k−l+1 + iσk−l+1)

and the (k − l + 1)-th entry to be

−i
√
1− r2jσ

2
k−l+1.

Choose vl ∈ C
k all zeros except the l-th entry to be

1

rj

√
r2jσ

2
l − 1

σ2
l − σ2

k−l+1

and the (k − l + 1)-th entry to be

1

rj

√
1− r2jσ

2
k−l+1

σ2
l − σ2

k−l+1

.

Then put Ĝj =
∑j

l=1 ulv
∗
l . With this choice, the 2j singular values of rjΣ+ Ĝj are equal to one and the

remaining singular values are rjσj+1(A), rjσj+2(A), . . . , rjσk−j(A). Consequently, choose Gj = Q1ĜjQ
∗
2.

Now with these choices, we have shown that (2.11) equals the right-hand side of (2.9). For k odd, this is

zero for j = �k−1
2 � = �k

2 �. For k even and j = �k
2 � = k

2 , take rj as in (2.12). Then repeat the construction

to have Ĝj giving zero in (2.13).

Next, we need to recover Fj leading to the equality in (2.10) while rj is as before in (2.12). We get

this by imposing AFj = Gj = Q1ĜjQ
∗
2, so that ΣQ∗

2Fj = ĜjQ
∗
2. The last n − k rows of Σ and Ĝj are

zeros. Denote by Σ̃ and G̃j the k-by-k matrices coinciding with the first k rows of Σ and Ĝj . This allows

us to determine Fj by setting

Fj = Q2Σ̃
−1G̃jQ

∗
2 (2.14)

and thus establishing the equality in (2.10).

Denote by e1, . . . , ek the standard basis vectors of C
k. By regarding the claim concerning the norm of

X = rjI + Fj , the construction is done such that the matrix A(rjI + Fj) is isometry when restricted to

Q2span{e1, e2, . . . , ej , ek−j+1, ek−j+2, . . . , ek} (2.15)

and unitarily equivalent to rjΣ when restricted to the orthogonal complement of (2.15). From this the

claim follows.
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Since A is assumed to have linearly independent columns, we have

1 > ωj(A) � 0

for any j = 1, 2, . . . Moreover, in the square matrix case we have ωj(A
∗) = ωj(A), i.e., the speed is the

same for the column and row orthogonalization. In practice, the speed of decay of ωj(A) is, of course,

the primary object of interest. A swift decay allows quickly attaining almost orthonormality.

The proof of this theorem is constructive such that the solution X = rjI + Fj can be found in

a numerically stable manner, i.e., by (2.14), the rank-j matrix Fj is built from the extreme 2j right

singular vectors of A corresponding to the j largest and the j smallest singular values. Due to the

factorization (2.14), we only need to collect these vectors and 4j scalars to store Σ̃−1G̃j . This information

is sufficient to recover Fj (see Algorithm 1).

Algorithm 1 Compute X = rjI + Fj

1: Read n-by-k matrix A with linearly independent columns.

2: Compute the right singular pairs (σ1(A), q1), . . . , (σj+1(A), qj+1) and (σk−j(A), qk−j), . . . , (σk(A), qk).

3: Set rj = 2
σj+1(A)+σk−j(A)

4: for l = 1, . . . , j do

5: ul =
−rj
σl

√
1− 1

r2jσ
2
l

(
√

σ2
l − σ2

k−l+1 + iσk−l+1)el +
−i

σk−l+1

√
1− r2jσ

2
k−l+1e2j−l+1

6: vl =
1
rj

√
r2jσ

2
l
−1

σ2
l
−σ2

k−l+1

el +
1
rj

√
1−r2jσ

2
k−l+1

σ2
l
−σ2

k−l+1

e2j−l+1

7: end for

8: set Fj = [q1 · · · qj qk−j+1 · · · qk]
∑j

l=1 ulv
∗
l [q1 · · · qj qk−j+1 · · · qk]∗.

