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1 Introduction

The transmission eigenvalues can be used to obtain estimates for the material properties of the scat-
tering object (see [11,12,37]), and have theoretical importance in the uniqueness and reconstruction in
inverse scattering theory (see [18]). In recent years, the computation of transmission eigenvalues has
attracted the attention of many researchers. The first numerical treatment of the transmission eigenval-
ue problem appeared in [19], where three finite element methods, including the Argyris, continuous and
mixed methods, are proposed for the Helmholtz transmission eigenvalues, and has been further developed
by [2,14,23,25,27,28,32,38] and [26, 30, 39,42, 44-46], etc.

C? interior penalty Galerkin (C°TPG) method, developed in the recent decade (see [5,22]), is a new
class of Galerkin methods for fourth order problems. The researches for C°IPG methods have been an
interesting topic at present. There exist many researches for fourth order elliptic equations (see [5,9,22,
24,29]) and for eigenvalue problems (see [6,7,23,31,41,43]) by C°TPG methods.

The a posteriori error estimates and adaptive finite element methods are always the main streams of
scientific and engineering computing. The idea of the a posteriori error estimates was first introduced
by Babuska and Rheinboldt [4] in 1978. Up to now, many excellent works have been summarized in the
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books such as [1,36,40]. In addition, a posteriori error estimates of residual type of C°TPG method of
fourth order elliptic equations also have been summarized in [5].

Inspired by the works mentioned above, in this paper, based on the weak formulation proposed
in [44, 45], we propose a new CYIPG discrete scheme (see (2.16)) and discuss the a posteriori error
estimates and adaptive algorithm of C°IPG method for the Helmholtz transmission eigenvalue problem.
We give the a posteriori error indicators for primal and dual eigenfunctions and eigenvalues. We prove
that the indicators for both primal and dual eigenfunctions are reliable and efficient, and analyze the re-
liability of the indicator for eigenvalues. Based on the given indicators, we design an adaptive algorithm.
Numerical experiments show that this algorithm is efficient and can get the optimal convergence rate.
Compared with adaptive C! conforming finite element algorithm in [25], the adaptive C°IPG algorithm
is simpler to be constructed and implemented numerically.

In this paper, regarding the basic theory of finite element methods, we refer to [3,8,17,34, 36].

Throughout this paper, the letter C' (with or without subscripts) denotes a positive constant indepen-
dent of mesh size h, which may not be the same constant in different places. For simplicity, we use the
symbol a < b to denote that a < Cb and the symbol a =~ b to denote a < b < a.

2 A CYIPG discrete scheme

Consider the Helmholtz transmission eigenvalue problem: Find k € C, w,0 € L*(Q), w — o € H*(Q)
such that

Aw+ E?nw =0 in Q, (2.1)
Ao +k*c =0 in Q, (2.2)
w—0o=0 on 0f, (2.3)
ow OJo

ow 99 _ 0 2.4
o o 0 on 09, (2.4)

where Q C R? (d = 2,3) is a bounded simply connected inhomogeneous medium, 7 is the unit outward
normal to 92 and the index of refraction n = n(x) is positive.

Let W*P(§) denote the usual Sobolev space with norm || - |5 ,, H*(2) = W*2(Q), and || [[s2 = || ||s»
H°(Q) = L*(Q) with the inner product (u,v)o = [, uvdz. Denote H3(Q) = {v € H*(Q) : v|og =
g—f; lag = 0}. Let H~1(Q) be the “negative space” with norm ||v||_1.

Define Hilbert space H = HZ(2) x L?(Q) with norm || (v, 2)|| & = ||v]|2+]|2]l0, and define H! = HE(Q) x
H=1(Q) with norm ||(v, 2)|| g1 = ||v||1 + ||z]| 1. Since L*(Q) — H~1(Q) compactly and H?(Q)) — H(Q)
compactly, H — H' compactly.

In this paper, we suppose that n € W1>(Q) satisfying the condition 1 + § < n(x) in Q for some
constant 6 > 0. The argument is the same if 0 < n(z) <1 —p in Q (o > 0) holds. Denote

1
w(z) = n) =1

From [13,35], we know that (2.1)—(2.4) can be written as the following equivalent weak formulation:
Find k € C, u € H3(2) such that

(wAu, Av)g = k*(Vu, V(nwv)) + k*(V(wu), Vo) — k* (nou,v)g, Yo € HE(Q).

Introduce an auxiliary variable w = k%u, and let A = k2. Then we arrive at a linear weak formulation
(see [44,45]): Find A € C, (u,w) € H \ {0} such that

A((u,w), (v,2)) = AB((u,w), (v,2)), V(v,2) € H, (2.5)
where

A((u,w), (v,2)) = ((w — p)Au, Av)g + M/QDQU : D*0dx + (w, 2)o (2.6)
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with constant 4 > 0, @ — p > 0 and D?u : D?% is the inner product of the Hession matrices of u and o.
In addition,

B((u,w), (v, 2)) = (V(wu), Vv)o + (Vu, V(nwv))g — (w, nwv)o + (u, 2)o.
It is obvious that A(-,-) is a self-adjoint, continuous sesquilinear form on H x H,
A((v,2), (v,2)) Z || (v, 2) |13
and for any given (f,g) € H', B((f,9), (v, 2)) is a continuous linear form on H,

1B((f.9), (0, 2))| SN D e (0, 2) e, Y (v,2) € H.

