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1 Introduction

In [3], Connes recovered the geodesic distance on a compact Riemannian spin manifold M through a -
seminorm on a dense *-subalgebra of the unital C*-algebra C'(M) of complex-valued continuous functions
on M, which was constructed from a Dirac operator on M. More generally, Connes endowed the state
space S(A) for a unital C*-algebra A with a metric from a spectral triple (A4, H, D) using the formula

prp (1, v) = sup{lpu(a) —v(a)| : a € A, Lp(a) = [|[D; a]|| < 1}

for p,v € S(A). A typical noncommutative example is the reduced group C*-algebra of a discrete group
endowed with a proper length function with a discrete and unbounded range. In 1998, Pavlovié¢ [14]
and Rieffel [15] investigated the question of when the metric topology on the state space S(A) from py,,
induces the weak *-topology. Later, Rieffel [16,18,19] discussed this question in a more general framework
of order-unit spaces. More precisely, he defined a Lip-norm on an order-unit space as a seminorm whose
induced metric topology on the state space is the weak *-topology as well as considering an order-unit
space equipped with a Lip-norm as a compact quantum metric space [16,18].
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In [17], Rieffel provided compact quantum metric space structures on the noncommutative tori
C*(Z%, ), using length functions on Z?. As a follow-up, he posed the question of which other dis-
crete groups with 2-cocycle ¢ could provide examples of compact quantum metric spaces. Later, Ozawa
and Rieffel [13] showed that the reduced group C*-algebras are compact quantum metric spaces for
groups with a Haagerup-type condition (hyperbolic groups, in particular). Note that Z¢ and hyperbolic
groups are groups with a rapid decay property [4,6,13,21]. More generally, Antonescu and Christensen
[1] constructed a large class of Lip-norms on a group I" with the rapid decay property, and hence obtained
compact quantum metric space structures on the reduced group C*-algebra C}(T"). Motivated by the
o-twisted rapid decay property in [12], Long and Wu [9] proved that twisted reduced group C*-algebras
for discrete groups with this property are compact quantum metric spaces. It is well known that a finite-
ly generated discrete group is of polynomial growth if and only if it is nilpotent-by-finite [5,8, 11, 21].
In [2], Christ and Rieffel introduced three growth conditions for a group with a length function: strong
polynomial growth, bounded doubling and polynomial growth, and proved that these growth conditions
are equivalent for a proper length function on a finitely generated discrete group. They showed that
for any proper length function on a discrete group I' with the bounded doubling property, the topology
on the state space S(C;(I')) from this metric coincides with the weak *-topology [2]. Moreover, they
conjectured that this is also true for group C*-algebras twisted by a 2-cocycle. The main goal of this
paper is to prove this conjecture.

The rest of this paper is organized as follows. In Section 2, some basic concepts and results on the
twisted reduced group C*-algebras are introduced. In Section 3, for a discrete group with a proper
length function, we introduce two seminorms on the twisted group algebras. One comes from the length
function, and the other comes from the restriction of the left regular projective representation of the
twisted group algebras. In addition, we prove that the latter depends only on the cohomology class of the
2-cocycle o. In Section 4, we truncate the twisted convolution operators from the left regular projective
representation by a family of cutoff functions, and control the truncated operators with respect to the
operator norm and the seminorm Jp g, respectively. In Section 5, the classical polynomial growth of the
length function on a finitely generated group is generalized to the property of bounded dilation of the
length function on a discrete group. For a discrete group equipped with a proper length function with the
property of bounded dilation, we decompose the functions with finite support on this group into “three
parts”, and dominate them by the operator norm and the seminorm Jp g, respectively. In Section 6, it is
proved that for any 2-cocycle o on a discrete group I" endowed with a length function with the bounded
¢-dilation property, the closure Lp of the seminorm Lp on the unital C*-normed algebra C.(T',0) is a
Leibniz Lip-norm on the twisted reduced group C*-algebra C*(T, o), i.e., the pair (C*(I',0),Lp) is a
C*-metric algebra. It is further proved that the compact quantum metric space structures (C#(I', o), Lp)
on C*(I',0) depend only on the cohomology class of the 2-cocycle o in the Lipschitz isometric sense.

2 Twisted reduced group C*-algebras

Let T' be a discrete group with the identity e, and let T be the unit circle in C. A 2-cocycle on T is a
function o : I' x I' — T satisfying

o(s,t)o(st,r) = o(s,tr)o(t,r)
for all s,¢t,7 € I'. Two cocycles 01 and o9 are called cohomologous if there is a function p : I' — T such
that
o1(s,8)02(s,8) ™" = p(s)p(D)p(st) "
for all s,t € I'. A 2-cocycle o on I is called a multiplier if o(e,e) = 1.

Let T be a discrete group, and let o be a 2-cocycle on I'. Let C.(T', o) denote the set of complex-valued
functions on I with finite support. For s € I', we define

1 t=
5g(t): ) S,
0, t#s.
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Then §, € C.(I',0). C.(I',0) becomes a *-algebra with the identity o(e, e)d. under the operations

(f+9)(s) = f(s) +g(s),
(af)(s ):Oéf(é‘),
f*cfg Zf tt ! )

tel

fr(s) = f(s7Ho(s,s71),

for any f,g € C.(T',0), s € T, and o € C (see [23]). When o =1 is the trivial 2-cocycle, C.(T",0) is the
usual group algebra, and is denoted by C.(T') in this paper.
The left regular o-projective representation of I' on ¢?(I') is given by

)\s((st) = 0'(87 t)(sst

for any s,t € I'. This representation induces the left regular o-projective representation A\ of C.(T', o)
on ¢2(T') given by
= f(s)A
sel’

for any f € C.(T',o). More precisely, we have

(AUE))(s) = (f *5 E)(s)
=> f)o(t,t 1 s)E(t"s)

tel

= flsr Ho(sr™,r)E(r)

rel
for any s € I', f € C.(',0), and & € £2(T"). It is here clear that \ is linear. For any s,t,7 € I', we have
A(0s *5 01)(6r) = o (s, t)o(st,T)dstr
=o(

s, tr )( )6str
(A(és) (5t))(5r)7

ie., A(0s #5 0t) = A(d5)A(0¢), and thus

Afrog) =D F(8)g(t)A(s *o br)
s,tel’
= D F(9)gOAE)AG)
s,tel’
= Af)Mg)

for any f,g € C.(T',0). Moreover, for any s,t € ', we have

(A(6:))"(8e) = o (s, 571)ds-1, = A(6:7) (1)

For any f € C.(T',0), we have
M) =D FEAGET) =D F8) @) = (A

Since A(ds) is a unitary operator for all s € T, we see that

=11 f(s)A <16 = 1f1h

sel’ sel’

IACSf
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for any

f=> f(s)ds € Ce(T,0).

sel

Thus, for any f € C.(T', o), we have A\(f) € B(£*(T")). We define

IFIF=1NAHI f € Ce(T, 0).

