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1 Introduction

In [3], Connes recovered the geodesic distance on a compact Riemannian spin manifold M through a ∗-
seminorm on a dense ∗-subalgebra of the unital C∗-algebra C(M) of complex-valued continuous functions

on M , which was constructed from a Dirac operator on M . More generally, Connes endowed the state

space S(A) for a unital C∗-algebra A with a metric from a spectral triple (A,H, D) using the formula

ρLD (µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A,LD(a) = ∥[D, a]∥ 6 1}

for µ, ν ∈ S(A). A typical noncommutative example is the reduced group C∗-algebra of a discrete group

endowed with a proper length function with a discrete and unbounded range. In 1998, Pavlović [14]

and Rieffel [15] investigated the question of when the metric topology on the state space S(A) from ρLD

induces the weak ∗-topology. Later, Rieffel [16,18,19] discussed this question in a more general framework

of order-unit spaces. More precisely, he defined a Lip-norm on an order-unit space as a seminorm whose

induced metric topology on the state space is the weak ∗-topology as well as considering an order-unit

space equipped with a Lip-norm as a compact quantum metric space [16,18].
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In [17], Rieffel provided compact quantum metric space structures on the noncommutative tori

C∗
r (Zd, σ), using length functions on Zd. As a follow-up, he posed the question of which other dis-

crete groups with 2-cocycle σ could provide examples of compact quantum metric spaces. Later, Ozawa

and Rieffel [13] showed that the reduced group C∗-algebras are compact quantum metric spaces for

groups with a Haagerup-type condition (hyperbolic groups, in particular). Note that Zd and hyperbolic

groups are groups with a rapid decay property [4, 6, 13, 21]. More generally, Antonescu and Christensen

[1] constructed a large class of Lip-norms on a group Γ with the rapid decay property, and hence obtained

compact quantum metric space structures on the reduced group C∗-algebra C∗
r (Γ). Motivated by the

σ-twisted rapid decay property in [12], Long and Wu [9] proved that twisted reduced group C∗-algebras

for discrete groups with this property are compact quantum metric spaces. It is well known that a finite-

ly generated discrete group is of polynomial growth if and only if it is nilpotent-by-finite [5, 8, 11, 21].

In [2], Christ and Rieffel introduced three growth conditions for a group with a length function: strong

polynomial growth, bounded doubling and polynomial growth, and proved that these growth conditions

are equivalent for a proper length function on a finitely generated discrete group. They showed that

for any proper length function on a discrete group Γ with the bounded doubling property, the topology

on the state space S(C∗
r (Γ)) from this metric coincides with the weak ∗-topology [2]. Moreover, they

conjectured that this is also true for group C∗-algebras twisted by a 2-cocycle. The main goal of this

paper is to prove this conjecture.

The rest of this paper is organized as follows. In Section 2, some basic concepts and results on the

twisted reduced group C∗-algebras are introduced. In Section 3, for a discrete group with a proper

length function, we introduce two seminorms on the twisted group algebras. One comes from the length

function, and the other comes from the restriction of the left regular projective representation of the

twisted group algebras. In addition, we prove that the latter depends only on the cohomology class of the

2-cocycle σ. In Section 4, we truncate the twisted convolution operators from the left regular projective

representation by a family of cutoff functions, and control the truncated operators with respect to the

operator norm and the seminorm JD,θ, respectively. In Section 5, the classical polynomial growth of the

length function on a finitely generated group is generalized to the property of bounded dilation of the

length function on a discrete group. For a discrete group equipped with a proper length function with the

property of bounded dilation, we decompose the functions with finite support on this group into “three

parts”, and dominate them by the operator norm and the seminorm JD,θ, respectively. In Section 6, it is

proved that for any 2-cocycle σ on a discrete group Γ endowed with a length function with the bounded

θ-dilation property, the closure L̄D of the seminorm LD on the unital C∗-normed algebra Cc(Γ, σ) is a

Leibniz Lip-norm on the twisted reduced group C∗-algebra C∗
r (Γ, σ), i.e., the pair (C∗

r (Γ, σ), L̄D) is a

C∗-metric algebra. It is further proved that the compact quantum metric space structures (C∗
r (Γ, σ), L̄D)

on C∗
r (Γ, σ) depend only on the cohomology class of the 2-cocycle σ in the Lipschitz isometric sense.

2 Twisted reduced group C∗-algebras

Let Γ be a discrete group with the identity e, and let T be the unit circle in C. A 2-cocycle on Γ is a

function σ : Γ× Γ 7→ T satisfying

σ(s, t)σ(st, r) = σ(s, tr)σ(t, r)

for all s, t, r ∈ Γ. Two cocycles σ1 and σ2 are called cohomologous if there is a function ρ : Γ 7→ T such

that

σ1(s, t)σ2(s, t)
−1 = ρ(s)ρ(t)ρ(st)−1

for all s, t ∈ Γ. A 2-cocycle σ on Γ is called a multiplier if σ(e, e) = 1.

Let Γ be a discrete group, and let σ be a 2-cocycle on Γ. Let Cc(Γ, σ) denote the set of complex-valued

functions on Γ with finite support. For s ∈ Γ, we define

δs(t) =

{
1, t = s,

0, t ̸= s.
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Then δs ∈ Cc(Γ, σ). Cc(Γ, σ) becomes a ∗-algebra with the identity σ(e, e)δe under the operations

(f + g)(s) = f(s) + g(s),

(αf)(s) = αf(s),

(f ∗σ g)(s) =
∑
t∈Γ

f(t)g(t−1s)σ(t, t−1s),

f∗(s) = f(s−1)σ(s, s−1),

for any f, g ∈ Cc(Γ, σ), s ∈ Γ, and α ∈ C (see [23]). When σ ≡ 1 is the trivial 2-cocycle, Cc(Γ, σ) is the

usual group algebra, and is denoted by Cc(Γ) in this paper.

The left regular σ-projective representation of Γ on ℓ2(Γ) is given by

λs(δt) = σ(s, t)δst

for any s, t ∈ Γ. This representation induces the left regular σ-projective representation λ of Cc(Γ, σ)

on ℓ2(Γ) given by

λ(f) =
∑
s∈Γ

f(s)λs

for any f ∈ Cc(Γ, σ). More precisely, we have

(λ(f)(ξ))(s) = (f ∗σ ξ)(s)

=
∑
t∈Γ

f(t)σ(t, t−1s)ξ(t−1s)

=
∑
r∈Γ

f(sr−1)σ(sr−1, r)ξ(r)

for any s ∈ Γ, f ∈ Cc(Γ, σ), and ξ ∈ ℓ2(Γ). It is here clear that λ is linear. For any s, t, r ∈ Γ, we have

λ(δs ∗σ δt)(δr) = σ(s, t)σ(st, r)δstr

= σ(s, tr)σ(t, r)δstr

= (λ(δs)λ(δt))(δr),

i.e., λ(δs ∗σ δt) = λ(δs)λ(δt), and thus

λ(f ∗σ g) =
∑
s,t∈Γ

f(s)g(t)λ(δs ∗σ δt)

=
∑
s,t∈Γ

f(s)g(t)λ(δs)λ(δt)

= λ(f)λ(g)

for any f, g ∈ Cc(Γ, σ). Moreover, for any s, t ∈ Γ, we have

(λ(δs))
∗(δt) = σ(s, s−1t)δs−1t = λ(δs

∗)(δt).

For any f ∈ Cc(Γ, σ), we have

λ(f∗) =
∑
s∈Γ

f(s)λ(δs
∗) =

∑
s∈Γ

f(s)(λ(δs))
∗ = (λ(f))∗.

Since λ(δs) is a unitary operator for all s ∈ Γ, we see that

∥λ(f)∥ =

∥∥∥∥∑
s∈Γ

f(s)λ(δs)

∥∥∥∥ 6
∑
s∈Γ

|f(s)| = ∥f∥1
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for any

f =
∑
s∈Γ

f(s)δs ∈ Cc(Γ, σ).

Thus, for any f ∈ Cc(Γ, σ), we have λ(f) ∈ B(ℓ2(Γ)). We define

∥f∥ = ∥λ(f)∥, f ∈ Cc(Γ, σ).

Then ∥ · ∥ is a C∗-norm on the ∗-algebra Cc(Γ, σ). The σ-twisted reduced group C∗-algebra C∗
r (Γ, σ) of Γ

is the completion of Cc(Γ, σ) for the norm ∥ · ∥. The map λ extends uniquely to a ∗-isomorphism, still

denoted by λ, of C∗
r (Γ, σ) into B(ℓ2(Γ)). In particular, if σ ≡ 1, C∗

r (Γ, σ) is the reduced group C∗-algebra

C∗
r (Γ).

3 Two seminorms on twisted group algebras

Definition 3.1. A length function on a discrete group Γ is a function

ℓ : Γ 7→ [0,∞)

such that

(i) ℓ(s) = 0 if and only if s = e, where e is the identity of Γ;

(ii) ℓ(s) = ℓ(s−1) for all s ∈ Γ;

(iii) ℓ(s1s2) 6 ℓ(s1) + ℓ(s2) for all s1, s2 ∈ Γ.

The length function ℓ is said to be proper if the set ℓ−1([0, β]) is finite for any real number β > 0.