We use A(-,-) and || - |4 = A(-,-)2 as an inner product and norm on H, respectively.
The source problem associated with (2.5) is as follows: Find (v, ¢) € H such that

A((¢a@)7 (1)72)) = B((fa g)a (’U,Z)), V(U’Z) €H. (2'7)

From Lax-Milgram theorem we know that (2.7) has one and only one solution. Therefore, we define the
corresponding solution operator T : H' — H by

A(T(f,9), (v,2)) = B((f,9), (v,2)), V(v,2) € H. (2.8)
Then (2.5) has the equivalent operator form
T(u,w) = A" u,w). (2.9)
From (2.8) we have

Thus we know that 7': H — H is compact, and 7 : H* — H' is compact.
Consider the dual problem of (2.5): Find A\* € C, (u*,w*) € H \ {0} such that

A((v, 2), (u*,w*)) = X*B((v, 2), (u*,w*)), V(v,2) € H. (2.11)
The source problem associated with (2.11) is as follows: Find (¢*, »*) € H such that
A((v, 2), (0%, ¢")) = B((v, 2), (£, 9), V¥ (v,2) € H. (2.12)
Define the corresponding solution operator 7% : H! — H by
A((v,2), T*(f,9)) = B((v, 2), (f,9)), V(v,2) € H. (2.13)
Then (2.11) has the equivalent operator form
T* (i, w*) = ML (u*,w*).

From (2.8) and (2.13) we know that 7™ is the adjoint operator of T in the sense of inner product A(-, ).
So the primal and dual eigenvalues are connected via A = \* (see [44]).
Denote S = ( 2d 2]. We need the following regularity assumption:

Trd:
R(Q): For any & € H™1(9), there exists ¢ € W3P0(Q) satisfying
A(wAY) =€ in Q, w:g—w:O on 01,
Y

and ||¢¥]13.p, Sa |I€ll-1, where pg € S, Cq denotes the prior constant dependent on the n(z) and Q but
independent of the right-hand side £ of the equation.
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Let 7, be a shape-regular mesh; for any element x € 7y, let h, denote diameter of k, and h =
maX,enr, N In addition, let

Sh={veC(Q)NH}Q) :v|s € Pn,VK € m},

where P, is the set of all polynomials in d variables of degree < m (m > 2). Let Hy = S" x S". Then
H,CH' but H, ¢ H.
Let p € S. From the trace theorem with scaling we have the following trace inequality:

2+4+d—24 1

d—24 1
/ lw?ds She 7w g’p’,{ +he 7 \wﬁ’p’ﬁ, VK €T (2.14)
ot

Let £ denote the set of all (d — 1)-faces in 7, (d = 2,3). We decompose £ = £ U £® where £ and &£°
refer to interior faces and faces on the boundary 05, respectively. For each ¢ € £?, we choose an arbitrary
unit normal vector v, and denote the two triangles sharing this face by x_ and k4, where ~, points from
Kk_ to ky. We set the jump and average on /¢ as

[0v/0ve] = V(v]w,) ve = V(i) e, {{0*0/0n7}} = %((321)/573) oo+ (0%0/077) |y,

(e~ WA} = S(( — ol + (=~ whol,)

with 0%v/0~7 =, - (D*v)7,.
For any ¢ € £® which is a face of x, we take v, to be the unit normal vector pointing towards the
outside of 2 and set

[v/07ell = =0 - V(vle), {{0%0/0n7}} = (0%0/07]) |« {{(w — p)Av}} = (w — @) Av],.
Define piecewise Sobolev space
W3P(Q,m,) = {v e C(QNHYQ) :v]|. € WPP(k), Ve €T}, peES.

Referring to [5,23,43], we define

Ap((u,w), (v, 2)) = Z /(w — p)AuAvdx + ;L/ D?u : D*tdx

KETH

+y /e{{(w — w)Au}}[[00/ 0] + {H{(w — p) Av}}[0u/Dvel)ds

Lee

Y | {{gz;}}nav/awu + {{0%0/0n2 [0/ 0 ds

teE
1
+ U@EZ; 7 A[[@u/aw]][[Gﬁ/@w]]ds + Rezmz/ﬁwzdac, Yu,v € W3P(Q,7,), (2.15)

where o > 1 is the penalty parameter, and ¢ = hy is the diameter of /.
We give the following CYTPG discrete scheme of (2.5): Find A, € C, (up,wp) € Hy \ {0} such that

Ap((up,wn), (v,2)) = AB((up,wn), (v,2)), Y (v,2) € Hy. (2.16)
We define the mesh-dependent norms || - ||, and ||| - |||[» on W3P(Q, 7,) x L?(Q) as
1
Iw,w)i =" a3, +od EH[[%/@V@HH(Q)J + > llwllf s (2.17)
KETH Le€ KETH
1 ~ 1 -
11 @IE = Ml (s w)llh + ~ D AU} G .0 + p D IH{{Pu/onE G oL (2.18)

Lee Lee
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By the trace inequality (2.14) with p = 2 and the inverse estimates, we have

1Avllo.e S 62 vlaw, 1{0%0/097  loe S €2 0lzey Vv € S™. (2.19)

So on Hj, the two norms | - ||, and ||| - |||5 are equivalent.
For any (u,w), (v,z) € W3P(Q, 1) x L?(Q), by the Schwarz inequality we can deduce

[An((u, @), (v, 2))]|

ot Y Jul2sPl2k

KET) KET

\/7||{{AU}}||04
ZGS
i o
+ \/EII{{GQUJ/f9 {1 Hloey ) = [I[[60/07]]]
; pu Ye é\/> Ve

\[ ||{{Av}}||w\f 1[6%/07] m)
ﬁn{{a%/aﬁ}}uo,e\/guuau/awmm,g)

+UZ || [0u/0ve]lllo,e \/Il[[av/aw o+ Y llwllo.slz
ZGE KETH
S |||(U7w)|”h|||(vvZ)|||h~ (2.20)