Then || - || is a C*-norm on the x-algebra C.(I', ). The o-twisted reduced group C*-algebra C(T',0) of T’
is the completion of C.(T', o) for the norm || - ||. The map A extends uniquely to a *-isomorphism, still
denoted by \, of C*(T', o) into B(¢2(T)). In particular, if o = 1, C*(T', o) is the reduced group C*-algebra
Cx(T).

3 Two seminorms on twisted group algebras

Definition 3.1. A length function on a discrete group I' is a function
£:T — [0,00)

such that
(i) £(s) = 0 if and only if s = e, where e is the identity of T’
(ii) £(s) = £(s7 1) for all s € T}
(iii) 0(s182) < l(s1) + 6(82) for all s1,s9 € T.
The length function £ is said to be proper if the set £=1(]0, 8]) is finite for any real number 3 > 0.

Let ¢ be a length function on a discrete group I', and let ¢ be a 2-cocycle on I'. Let M, denote the
(usually unbounded) operator on £2(T") of pointwise multiplication by the length function £. We define
the derivation A by the “Dirac” operator D = M, as

A(Ma)) = [D, Ma)] = [My, Aa)]

for all a € C}(T', o). From this derivation, we can define a seminorm on the *-algebra C.(T, o) as follows.

Definition 3.2.  On the x-algebra C.(T',0), we define

Lp(a) = [AA@)] = [P, A@)]]|

for any a € C.(T, 0).

From the proof of Proposition 3.3 in [10], we have Lp(ds) = ||[D, As]|| = 4(s) for any s € T, and thus
Lp(f) = [D, A(NH)]ll < oo for any f € C.(T',0). It is clear that Lp is a seminorm on C.(T', o).

For any h € £(T), let M), denote the operator on ¢2(I") of pointwise multiplication by h. If E is a
subset of I, let Mg denote M, ,, where x g is the characteristic function of F, and thus Mg is a projection
on £2(T). For any o > 0, we set B(a) = {r € I : £(r) < o}, and in this special case, we set My = Mp(q).

For any s,t € I and & € £2(T"), we have

(ID; AJ(©))(1) = ((DAs = AsD)(€))(1)

D(Xs (5))(15) = A:(D(E)(t)

() (A (é))( ) = (D(E))(s™ t)a(s, s~ ')

(O&(s™ )o(s, 57 1) — L(sT E(sT o (s, s7')
(t) = €(s )&(s™ Yo (s, 57 11).

£t
£t
= (¢
In particular, when & = §;, we have

D A1) = (£(st) — £(8))o (s, D)ot
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for all s,¢ € I'. Thus, for any t € I', f € Co(I',0) and ¢ € £%(T'), we have

DA = [0 X 1] ©)

-2 f() D, AJE)()
- Z F)((t) = U5 )E(s o (s, 5710)
- z; fr=h)() = L))o (tr=,r)E(r),
and thus
DA = ;ﬂs)w, As)(6:) = ;ﬂs)w(sﬂ — U)o (s, 1) 3.

It is much more convenient to regard the operators A(f) and [D, A(f)] for any f € C.(T',0) as integral
operators by means of the kernel functions. More concretely, the kernel function A(f)(r,s) for the
operator A(f) is

Mf)(r,s) = f(rs™o(rs™",s)
for any r,s € ', and the kernel function [D, A(f)](r, s) for the operator [D, A(f)] is
(D, A()](r,8) = () = £(s))a(rs™,5) f(rs™")

for any r,s € I'. Thus, if £(r) # £(s), then

Flrs™a(rs™,s) = (U(r) — €(s)) T D, M), 5).-

Proposition 3.3.  If ¢ is proper, then for any f € C.(T',0) and any «, 5 € [0,00) with 8 > a > 0, we
have
(I = Mg)A(f/)Ma | < (8 — @) ' Lp(f).

Proof.  For any € € ¢*(T') and r € T’ with ¢(r) > 3, we have

(I = Mg)A(f)Ma(€))(r) = (1 = xB(s)) (1) (A(f) Ma(£))(r)

= ()Mol (1)
= Zf(rs_l)a(r8_17S)(Ma(f))(s)
sel
=3 flrs o(rs ™Y $)xB(ay (5)€(5)
= 3 ()~ 1) DA 8)S(s).
s€B(a)

For any r,s € T with £(r) > £(s), we have
() = L)~ = £(r)~ (L = L)/ L(r) ™"
= 1) Y ) e
k=0

therefore,
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Z Y ) TIED A 8)E(s) E(s)

k=0 seB(a)
:Z TS ID A, ) (DF Mo (€)) ()
k=0 sel

()" (D A)ID" Mo (€)) (1)

M

ES
Il

0
00

> D7 HI - MDD ) (©) ) )

k=0

Thus, as operators from M, (¢*(T')) to (I — Mg)(¢*(T)), we have

I
/N
7N

(I = Mp)A(f)Ma =Y D™ "H(I = M3)[D, A(f)|D* M.
k=0

Since |[D717*(I — Mp)|| < 1% and ||[D, A(f)]D* M., || < a*Lp(f), we have

1~ Ma)A(F)Ma]| < B~ Z() — (8- a) ' Lo(f).
k=0

This completes the proof. O

From Proposition 3.3, we see that if £ is proper and 6 > 1, then for any f € C.(T,0) and any « > 0,
we have
(0 = Dal[(I = Moa)Mf)Mall < Lp(f),

which leads to the next definition.

Definition 3.4. If 6§ > 1 and ¢ is proper, we define
Ip,o(f) =sup{(0 — Dal|(I = Mpa)A(f)Mal| : a > 0}

for any f € C.(T,0).

Proposition 3.5. If ¢ is proper, then
(i) Jp,o(f) < Lp(f) for any f € Ce(T', 0);

(i) Jp,g is a seminorm on C.(T,0);
(iii) Jp,e s a norm on W, where

W ={f € Ce(T',0) : tr(A(f)) = (A(f)(de), oc) = O}.
Proof. (i) and (ii) are clear.
(iil) Tt is clear that W is a subspace of C.(T',0). For any f € C.(T',0) and any a > 0, we have

((I - Mﬁa))‘(f)Ma)((se) = (I - MGQ)(A(f)((Se))

oo os)

rel

Z fr)o(r,e)d

L(r)>0a
If fo € W and fy # 0, then there is an rg € T" such that fo(rg) # 0 and ¢ # e. Since £(rg) # 0, we may
choose an ag > 0 such that 6oy < £(rg). Thus,

((I_Meao) (fO Z fo 7’ e (5 750

£(r)>0ag

Eventually, Jp ¢(fo) # 0. O
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Let 07 and o5 be two cohomologous 2-cocycles on I'. Suppose p is the map such that