The associated factorization of A reads

A = Q̂Y, (2.16)

where Q̂ denotes the approximate orthogonalization

Q̂ = AX = A(rjI + Fj)

and Y = X−1 ∈ X . (Observe that the inverse of X is readily computable, by applying the Sherman-

Morrison-Woodbury formula, whenever j is moderate.) The first j and the last j columns of Q̂ are

orthonormal. Otherwise the columns of Q̂ are almost orthonormal as soon as ωj(A) reaches a given

tolerance. Moreover, whenever A is assumed to be sparse, the approximate orthogonalization Q̂ should

not be explicitly formed, i.e., the resulting basis vectors consisting of the columns of the matrix A(rjI+Fj)

can be expected to be dense. Basis vectors can always be recovered by performing matrix-vector products

with standard basis vectors of C
k.

Corollary 2.9. There exist r ∈ R and Fj ∈ Fj with j � �k
2 � such that

A(rI + Fj)

has orthonormal columns.

The equality A(rjI + Fj) = Q1(rjΣ̃ + G̃j)Q
∗
2 then provides an explicit connection of this orthogonal-

ization process with the Löwdin orthogonalization (2.8) of A.

3 Applications and operator theoretic remarks

Let us consider examples and make some operator theoretic comments.

Example 3.1. The factorization (2.16) can actually be redundant. For example, if AX has (approxi-

mately) orthonormal columns, then the least squares problem

min
x∈Ck

‖Ax− b‖2



Huhtanen M et al. Sci China Math January 2022 Vol. 65 No. 1 211

is (approximately) solved by x = XX∗A∗b. In particular, now inverting X is not needed. For example,

suppose we have the orthogonalization (2.8) available. Then x = p(A∗A)2A∗b.

In large scale problems it is not uncommon that A results from a discretization of an infinite dimen-

sional system. For example, in certain applications one deals with the Gaussian basis functions. (For

applications in quantum chemistry, see, e.g., [32, pp. 265–266].) If the centers of the Gaussian basis

functions are well separated, one can expect, because of locality, to have a swift decay of ωj(A).

Example 3.2. In applications such as computational quantum chemistry, there arise generalized eigen-

value problems

Mx = λNx, (3.1)

where M ∈ C
n×n is Hermitian and N ∈ C

n×n is the so-called overlap matrix, i.e., a positive definite

Gram matrix collecting the inner products of the basis used (see [35, pp. 137–138] or [37, Chapter 3.1]).

For sparsity issues, see [32]. Since there are good reasons to aim at using orthonormal bases [31], or

almost so, one can expect some near unitarity of N (see, e.g., [27, 28]). In fact, it may even be that

N = U + P , where the unitary (the so-called zero-order part) matrix U is available. Consequently,

suppose Algorithm 1 yields, for some moderate j, a nearly unitary NX. Then (3.1) can be converted

into an equivalent standard eigenvalue problem X∗N∗MXy = λy on which iterative methods can be

executed.

Example 3.3. In finite frame theory [5, 8] one deals with the matrices B ∈ C
k×n satisfying n � k

such that the columns of B span C
k. If we denote B∗ by A, then the classical

σk(A)‖x‖2 � ‖Ax‖2 � σ1(A)‖x‖2

is called the frame inequality. A problem is to make the frame inequality “tighter” which, in our context,

means solving (1.1) and putting X∗B. Using the so-called frame operator to this end means taking X to

be the Löwdin orthogonalization of A (see, e.g., [8, p. 8]). As we have illustrated, there are many other

alternatives to make the frame B tighter.

Unlike the Gram-Schmidt process, Algorithm 1 yields a unitarily invariant orthogonalization process,

i.e., it holds that ωj(UAV ) = ωj(A) for any unitary matrices U ∈ C
n×n and V ∈ C

k×k. It is notewor-

thy that the steps of the Gram-Schmidt process can also be expressed in terms of translated rank-one

corrections. These corrections are particularly local and hence non-optimal as follows.

Example 3.4. The first j steps of the Gram-Schmidt process can be expressed as a factorization

A = Q̂jR̂j

of A, where the first j columns of Q̂j are orthonormal while the remaining columns coincide with the

columns of A. Then R̂j = I+Tj , where the upper-triangular matrix Tj can be written as Tj =
∑j

l=1 tle
∗
l ,

where el denotes the l-th standard basis vector. Consequently, A(I + Fj) = Q̂j with Fj ∈ Fj . It is clear

that Q̂j cannot be expected to be near Q for j < k.