In addition, for any (up,wp), (v,2) € Hy,, we have

| An((un, wn), (v, 2)) < [[(un, wn)[wll (v, 2) 5 (2.21)
By (2.19), we know there exists a constant C; such that for any u, € S,

Cy

{{(@ — w)Aun} o <

C
Sl 40P un /092 o < 5

P
{2 |Uh ‘2,57
and referring to [23,24], when o is large enough, for V (up,wp) € Hp,, we deduce by the Young’s inequality

Al ). (unrn)) > 1 3 funl3 u( 2,)23;(2}||nauh/awm|%,@)z

KETH KETY e
+ O'Z
KEE KETR
2 1 2 Cl 1 2
> Y |unls, — G > lunls, ) + =+ ZZII[WUh/@w]]IIo,e
KETH KETh K ek
+ JZ
ZES KETH
I 2 Ct
> S il + (a - 2) S 20w/l + 3 el
KETH K Zeg KETH
Z (I Cun, wn)ll7- (2.22)

Consider the C°IPG discrete scheme of (2.7): Find (vp, ¢n) € Hj, such that

Ah((T/)m @h)’ (U7 Z)) = B((f7 g)v (Uv Z))7 V(U, Z) € Hy. (2'23)

We introduce the corresponding solution operator T}, : H' — Hj, satisfying

An(Tw(f,9), (v, 2)) = B((f,9), (v,2)), V(v,2) € Hp. (2.24)

Then (2.16) has the operator form T}, (up,wp) = A, ' (un, wp).
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The CPIPG discrete scheme of (2.11) is given by: Find \j € C, (u},w;}) € Hy, \ {0} such that
Ah((vv Z)’ (u?z’W;)) = TZB((% Z)? (u27w}t))7 v (’U, Z) € Hy. (2'25)
Define the solution operator T} : H' — H), satisfying

An((v,2), T (f,9)) = B((v, 2), (f,9)),  V(v,2) € Hp. (2.26)

Thus (2.25) has the equivalent operator form T} (u},w;) = A\; " (uf, w}).
It can be proved that T} is the adjoint operator of T}, in the sense of inner product Ap(-,-). In fact,
Y (u,w), (v, z) € Hy, from (2.24) and (2.26) we have

Ap(Th(u,w), (v, 2)) = B((u,w), (v, 2)) = An((v, ), Ty (v, 2)).

Hence, the primal and dual eigenvalues are connected via A\, = )\72

In this paper, we suppose that {\;} and {); ;} are enumerations of the eigenvalues of (2.5) and (2.16),
respectively according to the same sort rule, each repeated as many times as its multiplicity, and A = );
is the i-th eigenvalue with the algebraic multiplicity ¢ and the ascent o, \; = A\ip1 = -+ = Ai4q—1, and
Ab = Aip. When ||T), —T||gr - 0ash—0,\j, 2 0ash—0for j=44i+1,...,i+¢—1.

Let P be the spectral projection associated with 7" and A. Then ran(P) = null((A\~! —T)%) is the space
of generalized eigenfunctions associated with A and T', where ran denotes the range and null denotes the
null space. Let P} be the spectral projection associated with 7}, and the eigenvalues A; p, ..., Aitq—1,n-
Then ran(P,) is the space spanned by all generalized eigenfunctions corresponding to all eigenvalues
Xihy s Nigg—1,n- In view of the adjoint problems (2.11) and (2.25), the definitions of P*, ran(P*), P
and ran(Py) are analogous to P, ran(P), P, and ran(P},), respectively (see [3]).

The error estimate of the C°IPG method for eigenvalue problems is based on the error estimate of the
C°IPG method for the corresponding source problems. Next, using argument as in [43] we will prove the
a priori error estimates for the source problem (2.7).

From [43, Lemma 3.1], we know that (2.7) admits a unique solution (¢, ) € (W3Po(Q) N HZ())
x HE () and

1 @) llwaromy S Crll(f, e, V(f,9) € HY,

where pg € S, and Cr denotes the prior constant.

Denote A((u,w), (v, 2)) = a(u, v) + (@, 2)o, An((,w), (v,2)) = an(u,v) + (@, 2)o, (ww)ln = ul2 +
[wll3, N(uw,w)llln = [l[ulll} + llwllf, and B'(f,v) = [, Vf - Vode. Define the auxiliary operator K :
H}(Q) — HF(Q) by

a(K f,v) = B'(f,v), Yve HQ). (2.27)

Then for any f € Hi(Q), it is valid that K f € W3P°(Q) and

1K fll3p0 S [l (2.28)

Referring to [43, (3.7)—(3.9)], we can deduce
An((, ), (v,2)) = B((f,9), (v, 2)), V(v,2) € Hp, (2.29)
an(Kf,v) = B'(f,v), YveSs (2.30)

From (2.29) and (2.23) we get

An((y9) = (W, on), (v,2)) =0, V(v,2) € Hy. (2.31)

Define the operator Ij,(v, ) = (I}, I3p), where I} : HY(Q) N C°(Q) — S" is the Lagrange nodal
interpolation operator and I2 : L%(Q) — S” is defined by

(p—I}p,2)0 =0, VzeSh
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From [43, Lemma 3.3], for any (¢, ) € W™HLP(Q) x Wm=12(Q), the following estimates hold:

1 (Ll
11, 0) = In(@, @) S ™G0 g1 pa + [@lm-1.0), (2.32)
1, 0) = Tn(¥, ) [ S P2 g1 p. + l0llm-1.0)- (2.33)

3=

From a Poincaré-Friedrichs inequality (see [10]), we get
10, 2) [ = vl + Izl -2 S Hlolln + [2llo S (v, 2) k¥ (v, 2) € Hp.
Let (v,2z) = Th(f,g) in (2.24). We get
IT0(£, e SN 9)ller, VY (f.9) € H.