01(5,8) = p(s)p(t)p(5D)ora(5,)
for all s,t € I'. Then we can define a unitary operator U on ¢2(T") by
U:&=> &(s)0s € L2(T) = Y &(s)p(s)ds € L2(T).
sel sel’
Let A\t be the left regular o;-projective representation of C.(I',o1) on ¢2(T'), and let A\°2 be the left
regular oa-projective representation of C.(T', 02) on ¢2(T'). For any ¢ € £%(T') and s,t € ', we have
(UAZTUE))(E) = p(t) (AT UT())(F)
p(t)oi(s, s~ )T (€))(s™ ')
p()or(s, s~ t)p(sTH)E(s ™)
p(s)oa(s, s H)E(s™ )
((p()AZ*)(E)()-
Thus, we can define the map ® : C.(T', 01) — C.(T', 02) by

O(ATY) = UATTU™ = p(s)Ag? (3-2)

for all s € . As the proof of Proposition 5.1 in [9], we can see that ® is an isometrical #-isomorphism
from C.(T,01) onto C.(T',02) induced by the unitary operator U. By density, ® can be extended to a
*-isomorphism between C* (T, o1) and C(T',05). Since U is a pointwise multiplication operator on £2(T")
by p, we have
(I = Moa)®(a)Ma || = [|(I — Moo JUA (a)U™ M|

= [U(I = Mg )X (a) Mo U™||

= [(I = Mpa)A”* (a) Ma|
for all @ € C¥(T',01) and « > 0. Hence, for any f € C.(T',01), we have

Ipe(2(f)) = sup{(6 — Dal|(/ — Mpa)2(f) Mall : o > 0} = J7}(f).
This completes the proof of the following proposition.

Proposition 3.6.  Let I' be a discrete group endowed with a proper length function . If o1 and o3 are
two cohomologous 2-cocycles on T', then there exists an isometrical x-isomorphism ® from C.(T',01) onto

C.(T',02) such that Jg‘ja(@(f)) = Jgfe(f) for any f € C.(T,01).

4 Truncations

Let £ be a length function on a discrete group I', and let o be a 2-cocycle on I'. Let p be the right regular
G-projective representation of I' on ¢2(I"), defined by

(p:e(€))(r) = a(r,1)E(rt)
for any r,t € I' and £ € (2(T'). Then p commutes with A (see [9]). For any h € C.(I'), we define
h(r) = h(r=1) for r € .
Proposition 4.1.  For any h,k € C.(T") and f € C.(T',0), we have
A(( Z/)tMN Mzpy, (4.1)
ter

where this sum converges for the weak operator topology. Furthermore,

AR 5 E) O < IAO AL El2-
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Proof.  From the definition of usual convolution, we have

(" xk)(sr™') = > h*()k

tel

=> At Dkt s

tel

= SRR

tel

for r,s € T'. Tt follows that for any &, € C.(T"), we have

(AR * k) )(E), 77>
= Z (h* k) £)(€)(s)n(s)

sel

=D > (W k) (s (s o (st r)E(r)n(s)

sel’ rel’

=3 S S R TR ) fsr D a(sr ! r)Er)n(s)

sel' rel’ tel

=3NS RE TS kG f(str o (str Tt et et n(s)

sel' rel’ tel

= S S kG (s vt et RGs Dn(st )

sel'rel’ tel

=3 (Z f<sr‘1>o<sr‘%r>k<r-1>o<rr1,t>s<rt-1>>

tel’ sel’ Mrel
x (h(s~Yo(st=1 t)n(st~1))

=5 (3 st ot k=01 €)W

tel’ sel’ “rel

=D D () Mzpi () () (Mg pi () (s)

tel’ sel’

= > X §), M;,p; (n))
tel

= Ao MEA(f) M7 (€), m)-
tel

Since

ZHME ||2—ZZ| th

tel tel rel’

_Zzlk “Ho(rt™ et 2

tel rel

=Yk PlEN

rel

= [Ikl3l1€13,

the same steps employed for M5 p;(n) and the Cauchy-Schwarz inequality lead to

D I Mipi (€), My ()] < IACHIIAII2 Iz 1€ 2l -

tel

This implies the convergence of the series (4.1) in the proposition for the weak operator topology and the
stated norm inequality. O
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Proposition 4.2.  For any h,k € C.(T") and f € C.(I',0), we have

Lp((h* « k) f) < |[hll2llkll2Lo(f).

Proof.  Since (h* k) f has finite support, [D, A((h* k) f)] is a bounded operator. For any &,n € C.(T),
we have

([D, A" % k) )I(€),m) = (M(R™ = k) £)(£), D(m)) — (A(R™ = k) f)D(E),m).-
By Proposition 4.1, we obtain

([D, A((h" = k)f)](f) )
= D (o MENF)Mypi (€), D(n)) — {pe MEN(f) My p; D(€),m)).

tel

For any t € T, let 7 : C.(T') — C.(T") be the right translation given by

T(f)(s) = f(st), sel, [feC(l)

Thus, for any t,r € I' and & € ¢2(T"), we have

(e Mipi (§))(r) = (Mypi () (rt)o(r,t)
= k(rt)(p; (§))(rt)o(r,1)
= k(rt)€(r)
= 72(k)(r)E(r)
— (M, 5, (©)(r)
Following the same approach for M;, we have
peMzp; = M_ g and pe M pf = M_ &

for any t € I'. Then we have

(ID, A((h* k) )I(E),m)
= ((Dpe Mz p; M) pe Mip; (), m) — (pe M pf A(f) e M p; D(€), 1))

tel

=D (DASIM, 3)(€): M, G, () = A(F)DM,, ) (€), M, ;) (n))
tel’

= Z (D, \(f T,(k (f),Mn(g)(ﬂ)%

since A commutes with p and My D = DMy, for any h € £>°(T"). Because

S, 5 @13 = 32 S In ) () Ple(r)

tel tel’ rel’

-> (X |n<7%><r>|2> )PP

rel’ Mtel

=D IIKIBIE)?

rel

= [Ixl3l1€13,

similarly for the term M_ g, (n), we have

{[D AR+ k) H)IEm)| < Lo (HlIRl2lEll211€]2]ln]l2-

This completes the proof. O
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For the remainder of the section, we fix a real number 6 > 1 and assume that ¢ is a proper length
function.