Let ℓ be a length function on a discrete group Γ, and let σ be a 2-cocycle on Γ. Let Mℓ denote the

(usually unbounded) operator on ℓ2(Γ) of pointwise multiplication by the length function ℓ. We define

the derivation ∆ by the “Dirac” operator D = Mℓ as

∆(λ(a)) = [D,λ(a)] = [Mℓ, λ(a)]

for all a ∈ C∗
r (Γ, σ). From this derivation, we can define a seminorm on the ∗-algebra Cc(Γ, σ) as follows.

Definition 3.2. On the ∗-algebra Cc(Γ, σ), we define

LD(a) = ∥∆(λ(a))∥ = ∥[D,λ(a)]∥

for any a ∈ Cc(Γ, σ).

From the proof of Proposition 3.3 in [10], we have LD(δs) = ∥[D,λs]∥ = ℓ(s) for any s ∈ Γ, and thus

LD(f) = ∥[D,λ(f)]∥ < ∞ for any f ∈ Cc(Γ, σ). It is clear that LD is a seminorm on Cc(Γ, σ).

For any h ∈ ℓ∞(Γ), let Mh denote the operator on ℓ2(Γ) of pointwise multiplication by h. If E is a

subset of Γ, let ME denote MχE
, where χE is the characteristic function of E, and thus ME is a projection

on ℓ2(Γ). For any α > 0, we set B(α) = {r ∈ Γ : ℓ(r) 6 α}, and in this special case, we set Mα = MB(α).

For any s, t ∈ Γ and ξ ∈ ℓ2(Γ), we have

([D,λs](ξ))(t) = ((Dλs − λsD)(ξ))(t)

= D(λs(ξ))(t)− λs(D(ξ))(t)

= ℓ(t)(λs(ξ))(t)− (D(ξ))(s−1t)σ(s, s−1t)

= ℓ(t)ξ(s−1t)σ(s, s−1t)− ℓ(s−1t)ξ(s−1t)σ(s, s−1t)

= (ℓ(t)− ℓ(s−1t))ξ(s−1t)σ(s, s−1t).

In particular, when ξ = δt, we have

[D,λs](δt) = (ℓ(st)− ℓ(t))σ(s, t)δst
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for all s, t ∈ Γ. Thus, for any t ∈ Γ, f ∈ Cc(Γ, σ) and ξ ∈ ℓ2(Γ), we have

[D,λ(f)](ξ)(t) =

[
D,

∑
s∈Γ

f(s)λs

]
(ξ)(t)

=
∑
s∈Γ

f(s)[D,λs](ξ)(t)

=
∑
s∈Γ

f(s)(ℓ(t)− ℓ(s−1t))ξ(s−1t)σ(s, s−1t)

=
∑
r∈Γ

f(tr−1)(ℓ(t)− ℓ(r))σ(tr−1, r)ξ(r),

and thus

[D,λ(f)](δt) =
∑
s∈Γ

f(s)[D,λs](δt) =
∑
s∈Γ

f(s)(ℓ(st)− ℓ(t))σ(s, t)δst. (3.1)

It is much more convenient to regard the operators λ(f) and [D,λ(f)] for any f ∈ Cc(Γ, σ) as integral

operators by means of the kernel functions. More concretely, the kernel function λ(f)(r, s) for the

operator λ(f) is

λ(f)(r, s) = f(rs−1)σ(rs−1, s)

for any r, s ∈ Γ, and the kernel function [D,λ(f)](r, s) for the operator [D,λ(f)] is

[D,λ(f)](r, s) = (ℓ(r)− ℓ(s))σ(rs−1, s)f(rs−1)

for any r, s ∈ Γ. Thus, if ℓ(r) ̸= ℓ(s), then

f(rs−1)σ(rs−1, s) = (ℓ(r)− ℓ(s))−1[D,λ(f)](r, s).

Proposition 3.3. If ℓ is proper, then for any f ∈ Cc(Γ, σ) and any α, β ∈ [0,∞) with β > α > 0, we

have

∥(I −Mβ)λ(f)Mα∥ 6 (β − α)−1LD(f).

Proof. For any ξ ∈ ℓ2(Γ) and r ∈ Γ with ℓ(r) > β, we have

((I −Mβ)λ(f)Mα(ξ))(r) = (1− χB(β))(r)(λ(f)Mα(ξ))(r)

= (λ(f)Mα(ξ))(r)

=
∑
s∈Γ

f(rs−1)σ(rs−1, s)(Mα(ξ))(s)

=
∑
s∈Γ

f(rs−1)σ(rs−1, s)χB(α)(s)ξ(s)

=
∑

s∈B(α)

(ℓ(r)− ℓ(s))−1[D,λ(f)](r, s)ξ(s).

For any r, s ∈ Γ with ℓ(r) > ℓ(s), we have

(ℓ(r)− ℓ(s))−1 = ℓ(r)−1(1− ℓ(s)/ℓ(r))−1

= ℓ(r)−1
∞∑
k=0

ℓ(s)kℓ(r)−k;

therefore,

((I −Mβ)λ(f)Mα(ξ))(r) =
∑

s∈B(α)

ℓ(r)−1
∞∑
k=0

ℓ(s)kℓ(r)−k[D,λ(f)](r, s)ξ(s)
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=

∞∑
k=0

∑
s∈B(α)

ℓ(r)−1−k[D,λ(f)](r, s)ℓ(s)kξ(s)

=
∞∑
k=0

ℓ(r)−1−k
∑
s∈Γ

[D,λ(f)](r, s)(DkMα(ξ))(s)

=
∞∑
k=0

ℓ(r)−1−k([D,λ(f)]DkMα(ξ))(r)

=

(( ∞∑
k=0

D−1−k(I −Mβ)[D,λ(f)]DkMα

)
(ξ)

)
(r).

Thus, as operators from Mα(ℓ
2(Γ)) to (I −Mβ)(ℓ

2(Γ)), we have

(I −Mβ)λ(f)Mα =
∞∑
k=0

D−1−k(I −Mβ)[D,λ(f)]DkMα.

Since ∥D−1−k(I −Mβ)∥ 6 β−1−k and ∥[D,λ(f)]DkMα∥ 6 αkLD(f), we have

∥(I −Mβ)λ(f)Mα∥ 6 β−1
∞∑
k=0

(
α

β

)k

LD(f) = (β − α)−1LD(f).

This completes the proof.

From Proposition 3.3, we see that if ℓ is proper and θ > 1, then for any f ∈ Cc(Γ, σ) and any α > 0,

we have

(θ − 1)α∥(I −Mθα)λ(f)Mα∥ 6 LD(f),

which leads to the next definition.

Definition 3.4. If θ > 1 and ℓ is proper, we define

JD,θ(f) = sup{(θ − 1)α∥(I −Mθα)λ(f)Mα∥ : α > 0}

for any f ∈ Cc(Γ, σ).

Proposition 3.5. If ℓ is proper, then

(i) JD,θ(f) 6 LD(f) for any f ∈ Cc(Γ, σ);

(ii) JD,θ is a seminorm on Cc(Γ, σ);

(iii) JD,θ is a norm on W , where

W = {f ∈ Cc(Γ, σ) : tr(λ(f)) = ⟨λ(f)(δe), δe⟩ = 0}.

Proof. (i) and (ii) are clear.

(iii) It is clear that W is a subspace of Cc(Γ, σ). For any f ∈ Cc(Γ, σ) and any α > 0, we have

((I −Mθα)λ(f)Mα)(δe) = (I −Mθα)(λ(f)(δe))

= (I −Mθα)

(∑
r∈Γ

f(r)σ(r, e)δr

)
=

∑
ℓ(r)>θα

f(r)σ(r, e)δr.

If f0 ∈ W and f0 ̸= 0, then there is an r0 ∈ Γ such that f0(r0) ̸= 0 and r0 ̸= e. Since ℓ(r0) ̸= 0, we may

choose an α0 > 0 such that θα0 < ℓ(r0). Thus,

((I −Mθα0)λ(f0)Mα0)(δe) =
∑

ℓ(r)>θα0

f0(r)σ(r, e)δr ̸= 0.

Eventually, JD,θ(f0) ̸= 0.
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Let σ1 and σ2 be two cohomologous 2-cocycles on Γ. Suppose ρ is the map such that

σ1(s, t) = ρ(s)ρ(t)ρ(st)σ2(s, t)

for all s, t ∈ Γ. Then we can define a unitary operator U on ℓ2(Γ) by

U : ξ =
∑
s∈Γ

ξ(s)δs ∈ ℓ2(Γ) 7→
∑
s∈Γ

ξ(s)ρ(s)δs ∈ ℓ2(Γ).

Let λσ1 be the left regular σ1-projective representation of Cc(Γ, σ1) on ℓ2(Γ), and let λσ2 be the left

regular σ2-projective representation of Cc(Γ, σ2) on ℓ2(Γ). For any ξ ∈ ℓ2(Γ) and s, t ∈ Γ, we have

(Uλσ1
s U∗(ξ))(t) = ρ(t)(λσ1

s U∗(ξ))(t)

= ρ(t)σ1(s, s
−1t)(U∗(ξ))(s−1t)

= ρ(t)σ1(s, s
−1t)ρ(s−1t)ξ(s−1t)

= ρ(s)σ2(s, s
−1t)ξ(s−1t)

= ((ρ(s)λσ2
s )(ξ))(t).