Lemma 2.1.  Let (v, ) and (1*,*) be the solutions of (2.7) and (2.12), respectively, and let (Vn, @n)
and (Y5, ;) be the CYIPG approzimation solutions of (2.7) and (2.12), respectively. Assume that (1, ¢),
(Y*, p*) € WmTLP(Q) x H™Y(Q) (p € S). Then

m— 1_1
115 0) = Wns en)llln S G Bllnr 1, + [@llm—1), (2.34)
* * * * m— i_1 * *
11", %) = @hs e S R ETD(0* grp + 16 m—1). (2.35)

Furthermore, assume R(§) holds. Then

1, 0) = s o)l S B350 g + [ @llmen), (2.36)
1", %) — @i o)l S ™05 77090 st + 9" [mr)- (2.37)
Proof.  From (2.22), (2.31), (2.20) and (2.32), we deduce
||Ih(1/’7 90) - (quha @h)”% 5 Ah([h(qpa QO) - (wha @h)7lh(w7 50) - (whv Qph))
- AhUh(% QD) - (wa @)’Ih(wv QO) - (wha Qoh))

S TG (Gl + @m0 (s 0) = @y on)ln-

Thus we get

1@, ) = Tn (s D)lIn + [1n (4, ) = (Vns on)ll[n

11(%, @) — (ns o)1 <
SR GE =D (@l + l@llma1),

which is the desired result (2.34). By the same argument we can prove (2.35).
Denote e = ¢ — 1,. From (2.27), (2.30), (2.31) with z = 0, (2.20), (2.34), (2.32) and (2.28), we deduce

|B'(e,e)| = lan(Ke,e)| = lan(e, Ke — I Ke)| < [llelllnll|Ke — I Kellln

_ 1_1 1 1_1yg 1—1__1)y)g
SEM TGy ph TG TR K|l by < BR800 e
ie.,
1-1_1)q
lells S A0 2 720N g1 (2.38)

From (2.7) and (2.23) we have ¢ = f € H}(Q) and (¢ — ¢pn,2)o =0, Vz € S". So
le = enll-1 S A" lpllm—1- (2.39)

From (2.38) and (2.39) we get the desired result (2.36). By the same argument we can prove (2.37). The
proof is completed. O

Based on Lemma 2.1, using the argument as [43, Theorems 3.3 and 3,4] we can prove the following a
priori error estimates for the eigenvalue problem.
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Theorem 2.2.  Assume that R(Q) holds and n € W1>°(Q) N H?(Q2). Then
1 1+qg—1 —1
’(q Z AJ%) _A‘ S H(T_Th)|ran(P)||H1-
j=i
Assume ran(P) C WP (Q) x H™1(Q) (p € S). Then
ma(1—1_ 1
1T = ) leancy e S 7077700,

Furthermore, assume that (up,wy) is an eigenfunction corresponding to Ay and |[(up,wn)||n = 1. Then
there exists eigenfunction (u,w) corresponding to \ such that

1\d

[ (un, wn) — (w,w)|| e S he T3 50) & (2.40)
1 (unywi) — (w,w)|||n S BT HE=DE, (2.41)

In addition, when the ascent a of the eigenvalue X equals 1, for (u*,w*) € ran(P*) with ||(u*,w*)||r = 1,
there exists (u},wy) € ran(Py) such that

[[(w*,w*) = (up,wi) |l S hm“l’%’%)d? (2.42)
1

(", 0%) = (i)l [In S BTG (2.43)

Jor (uy,wy) € ran(Py) with ||(uy,wy)||n = 1, there exists (u*,w*) € ran(P*) such that

g wi) — (u*,w*) g < O350, (2.44)
(g, wip) = u,w)||ln S B IHETD (2.45)
A — A| S R2P22G )4, (2.46)

3 A posteriori error analysis of C°TPG discrete scheme for the source prob-
lem (2.7)

In 2012, Brenner [5] proposed and analyzed the a posteriori error estimates of C°TPG methods for
biharmonic equation. Based on [5], in this section we discuss a posteriori error estimates of C°IPG
discrete scheme (2.23) for the source problem (2.7) in R?.
Denote
F=F(f,9g) = -A(wf) —nwAf —nwg in &,

where f,g € W3P(Q, ), and denote

e (F,n) = W2||F — A(wAyy) o, Vi € m, (3.1)
Mo (¥n) = é%nnawh/awnno,z, VeeE, (3.2)
N2 (n) = pl? | [[0*0n /073 o, VL € E, (3.3)
Me3(tn) = 02 [[[[0(@AGn) /0velllloe, VL€ EY (3.4)
nea(n) = 02 ||[[(@ — W) AvR])lloe, V€€ EL (3.5)

Then the residual-based error indicator 7y, is defined by
nz(Fawhvcphaﬂ) :nz(Fvwh)+ Z ﬂg,l(l/fh)
LEEPNIK

+ % > {2 (Wn) + g 2 (Yn) + 75 (n) + 17 4 (¥n)}

Le€ink
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+ ) L+ 2wlloching () + I1f —enlld e+ D m2i(en), (3.6)
LeENIK LeENIK

T]}QL(F7 ¢h7<ﬂha9) = Z ni(Fa th,gﬁh,lﬂ). (37)

KETH

Let P;(2, m,) be the space of piecewise polynomial functions of degree < j and g € P;(, 7)) denote
the L? orthogonal projection of g. In addition, denote