Proposition 4.3.  Let a > 0. Suppose h € C(T") with support in T\B(0a) and k € C.(T") with support
in B(a). Then, for any f € C.(T,0), we have

AR+ R) I < (9_7||h|\2||k“2JD,a(f)-

Da

Proof.  For any &, € (2(T'), we have

(AR % E))(E),m] =

Z<ptM£>\(f)M;pf(£),n>‘

tel’
_ Z<ptM,~t<I—MeaM(f)MaMf,;p:(f),m]
tel
by Proposition 4.1, and thus
O e
< —JD o(F) S Mg (€)1 | M7 () o
G prd
(Z M ||2) (Z 1M ||2) I(f)
tel tel
- ﬁ||h||2||k||2||£||2H??HzJD,e(f)
for any &,n € C.(T'). Hence, || A((h* xk)f)|| < ﬁ“h”z”k”gjp)g(f). O

Proposition 4.4. Let h,k € C.(T") and f € C.(T',0). Then

Ipo((h* * k) f) < [[hllol[Ell2TD,6 (f)-

Proof.  For any a > 0 and any &,n € ¢2(T), we have

(T = Mpa) (™ x k) f) Ma(8), )|
= [(A(R" % k) f) Mo (€), (I = Moo )(1))]

D )My M), M p7 (I = Maa) (1))

tel

by Proposition 4.1. Since for any ¢ € T', p; commutes with A(f), from the proof of Proposition 4.2, we
have
pe My p; Mo = Mo pi M p;

and
pt M5, py Moo = Moo pe M, py

Thus, we obtain

(I = Mpa)A((h™ + k) ) Ma(8), )|
D (I = Moa)A(f) Mapi My p; (€), i M5 7 (1))

<D T = Myo) M) Map My} (), pi My p5 (1))
tEF

ZHPt O ll2llpe Mz, pi (M)l2p,0(f)

tGF



Long BT et al. Sci China Math ~ March 2021 Vol. 64 No.3

:(eine ) > 12507 () 2| M50 (m) 2
tel’
1
< m||h||2|\k||2JD,e(f)||€||2Hn||2-

The proof is complete.

For a set E, we denote |E| for its cardinality.

557

Corollary 4.5. Let o > 0. Suppose E C B(a) and F C T\B(0a), and set k = xg and h = xp. Then,

for any f € C.(T,0), we have

(™ + k) )] < (g%\EP/ﬂFW?Jm(f)

Da

and
Ipo((h* = k) f) < |E|Y2|F|Y20p o (f).

Proof.  The conclusion follows from Propositions 4.3 and 4.4.

For v > 8 > 0 let A(5,~) denote the annulus

B(Y\B(B) ={rel': 5 <L(r) <~}

Corollary 4.6. For giveny > 3> 60a >0, let k = |B(a)|_1XB(a) and h = x a(8,y), and let g = h* * k.

Then, for any f € C.(T',0) we have

A DIl < (IB(@)[ BN Tp6(f)

1
(0—Da
and

Tpe(gf) < (IB@)| ' B(Y)NY?Tpe(f).

Proof.  The result follows from Corollary 4.5.

O

Lemma 4.7. For given v > > 0a > 0, let k = |B(a)|_1xB(a) and h = xa(8,y), and let g = h* x k.

We have
(i) 0<g <L
(ii) if g(r) # 0, then r € A(B — o,y + «); and
(iii) if r € A(B+ o,y — @), then g(r) = 1.

Proof.  From the definition of the usual convolution, we have

g(r) = (" xk)(r)
= Z h*(rst

sel

_ZXAﬁ’Y |B( )l 1XB(0¢)(8)

sel’

for any r € I'. Thus, we have 0 < g < 1.

If g(r) # 0, there is an s € I such that s € B(a) and sr—t € A(3,~). Hence, we have

L)y =L(s"tsr )y <l(s™H +lsr™ ) <a+

and

B—a<l(sr™)—L(s) <Lr™t) =L(r).

Ifre A(B+a,vy—a), then f+a < {(r) <vy—a. For any s € B(a), we have

B=PB+a-a
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and thus g(r) = 1. O

Proposition 4.8.  Suppose v > 8 > (0 4+ 1)a > 0, and f € C.(T',0) vanishes identically on both the
annuli A(B — 2a, 8) and A(v,v + 2«). Then

A XA < ﬁ(IB(a)I’llB(W +a)))/2Jpe(f)

and
Ipo(FXa@m) < (IB(@)| 7By +a))'*Jpo(f)-
Proof.  Since v > > (0 4+ 1)ae > 0, we have

Yy+a>F—az=6a>0.

Let k = |B(a)|’1XB(a) and h = X A(8—a,y+a), and let g = h*xk. Because f € C.(I', o) vanishes identically
on both the annuli A((f —a) —a, ( —a) + «) and A((y + &) — a, (v + @) + @), by Lemma 4.7 we have

gf = (R* % k) f = xapy/f
and hence by Corollary 4.6 we get

MDA € =g 1B B+ @)D H2 ()

and
Ip.o(fxa@qm) < (1B()| B+ a)) 2 Ipa(f).

This completes the proof. O

5 Bounded dilation

Definition 5.1. Let I' be a discrete group, let ¢ be a proper length function on I' and let 8 > 1. We
say that I' has the property of bounded 0-dilation with respect to ¢ if there exists a constant Cy < co such
that

|B(6a)| < C¢|B(a)| forall o> 1.

Let £ be a proper length function on a discrete group I' with the property of bounded #-dilation. Then,
for any 8 > 1, we get
|B(0"3)| < C7|B(B)] (5.1)

for each nonnegative integer k. If 1 < 8 < «, let k be the positive integer that satisfies
0" 18 < o < 0F3.
Then,
|B(a)| < |B(6"8)| < C7|B(B)]

and k£ — 1 < logy(a/B). So
|B(a)| < €8P B()]. (5.2)

When 8 = 1, we see that ¢ has polynomial growth.
Let Ky be the smallest positive integer such that

63K — 202K 1 >0 and %GQK—GK—2>O
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for all K > Ky. Fix an integer K > Ky, and denote R = §%. For any integers m,n > 0, we set
B(n) = B(R") and A(m,n) = A(R™,R").

For n > 1, we set k, = |B(n — 1)|_1X§(n—1) and hy = Xz ns1)> A0 gn = hjy % ky. Then, by, = hy, and
the support of g,, is contained in A(R"™ — R*~!, R"*! + R"~1). From the inequality (5.1), we obtain

|B(n = 1)]7}[B(n+1)| < CF¥
Lemma 5.2. For any f € C.(I',0) and n > 1, we have

IMgn )| < CL1R™"Jpe(f),

where C; = RCK /(0 — 1).
Proof. By Corollary 4.6, we have

A gn )l < ﬁ(IB(R”_l)\_l\B(R"“)I)l/zJD,a(f)
Soo IRI "C{ Ipe(f)
for any f € Ce(T',0) and n > 1. Set p
and we have the conclusion. O

Proposition 5.3.  For any integers n,m > 1 with |n —m| > 2, the supports of g, and g, are disjoint.

Proof.  Without loss of generality, we may assume that n > m. If g,,(z) # 0, then £(x) < R™t1+R™~ 1
while if g, (z) # 0, then R" — R"~! < {(z). Since R > 0%¢ and n — m > 2, we have
R" — Rnfl 7 Rerl 7 Rmfl _ Rmfl(R(nferl) —_ R _ R2 _ 1)
> R™Y(R* - 2R* - 1) >0,
which proves that the supports of g, and g,, are disjoint. O

From this proposition, we see that for all n > 1, the supports of g2, and gy(,,41) are disjoint. Thus,
for any integer N > 1 and f € C.(T',0), we set

n>N
Proposition 5.4.  For any integer N > 1 and f € C.(T,0), we have

62 _
NP < 7 CLR ™ I ().