Thus, we can define the map Φ : Cc(Γ, σ1) 7→ Cc(Γ, σ2) by

Φ(λσ1
s ) = Uλσ1

s U∗ = ρ(s)λσ2
s (3.2)

for all s ∈ Γ. As the proof of Proposition 5.1 in [9], we can see that Φ is an isometrical ∗-isomorphism

from Cc(Γ, σ1) onto Cc(Γ, σ2) induced by the unitary operator U . By density, Φ can be extended to a

∗-isomorphism between C∗
r (Γ, σ1) and C∗

r (Γ, σ2). Since U is a pointwise multiplication operator on ℓ2(Γ)

by ρ, we have

∥(I −Mθα)Φ(a)Mα∥ = ∥(I −Mθα)Uλσ1(a)U∗Mα∥
= ∥U(I −Mθα)λ

σ1(a)MαU
∗∥

= ∥(I −Mθα)λ
σ1(a)Mα∥

for all a ∈ C∗
r (Γ, σ1) and α > 0. Hence, for any f ∈ Cc(Γ, σ1), we have

Jσ2

D,θ(Φ(f)) = sup{(θ − 1)α∥(I −Mθα)Φ(f)Mα∥ : α > 0} = Jσ1

D,θ(f).

This completes the proof of the following proposition.

Proposition 3.6. Let Γ be a discrete group endowed with a proper length function ℓ. If σ1 and σ2 are

two cohomologous 2-cocycles on Γ, then there exists an isometrical ∗-isomorphism Φ from Cc(Γ, σ1) onto

Cc(Γ, σ2) such that Jσ2

D,θ(Φ(f)) = Jσ1

D,θ(f) for any f ∈ Cc(Γ, σ1).

4 Truncations

Let ℓ be a length function on a discrete group Γ, and let σ be a 2-cocycle on Γ. Let ρ be the right regular

σ-projective representation of Γ on ℓ2(Γ), defined by

(ρt(ξ))(r) = σ(r, t)ξ(rt)

for any r, t ∈ Γ and ξ ∈ ℓ2(Γ). Then ρ commutes with λ (see [9]). For any h ∈ Cc(Γ), we define

h̃(r) = h(r−1) for r ∈ Γ.

Proposition 4.1. For any h, k ∈ Cc(Γ) and f ∈ Cc(Γ, σ), we have

λ((h∗ ∗ k)f) =
∑
t∈Γ

ρtM
∗
h̃
λ(f)Mk̃ρ

∗
t , (4.1)

where this sum converges for the weak operator topology. Furthermore,

∥λ((h∗ ∗ k)f)∥ 6 ∥λ(f)∥∥h∥2∥k∥2.
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Proof. From the definition of usual convolution, we have

(h∗ ∗ k)(sr−1) =
∑
t∈Γ

h∗(t)k(t−1sr−1)

=
∑
t∈Γ

h(t−1)k(t−1sr−1)

=
∑
t∈Γ

h(t−1s−1)k(t−1r−1)

for r, s ∈ Γ. It follows that for any ξ, η ∈ Cc(Γ), we have

⟨λ((h∗ ∗ k)f)(ξ), η⟩
=

∑
s∈Γ

(λ((h∗ ∗ k)f)(ξ))(s)η(s)

=
∑
s∈Γ

∑
r∈Γ

(h∗ ∗ k)(sr−1)f(sr−1)σ(sr−1, r)ξ(r)η(s)

=
∑
s∈Γ

∑
r∈Γ

∑
t∈Γ

h(t−1s−1)k(t−1r−1)f(sr−1)σ(sr−1, r)ξ(r)η(s)

=
∑
s∈Γ

∑
r∈Γ

∑
t∈Γ

h(t−1s−1)k(r−1)f(str−1)σ(str−1, rt−1)ξ(rt−1)η(s)

=
∑
s∈Γ

∑
r∈Γ

∑
t∈Γ

f(sr−1)k(r−1)σ(sr−1, rt−1)ξ(rt−1)h(s−1)η(st−1)

=
∑
t∈Γ

∑
s∈Γ

(∑
r∈Γ

f(sr−1)σ(sr−1, r)k(r−1)σ(rt−1, t)ξ(rt−1)

)
× (h(s−1)σ(st−1, t)η(st−1))

=
∑
t∈Γ

∑
s∈Γ

(∑
r∈Γ

f(sr−1)σ(sr−1, r)k(r−1)(ρ∗t (ξ))(r)

)
(Mh̃ρ

∗
t (η))(s)

=
∑
t∈Γ

∑
s∈Γ

(λ(f)Mk̃ρ
∗
t (ξ))(s)(Mh̃ρ

∗
t (η))(s)

=
∑
t∈Γ

⟨λ(f)Mk̃ρ
∗
t (ξ),Mh̃ρ

∗
t (η)⟩

=
∑
t∈Γ

⟨ρtM∗
h̃
λ(f)Mk̃ρ

∗
t (ξ), η⟩.

Since ∑
t∈Γ

∥Mk̃ρ
∗
t (ξ)∥22 =

∑
t∈Γ

∑
r∈Γ

|(Mk̃ρ
∗
t (ξ))(r)|2

=
∑
t∈Γ

∑
r∈Γ

|k(r−1)σ(rt−1, t)ξ(rt−1)|2

=
∑
r∈Γ

|k(r−1)|2∥ξ∥22

= ∥k∥22∥ξ∥22,

the same steps employed for Mh̃ρ
∗
t (η) and the Cauchy-Schwarz inequality lead to∑

t∈Γ

|⟨λ(f)Mk̃ρ
∗
t (ξ),Mh̃ρ

∗
t (η)⟩| 6 ∥λ(f)∥∥h∥2∥k∥2∥ξ∥2∥η∥2.

This implies the convergence of the series (4.1) in the proposition for the weak operator topology and the

stated norm inequality.
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Proposition 4.2. For any h, k ∈ Cc(Γ) and f ∈ Cc(Γ, σ), we have

LD((h∗ ∗ k)f) 6 ∥h∥2∥k∥2LD(f).

Proof. Since (h∗ ∗k)f has finite support, [D,λ((h∗ ∗k)f)] is a bounded operator. For any ξ, η ∈ Cc(Γ),

we have

⟨[D,λ((h∗ ∗ k)f)](ξ), η⟩ = ⟨λ((h∗ ∗ k)f)(ξ), D(η)⟩ − ⟨λ((h∗ ∗ k)f)D(ξ), η⟩.

By Proposition 4.1, we obtain

⟨[D,λ((h∗ ∗ k)f)](ξ), η⟩
=

∑
t∈Γ

(⟨ρtM∗
h̃
λ(f)Mk̃ρ

∗
t (ξ), D(η)⟩ − ⟨ρtM∗

h̃
λ(f)Mk̃ρ

∗
tD(ξ), η⟩).

For any t ∈ Γ, let τt : Cc(Γ) 7→ Cc(Γ) be the right translation given by

τt(f)(s) = f(st), s ∈ Γ, f ∈ Cc(Γ).

Thus, for any t, r ∈ Γ and ξ ∈ ℓ2(Γ), we have

(ρtMk̃ρ
∗
t (ξ))(r) = (Mk̃ρ

∗
t (ξ))(rt)σ(r, t)

= k̃(rt)(ρ∗t (ξ))(rt)σ(r, t)

= k̃(rt)ξ(r)

= τt(k̃)(r)ξ(r)

= (Mτt(k̃)
(ξ))(r).

Following the same approach for Mh̃, we have

ρtMk̃ρ
∗
t = Mτt(k̃)

and ρtMh̃ρ
∗
t = Mτt(h̃)

for any t ∈ Γ. Then we have

⟨[D,λ((h∗ ∗ k)f)](ξ), η⟩
=

∑
t∈Γ

(⟨DρtM
∗
h̃
ρ∗tλ(f)ρtMk̃ρ

∗
t (ξ), η⟩ − ⟨ρtM∗

h̃
ρ∗tλ(f)ρtMk̃ρ

∗
tD(ξ), η⟩)

=
∑
t∈Γ

(⟨Dλ(f)Mτt(k̃)
(ξ),Mτt(h̃)

(η)⟩ − ⟨λ(f)DMτt(k̃)
(ξ),Mτt(h̃)

(η)⟩)

=
∑
t∈Γ

⟨[D,λ(f)]Mτt(k̃)
(ξ),Mτt(h̃)

(η)⟩,

since λ commutes with ρ and MhD = DMh for any h ∈ ℓ∞(Γ). Because∑
t∈Γ

∥Mτt(k̃)
(ξ)∥22 =

∑
t∈Γ

∑
r∈Γ

|τt(k̃)(r)|2|ξ(r)|2

=
∑
r∈Γ

(∑
t∈Γ

|τt(k̃)(r)|2
)
|ξ(r)|2

=
∑
r∈Γ

∥k∥22|ξ(r)|2

= ∥k∥22∥ξ∥22,

similarly for the term Mτt(h̃)
(η), we have

|⟨[D,λ((h∗ ∗ k)f)]ξ, η⟩| 6 LD(f)∥h∥2∥k∥2∥ξ∥2∥η∥2.