—~

F= _A(%j) —nwAf —nw@g, T.(F,n) = h2|F — A@AYL) o Yk E T,
es(n) = 02 |[[0(@AY) /0velllloe, VEEE, Tualwn) = 02||[[(@ — w)A%]]llow, VEEEL

The data oscillations are defined by

Osc;(F (Z R || F — F||0,{> ,

KET

Osc; (A(@Ady)) (th B0 - <wAwh>||3,ﬁ) 7

KETH

ol

ol

2

Osc;(ne,3) ( ST (eslen) 774,3(%))2) ;
KETH LEENDR

2

Osc;(ne,4) (Z Z (ne,a(¥n) ﬁ2,4(7/}h))2)7

KETHL LEENIK

OSC;(F, 1) = Osc;(F) 4+ Osc;(ne,3) + Osc;(ne,4) + Osc; (A(wAy,).
3.1 Reliability analysis

Using the argument in [5, Theorem 7], we can prove the following theorem.

Theorem 3.1. Let (¢,¢) and (¢¥n,on) be the solutions of (2.7) and (2.23), respectively. Assume
that R(Y) holds and n € Wh>(Q) N H%(Q). Then

1, @) = Wn, en)lln < 1 (F iy ons 2)- (3-8)
Proof.  Brenner [5, (4.4)] introduced the enriching operator Ej, : S* — H?(Q) and proved
_ _ 1
Y (o = Epollf . + bl — Eyolf o+ v = Bpol3 ) S Y = N00/07dlIG e, Vo es". (3.9)
KETH KET

Denote Ep(up,wn) = (Enun, Enwr). Due to (2.17) we need to bound o), ¢ %||[[a(¢ - 1/Jh)/6’)/g]]||%’z

and ZKZET{'h ||w - wh”%,.‘-ﬂ + Znéwh HSO - @h”%,f{'
Since o > 1, from (3.2) we get

UZ*H (¥ —¥n) /0] HOK_GZZH [09n /e I§.e <D i (3.10)

EES e Lee

From (3.9) and (3.2) we have

Do —wnlie+ Y e —enllix

KETH KETH
<2 (Il = Enonll3 . + 1n — Entonl3 ) +2 > (le = Enenlld . + llon — Enenll3 )
KETY KETH
1
S, @) = En(Yn, on) |3 + Z Z”Zl(wh) + ' Z 171 (n)- (3.11)

lee le€
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By duality we have

10.0) ~ Bnlon o)l ~  sup AL Bulonon), (0,2)) (3.12)
(v,2)€H\{0} (v, 2) | ex
Denote
A ((u,w), (v,2)) = /(w — ) AuAvdr + ,u/ D?u : D*vdx + / wzdz. (3.13)
From (2.6), (3.13), (2.7) and (2.23) we get
A((W, ) — En(¥n, ¢n), (v,2))
= 3 Ael(Wnon) — Enlnon)s (0,2) = 37 Al o), (v, 2) — 10, 2))
+ AW, 90), (1,2) = > Au((Wn, n), Tn(v, 2))
= > Au((Yn,on) = Bu(Wn, on), (v,2)) = Y A((¥n,0n), (v,2) = In(v, 2))
+ Ah((¢ha ‘Ph),lh(v, Z)) - Z AR((wha @h)7 Ih(v’ Z)) + B((f’ g)’ (U7 Z) - Ih(v’ Z))
=L —L+1Is—1;+ I5. (3.14)
We have
= 3 Anlng. 0:2) = 0:2)
= Z / @ — p) AP A(v — I}v) da:+u/D21/)h DZ(’U—I#U dzr + Z /gph z—1%z)dx
=J1+ Jo + Js, (315)

and by Green’s formula we have

J1 = Z /V @ — w)AY,)V(v — Ilv) dm—i—Z/ @ — ) AYRd(v — Ilv)/dvds

KET KET)

= Z/A @ — p)Ay) (v — I}lv) dw—Z/ (@ — p)Ay) (v — I}v) - yds

+ Z / w — ) AYRd(v — Ilv)/dvds
= Z /A (@ — w)AYy) (v — Ilv dx—l—Z/ (@ — w)AYy) -] (v — I}v)ds
KETH Le&
*Z/{{ @ — 1) Ay }}H[0(v — Tv) /Ove]lds — Z/ @ — ) A, |[{{0(v — I;,v) /Oye} }ds.
tee tees

Also by Green’s formula (see also [5, (7.10)]) we have

| 3 et 3 {255 =

KETH et
+ 3 [t noniowlds - - [15%/072T00 — Holjovdids
e Leki

= 3 0%/ @03~ T avas|

Legi



Li H et al. Sci China Math  August 2018 Vol. 61 No.8 1529
By (2.15) we get

IL—Ii=Y /E{{(w = WA} }H[0Lv/0ve]) + {{(w — p) AL v}H[0Yn /0ve])ds

Le€

> /e{{awh/@v?}}[[31;1@/5%]] + {0 L v /007 1}H[0n /0ve]lds

le&

o307 100, /oo ollds (3.16)

Le&

From Green’s formula we get
B((fa g)? (1), Z)) - (V(wf), V'U)O + (Vfa V(le’v))g - (ga nwv)o + (f7 Z)O
=— Z/A(wf)ﬂdm - Z/ nwA fodx — (nwg,v)o + (f, 2)o

—|—Z/ana(wf)/a'yvds—l—Z/aangf;vds

E; / Frde+ (f,2)0+ Y /e [0(w )/ Jds + 3 /[ Hnwgmvds,

lee Leg "
SO

Is = B((f,9), (v,2) = In(v, 2))
_ Z/HF(W)dx—F (f2 — I22), +Z/ H(1 —|—2w)§£” (v~ ITo)ds. (3.17)

cee’t

Substituting (3.15), (3.16) and (3.17) into (3.14), we obtain
A((, @) = En(¥n, on), (v, 2))
—5+ Y [ (P - Ao 1) + (F — o)~ T2l