Proof.  For any f € C.(T',0), by Lemma 5.2 we have

= D Maanf) H

n>N

< Y IMga)l

n>N
<C1 Y R Ipe(f)
n>N

- 1
S 1-0-2K

NP

C1R™NJp o(f)
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1
< mclRizNJD,e(f)

92
=2 1CIR_2NJD,0(f)

for any integer N > 1. O

Proposition 5.5.  For any integer N > 1, we have

JD,a(pva) < CoJdpo(f)

for any f € C.(T, ), where Cy = gf’fi Cs.
Proof.  For any a > 0, let N, be the smallest positive integer n such that

R L R > (0 - 1)

Then, for any n < N,, the annulus A(R?*" — R?"~1 R?"+1 4+ R2"=1) is contained in B((6 — 1)a). If
¢ € C.(T) has its support in B(a), then by the definition of the twisted convolution for any n < N,,, the
support of A(gan, f)€ is contained in B(f«), and thus

(I — Mpa)M(g2nf)E = 0.

Thus, for n < Ng,
(I - MGQ)A(Qan)Ma =0.

Consequently, by Lemma 5.2,

(I — Moo)Apl) Mal| =

Z (I - MGQ))‘(g2nf)Ma

n>=Ng
< 37 1A
n>Ng
< Y ClR™Jps(f)
n>Ng
92
< 0z 1C1R_2N“ JIpe(f).

Now, from the definition of N,, we have
(6 — 1)a < R2Na+1 4 g2Na—1 ¢ gp2Na+1,

since R > 6 > 1. Thus, R?> > (6 — 1)a/(2R), and we obtain

101 = Maa) APl Mall < o 2By ().
02-1(00-1a
Finally, we get
JD,O(p{v) < ;Ri_éﬂlcﬂaa(f) = CaJpe(f).
This completes the proof. O

For any integer N > 1 and f € C.(T', o), let
ak = f-pk.

If n > N and
R2n +R2n—1 < ((,’,> < R2n+1 _ ]:'3271—17
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then gon(r) = 1 by Lemma 4.7(iii), and thus q]]:,(r) = 0. Denote

8, = R2(n—U+1 _ R2An=D-1  anq . — R4 g2l
Set o, = mRQ”_l. Then we have

04 1a, < fBp =R*™ 3R> -1) <y, = R* 4+ R %,

Since

1
ﬂ'n, o 2an o (RZ(nfl) 4 RQ(nfl)fl) — R2n73(R2 —R-— 2) . R2n71

0+1
0
_ p2n—3 2_p_o9
R <0+ 1R R ) > 0,
q{v vanishes on A(fB, — 2ay, B,). Because
Yr + 2an _ (R2n+1 o RZn—l) _ R2n + 2R2n—1 + 0—]1'— 1R2n—1 o R2n+1
1
—_ p2n—1 ) I > Y}
R (R+ + i1 R )

— (g _p_o) L(RQ -1

0+1 0+1

<0,

qJJ:, vanishes on A(yn,vn + 2, ). Let us denote

By the inequality (5.2), we get
[Blan)]| B + an)| < Gy 0 On o)

1+logy (2(6+1) R+26+3)
—cl .

Finally, by Proposition 4.8, we have

INahxa)ll < CsR™"Tpo(ak), (5.3)

14 1log,(2(6+1)R+20+3
Where 03 = %RCE 2 Oge( ( ) )

Lemma 5.6. For any f € C.(T',0) and for each n > 2, we have

M@ xa)l < CaR™2"Jpo(f),
where Cy = (14 Cs)Cs.

Proof.  From Proposition 5.5, we obtain

Ip.o(f) + Ip.e(pk)

Tp.olak) <
< (1+C2)Jpe(f)
Therefore, by the inequality (5.3), we have

C3R™"Jp o(qk)
C3R™"(1+ C2)Jpo(f).

M@k xa)l <
<

Set Cy = (1 + C3)Cs5, and the conclusion follows. O
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For any f € C.(I',0) and for any integer N > 2, we set

ol =D (ahxa,).
n>N

If ¢(r) > R?N + R?N~1 we have p{v(r) = q]f\,(r)7 and it follows that f — (pfv + p{v) is supported in
B(R2N+R2N_1).
Proposition 5.7.  For any f € C.(T,0) and for any integer N > 2, we have

62 _
NP < g CuR™N T ().

Proof.  For any integer N > 2, by Lemma 5.6 we have

G = || S Aahxan) \
n>N
<Y IMalxa)l
n>N
<> CaR " Jpe(f)
n>N
< ﬁCzLR_Q Jp,o(f)
for any f € C.(T,0). O

Corollary 5.8. For any f € C.(T',0) and for any integer N > 2, we have

262

JD,O(P{\]) < ﬁCALJD,o(f).

Proof.  For any a > 0, let N, be the smallest positive integer n such that
R4+ R™ 1 > (- 1)a.

If £ € C.(T") has its support in B(«), then for any n < N,, the support of )\(qj{,XAn)ﬁ is contained in
B(fa), and thus

(I — Moa)Nakxa, )€ = 0.

Thus, for n < N,, we have
(I — Moa) Mgl xa,) Mo = 0.

By Lemma 5.6, we have

10 = Mya) Ml ) Mall =

> (I = Mypo)Malrxa, ) Ma

n>Ng

< Y IMahxan)l

n>Ng
< Z R™2"CyJpe(f)
n>Ng
92
<
021

C4R_2N"‘ JD’Q(f).
Now, from the definition of N, we have

(9 _ 1)a < RQNa +R2Na—1 < 2R2Na
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since R > 6 > 1. Thus, we have R*¥e > (§ — 1)a/2. So we obtain

202 1
I — Moo )M(ph ) M| < :
U = Moo Ao Mal < g Cs g7 T0)
Finally,
Tp.a(ply) = sup{(0 — Dal[(I = Mpa)Mpp) Mal| : o> 0}
26>
< ﬁCALJD,G(f)-
This completes the proof. O

6 Leibniz Lip-norms

A x-seminorm L on a unital C*-normed algebra A is a seminorm such that L(a*) = L(a) for any a € A.
A seminorm L on a unital C*-normed algebra A is said to be lower semicontinuous if for every o € R
with o > 0, the set {a € A : L(a) < o} is norm-closed in A. Equivalently, for any sequence {a,} in A
that converges in norm to a € A, we have

L(a) < liminf L(a,).

n—oo

A seminorm L on a unital C*-normed algebra A is said to be Leibniz if for all a,b € A={a € A: L(a)

< 0o}, we have
L(ab) < L(a)|[b]| + [lal[ L (D).

Recall in [18,20,22] that a Lip-norm on a C*-algebra A with identity 14 is a seminorm L on A which
is permitted to take the value +o00, and satisfies

(i) L(a) = L(a*) for all a € A;

(ii) L(1a) = 0;

(iii) the topology, induced by the metric

prp,v) = sup{|u(a) —v(a)|: a € A, L(a) <1}, p,v € S(A)

on the state space S(A) of A, coincides with the weak *-topology.