This completes the proof.
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For the remainder of the section, we fix a real number θ > 1 and assume that ℓ is a proper length

function.

Proposition 4.3. Let α > 0. Suppose h ∈ Cc(Γ) with support in Γ\B(θα) and k ∈ Cc(Γ) with support

in B(α). Then, for any f ∈ Cc(Γ, σ), we have

∥λ((h∗ ∗ k)f)∥ 6 1

(θ − 1)α
∥h∥2∥k∥2JD,θ(f).

Proof. For any ξ, η ∈ ℓ2(Γ), we have

|⟨λ((h∗ ∗ k)f)(ξ), η⟩| =
∣∣∣∣∑
t∈Γ

⟨ρtM∗
h̃
λ(f)Mk̃ρ

∗
t (ξ), η⟩

∣∣∣∣
=

∣∣∣∣∑
t∈Γ

⟨ρtM∗
h̃
(I −Mθα)λ(f)MαMk̃ρ

∗
t (ξ), η⟩

∣∣∣∣
by Proposition 4.1, and thus

|⟨λ((h∗ ∗ k)f)(ξ), η⟩|

6 1

(θ − 1)α
JD,θ(f)

∑
t∈Γ

∥Mk̃ρ
∗
t (ξ)∥2∥Mh̃ρ

∗
t (η)∥2

6 1

(θ − 1)α

(∑
t∈Γ

∥Mk̃ρ
∗
t (ξ)∥22

) 1
2
(∑

t∈Γ

∥Mh̃ρ
∗
t (η)∥22

) 1
2

JD,θ(f)

=
1

(θ − 1)α
∥h∥2∥k∥2∥ξ∥2∥η∥2JD,θ(f)

for any ξ, η ∈ Cc(Γ). Hence, ∥λ((h∗ ∗ k)f)∥ 6 1
(θ−1)α∥h∥2∥k∥2JD,θ(f).

Proposition 4.4. Let h, k ∈ Cc(Γ) and f ∈ Cc(Γ, σ). Then

JD,θ((h
∗ ∗ k)f) 6 ∥h∥2∥k∥2JD,θ(f).

Proof. For any α > 0 and any ξ, η ∈ ℓ2(Γ), we have

|⟨(I −Mθα)λ((h
∗ ∗ k)f)Mα(ξ), η⟩|

= |⟨λ((h∗ ∗ k)f)Mα(ξ), (I −Mθα)(η)⟩|

=

∣∣∣∣∑
t∈Γ

⟨λ(f)Mk̃ρ
∗
tMα(ξ),Mh̃ρ

∗
t (I −Mθα)(η)⟩

∣∣∣∣
by Proposition 4.1. Since for any t ∈ Γ, ρt commutes with λ(f), from the proof of Proposition 4.2, we

have

ρtMk̃ρ
∗
tMα = MαρtMk̃ρ

∗
t

and

ρtMh̃ρ
∗
tMθα = MθαρtMh̃ρ

∗
t .

Thus, we obtain

|⟨(I −Mθα)λ((h
∗ ∗ k)f)Mα(ξ), η⟩|

=

∣∣∣∣∑
t∈Γ

⟨(I −Mθα)λ(f)MαρtMk̃ρ
∗
t (ξ), ρtMh̃ρ

∗
t (η)⟩

∣∣∣∣
6

∑
t∈Γ

|⟨(I −Mθα)λ(f)MαρtMk̃ρ
∗
t (ξ), ρtMh̃ρ

∗
t (η)⟩|

6 1

(θ − 1)α

∑
t∈Γ

∥ρtMk̃ρ
∗
t (ξ)∥2∥ρtMh̃ρ

∗
t (η)∥2JD,θ(f)
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=
1

(θ − 1)α
JD,θ(f)

∑
t∈Γ

∥Mk̃ρ
∗
t (ξ)∥2∥Mh̃ρ

∗
t (η)∥2

6 1

(θ − 1)α
∥h∥2∥k∥2JD,θ(f)∥ξ∥2∥η∥2.

The proof is complete.

For a set E, we denote |E| for its cardinality.
Corollary 4.5. Let α > 0. Suppose E ⊂ B(α) and F ⊂ Γ\B(θα), and set k = χE and h = χF . Then,

for any f ∈ Cc(Γ, σ), we have

∥λ((h∗ ∗ k)f)∥ 6 1

(θ − 1)α
|E|1/2|F |1/2JD,θ(f)

and

JD,θ((h
∗ ∗ k)f) 6 |E|1/2|F |1/2JD,θ(f).

Proof. The conclusion follows from Propositions 4.3 and 4.4.

For γ > β > 0 let A(β, γ) denote the annulus

B(γ)\B(β) = {r ∈ Γ : β < ℓ(r) 6 γ}.

Corollary 4.6. For given γ > β > θα > 0, let k = |B(α)|−1χB(α) and h = χA(β,γ), and let g = h∗ ∗ k.
Then, for any f ∈ Cc(Γ, σ) we have

∥λ(gf)∥ 6 1

(θ − 1)α
(|B(α)|−1|B(γ)|)1/2JD,θ(f)

and

JD,θ(gf) 6 (|B(α)|−1|B(γ)|)1/2JD,θ(f).

Proof. The result follows from Corollary 4.5.

Lemma 4.7. For given γ > β > θα > 0, let k = |B(α)|−1χB(α) and h = χA(β,γ), and let g = h∗ ∗ k.
We have

(i) 0 6 g 6 1;

(ii) if g(r) ̸= 0, then r ∈ A(β − α, γ + α); and

(iii) if r ∈ A(β + α, γ − α), then g(r) = 1.

Proof. From the definition of the usual convolution, we have

g(r) = (h∗ ∗ k)(r)

=
∑
s∈Γ

h∗(rs−1)k(s)

=
∑
s∈Γ

χA(β,γ)(sr
−1)|B(α)|−1χB(α)(s)

for any r ∈ Γ. Thus, we have 0 6 g 6 1.

If g(r) ̸= 0, there is an s ∈ Γ such that s ∈ B(α) and sr−1 ∈ A(β, γ). Hence, we have

ℓ(r) = ℓ(s−1sr−1) 6 ℓ(s−1) + ℓ(sr−1) 6 α+ γ

and

β − α < ℓ(sr−1)− ℓ(s) 6 ℓ(r−1) = ℓ(r).

If r ∈ A(β + α, γ − α), then β + α < ℓ(r) 6 γ − α. For any s ∈ B(α), we have

β = β + α− α
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< ℓ(r)− ℓ(s−1) 6 ℓ(rs)

6 ℓ(r) + ℓ(s) = γ − α+ α = γ,

and thus g(r) = 1.

Proposition 4.8. Suppose γ > β > (θ + 1)α > 0, and f ∈ Cc(Γ, σ) vanishes identically on both the

annuli A(β − 2α, β) and A(γ, γ + 2α). Then

∥λ(fχA(β,γ))∥ 6 1

(θ − 1)α
(|B(α)|−1|B(γ + α)|)1/2JD,θ(f)

and

JD,θ(fχA(β,γ)) 6 (|B(α)|−1|B(γ + α)|)1/2JD,θ(f).

Proof. Since γ > β > (θ + 1)α > 0, we have

γ + α > β − α > θα > 0.

Let k = |B(α)|−1χB(α) and h = χA(β−α,γ+α), and let g = h∗∗k. Because f ∈ Cc(Γ, σ) vanishes identically

on both the annuli A((β − α)− α, (β − α) + α) and A((γ + α)− α, (γ + α) + α), by Lemma 4.7 we have

gf = (h∗ ∗ k)f = χA(β,γ)f,

and hence by Corollary 4.6 we get

∥λ(fχA(β,γ))∥ 6 1

(θ − 1)α
(|B(α)|−1|B(γ + α)|)1/2JD,θ(f)

and

JD,θ(fχA(β,γ)) 6 (|B(α)|−1|B(γ + α)|)1/2JD,θ(f).

This completes the proof.

5 Bounded dilation

Definition 5.1. Let Γ be a discrete group, let ℓ be a proper length function on Γ and let θ > 1. We

say that Γ has the property of bounded θ-dilation with respect to ℓ if there exists a constant Cℓ < ∞ such

that

|B(θα)| 6 Cℓ|B(α)| for all α > 1.

Let ℓ be a proper length function on a discrete group Γ with the property of bounded θ-dilation. Then,

for any β > 1, we get

|B(θkβ)| 6 Ck
ℓ |B(β)| (5.1)

for each nonnegative integer k. If 1 6 β 6 α, let k be the positive integer that satisfies

θk−1β 6 α < θkβ.

Then,

|B(α)| 6 |B(θkβ)| 6 Ck
ℓ |B(β)|

and k − 1 6 logθ(α/β). So

|B(α)| 6 C
1+logθ(α/β)
ℓ |B(β)|. (5.2)

When β = 1, we see that ℓ has polynomial growth.

Let Kθ be the smallest positive integer such that

θ3K − 2θ2K − 1 > 0 and
θ

θ + 1
θ2K − θK − 2 > 0
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for all K > Kθ. Fix an integer K > Kθ, and denote R = θK . For any integers m,n > 0, we set

B̃(n) = B(Rn) and Ã(m,n) = A(Rm, Rn).