KETH

-3 /g V(@ — ) Agn) - Ao — Toods + 3 /g {{(w — 1) A })[0(0 — T20) 0]l ds

le& le€

+ 3 [l - wanlTEt - foodias - e Y [ |25 [T

Legr tegi

—ny /Z{{32¢h/37§}}[[3Iﬁv/57e]]d5 thy /Z[W%h/aﬁ]]{{@(v — I;v)/ 0} }ds

Lee Legl

+u Z /Z[[62wh/5’ye3tg]](8(v — Ilv)/0ty)ds + ez; /K{{(w - M)Awh}}[[am/avg]]ds
Legt c

Yy /Z {{(w — WAL B ovellds + p Y /g ({020 /002 1) 0T 0 /ol ds

teg tee
+uY [Uer L0 VB jovlds + 0 3 / [0/ TOT v ovdlds
teeV?t iee U e
w éli v — 1U S
+;/£H(1+2 )57”( I}v)d
=L +Gy+G3+ -+ Gys. (3.18)

By (3.13), the Schwarz inequality, (3.9) and (3.2) we get

[11] =

D Aul(Wnson) = En(tnyon), (v, 2))

KETH
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< D Umllocoslton — Entnlon + lon — Enenllos)ll(v,2) 1 a

KET

S [ 1B seta (002 + s ()02

le&

y (3.1) we get

|G2|s(z WA - A(wAi) ||on) (Z h 4||v—fhv||om) 11 = enllolz - 22llo

KETH KETH

S () ol + 17 = lolizho

KETH

Nl=

By (3.4) we get

G+ Gal 5 (32 PV (mawn)- ||og) (>¢ 3||v—1hv||oe) (ng) ol

Legt Le&t Le&t
We see G4 + G19 =0, G7 + G12 = 0, and by (3.5) we get
Gal 5 (Xl - ] ) ks (X 7744) ol
tegi (e€i

By (3.3) we get |Gs| S (D jces 77472(1/1h)2)%|v\2. By (3.2), the trace theorem with scaling and a standard
inverse estimate, we deduce

|Ggm(Zﬂ[[a2wh/<awate>n||a@) (Zé-lna(v—fav)/ataaz) < (meh ) o]z

Legt Legi Legl

D=

By (3.2) we get

1

ol < (an unowml(wh)> o, |G| S 2 (Zmlwh 2) ol

le€ leg
Gl 5 ((Smeawn?) ol 1631l 5 () A7) o
te€ €
Substituting these estimates into (3.18), we obtain
A((¥,9) = En(¥n, ¢n), (v,2)) S 10 (F bn, on, Q) (v, 2) | B (3.19)
Combining (3.10)—(3.12) and (3.20) we obtain (3.8). O

3.2 Efficiency analysis

Using the argument in [5, Theorem 8], we estimate the each terms in (3.6). In the following analysis,
v € 8" and k € 7, are arbitrary, J; is the set of the elements in 7, that share the common edge ¢, where
0 € & is arbitrary, £ = k_ Nk

3.2.1 Estimate for ni(F,v) = hi|F — A(‘ZDA’U)H%,K

Let ¢ € Ps(k) be the real bubble function, which vanishes to the first order on dx and equals 1 at the
center of k. It follows from scaling that

|C 2,k < Ch;:Z”C”Oﬁ Ch; ) ||C||0’oo’i<a <C
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By the equivalence of norms on finite dimensional spaces, we have
cl/ P — A@A0)[2Cdr < |F — A@AV)|E,. < 02/ = A(ZA)2Cda. (3.20)

Let z = (F — A(@Av))¢. We extend z to HZ trivially. From (2.7) with z = 0, (3.20), the Green’s formula
and a standard inverse estimate we derive

~

IF— A2, < /(ﬁ _ A(BAV))Zdz

- C[/K(F — A(wAv))Fda + /(F — A(BA))Edr — /

K K

(F - A(wAv))zda:]
_ CU (A — Av)Azdz + /((F _F) - (A(BAv) — A(wAv)))zdm}
SBR[ = vlow + |1F = Fllos + |A(@AV) — A(@Av)|lo.x]l12]l0.x;
which implies
W2IE — A(@AV)low S ¢ — vlaw + h2(IF = Fllok + [A@AV) — A(wAv)]lo.x),

and by the triangle inequality, we deduce

hllF = A(@A0)§ . S |0 = vl3 x + Ryl F = FI3 . + Wil A(@Av) — AlwAo)lf .. (3:21)

Summing up (3.21) over all the triangles in 7, we find

D hllE = A@A0)|F . S D [ = vf3 . + Ose; (F) + Osc;(A(wAv))?, (3.22)

KETR KETH

3.22  Estimate for nes = ||[[@Av]]]12, > I)|[[(w — p)Av]]||Z,

We construct a real bubble function 8 € Pm,QH(Rz) on k_ U k4, which is the polynomial that equals
the jump [[c0Awv]] on the edge ¢ and which is constant on the lines perpendicular to . We define
C1 € Pp—14j(Kk— Uky) to be the polynomial that satisfies

¢i=0 on ¢ and 9¢ /0y = 5. (3.23)
By a direct calculation and standard inverse estimates, we have
. A1
NG e um ) F NG Lo tsunyy S E2[[EADE .- (3.24)