Example 3.5. The difference between Algorithm 1 and the Gram-Schmidt process can be underscored

by taking A = αQ + F with α ∈ C, where Q has orthonormal columns and F is of rank l with l � k.

Then, generically, the Gram-Schmidt process requires k steps to reach Q. The optimal orthogonalization

requires just at most 2l steps by the fact that A∗A = αI + U∗F + F ∗(U + F ), so that ω2l(A) = 0. This

is actually not an artificial construction. For small rank unitary perturbations and their appearance in

physics, see [7, 23] and the references therein.

Lack of optimality of the Gram-Schmidt process can also be seen in the overall number of steps with

Algorithm 1 (see Corollary 2.9). Regarding the number of parameters, recall that k-by-k matrices of

rank r at most is an affine variety of dimension r(2k − r) which for r = k
2 yields 3

4k
2, i.e., of real

dimension 3
2k

2.

Consider (2.1) with k = ∞, i.e., there are operator theoretic interpretations associated with the

orthogonalizations schemes corresponding to the families

X = {p(A∗A) | deg(p) � j − 1} (3.2)
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and

X = CI + Fj . (3.3)

This is important when A is a discretization of an infinite dimensional system, i.e., these interpretations

can be expected to set limits to what is attainable when dimensions grow. With (3.2) there are no

immediate barriers to produce approximations, i.e., under some natural assumptions, the polar factor

is used to solve the problem of orthogonalization (see [21]). As opposed to positive definite operators,

the family (3.3) extends in infinite dimensions to scalar-plus-compact operators. Scalar-plus-compact

operators are very important in operator theory, on Banach spaces in particular [1]. In orthogonalization

it then seems that one should be dealing with bounded linear operators on a separable Hilbert space

representable as αQ+K, where α ∈ C is nonzero, Q is a partial isometry6) and K is a compact operator.

Only these can be regarded as being orthogonalizable under this process, with the speed depending on the

structure of the compact part and, thereby, to a lesser extent on the dimension of the discretization. If a

system is not initially representable as αQ+K, it should be preconditioned so as to satisfy this condition.

(It is noteworthy that in computational physics, orthogonalization problems are occasionally expressed

as perturbations of unitary operators (see, e.g., [27, Chapter 4]).) This means that the Gram-Schmidt

process is limited accordingly. However, since the Gram-Schmidt process operates entirely locally, it

may not decrease the overall nonorthogonality of the system in a finite number of steps7). This explains

the popularity and importance of the polar factor in infinite dimensions where, moreover, the notion

of “upper triangular matrix” makes no sense unless an orthonormal basis, or a basis in the first place,

is available. In addition, that is very rarely the case in realistic problems. As opposed to this, (3.2)

and (3.3) give rise to basis independent orthogonalization processes.

4 Preconditioning orthogonalization

Preconditioning is a central operation to speed up computational processes. As is well known, precon-

ditioning is typically the most critical part of solving any realistic practical problem. Next, we consider

ways of achieving this for orthogonalization. (This is needed, e.g., in [31].) This means replacing A

with AM , where M ∈ C
k×k is constructed with the aim at attaining a faster decrease in nonorthogo-

nality with AM . The following example illustrates this well. It also shows in which way an FEM basis

can occasionally be viewed as being “almost orthogonal”, i.e., easily orthogonalizable with the techniques

proposed.

Example 4.1. In the eigenvalue problem (3.1), the matrix N is typically a Gram matrix. Consider

the case of an interval, let us say, [0, 1], so that the elements of N are the L2 inner-products (hj , hi) =∫ 1

0
hj(x)hi(x)dx of the FEM basis

{h1, . . . , hk} (4.1)

used (see (2.1)). A natural question is, how far is this basis from being orthonormal? In particular, can

this basis be orthonormalized by using O(k) number of parameters? Occasionally there is some sort of

circulant plus small rank structure involved. In the linear C0 B-spline discretization we have

N =
1

6k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1

1 4 1

. . .
. . .

. . .