For n > 1, we set kn = |B̃(n− 1)|−1χB̃(n−1) and hn = χÃ(n,n+1), and gn = h∗
n ∗ kn. Then, h∗

n = hn and

the support of gn is contained in A(Rn −Rn−1, Rn+1 +Rn−1). From the inequality (5.1), we obtain

|B̃(n− 1)|−1|B̃(n+ 1)| 6 C2K
ℓ .

Lemma 5.2. For any f ∈ Cc(Γ, σ) and n > 1, we have

∥λ(gnf)∥ 6 C1R
−nJD,θ(f),

where C1 = RCK
ℓ /(θ − 1).

Proof. By Corollary 4.6, we have

∥λ(gnf)∥ 6 1

(θ − 1)Rn−1
(|B(Rn−1)|−1|B(Rn+1)|)1/2JD,θ(f)

6 1

θ − 1
R1−nCK

ℓ JD,θ(f)

for any f ∈ Cc(Γ, σ) and n > 1. Set

C1 =
RCK

ℓ

θ − 1
,

and we have the conclusion.

Proposition 5.3. For any integers n,m > 1 with |n−m| > 2, the supports of gn and gm are disjoint.

Proof. Without loss of generality, we may assume that n > m. If gm(x) ̸= 0, then ℓ(x) 6 Rm+1+Rm−1,

while if gn(x) ̸= 0, then Rn −Rn−1 < ℓ(x). Since R > θKθ and n−m > 2, we have

Rn −Rn−1 −Rm+1 −Rm−1 = Rm−1(R(n−m+1) −Rn−m −R2 − 1)

> Rm−1(R3 − 2R2 − 1) > 0,

which proves that the supports of gn and gm are disjoint.

From this proposition, we see that for all n > 1, the supports of g2n and g2(n+1) are disjoint. Thus,

for any integer N > 1 and f ∈ Cc(Γ, σ), we set

pfN =
∑
n>N

(g2nf).

Proposition 5.4. For any integer N > 1 and f ∈ Cc(Γ, σ), we have

∥λ(pfN )∥ 6 θ2

θ2 − 1
C1R

−2NJD,θ(f).

Proof. For any f ∈ Cc(Γ, σ), by Lemma 5.2 we have

∥λ(pfN )∥ =

∥∥∥∥ ∑
n>N

λ(g2nf)

∥∥∥∥
6

∑
n>N

∥λ(g2nf)∥

6 C1

∑
n>N

R−2nJD,θ(f)

6 1

1− θ−2Kθ
C1R

−2NJD,θ(f)
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6 1

1− θ−2
C1R

−2NJD,θ(f)

=
θ2

θ2 − 1
C1R

−2NJD,θ(f)

for any integer N > 1.

Proposition 5.5. For any integer N > 1, we have

JD,θ(p
f
N ) 6 C2JD,θ(f)

for any f ∈ Cc(Γ, σ), where C2 = 2Rθ2

θ2−1C1.

Proof. For any α > 0, let Nα be the smallest positive integer n such that

R2n+1 +R2n−1 > (θ − 1)α.

Then, for any n < Nα, the annulus A(R2n − R2n−1, R2n+1 + R2n−1) is contained in B((θ − 1)α). If

ξ ∈ Cc(Γ) has its support in B(α), then by the definition of the twisted convolution for any n < Nα, the

support of λ(g2nf)ξ is contained in B(θα), and thus

(I −Mθα)λ(g2nf)ξ = 0.

Thus, for n < Nα,

(I −Mθα)λ(g2nf)Mα = 0.

Consequently, by Lemma 5.2,

∥(I −Mθα)λ(p
f
N )Mα∥ =

∥∥∥∥ ∑
n>Nα

(I −Mθα)λ(g2nf)Mα

∥∥∥∥
6

∑
n>Nα

∥λ(g2nf)∥

6
∑

n>Nα

C1R
−2nJD,θ(f)

6 θ2

θ2 − 1
C1R

−2NαJD,θ(f).

Now, from the definition of Nα, we have

(θ − 1)α 6 R2Nα+1 +R2Nα−1 6 2R2Nα+1,

since R > θ > 1. Thus, R2Nα > (θ − 1)α/(2R), and we obtain

∥(1−Mθα)λ(p
f
N )Mα∥ 6 θ2

θ2 − 1

2R

(θ − 1)α
C1JD,θ(f).

Finally, we get

JD,θ(p
f
N ) 6 2Rθ2

θ2 − 1
C1JD,θ(f) = C2JD,θ(f).

This completes the proof.

For any integer N > 1 and f ∈ Cc(Γ, σ), let

qfN = f − pfN .

If n > N and

R2n +R2n−1 < ℓ(r) 6 R2n+1 −R2n−1,
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then g2n(r) = 1 by Lemma 4.7(iii), and thus qfN (r) = 0. Denote

βn = R2(n−1)+1 −R2(n−1)−1 and γn = R2n +R2n−1.

Set αn = 1
2(θ+1)R

2n−1. Then we have

(θ + 1)αn < βn = R2n−3(R2 − 1) < γn = R2n +R2n−1.

Since

βn − 2αn − (R2(n−1) +R2(n−1)−1) = R2n−3(R2 −R− 2)− 1

θ + 1
R2n−1

= R2n−3

(
θ

θ + 1
R2 −R− 2

)
> 0,

qfN vanishes on A(βn − 2αn, βn). Because

γn + 2αn − (R2n+1 −R2n−1) = R2n + 2R2n−1 +
1

θ + 1
R2n−1 −R2n+1

= R2n−1

(
R+ 2 +

1

θ + 1
−R2

)
= −R2n−1

((
θ

θ + 1
R2 −R− 2

)
+

1

θ + 1
(R2 − 1)

)
< 0,

qfN vanishes on A(γn, γn + 2αn). Let us denote

An = A(βn, γn).

By the inequality (5.2), we get

|B(αn)|−1|B(γn + αn)| 6 C
1+logθ((γn+αn)/αn)
ℓ

= C
1+logθ(2(θ+1)R+2θ+3)
ℓ .

Finally, by Proposition 4.8, we have

∥λ(qfNχAn
)∥ 6 C3R

−2nJD,θ(q
f
N ), (5.3)

where C3 = 2(θ+1)
θ−1 RC

1
2+

1
2 logθ(2(θ+1)R+2θ+3)

ℓ .

Lemma 5.6. For any f ∈ Cc(Γ, σ) and for each n > 2, we have

∥λ(qfNχAn)∥ 6 C4R
−2nJD,θ(f),

where C4 = (1 + C2)C3.

Proof. From Proposition 5.5, we obtain

JD,θ(q
f
N ) 6 JD,θ(f) + JD,θ(p

f
N )

6 (1 + C2)JD,θ(f).

Therefore, by the inequality (5.3), we have

∥λ(qfNχAn)∥ 6 C3R
−2nJD,θ(q

f
N )

6 C3R
−2n(1 + C2)JD,θ(f).

Set C4 = (1 + C2)C3, and the conclusion follows.
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For any f ∈ Cc(Γ, σ) and for any integer N > 2, we set

ρfN =
∑
n>N

(qfNχAn).

If ℓ(r) > R2N + R2N−1, we have ρfN (r) = qfN (r), and it follows that f − (pfN + ρfN ) is supported in

B(R2N +R2N−1).

Proposition 5.7. For any f ∈ Cc(Γ, σ) and for any integer N > 2, we have

∥λ(ρfN )∥ 6 θ2

θ2 − 1
C4R

−2NJD,θ(f).

Proof. For any integer N > 2, by Lemma 5.6 we have

∥λ(ρfN )∥ =

∥∥∥∥ ∑
n>N

λ(qfNχAn)

∥∥∥∥
6

∑
n>N

∥λ(qfNχAn)∥

6
∑
n>N

C4R
−2nJD,θ(f)

6 θ2

θ2 − 1
C4R

−2NJD,θ(f)

for any f ∈ Cc(Γ, σ).

Corollary 5.8. For any f ∈ Cc(Γ, σ) and for any integer N > 2, we have

JD,θ(ρ
f
N ) 6 2θ2

θ2 − 1
C4JD,θ(f).

Proof. For any α > 0, let Nα be the smallest positive integer n such that

R2n +R2n−1 > (θ − 1)α.

If ξ ∈ Cc(Γ) has its support in B(α), then for any n < Nα, the support of λ(qfNχAn)ξ is contained in

B(θα), and thus

(I −Mθα)λ(q
f
NχAn)ξ = 0.

Thus, for n < Nα, we have

(I −Mθα)λ(q
f
NχAn

)Mα = 0.

By Lemma 5.6, we have

∥(I −Mθα)λ(ρ
f
N )Mα∥ =

∥∥∥∥ ∑
n>Nα

(I −Mθα)λ(q
f
NχAn)Mα

∥∥∥∥
6

∑
n>Nα

∥λ(qfNχAn)∥

6
∑

n>Nα

R−2nC4JD,θ(f)

6 θ2

θ2 − 1
C4R

−2NαJD,θ(f).

Now, from the definition of Nα, we have

(θ − 1)α 6 R2Nα +R2Nα−1 6 2R2Nα
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since R > θ > 1. Thus, we have R2Nα > (θ − 1)α/2. So we obtain

∥(I −Mθα)λ(ρ
f
N )Mα∥ 6 2θ2

θ2 − 1
C4

1

(θ − 1)α
JD,θ(f).