Next, we define (5 € Pg(k— U ky) that satisfies the following conditions: (i) (s vanishes to the first order
on (O0k_ U 0k4)\L, and (ii) (2 equals 1 at the midpoint of ¢. It follows from scaling that

éil|€2|L2(fs,Un+) + ”CQHLOO(VV,U/@Jr) < Ca (325)
IEAIE S [ lEa)Gads (3.20
From (3.23) and (3.26) we get
80l < [ (B aulFGds = ¢ [@ad @G rds. (3.7
L L

We extend (1(a to HZ(Q) trivially. From (2.7) with z = 0 and the Green’s formula we derive

/Z (@A) @GE)w)ds = 3

KETe

(- /ﬁ wAVA((Co)dx + /K A(wAv)(Q@)dx)
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=Y /wA(q/} —0)A(GG)dx — / (F — A(wAv))(Cio)dar. (3.28)

KETL T Q

Combining (3.27) and (3.28), we find by the Schwarz inequality and a standard inverse estimate

lie=AI[ [

< [l GG ovds + ( JIENeazn | men@(cl@)/aw)ds)

<y / AW — )AL G)dr — / (F — ©80) (GG de + [[E@A] — [wAollo 9 C)/vllo.

KET " H K
< [ ST (P = vlow + IIF — wAvllo,) + 073 [[ZAV] - [[wAy] o,e] 1¢1€allox- (3.29)
KETp

From (3.24) and (3.25) we know [|C1Ca |l 2, (k_urs) S 03 I[[wAv]]||o,¢, which together with (3.29) implies
Ul@Aoflllge S D (1 = v+ WEIF = wAollf ) + E[[@Av]] - [[@Ad]]] -
KETy

From the triangle inequality, we get

UMwAvlige S D (9 = vl3 + bl F = @wAvl3 ) + 2| [@AV] - [[wAv]]|[5 -
KETe

In view of (3.21),

OlwAlllfe S Y- (1 —vl3 .+ el £ = FII3

KETy
+ L A(BAY) — A(@Av)|5,.) + [[EA] - [[wA]]|lF . (3.30)
Thus we get
Y llae]Plloe S Y [ —vl3,. + Osc;(F)? + Osc;(A(wAv))? + Ose;(nes)*. (3.31)
Leg} KETH

3.2.3  Estimate for nes(v) = pl=||[[0%v/03]]|13 ,

We construct 8 € P,,_»(R?), which is the polynomial that equals the jump [[0%v/077]] on the edge ¢ and
which is constant on the lines perpendicular to . We define ¢; € P,,—1(k— U k) to be the polynomial
that satisfies

¢1=0 on ¢ and 9¢ /0y =p. (3.32)
By a direct calculation and the standard inverse estimates, we have

NG Latn ) F 16 Lty S ZIIB%0/072) A3 (3.33)

Let (5 be defined as in Subsection 3.2.2. It follows from scaling that

é_1|42‘L2(H7UK+) + H<2||LOO(K7UH+) <C, (334)
111620/ 0311115 e §/K|[[520/57§H|2?2d8- (3.35)

From (3.35) and (3.32) we get

116%0/072) 12, < A [0%0/072]]BGads = C A [16%0/0721]0(C1Ca) [0e) ds. (3.36)
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We extend (12 to H3(Q) trivially. From Green’s formula and (2.7) with 2 = 0 we derive
n [10% /0TGN s
=u Z (— / V20 V2((1lo)da + /(sz)(gl@)dm)

KETe "
=2 / V() —v) : V(G Go)dz — / V2 V2(GiG)da — (@ — m)AY, A(Gié2))o
KETe ®
H@ = 0AuAG@N +1 Y [ AGG
KETr
=> n /V2 ¥ =) : V2((i6e)dx — / FQiGedr + (@ — 1) A, A(G162))o
KE€ETL r
+h AA(GG)dr — p | [[AV])((Ci62)/Dve)ds
KEZJZ/ g f
= V2 V2 <1<2 dl‘ — <1<2 dl‘—|— w — ILL ”U)A(41<2)d56
Efve L lream g )i
+ Y [ Moo + [l=adEGa s - [(AOGGEwds. (337
KET

Combining (3.36) and (3.37), we find by the Schwarz inequality and a standard inverse estimate

llll0*0/ViNGe S Y hi?le = vlallGellos + D I1F = A@Av)llo,xl|Géallo,x

KET KETe
+ 03| ([ — ) A [lo,ellC1Collon- (3.38)

From (3.33) and (3.34) we know [|¢1 (2|, uk,) S <03 (1[0*v/0~v]]]l0,, which together with (3.38) implies
%0/ l.e S Y (1 = vl + HEIF — A(wAv)l[f ) + 2w — ) Av]]IIF -
KET,

Substituting (3.21) and (3.30) into the above inequality and summing up over all the triangles we can get

> A%/ la.e S Y 1 — vl + Osc; (F)? + Oscj (A(wAo))® + Oscj(mea)®. (3.39)
Lee} KET
3.2.4  Estimate for ny3(v) = £3||[[8(WAU)/8'M]]||37£

We define (5 € Py_34;(k— U kg ) that satisfies (3 = [[0(@Av)/07]] on £ and (3 is constant on the lines
perpendicular to £. By a direct calculation, we have

I1[6(@Av)/0velllo,e- (3.40)

Let (2 € P3(k— Uk ) be defined as in Subsection 3.2.2. It follows from the equivalence of norms on finite
dimensional spaces and scaling that

Nl

||<3||L2(H7UK+) 5 14

0@ A0)/0vellllg e < A[[a(%Av)/ave]}(Czéz)dS- (3.41)

We extend (2(3 to HZ(Q) trivially. From Green’s formula and (2.7) with 2z = 0, we derive