Definition 6.1 (See [22]). A C*-metric algebra is a pair (A, L) consisting of a unital C*-algebra A
and a Leibniz Lip-norm L on A.

Let A be a unital C*-normed algebra, and let L be a seminorm on A (with the value 0o allowed)
with L(14) = 0. Denote
L1={aeA:L(a) <1}

Let £ be the closure of £; in A, the completion of A, and let L denote the corresponding “Minkowski
functional” on A. More precisely, L is defined by

L(a) =inf{8>0:a € BL;}

for a € A. We call L the closure of L (see [16]). It is clear that a € £; if and only if L(a) < 1, i.e., L is
lower semicontinuous on A. For any € > 0 and a € A with L(a) < oo, we have

a€ (L(a)+¢e)Ly C (L(a)+€)Ly.

Hence, L(a) < L(a) + ¢, and thus L(a) < L(a).

Proposition 6.2. If L is a Leibniz x-seminorm on a unital C*-normed algebra A, then L is also a
Leibniz x-seminorm on A.
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Proof.  For any € > 0 and any a,b € A with L(a) < oo and L(b) < oo, we have

)<t {en)

Thus, there are sequences {a,} and {b,} in A with L(a,) < 1 and L(b,) < 1 for every n such that

lim a, = —=————— and lim b, = ———.
nooe " T (L(a) +e) 0 e " T (L) + o)

Since L is Leibniz, it follows that

L(anbn) < |anHL(bn) + an”L(an)
<

anl + Ioal
S LR
(T +o) (L) +e)

From the lower semicontinuity of L, we have

L(ab) < (L(a) +)(L(b) + £) lim nf L(a,b,)
(L(a) + <)(L(B) + &) liminf L(a,b,)

for any € > 0. Thus, we have
L(ab) < [|al|L(b) + [[b]| L(a),
ie., L is Leibniz.
For any a € A with L(a) < oo and any ¢ > 0, we can see that L(a/(L(a)+¢)) < 1, and thus there is
a sequence {a,} in A with

lim a, = —————
oo ™ T (L(a) + )

and L(a,) = L(a}) < 1 for every n. Hence, we have

_ a* _
L —=——— ) <liminf L(a}) < liminf L(a;) < 1,
((L(a)—i—s)) iminf L(a)) < liminf L(a})

n— oo n—oo

ie.,, L(a*) < L(a) + ¢ for any € > 0, and thus L(a*) < L(a). Using the procedure for a*, we obtain
L(a) < L(a*), and thus L(a) = L(a*).

While for a € A with L(a) = oo, we must have that L(a*) = oo; otherwise, from L(a*) < oo, we will
obtain L(a) = L(a*) < 0o, a contradiction. Thus, we prove that L is a *-seminorm on A. O

Now, let £ be a length function on a discrete group I', and let o be a 2-cocycle on I'.
Proposition 6.3. Lp is a lower semicontinuous Leibniz x-seminorm on C.(T, o).

Proof.  Since D is a self-adjoint operator and A is a *-isomorphism, for any a € C.(T', o), we have
Lp(a™) = [I[D, AMa")]l| = [[[D, Ma)]*[| = [[D, Ma)]|| = Lp(a),

ie., Lp is a x-seminorm on C.(T', o).
For any a,b € C.(T', o), we have
Lp(ab) = [[[D, A(ab)]|
= [IMa)[D, A(B)] + [D; AMa)]AD) |
< llallLp(b) + bl Lp(a)-

Thus, Lp is Leibniz.
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Let {an} be a sequence in C.(I', o) with

lim a, =a € C.(T,0)

n—oo

and Lp(a,) < a for some a > 0 and all n. For any &,n € ¢2(T'), we have

(D, Ma)]€,n) = (Aa)§, Dn) — (DE, Ma)n)
= nlLIr;Q(A(an)§7 Dn) — (D&, Man)n)

= lim ([D, Man)]€,n).

n—oo

Since
KD, Aan)]€;m | < alElllinll

for all n, we have
Lp(a) =[D,Ma)lll < o,

and thus Lp is lower semicontinuous. O

For any a € C.(T,0) with Lp(a) < oo and € > 0, we have Lp(a/(Lp(a) +¢)) < 1. By definition,
there is a sequence {a,} in L£p ; that converges to a/(Lp(a) +¢). From the lower semicontinuity of Lp,
we see that

a
Lp(—2 ) <liminf Lp(a,) <1,
D((LD<a>+s>> iminf Lp(an)

i.e., Lp(a) < Lp(a) + ¢ for any ¢ > 0, and thus, Lp(a) < Lp(a). For any a € C.(I',0), we obtain
Lp(a) < Lp(a). Hence, for any a € C.(T, o), we have Lp(a) = L(a).
From Propositions 6.3 and 6.2, we have the following proposition.

Proposition 6.4. Lp is a lower semicontinuous Leibniz x-seminorm on C} (T, o).

From this proposition, we can endow the state space S(C(T", o)) with an extended metric
Py S(Cr(,0)) x S(CH(T, o)) = [0, 00]

as follows:
pLp (1, v) =sup{|u(a) —v(a)| : a € C7 (L, 0), Lp(a) < 1}

for all p,v € S(C}(T,0)). Since

{aeCi(T,0):Lp(a) <1} ={a€ C.(T,0): Lp(a) < 1},

we have
pL, (1 v) = sup{|u(a) — v(a)| : a € CY(T',0), Lp(a) < 1}
= sup{|u(a) —v(a)| :a € C.(T',0),Lp(a) < 1}
= PLp (Ma V)7
where

prp(p,v) = sup{|pu(a) —v(a)| : a € Ce(T', o), Lp(a) < 1}
for all p,v € S(CX(T,0)).

Lemma 6.5. Let ¢ be a proper length function on a discrete group I, and let o be a 2-cocycle on T'.
Then, for any a > 0, there exists a constant 3 > 0 such that

> 1) < BLo(f)

rel

for any f € W with support in B(«).
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Proof.  For any f € C.(I',0), we have

> () f(r)a(r,e)s,

rel’

= [I[D, A(H)I(8e)l|2

2

< DA = Lo(f)

by the formula (3.1); hence,

< (Lp(f))*

2

GRNIGIE

rel

Y Ur)f(r)a(r,e)s,

rel

Now, suppose that f € W and f is supported on B(«). We have

1 1

St (X ore?) (X o)

rel’ L(r)<a 0<t(r)La
1 \:2
<L <
w0 T ) <
0<f(r)<a
since £ is proper. Set 3 = (Zo<é(r)<a ﬁ)%, and we have the conclusion. O

Lemma 6.6. Let { be a proper length function on a discrete group I" with the property of bounded
0-dilation. Then, for any 2-cocycle o on T, there exists a real number v > 0 such that

IAHIF < vLp(f)

forany feW.
Proof.  Let N be an integer with N > 2. By Propositions 5.4, 5.7 and 3.5 we have
92
62 —1
92
62 —1