Finally,

JD,θ(ρ
f
N ) = sup{(θ − 1)α∥(I −Mθα)λ(ρ

f
N )Mα∥ : α > 0}

6 2θ2

θ2 − 1
C4JD,θ(f).

This completes the proof.

6 Leibniz Lip-norms

A ∗-seminorm L on a unital C∗-normed algebra A is a seminorm such that L(a∗) = L(a) for any a ∈ A.

A seminorm L on a unital C∗-normed algebra A is said to be lower semicontinuous if for every α ∈ R
with α > 0, the set {a ∈ A : L(a) 6 α} is norm-closed in A. Equivalently, for any sequence {an} in A

that converges in norm to a ∈ A, we have

L(a) 6 lim inf
n→∞

L(an).

A seminorm L on a unital C∗-normed algebra A is said to be Leibniz if for all a, b ∈ A = {a ∈ A : L(a)

< ∞}, we have

L(ab) 6 L(a)∥b∥+ ∥a∥L(b).

Recall in [18,20,22] that a Lip-norm on a C∗-algebra A with identity 1A is a seminorm L on A which

is permitted to take the value +∞, and satisfies

(i) L(a) = L(a∗) for all a ∈ A;

(ii) L(1A) = 0;

(iii) the topology, induced by the metric

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A,L(a) 6 1}, µ, ν ∈ S(A)

on the state space S(A) of A, coincides with the weak ∗-topology.
Definition 6.1 (See [22]). A C∗-metric algebra is a pair (A,L) consisting of a unital C∗-algebra A

and a Leibniz Lip-norm L on A.

Let A be a unital C∗-normed algebra, and let L be a seminorm on A (with the value +∞ allowed)

with L(1A) = 0. Denote

L1 = {a ∈ A : L(a) 6 1}.

Let L1 be the closure of L1 in Ā, the completion of A, and let L̄ denote the corresponding “Minkowski

functional” on Ā. More precisely, L̄ is defined by

L̄(a) = inf{β > 0 : a ∈ βL1}

for a ∈ Ā. We call L̄ the closure of L (see [16]). It is clear that a ∈ L1 if and only if L̄(a) 6 1, i.e., L̄ is

lower semicontinuous on Ā. For any ε > 0 and a ∈ A with L(a) < ∞, we have

a ∈ (L(a) + ε)L1 ⊆ (L(a) + ε)L1.

Hence, L̄(a) 6 L(a) + ε, and thus L̄(a) 6 L(a).

Proposition 6.2. If L is a Leibniz ∗-seminorm on a unital C∗-normed algebra A, then L̄ is also a

Leibniz ∗-seminorm on Ā.
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Proof. For any ε > 0 and any a, b ∈ Ā with L̄(a) < ∞ and L̄(b) < ∞, we have

L̄

(
a

(L̄(a) + ε)

)
6 1 and L̄

(
b

(L̄(b) + ε)

)
6 1.

Thus, there are sequences {an} and {bn} in A with L(an) 6 1 and L(bn) 6 1 for every n such that

lim
n→∞

an =
a

(L̄(a) + ε)
and lim

n→∞
bn =

b

(L̄(b) + ε)
.

Since L is Leibniz, it follows that

L(anbn) 6 ∥an∥L(bn) + ∥bn∥L(an)
6 ∥an∥+ ∥bn∥

→ ∥a∥
(L̄(a) + ε)

+
∥b∥

(L̄(b) + ε)
.

From the lower semicontinuity of L̄, we have

L̄(ab) 6 (L̄(a) + ε)(L̄(b) + ε) lim inf
n→∞

L̄(anbn)

6 (L̄(a) + ε)(L̄(b) + ε) lim inf
n→∞

L(anbn)

6 ∥a∥(L̄(b) + ε) + ∥b∥(L̄(a) + ε)

for any ε > 0. Thus, we have

L̄(ab) 6 ∥a∥L̄(b) + ∥b∥L̄(a),

i.e., L̄ is Leibniz.

For any a ∈ Ā with L̄(a) < ∞ and any ε > 0, we can see that L̄(a/(L̄(a) + ε)) 6 1, and thus there is

a sequence {an} in A with

lim
n→∞

an =
a

(L̄(a) + ε)

and L(an) = L(a∗n) 6 1 for every n. Hence, we have

L̄

(
a∗

(L̄(a) + ε)

)
6 lim inf

n→∞
L̄(a∗n) 6 lim inf

n→∞
L(a∗n) 6 1,

i.e., L̄(a∗) 6 L̄(a) + ε for any ε > 0, and thus L̄(a∗) 6 L̄(a). Using the procedure for a∗, we obtain

L̄(a) 6 L̄(a∗), and thus L̄(a) = L̄(a∗).

While for a ∈ Ā with L̄(a) = ∞, we must have that L̄(a∗) = ∞; otherwise, from L̄(a∗) < ∞, we will

obtain L̄(a) = L̄(a∗) < ∞, a contradiction. Thus, we prove that L̄ is a ∗-seminorm on Ā.

Now, let ℓ be a length function on a discrete group Γ, and let σ be a 2-cocycle on Γ.

Proposition 6.3. LD is a lower semicontinuous Leibniz ∗-seminorm on Cc(Γ, σ).

Proof. Since D is a self-adjoint operator and λ is a ∗-isomorphism, for any a ∈ Cc(Γ, σ), we have

LD(a∗) = ∥[D,λ(a∗)]∥ = ∥[D,λ(a)]∗∥ = ∥[D,λ(a)]∥ = LD(a),

i.e., LD is a ∗-seminorm on Cc(Γ, σ).

For any a, b ∈ Cc(Γ, σ), we have

LD(ab) = ∥[D,λ(ab)]∥
= ∥λ(a)[D,λ(b)] + [D,λ(a)]λ(b)∥
6 ∥a∥LD(b) + ∥b∥LD(a).

Thus, LD is Leibniz.
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Let {an} be a sequence in Cc(Γ, σ) with

lim
n→∞

an = a ∈ Cc(Γ, σ)

and LD(an) 6 α for some α > 0 and all n. For any ξ, η ∈ ℓ2(Γ), we have

⟨[D,λ(a)]ξ, η⟩ = ⟨λ(a)ξ,Dη⟩ − ⟨Dξ, λ(a)η⟩
= lim

n→∞
⟨λ(an)ξ,Dη⟩ − ⟨Dξ, λ(an)η⟩

= lim
n→∞

⟨[D,λ(an)]ξ, η⟩.

Since

|⟨[D,λ(an)]ξ, η⟩| 6 α∥ξ∥∥η∥

for all n, we have

LD(a) = ∥[D,λ(a)]∥ 6 α,

and thus LD is lower semicontinuous.

For any a ∈ Cc(Γ, σ) with L̄D(a) < ∞ and ε > 0, we have L̄D(a/(L̄D(a) + ε)) 6 1. By definition,

there is a sequence {an} in LD,1 that converges to a/(L̄D(a) + ε). From the lower semicontinuity of LD,

we see that

LD

(
a

(L̄D(a) + ε)

)
6 lim inf

n→∞
LD(an) 6 1,

i.e., LD(a) 6 L̄D(a) + ε for any ε > 0, and thus, LD(a) 6 L̄D(a). For any a ∈ Cc(Γ, σ), we obtain

L̄D(a) 6 LD(a). Hence, for any a ∈ Cc(Γ, σ), we have LD(a) = L̄(a).

From Propositions 6.3 and 6.2, we have the following proposition.

Proposition 6.4. L̄D is a lower semicontinuous Leibniz ∗-seminorm on C∗
r (Γ, σ).

From this proposition, we can endow the state space S(C∗
r (Γ, σ)) with an extended metric

ρL̄D
: S(C∗

r (Γ, σ))× S(C∗
r (Γ, σ)) 7→ [0,∞]

as follows:

ρL̄D
(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ C∗

r (Γ, σ), L̄D(a) 6 1}

for all µ, ν ∈ S(C∗
r (Γ, σ)). Since

{a ∈ C∗
r (Γ, σ) : L̄D(a) 6 1} = {a ∈ Cc(Γ, σ) : LD(a) 6 1},

we have

ρL̄D
(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ C∗

r (Γ, σ), L̄D(a) 6 1}
= sup{|µ(a)− ν(a)| : a ∈ Cc(Γ, σ), LD(a) 6 1}
= ρLD (µ, ν),

where

ρLD (µ, ν) = sup{|µ(a)− ν(a)| : a ∈ Cc(Γ, σ), LD(a) 6 1}

for all µ, ν ∈ S(C∗
r (Γ, σ)).

Lemma 6.5. Let ℓ be a proper length function on a discrete group Γ, and let σ be a 2-cocycle on Γ.

Then, for any α > 0, there exists a constant β > 0 such that∑
r∈Γ

|f(r)| 6 βLD(f)

for any f ∈ W with support in B(α).