1 4 1

1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6) A bounded linear operator on a complex separable Hilbert space is a partial isometry if it preserves the norms of vectors

orthogonal to its kernel. Such operators appear in the extension of polar decomposition to Hilbert space operators.
7) We measure orthogonalization using the norm topology among operators. It is, of course, possible to consider weaker

topologies to get “local convergence” results [14].
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If we put the (1, k) and (k, 1) entries to be one, we have N = C +G with a circulant matrix C and G of

rank two. (If we use quadratic C1 B-splines, then the rank of F is four at most8).) Denoting by F the

Fourier matrix, we have C = FΛ2F ∗ with the diagonal matrix Λ having positive entries. Consequently,

the basis (4.1) is almost orthogonalized by taking

AM = [ h1 · · · hk ]M with M = FΛ−1

by the fact that (AM)∗AM = Λ−1F ∗NFΛ−1 = I+Λ−1F ∗GFΛ−1. This takes just k parameters. There-

by running Algorithm 1 with AM at most two steps completes the orthogonalization. Or, alternatively,

polynomial orthogonalization requires just three steps of the Hermitian Lanczos method and thereafter

interpolation of the function 1√
λ
at the spectrum of (AM)∗AM .

Consequently, whenever some sort of (sparse) Toeplitzness appears in the Gram matrix, such as with

B-splines [34, 39], it is an appealing alternative to consider circulant structures for preconditioning or-

thogonalization.

Let us next proceed more algebraically, without resorting to the Gram matrix. For computational

reasons, in large scale problems it is often beneficial to assume X to be a subspace of C
k×k. Such an

assumption is particularly appropriate in devising preconditioners for the orthogonalization processes just

described. The goal of preconditioning is then simple to formulate. The aim is to favorably relocate the

singular values of A ∈ C
n×k in view of the optimization problems (2.6) and (2.9). In what follows we

describe some options to this end.

Diagonal scaling of the columns fits into this since then X is the subspace of diagonal matrices.

(Diagonal scaling is a standard operation in numerical linear algebra (see [38] for its optimality).) It can

be interpreted as preconditioning, although it can be redundant since mere orthogonality of the columns

may be sufficient for the construction of preconditioners. In this the following structure is helpful.

Definition 4.2. A subset X of C
k×k is said to be diagonally right invariant if XD ∈ X for any X ∈ X

and any diagonal matrix D.

Proposition 4.3. Let A ∈ C
n×k and assume X ⊂ C

k×k is diagonally right invariant. Let D be a

nonsingular diagonal matrix. Then solving

min
X∈X ,Q∈Q

‖AX −QD‖F

is equivalent to solving (1.1) in the Frobenius norm.

Proof. Denote by xj the columns of X and qj the columns of Q for j = 1, . . . , k. Since the Frobe-

nius norm is used, we may consider the problem column-wise. This means that we are concerned

with minimizing ‖Axj − qjdj‖. Since X is diagonally right invariant, this is equivalent to minimizing

‖Axj − qj‖.
To extend diagonal scaling, recall that the Gram-Schmidt process is an algorithm to produce orthonor-

mal vectors starting from an ordered set of vectors. The associated QR factorization consists of the

product of an element of Q and an upper triangular k-by-k matrix with positive diagonal entries. Neither

pivoting nor preprocessing is needed in computing the QR factorization. With parallel processing and

sparse problems in mind, we proceed by formulating the notion of QR factorization as a Frobenius norm

minimization problem

min
Y ∈Y

‖A(I − Y )‖F , (4.2)

where Y ⊂ C
k×k consists of strictly upper triangular matrices.

Proposition 4.4. Assume A ∈ C
n×k has linearly independent columns. Let

A(I − Y ) = E, (4.3)

where Q = ED and R = D−1(I − Y )−1 with a diagonal matrix D scaling the columns of E to be unit

vectors.
8) For B-spline discretizations leading to this type of Gram matrices, see, e.g., [10].
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Proof. The l-th column of A(I − Y ) reads

al −
l−1∑
j=1

yjlaj , (4.4)

where aj denotes the j-th column of A. Because the Frobenius norm is used, this gets minimized in the

norm by choosing the column entries yjl such that al gets orthogonalized against the vectors a1, . . . , al−1

for l = 2, . . . , k. Once complete, the columns of A(I − Y ) are orthogonal.

Now (4.4) is intriguing since minimizing the norm to have the l-th column yl of Y means solving a

least squares problem, i.e., a central application of the QR factorization, originally suggested in [4], is

solving least squares problems. Here, the roles are entirely interchanged since this construction of the

QR factorization relies on solving least squares problems9).