IAPR)I < CiR™*NJpo(f)

< C1R 2N Lp(f)

and

62 _
NP < 35 OB Tno(f)

92
<
02 —1

CsR 2N Lp(f)

for any f € C.(T,0), respectively. For any f € C.(T',0), since f — (pfv + pf\,) is supported in B(R*V
+ R?*N=1) = B(yy), we have

IS =k = oIl < S0 1(F = pk = oh)()]

Lr)<yN

_ ¥ ‘(qJQZ(q{mn))(r)

£(r)<N n=zN

< Y k()

Lr)<yN

< > f0)]

Lr)<YN
< BNLp(f)




Long BT et al. Sci China Math ~ March 2021 Vol. 64 No.3 567

for some constant Sy > 0 by Lemma 6.5 and the definitions of q]J:, and P{\w Thus, we have
IMCHI < IAG =& = 28+ MR+ 1A @)

2 2
<BNLp(f)+ ﬁOzLRizNLD(f) T
2

(ﬂN"F b C4R_2N 2N>LD(f)

CiR™NLp(f)

92 —

for any f € C.(T',0). Set
2

9
v = 5N+ C4R 2N 4

92 _
This completes the proof of the lemma. O

Proposition 6.7.  Let £ be a proper length function on a discrete group I' with the property of bounded
0-dilation. Then, for any 2-cocycle o on T, the diameter of the metric space (S(C;(T',0)), pz,) is finite,
and in particular, pg, is a metric on the state space S(Cy:(I',0)).

Proof. By Lemma 6.6, there exists a constant v > 0 such that
AN < vLp(f)
for any f € W. Now, for any f € C.(I',0), we have f — f(e)o(e,e)d. € W, and thus

IA(f = Fle)a(e,e)de) | < vLp(f = fle)ole, e)de) = vLp(f),

ie.,
IFIF< ALp (),

where || - || is the quotient norm on the quotient space C.(T',0)/Cé. with respect to the norm || - || on
C.(T',0). Hence, for any u,v € S(C}(T,0)) and f € C.(T',0) with Lp(f) < 1, we have

u(f) = v(Nl = (e =)D <2< 27

Finally,
P (V) = prp (15 V)
= sup{|u(f) —v(f)|: f € Ce(T',0), Lp(f) < 1} <27,
i.e., the diameter of the metric space (S(C;(I',0)), pr,,) is finite. O

A Lipschitz seminorm [9,13,16,22] on a C*-algebra A with identity 14 is a *-seminorm L on A which
is permitted to take the value +o00, and satisfies

(i) L(a) = 0 if and only if a € C1 4;

(ii) the set A= {a € A: L(a) < oo} is a dense x-subalgebra of A.
The following characterization of the Lip-norm is given in [13, Proposition 1.3]. We give a somewhat
different proof here.

Proposition 6.8.  Let L be a Lipschitz seminorm on a unital C*-algebra A, and let pu be a state of A.
Then, L is a Lip-norm if and only if the set

{a € A:L(a) <1 and pu(a) =0}

is a totally bounded subset of A for the norm.

Proof.  Suppose that L is a Lip-norm on A. Then, (S(A4), p1,) is a compact metric space, and its topology
coincides with the weak *-topology. For any v € S(A) and a € E ={a € A: L(a) < 1,u(a) = 0}, we
have
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prp,v)L(a)
diam(S(A), pr) < oo,

NN

and thus E is a bounded subset of the unital C*-algebra C'(S(A)) of complex-valued continuous functions
on S(A). Since for any a € E, we have

|a(n) — a(v2)| = |r1(a) — va(a)l

< pr(vi,ve)L(a) < pr(v1,v2)

for all vy, v, € S(A), hence E is a family of equicontinuous functions on (S(A), pr.). By the Arzela-Ascoli
theorem, E is a totally bounded subset of C(S(A)). From the Kadison representation theorem, the
canonical map

a€ Ay, —ac Aff(S(A)) C C(S(A)),

where Aff(S(A)) is the set of all real-valued affine continuous functions on S(A), is a unital order iso-
morphism, and hence, an isometry. For any a € A, we have

lallo < llall < llasll + [laz]|
= [1@1lloc + [@2]lo

<Hlalloo + llalloe = 2[lalloo,

where a1 = % and as = % For any € > 0, since Eis totally bounded, there exist a1, as,...,a,, € E

such that for any @ € E, there is an a; such that ||a — ds||oo < £/2. It follows that for any ¢ € E, there is
an a; such that ||¢ —a;loc < §; thus, [[c—a;|| < 2[|¢ —a4]|cc < €. This implies that E is a totally bounded
subset of A for the norm.

For the proof in the other direction, one can refer to [13]. O

Proposition 6.9.  Let £ be a proper length function on a discrete group I' with the property of bounded
0-dilation, and let o be a 2-cocycle on T'. Then, Lp is a Lipschitz seminorm on C*(T, o).

Proof. By the definition of the length function, we can find [D, (e, e)A.] = 0, which gives

Lp(a(o(e,e)de)) = Lp(a(o(e, e)de)) =0
for any a € C.
Suppose a € C#(T',0) with Lp(a) = 0. Then Lp(na) = 0 for all n € N. By Proposition 6.7, we have

ED(:U‘7V)

() — v(na)| < o
diam(S(C; (T, 0)), pz,,) < oo.

<
<

Hence,
1. .
lu(a) —v(a)] < ~diam(S(C; (T, 0)), pL,,) = 0

for all p,v € S(C*(T',0)) and all n € N. Tt follows that u(a) = v(a) for all u,v € S(C*(T,0)). Now, we
fix a py € S(CF(T,0)). Then we have

(e — po(a) (@7, €)6.)) = u(a) — pio(a) = 0
for all u € S(C (T, 0)). Since the state space S(C*(T', o)) separates the elements of the unital C*-algebra

Cx(T, o), we have a = ug(a)(o(e, e)de) € C(o(e,e)de).
By Proposition 6.4, Lp is a Leibniz *-seminorm on C(I", o). Thus, the set
{a€ C*(T,0): Lp(a) < oo}
is a *-subalgebra of C*(T', o). Since for any f € C.(T,0), Lp(f) = Lp(f) = ||[D, f]|l < 0o, we obtain

C.(T,0) C {a€ CT,0): Lp(a) < co}.
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Finally, {a € C}(T',0) : Lp(a) < oo} is a dense *-subalgebra of C(I', o). Therefore, Lp is a Lipschitz
seminorm on C*(T', o). O

Theorem 6.10.  Let £ be a proper length function on a discrete group I' with the property of bounded
0-dilation, and let o be a 2-cocycle on T'. Then, the seminorm Lp is a Leibniz Lip-norm on the twisted
reduced group C*-algebra C(T, ), i.e., the pair (C(T, o), Lp) is a C*-metric algebra.