566 Long B T et al. Sci China Math March 2021 Vol. 64 No. 3

Proof. For any f ∈ Cc(Γ, σ), we have∥∥∥∥∑
r∈Γ

ℓ(r)f(r)σ(r, e)δr

∥∥∥∥
2

= ∥[D,λ(f)](δe)∥2

6 ∥[D,λ(f)]∥ = LD(f)

by the formula (3.1); hence,

∑
r∈Γ

ℓ(r)2|f(r)|2 =

∥∥∥∥∑
r∈Γ

ℓ(r)f(r)σ(r, e)δr

∥∥∥∥2
2

6 (LD(f))2.

Now, suppose that f ∈ W and f is supported on B(α). We have

∑
r∈Γ

|f(r)| 6
( ∑

ℓ(r)6α

|f(r)|2ℓ(r)2
) 1

2
( ∑

0<ℓ(r)6α

1

ℓ(r)2

) 1
2

6 LD(f)

( ∑
0<ℓ(r)6α

1

ℓ(r)2

) 1
2

< ∞

since ℓ is proper. Set β = (
∑

0<ℓ(r)6α
1

ℓ(r)2 )
1
2 , and we have the conclusion.

Lemma 6.6. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation. Then, for any 2-cocycle σ on Γ, there exists a real number γ > 0 such that

∥λ(f)∥ 6 γLD(f)

for any f ∈ W .

Proof. Let N be an integer with N > 2. By Propositions 5.4, 5.7 and 3.5 we have

∥λ(pfN )∥ 6 θ2

θ2 − 1
C1R

−2NJD,θ(f)

6 θ2

θ2 − 1
C1R

−2NLD(f)

and

∥λ(ρfN )∥ 6 θ2

θ2 − 1
C4R

−2NJD,θ(f)

6 θ2

θ2 − 1
C4R

−2NLD(f)

for any f ∈ Cc(Γ, σ), respectively. For any f ∈ Cc(Γ, σ), since f − (pfN + ρfN ) is supported in B(R2N

+R2N−1) = B(γN ), we have

∥λ(f − pfN − ρfN )∥ 6
∑

ℓ(r)6γN

|(f − pfN − ρfN )(r)|

=
∑

ℓ(r)6γN

∣∣∣∣(qfN −
∑
n>N

(qfNχAn)

)
(r)

∣∣∣∣
6

∑
ℓ(r)6γN

|qfN (r)|

6
∑

ℓ(r)6γN

|f(r)|

6 βNLD(f)
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for some constant βN > 0 by Lemma 6.5 and the definitions of qfN and ρfN . Thus, we have

∥λ(f)∥ 6 ∥λ(f − pfN − ρfN )∥+ ∥λ(ρfN )∥+ ∥λ(pfN )∥

6 βNLD(f) +
θ2

θ2 − 1
C4R

−2NLD(f) +
θ2

θ2 − 1
C1R

−2NLD(f)

=

(
βN +

θ2

θ2 − 1
C4R

−2N +
θ2

θ2 − 1
C1R

−2N

)
LD(f)

for any f ∈ Cc(Γ, σ). Set

γ = βN +
θ2

θ2 − 1
C4R

−2N +
θ2

θ2 − 1
C1R

−2N .

This completes the proof of the lemma.

Proposition 6.7. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation. Then, for any 2-cocycle σ on Γ, the diameter of the metric space (S(C∗
r (Γ, σ)), ρL̄D

) is finite,

and in particular, ρL̄D
is a metric on the state space S(C∗

r (Γ, σ)).

Proof. By Lemma 6.6, there exists a constant γ > 0 such that

∥λ(f)∥ 6 γLD(f)

for any f ∈ W . Now, for any f ∈ Cc(Γ, σ), we have f − f(e)σ(e, e)δe ∈ W , and thus

∥λ(f − f(e)σ(e, e)δe)∥ 6 γLD(f − f(e)σ(e, e)δe) = γLD(f),

i.e.,

∥f̃ ∥̃ 6 γLD(f),

where ∥ · ∥̃ is the quotient norm on the quotient space Cc(Γ, σ)/Cδe with respect to the norm ∥ · ∥ on

Cc(Γ, σ). Hence, for any µ, ν ∈ S(C∗
r (Γ, σ)) and f ∈ Cc(Γ, σ) with LD(f) 6 1, we have

|µ(f)− ν(f)| = |(µ− ν)(f)| 6 2∥f̃ ∥̃ 6 2γ.

Finally,

ρL̄D
(µ, ν) = ρLD(µ, ν)

= sup{|µ(f)− ν(f)| : f ∈ Cc(Γ, σ), LD(f) 6 1} 6 2γ,

i.e., the diameter of the metric space (S(C∗
r (Γ, σ)), ρL̄D

) is finite.

A Lipschitz seminorm [9,13,16,22] on a C∗-algebra A with identity 1A is a ∗-seminorm L on A which

is permitted to take the value +∞, and satisfies

(i) L(a) = 0 if and only if a ∈ C1A;
(ii) the set A = {a ∈ A : L(a) < ∞} is a dense ∗-subalgebra of A.

The following characterization of the Lip-norm is given in [13, Proposition 1.3]. We give a somewhat

different proof here.

Proposition 6.8. Let L be a Lipschitz seminorm on a unital C∗-algebra A, and let µ be a state of A.

Then, L is a Lip-norm if and only if the set

{a ∈ A : L(a) 6 1 and µ(a) = 0}

is a totally bounded subset of A for the norm.

Proof. Suppose that L is a Lip-norm on A. Then, (S(A), ρL) is a compact metric space, and its topology

coincides with the weak ∗-topology. For any ν ∈ S(A) and a ∈ E = {a ∈ A : L(a) 6 1, µ(a) = 0}, we
have

|â(ν)| = |ν(a)| = |ν(a)− µ(a)|
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6 ρL(µ, ν)L(a)

6 diam(S(A), ρL) < ∞,

and thus Ê is a bounded subset of the unital C∗-algebra C(S(A)) of complex-valued continuous functions

on S(A). Since for any a ∈ E, we have

|â(ν1)− â(ν2)| = |ν1(a)− ν2(a)|
6 ρL(ν1, ν2)L(a) 6 ρL(ν1, ν2)

for all ν1, ν2 ∈ S(A), hence Ê is a family of equicontinuous functions on (S(A), ρL). By the Arzelà-Ascoli

theorem, Ê is a totally bounded subset of C(S(A)). From the Kadison representation theorem, the

canonical map

a ∈ Asa 7→ â ∈ Aff(S(A)) ⊂ C(S(A)),

where Aff(S(A)) is the set of all real-valued affine continuous functions on S(A), is a unital order iso-

morphism, and hence, an isometry. For any a ∈ A, we have

∥â∥∞ 6 ∥a∥ 6 ∥a1∥+ ∥a2∥
= ∥â1∥∞ + ∥â2∥∞
6 ∥â∥∞ + ∥â∥∞ = 2∥â∥∞,

where a1 = a+a∗

2 and a2 = a−a∗

2i . For any ε > 0, since Ê is totally bounded, there exist a1, a2, . . . , am ∈ E

such that for any â ∈ Ê, there is an ai such that ∥â− âi∥∞ < ε/2. It follows that for any c ∈ E, there is

an ai such that ∥ĉ− âi∥∞ < ε
2 ; thus, ∥c−ai∥ 6 2∥ĉ− âi∥∞ < ε. This implies that E is a totally bounded

subset of A for the norm.

For the proof in the other direction, one can refer to [13].

Proposition 6.9. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation, and let σ be a 2-cocycle on Γ. Then, L̄D is a Lipschitz seminorm on C∗
r (Γ, σ).

Proof. By the definition of the length function, we can find [D,σ(e, e)λe] = 0, which gives

L̄D(α(σ(e, e)δe)) = LD(α(σ(e, e)δe)) = 0

for any α ∈ C.
Suppose a ∈ C∗

r (Γ, σ) with L̄D(a) = 0. Then L̄D(na) = 0 for all n ∈ N. By Proposition 6.7, we have

|µ(na)− ν(na)| 6 ρL̄D
(µ, ν)

6 diam(S(C∗
r (Γ, σ)), ρL̄D

) < ∞.

Hence,

|µ(a)− ν(a)| 6 1

n
diam(S(C∗

r (Γ, σ)), ρL̄D
) → 0

for all µ, ν ∈ S(C∗
r (Γ, σ)) and all n ∈ N. It follows that µ(a) = ν(a) for all µ, ν ∈ S(C∗

r (Γ, σ)). Now, we

fix a µ0 ∈ S(C∗
r (Γ, σ)). Then we have

µ(a− µ0(a)(σ(e, e)δe)) = µ(a)− µ0(a) = 0

for all µ ∈ S(C∗
r (Γ, σ)). Since the state space S(C∗

r (Γ, σ)) separates the elements of the unital C∗-algebra

C∗
r (Γ, σ), we have a = µ0(a)(σ(e, e)δe) ∈ C(σ(e, e)δe).
By Proposition 6.4, L̄D is a Leibniz ∗-seminorm on C∗

r (Γ, σ). Thus, the set

{a ∈ C∗
r (Γ, σ) : L̄D(a) < ∞}

is a ∗-subalgebra of C∗
r (Γ, σ). Since for any f ∈ Cc(Γ, σ), L̄D(f) = LD(f) = ∥[D, f ]∥ < ∞, we obtain

Cc(Γ, σ) ⊂ {a ∈ C∗
r (Γ, σ) : L̄D(a) < ∞}.
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Finally, {a ∈ C∗
r (Γ, σ) : L̄D(a) < ∞} is a dense ∗-subalgebra of C∗

r (Γ, σ). Therefore, L̄D is a Lipschitz

seminorm on C∗
r (Γ, σ).