Based on Proposition 4.4, the minimization problem (4.2) provides a way to construct optimal

incomplete orthogonalization schemes with respect to low dimensional matrix subspaces. Let us make

the formulation rigorous as follows.

Definition 4.5. Assume Y ⊂ C
k×k is a subspace of strictly upper triangular matrices. Then solving

min
Y ∈Y

‖A(I − Y )‖F (4.5)

is said to be an incomplete upper triangular orthogonalization of the columns of A ∈ C
n×k corresponding

to Y.

We say that the corresponding incomplete upper triangular orthogonalization is of dimension dimY.
Then the approximate orthonormal basis is given by the rows of

Q̂ = A(I − Y )D (4.6)

with the diagonal matrix D scaling the columns of A(I − Y ) to be unit vectors. Clearly, if there is no Y,
then this is just standard scaling. In large scale problems it is not advisable to explicitly form Q̂. Instead,

store the matrices A, Y and D. Computing Y can be done in parallel for each column yl. It consists of

solving the least squares problems associated with (4.5) with the constraint that, for every l, only the

prescribed O(1) entries yjl in (4.4) are allowed to be nonzero.

The Gram-Schmidt process is not invariant with respect to a permutation of the columns. Because of

this, ordering the columns of A is customary in preprocessing large orthogonalization processes (see, e.g.,

[2, Chapter 6]). This corresponds to forming AP , where P is a permutation matrix. This converts the

minimization problem into

min
Y ∈Y

‖AP (I − Y )‖F = min
Y ∈PYP∗

‖A(I − Y )‖F .

This allows an operator theoretic, i.e., basis independent interpretation of the Gram-Schmidt process.

The relevant structure to look at here is nilpotent, i.e., each element of the matrix subspace PYP ∗ is a

nilpotent matrix10). For nilpotent matrix subspaces, see [11].

For maximal parallelizability, we are primarily interested in standard matrix subspaces, i.e., when the

dimension of Y is determined by its sparsity. This allows solving the problem column-wise. In practice

dimY � n2/2, so that the columns of (4.6) can be expected to be only very approximately orthogonal.

This deviation can be measured in many ways. For example, inspect some appropriately defined distance

of Q̂∗Q̂ from the set of diagonal matrices. For preconditioning purposes even rough approximations and

estimates may well suffice. Still, successfully choosing a sparse upper triangular matrix subspace Y is a

nontrivial task.

9) The l-th column yl of Y can be found (independently of the other columns) by applying the conjugate gradient (CG)

method on A∗
l Alyl = A∗

l al, where Al ∈ Cn×l consists of the first l columns of A. Since the CG method is well understood,

it is easy to control the accuracy of the numerical solution.
10) A bounded linear operator T is nilpotent if T j = 0 for some j ∈ N.
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Let us describe one option, assuming the permutation of the columns has already been performed.

Because of (4.4), it must be assessed how linearly dependent the l-th column of A is on the columns

preceding it. For commensurability, first scale the columns of A to be unit vectors and denote this matrix

by Ã. Then, for a sparsity structure determined row-wise, allow the (j, l) entry of Y to be nonzero if

|(m̃l, m̃j)| > tol (4.7)

for j < l for some tolerance 0 < tol < 1, i.e., Y is determined by a sparsification of the scaled Gram

matrix Ã∗Ã. For feasibility, such computations should be performed parallel in a sparse mode.

5 Numerical experiments

Numerical experiments are conducted with MATLAB to demonstrate properties of the orthogonalization

methods introduced. The matrices considered are benchmarks arising in various disciplines and they are

all sparse. The object of interest is the decay of 1 > ωj(A) � 0 for j = 1, 2, . . . Effects of preconditioning

are illustrated.