Proof. By Proposition 6.4 Lp is a Leibniz *-seminorm on C*(T, o), so we just need to prove that Lp
is a Lip-norm on C}(T',0). However, by Propositions 6.8 and 6.9, it is sufficient to show that the set

By ={a € CT,0): Lp(a) < 1,tr(A(a)) = (Ma)(5), bc) = 0}

is totally bounded for the norm on C} (T, o). Since

{a € C*(T',o): Lp(a) <1} ={a € C.(T,0) : Lp(a) < 1},
we just need to demonstrate that the set
By, ={feW:Lp(f) <1}

={f € Cc(T',0) : tr(A(f)) = (M(f)(0e), be) = 0, Lp(f) < 1}

is totally bounded for the operator norm.
By Propositions 3.5, 5.4 and 5.7, for any f € By, and N > 2, we have

92
-1

max{||A(pR) [ AR 1} < g max{Cy, G}

For any ¢ > 0, we fix R > 6%¢, and choose N large enough such that

92
02 -1

RN maX{C’l, 04} < Z

For this N, we have -
NG+ o8 < 5

Thus we have

INGF) = A(f = ok + o) < g

Now, for any f € C.(T',0), by the construction of p{v and p{w we have f — (p]f\, + p;,) supported in
B(R?N + R*M=1). As the proof in Lemma 6.6, we can see that the set {f — (ph + p%) : f € Br,} is
bounded. Since £ is a proper length function, the set

{f =k +pk): f € By}

is contained in a finite-dimensional subspace of C.(T',o); hence, it is totally bounded. It follows that
there is a finite set
{fi = W5 +0R) : fi € Buy, 1 <i <mb,
such that for any f — (pjfv + p{v) with f € By, there is an f; — (p{\} + p{\}) for some 1 < ¢ < m satisfying
. . €
IS = (o + ) = AU = (oF + o)) < 5

Now, for any f € By, there is an f; — (p{v + p]f\,) for some 1 < i < m such that

<
IACE) = Afs — (0% + o) < IAE) = A — Wk + %)l
A = @k +2%)) = Afi — @k + o))
< % + % =e€.

Hence, By, is totally bounded. This completes the proof of the theorem. O
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In particular, we have the following refined result of Christ and Rieffel [2, Theorem 1.4] on reduced
group C*-algebras for the seminorm Lp induced by a length function with the property of bounded
doubling.

Corollary 6.11.  Let £ be a length function on a discrete group I' with the property of bounded doubling.
Then, the seminorm Lp is a Leibniz Lip-norm on the reduced group C*-algebra C;(T), i.e., (C¥(T),Lp)
is a C*-metric algebra. In particular, the pair (C*(T),Lp) is a compact quantum metric space.

Proof.  'This is just the trivial 2-cocycle o =1 and 6 = 2 case for C*(T", o) by Theorem 6.10. O

Let A and B be two unital C*-algebras with Lip-norms L4 and Lp, respectively. A map & : A+— B
is said to be Lipschitz if there exists a constant v > 0 such that

Lp(®(a)) < vLa(a)
for all @ € A. When @ is invertible and both ® and ®~! are Lipschitz, we say that ® is bi-Lipschitz. If
Lp(®(a)) = La(a)

for all a € A, then we say that ® is Lipschitz isometric [7,22]. For two compact quantum metric spaces
(C*-metric algebras) (A, L4) and (B, Lp), if there is a *-isomorphism ® from A onto B such that ® and
®~! are Lipschitz isometric, we say that (A, L) and (B, Lg) are Lipschitz isometric (see [9]).

Let 07 and o2 be two cohomologous 2-cocycles on I'. Let A\* be the left regular o;-projective repre-
sentation of C.(I',o1) on £3(T'), and let A\?2 be the left regular oo-projective representation of C. (T, 02)
on ¢2(T"). The map ® defined by the equation (3.2) gives an isometrical *-isomorphism between C, (T, o)
and C.(T',02), and hence induces a *-isomorphism from C} (T, 01) onto C(T', o3).

Theorem 6.12.  Let £ be a proper length function on a discrete group I' with the property of bounded
0-dilation. If o1 and oo are two cohomologous 2-cocycles on T, then C*-metric algebras (C}(T',01), Lp)
and (C?(T,02),Lp) are Lipschitz isometric. Thus, the compact quantum metric space structures
(C*(T,0),Lp) depend only on the cohomology class of o.

Proof. By Theorem 6.10, we see that (C(T',01), Lp) and (C; (T, 02), Lp) are C*-metric algebras.

For any a € C.(T',01), we have

Lp(®(a)) = I[D, UN ()U"]]|
= [[U[D, A7 (a)]U™]|
= [IID; A7 (a)]|| = Lp(a).

For any ¢ > 0 and a € C(T,01) with Lp(a) < oo, we have

(o) <

Thus, there is a sequence {a,} in C.(T', 01) with

lim ap = — %
noe " (Lp(a) +¢)

and Lp(ay) < 1 for every n. Hence, we have
_ a _
Lp|(®| ———— < liminf Lp(®(a,
o(* (i) <imi Lot
= liminf Lp(®(ay))

n—oo

=liminf Lp(a,) < 1,

n—oo

i.e., Lp(®(a)) < Lp(a) + ¢ for any ¢ > 0, so Lp(®(a)) < Lp(a).
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Similarly, for any b € C.(T,02), we have Lp(®~1(b)) = Lp(b). Thus, for any b € C/(I,02) with
Lp(b) < 0o, we have

So for any a € C*(T, 1) with Lp(a) < oo, we have

Lp(®(a)) < Lp(a) = Lp(@~}(®(a))) < Lp(®(a)),
i.e., Lp(®(a)) = Lp(a). Similarly, for any b € C}(T',02) with Lp(b) < co, we have
Lp(@7'(b)) = Lp(b).

For any a € C(T, 01) with Lp(a) = oo, we must have Lp(®(a)) = oo; otherwise, from Lp(®(a)) < oo
and
Lp(a) = Lp(®~'(®(a))) < Lp(®(a)) < 0,

we will obtain Lp(a) < oo, which leads to a contradiction. Similarly, for any b € C(I',09) with
Lp(b) = oo, we obtain Lp(®~1(b)) = co.

It now follows that ® and ®~! are Lipschitz isometric. Therefore, ® is a Lipschitz isometric map from
Cr(T,o1) onto Cx(T', 03). O

Recall that a unital subalgebra B of a unital algebra A is said to be spectrally stable in A if for any
b € B, the spectrum of b as an element of B is the same as its spectrum as an element of A, or equivalently,
any b that is invertible in A is also invertible in B. From Theorem 6.10, we pose the question below.

Question 6.13. Let ¢ be a proper length function on a discrete group I' with the property of bounded
f-dilation, and let o be a 2-cocycle on I'. Is there a dense and spectrally stable x-subalgebra A of C*(T", o)
such that the pair (C*(T',0), Lp) is a C*-metric algebra, where Lp(a) = ||[D, A(a)]|| for any a € A?
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