Theorem 6.10. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation, and let σ be a 2-cocycle on Γ. Then, the seminorm L̄D is a Leibniz Lip-norm on the twisted

reduced group C∗-algebra C∗
r (Γ, σ), i.e., the pair (C∗

r (Γ, σ), L̄D) is a C∗-metric algebra.

Proof. By Proposition 6.4 L̄D is a Leibniz ∗-seminorm on C∗
r (Γ, σ), so we just need to prove that L̄D

is a Lip-norm on C∗
r (Γ, σ). However, by Propositions 6.8 and 6.9, it is sufficient to show that the set

B1 = {a ∈ C∗
r (Γ, σ) : L̄D(a) 6 1, tr(λ(a)) = ⟨λ(a)(δe), δe⟩ = 0}

is totally bounded for the norm on C∗
r (Γ, σ). Since

{a ∈ C∗
r (Γ, σ) : L̄D(a) 6 1} = {a ∈ Cc(Γ, σ) : LD(a) 6 1},

we just need to demonstrate that the set

BLD
= {f ∈ W : LD(f) 6 1}
= {f ∈ Cc(Γ, σ) : tr(λ(f)) = ⟨λ(f)(δe), δe⟩ = 0, LD(f) 6 1}

is totally bounded for the operator norm.

By Propositions 3.5, 5.4 and 5.7, for any f ∈ BLD and N > 2, we have

max{∥λ(pfN )∥, ∥λ(ρfN )∥} 6 θ2

θ2 − 1
R−2N max{C1, C4}.

For any ε > 0, we fix R > θKθ , and choose N large enough such that

θ2

θ2 − 1
R−2N max{C1, C4} <

ε

4
.

For this N , we have

∥λ(pfN + ρfN )∥ <
ε

2
.

Thus we have

∥λ(f)− λ(f − (pfN + ρfN ))∥ <
ε

2
.

Now, for any f ∈ Cc(Γ, σ), by the construction of ρfN and pfN , we have f − (pfN + ρfN ) supported in

B(R2N + R2N−1). As the proof in Lemma 6.6, we can see that the set {f − (pfN + ρfN ) : f ∈ BLD
} is

bounded. Since ℓ is a proper length function, the set

{f − (pfN + ρfN ) : f ∈ BLD}

is contained in a finite-dimensional subspace of Cc(Γ, σ); hence, it is totally bounded. It follows that

there is a finite set

{fi − (pfiN + ρfiN ) : fi ∈ BLD , 1 6 i 6 m},

such that for any f − (pfN + ρfN ) with f ∈ BLD
, there is an fi − (pfiN + ρfiN ) for some 1 6 i 6 m satisfying

∥λ(f − (pfN + ρfN ))− λ(fi − (pfiN + ρfiN ))∥ <
ε

2
.

Now, for any f ∈ BLD , there is an fi − (pfiN + ρfiN ) for some 1 6 i 6 m such that

∥λ(f)− λ(fi − (pfiN + ρfiN ))∥ 6 ∥λ(f)− λ(f − (pfN + ρfN ))∥

+ ∥λ(f − (pfN + ρfN ))− λ(fi − (pfiN + ρfiN ))∥

<
ε

2
+

ε

2
= ε.

Hence, BLD
is totally bounded. This completes the proof of the theorem.
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In particular, we have the following refined result of Christ and Rieffel [2, Theorem 1.4] on reduced

group C∗-algebras for the seminorm LD induced by a length function with the property of bounded

doubling.

Corollary 6.11. Let ℓ be a length function on a discrete group Γ with the property of bounded doubling.

Then, the seminorm L̄D is a Leibniz Lip-norm on the reduced group C∗-algebra C∗
r (Γ), i.e., (C

∗
r (Γ), L̄D)

is a C∗-metric algebra. In particular, the pair (C∗
r (Γ), L̄D) is a compact quantum metric space.

Proof. This is just the trivial 2-cocycle σ ≡ 1 and θ = 2 case for C∗
r (Γ, σ) by Theorem 6.10.

Let A and B be two unital C∗-algebras with Lip-norms LA and LB , respectively. A map Φ : A 7→ B

is said to be Lipschitz if there exists a constant γ > 0 such that

LB(Φ(a)) 6 γLA(a)

for all a ∈ A. When Φ is invertible and both Φ and Φ−1 are Lipschitz, we say that Φ is bi-Lipschitz. If

LB(Φ(a)) = LA(a)

for all a ∈ A, then we say that Φ is Lipschitz isometric [7, 22]. For two compact quantum metric spaces

(C∗-metric algebras) (A,LA) and (B,LB), if there is a ∗-isomorphism Φ from A onto B such that Φ and

Φ−1 are Lipschitz isometric, we say that (A,LA) and (B,LB) are Lipschitz isometric (see [9]).

Let σ1 and σ2 be two cohomologous 2-cocycles on Γ. Let λσ1 be the left regular σ1-projective repre-

sentation of Cc(Γ, σ1) on ℓ2(Γ), and let λσ2 be the left regular σ2-projective representation of Cc(Γ, σ2)

on ℓ2(Γ). The map Φ defined by the equation (3.2) gives an isometrical ∗-isomorphism between Cc(Γ, σ1)

and Cc(Γ, σ2), and hence induces a ∗-isomorphism from C∗
r (Γ, σ1) onto C∗

r (Γ, σ2).

Theorem 6.12. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation. If σ1 and σ2 are two cohomologous 2-cocycles on Γ, then C∗-metric algebras (C∗
r (Γ, σ1), L̄D)

and (C∗
r (Γ, σ2), L̄D) are Lipschitz isometric. Thus, the compact quantum metric space structures

(C∗
r (Γ, σ), L̄D) depend only on the cohomology class of σ.

Proof. By Theorem 6.10, we see that (C∗
r (Γ, σ1), L̄D) and (C∗

r (Γ, σ2), L̄D) are C∗-metric algebras.

For any a ∈ Cc(Γ, σ1), we have

LD(Φ(a)) = ∥[D,Uλσ1(a)U∗]∥
= ∥U [D,λσ1(a)]U∗∥
= ∥[D,λσ1(a)]∥ = LD(a).

For any ε > 0 and a ∈ C∗
r (Γ, σ1) with L̄D(a) < ∞, we have

L̄D

(
a

(L̄D(a) + ε)

)
6 1.

Thus, there is a sequence {an} in Cc(Γ, σ1) with

lim
n→∞

an =
a

(L̄D(a) + ε)

and LD(an) 6 1 for every n. Hence, we have

L̄D

(
Φ

(
a

(L̄D(a) + ε)

))
6 lim inf

n→∞
L̄D(Φ(an))

= lim inf
n→∞

LD(Φ(an))

= lim inf
n→∞

LD(an) 6 1,

i.e., L̄D(Φ(a)) 6 L̄D(a) + ε for any ε > 0, so L̄D(Φ(a)) 6 L̄D(a).
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Similarly, for any b ∈ Cc(Γ, σ2), we have LD(Φ−1(b)) = LD(b). Thus, for any b ∈ C∗
r (Γ, σ2) with

L̄D(b) < ∞, we have

L̄D(Φ−1(b)) 6 L̄D(b).

So for any a ∈ C∗
r (Γ, σ1) with L̄D(a) < ∞, we have

L̄D(Φ(a)) 6 L̄D(a) = L̄D(Φ−1(Φ(a))) 6 L̄D(Φ(a)),

i.e., L̄D(Φ(a)) = L̄D(a). Similarly, for any b ∈ C∗
r (Γ, σ2) with L̄D(b) < ∞, we have

L̄D(Φ−1(b)) = L̄D(b).

For any a ∈ C∗
r (Γ, σ1) with L̄D(a) = ∞, we must have L̄D(Φ(a)) = ∞; otherwise, from L̄D(Φ(a)) < ∞

and

L̄D(a) = L̄D(Φ−1(Φ(a))) 6 L̄D(Φ(a)) < ∞,

we will obtain L̄D(a) < ∞, which leads to a contradiction. Similarly, for any b ∈ C∗
r (Γ, σ2) with

L̄D(b) = ∞, we obtain L̄D(Φ−1(b)) = ∞.

It now follows that Φ and Φ−1 are Lipschitz isometric. Therefore, Φ is a Lipschitz isometric map from

C∗
r (Γ, σ1) onto C∗

r (Γ, σ2).

Recall that a unital subalgebra B of a unital algebra A is said to be spectrally stable in A if for any

b ∈ B, the spectrum of b as an element of B is the same as its spectrum as an element of A, or equivalently,

any b that is invertible in A is also invertible in B. From Theorem 6.10, we pose the question below.

Question 6.13. Let ℓ be a proper length function on a discrete group Γ with the property of bounded

θ-dilation, and let σ be a 2-cocycle on Γ. Is there a dense and spectrally stable ∗-subalgebra A of C∗
r (Γ, σ)

such that the pair (C∗
r (Γ, σ), L̄D) is a C∗-metric algebra, where LD(a) = ∥[D,λ(a)]∥ for any a ∈ A?
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