Example 5.1. This example is concerned with the illc1033-matrix from the Harwell-Boeing sparse

matrix collection, i.e., A ∈ R
1033×320 arises in the least squares problems related with surveying. Full

orthogonalization with Algorithm 1 is available after at most 320
2 = 160 steps. However, near orthogo-

nality is reached much earlier (see Figure 1(a) for the decay of ωj(A)). In Figure 1(b), we have a plot of

the singular values of A. In this plot three plateaus can be identified. This renders polynomial precondi-

tioning attractive, assuming the “heights” of the plateaus are known. We take p of degree two such that

these plateaus are mapped to 1 (see Figure 2). Regarding near orthogonality, we now have

#{ωj(A) � 10−3} = 34, #{ωj(A) � 10−2} = 34, #{ωj(A) � 10−1} = 35,

and for B = Ap(A∗A),

#{ωj(B) � 10−3} = 47, #{ωj(B) � 10−2} = 57, #{ωj(B) � 10−1} = 68,

i.e., a considerable improvement.

Next, we look at square matrices. Observe that if one is preconditioning corresponding linear sys-

tems, then attaining zero in (1.1) means that A−1 = XX∗A∗. Hence the preconditioner resulting from

approximate orthogonalization means taking XX∗A∗.
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Figure 1 For the illc1033-matrix of Example 5.1, we have ωj(A) on (a) and the singular values σj(A) on (b)
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Figure 2 For the illc1033-matrix of Example 5.1, we have ωj(Ap(A∗A)) on (a) and the singular values σj(Ap(A∗A))

on (b)

Example 5.2. This example is concerned with the tols1090-matrix from the Harwell-Boeing sparse

matrix collection, i.e.,

A ∈ R
1090×1090

arises in stability analysis. Full orthogonalization with Algorithm 1 is available after at most 1090
2 = 545

steps (see Figure 3(a) for the decay of ωj(A)). In Figure 4 we have AD, i.e., preconditioned A by

scaling its columns to be unit vectors. This simple preconditioning has a dramatic effect on the speed of

orthogonalization.

Regarding near orthogonality, we now have

#{ωj(A) � 10−3} = 103, #{ωj(A) � 10−2} = 106, #{ωj(A) � 10−1} = 108,

and

#{ωj(AD) � 10−3} = 273, #{ωj(AD) � 10−2} = 273, #{ωj(AD) � 10−1} = 274.

In Figure 5 we have used (4.7) with a tolerance 0.9 to choose 24 columns to perform the partial orthog-

onalization (4.4) of each column. Denoting the resulting preconditioner by P we have

#{ωj(ADP ) � 10−3} = 281, #{ωj(ADP ) � 10−2} = 281, #{ωj(ADP ) � 10−1} = 282.

For comparison, let us mention that randomly choosing 24 columns to perform a partial orthogonalization

did not lead to any improvement.
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Figure 3 For the tols1090-matrix of Example 5.2, we have ωj(A) on (a) and the singular values σj(A) on (b)
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Figure 4 For the tols1090-matrix of Example 5.2, we have ωj(AD) on (a) and the singular values σj(AD) on (b)
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Figure 5 For the tols1090-matrix of Example 5.2, we have ωj(ADP ) on (a) and the singular values σj(ADP ) on (b)

The following example is of different nature in the sense that Algorithm 1 is used as a corrector to

the Gram-Schmidt process (or, stated in other words, the modified Gram-Schmidt process is now used

as a preconditioner), i.e., there is some loss of orthogonality when the modified Gram-Schmidt process is

executed. It seems, however, that this loss of orthogonality is very structured in favor of using optimal

orthogonalization processes.

Example 5.3. This example is concerned with the fpga-matrix from Sandia National Laboratory11),

i.e.,

A ∈ C
1200×1200

arises in circuit simulations. When the modified Gram-Schmidt method is executed to have a numerically

computed QR factorization A = QR of A, some loss of orthogonality of the columns of Q takes place, as

is well known. This appears to happen in such a way that only a small number of vectors suffer from it.

Therefore, the problem can be very efficiently fixed by executing Algorithm 1 (see Figure 6 for the swift

decay of ωj(Q)).

Example 5.4. This example is also concerned with the fpga-matrix. We precondition A by using the

incomplete modified Gram-Schmidt of Saad [33, Subsection 10.8.3], i.e., we have A = QR such that R is

sparse and Q is not unitary. Only those elements of R are kept nonzero which are larger than the drop

tolerance τ = 0.05 used. Then we have only 3,519 nonzero elements in R (in the modified Gram-Schmidt

527,246). We take R−1 to be the preconditioner (see Figure 7 for the decay of ωj(AR−1)).

11) Https://www.cise.ufl.edu/research/sparse/matrices/Sandia/
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Figure 6 For the fpga-matrix of Example 5.3, we have computed Q with the modified Gram-Schmidt method. The

columns are not fully orthogonal as some 50 extreme singular values deviate from 1 by at most of order 10−5 (see the

singular values σj(Q) on (b)). We then have ωj(Q) in the log10-scale on (a)
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Figure 7 For the fpga-matrix of Example 5.4, we have computed A = QR with the incomplete modified Gram-Schmidt

method. The columns of AR−1 = Q are not orthonormal (see the singular values σj(AR−1) on (b)). We then have

ωj(AR−1) in the log10-scale on (a). Observe that initially we are far from orthogonality. Nonorthogonality starts decreasing

at a moderate pace and gains speed after around 300 steps

6 Conclusions

The problem of optimally decreasing nonorthogonality of a system of vectors with respect to a limited

number of free parameters has been addressed. Being a fundamental problem in a Hilbert space, the

task arises in several computational disciplines. In this paper the Löwdin and the Gram-Schmidt orthog-

onalization processes were interpreted polynomially and in terms of translated small-rank corrections,

respectively. Optimality was attained such that there exists a natural way of increasing the number

of parameters to improve approximations in both cases. The latter alternative gets the best of both

worlds since it simultaneously retains locality by yielding 2j exactly orthonormalized columns after j

steps, for j = 1, 2, . . . Preconditioning was considered and shown to be of significance in speeding up

orthogonalization processes. Numerical experiments were conducted.
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25 Löwdin P-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of

molecules and crystals. J Chem Phys, 1950, 18: 365–375
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Appendix A Rank-one perturbations of positive semidefinite matrices

The following yields conditions on the existence of a unitary rank-one up-date of a positive semidefinite

2-by-2 matrix.

Proposition A.1 (See [19]). Let P ∈ C
2×2 be positive semidefinite with the eigenvalues λ1 � λ2 � 0.

Then there are two vectors u, v ∈ C
2 such that P − uv∗ is unitary if and only if λ1 � 1 � λ2.

Proof. Let V ∗PV = diag(λ1, λ2) be a diagonalization of P by a unitary matrix V ∈ C
2×2. We may

consider

V ∗(V − uv∗)V = diag(λ1, λ2)− kl∗

with k = V ∗u and l = V ∗v. Now diag(λ1, λ2)− kl∗ is unitary if and only if

− λ1k2l1 − λ2k1l2 + k1k2‖l‖2 = 0,

λ2
1 − λ1(k1l1 + k1l1) + |k1|2‖l‖2 = 1,

λ2
2 − λ2(k2l2 + k2l2) + |k2|2‖l‖2 = 1.

Without loss of generality, we may impose ‖l‖ = 1. Then the first equation gives k1 = λ1k2l1
k2−λ2l2

. Inserting

this into the second equation yields

λ2
1|l1|2(λ2(k2l2 + k2l2)− |k2|2) = (1− λ2

1)(λ
2
2|l2|2 + |k2|2 − λ2(k2l2 + k2l2)). (A.1)

The third equation gives

λ2(k2l2 + k2l2) = λ2
2 + |k2|2 − 1. (A.2)

Inserting this into (A.1) with |l1|2 = 1 − |l2|2 yields |l1|2 = (1 − λ2
1)/(λ

2
2 − λ2

1). Hence |λ1| � 1 for a

solution to exist. Then we may take

l1 =

√
λ2
1 − 1

λ2
1 − λ2

2

and l2 =

√
1− λ2

2

λ2
1 − λ2

2

. (A.3)

We may also impose l2 � 0, so that (A.2) converts into

|k2|2 − 2λ2l2Rek2 = 1− λ2
2.

This is solvable by, for example, choosing k2 to be pure imaginary. So we may take

k2 = i
√
1− λ2

2 (A.4)

giving finally

k1 = λ1k2l1/(k2 − λ2l2) =

√
1− 1

λ2
1

(
√

λ2
1 − λ2

2 + iλ2) (A.5)

after simplifications.

The scalars (A.3)–(A.5) are used in the proof of Theorem 2.8.