/ 0w Av) /0] (Gl ds

1

( [N Ty PNEIN C2C3)d$> JUEN e

KETe £
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=> /wA (v—1 C2C3)d$+/(F—A(WAU))(C2§3)CZ$+/g([[WAvH(5(C2C3)/3W))d3~ (3.42)

KET

From (3.41), (3.42), the Schwarz inequality and standard inverse estimates we derive

Illo(&Av) /0]l ¢

S [lotwao0) /o Gds + ( [Jlo@s0miasis - [ [[a<wAv>/awn<<2<3>ds)

14

S Y [ waw-0)AGEM + [ (F - Awao) GG + [ [=AdETGE) s

KETe
+ /e([[a(ﬁﬁv)/awﬂ = [[0(wAv) /07e]]) (¢2C3)ds

S D (19 = vlalColalz + IF = Al@A0)loxlI¢2Callow) + I[[@Av]]llo,e0(C26a)/0vello,e

KETe

+ [[[8(@Av) /0] = [[0(wAv)/Ovellllo,el|C2C3ll0,e

< [ S (B2 — o + |F — A(@A)[o0) + 0 [wAe]los

KETy
+ Y [0(E80) 03] — [0(=20)/0v] oo | ICaGollon: (3.43)
From (3.34) and (3.40) we have ||¢2C3ll0.x S %H[[a(am)/aw]]no,g, which together with (3.43) implies
Ell[o(@av)/ovllllge S D (1% = i3, + EIF = A(wAo)|,.)

KET
+ | [[wA]][lf,. + [[D(@A) /0] = [[(@A0) /0yell§ - (3.44)

Substituting (3.21) and (3.30) into the above inequality and summing up over all the triangles we can get

> Pllowae) /oyl .

Les}
S [ = ol3, + Osc3 (F) + Osc; (A(@Av))? + Osc (1e.4) + Osc5 (e.3)- (3.45)
KETe
Theorem 3.2.  Under the condition of Theorem 3.1, we have

Uh(F, Z/}}HSD}L’Q) ,S H(’ll),ﬁp) - (djha(ph)”h + OSC](Fa quh)

Proof.  Substituting (3.22), (3.31), (3.39) and (3.45) into (3.7) and neglecting high order small quantity,
we get

nh(Fa'lphaSDh7 Z |¢_v‘25

KETH LeEy,

S @, @) = (W, en)lli + OSC;(F, thn).

(4 = vn)/0velll[5 ¢ + OSC;(F,vn)

The proof is completed. O

4 A posteriori error analysis for the eigenvalue problem (2.5)

Now, we analyze the a posteriori error of the C°TPG eigenpair (An, up,wp ).
Consider the source problem (2.7) associated with (2.5) with (f, g) = An(un,wp). Then its generalized
solution (¢, ) = A\pT'(up,wp) and the C°TIPG approximation (¥, pn) = ATk (un,wn) = (up,ws). Let
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v =0 1in (2.16). We get w, = A\pup. Thus, in (3.6), we have

(S 2wl ftnea(r?)” = (S 11+ 203 e ) ) ~ (X ttmeaun?)

N
Nl

tce tee tes
4
WY nga(en) =Rt D ni (wun) & Y W7 (un),

LeENIK LeENOK LeENIK

= [Awun —wall§ . = 0.

Hence, from (3.6)—(3.8) and (3.32) we obtain

i (Fyun,wn, &) = ma(Fyun) + Y 7, (un) Z {n7 1 (un)
LeEEPNOK éeslnn

+n”<uh>+m3<uh>+w4uh}+0( 3 h4m1uh)
eENOK

M (Fy s wn, Q) = > 0 (F un, w, K),

KETH
AT (wh, wh) — ApTh (un, wi) || S nn(F, un, wh, ), (4.1)
N (Fs uny wh, ) S AT (uny wi) — AnTh (un, wn) ||n + OSCj (Fup),

where f = Apup, g = Apwp, in F.

Note that D ,c e, h47]§71(uh) is higher-order small than ), cuns, n?)l(uh) + 1> ecine 773,1(@%)' So
it can be neglected in actual numerical computation.

The following lemma states a crucial property of eigenvlaue and eigenfunction approximation.

Lemma 4.1.  Let (A u,w) and (A\*,u*,w*) be the eigenpairs of (2.5) and (2.11), respectively. Then for
any (v, 2), (v*, 2*) € Hy, when B((v, 2), (v*, 2*)) # 0 it is valid that

Ap((v,2), (v*,27)) 5= Ap((u,w) — (v, 2), (u*, w*
B((v,2), (v*, 2%)) B((v,2), (v*, 2%))

- A

(4.3)

Proof.  See [43, Lemma 3.5]. O
Referring to [44, Lemma 4.1] we can deduce the following theorem.

Theorem 4.2.  Assume that A and \p, are the i-th eigenvalues of (2.5) and (2.16), respectively, (up,wn)
is an eigenfunction corresponding to A\, with ||(up,wn)||n = 1, and the ascent o of A is equal to 1, and
assume that R(Q) holds and n € W1>°(Q) N H?(Q2). Let (up,@p) be the orthogonal projection of (up,ws,)
to ran(Py) in the sense of inner product Ay(-,-), and

(up,,wp) = (@, @n)/ || (@, @n) |- (4.4)

Then there exist (u,w) € ran(P) and (u*,w*) € ran(P*) such that (un,wp)— (v, w) and (u},wy) —(u*, w*)
satisfy (2.40)—(2.41) and (2.44)—(2.45) respectively, and

An = AL S lI(uns wn) = (w, @)l (up, wp) = (s @[]

+ [1un, wn) = (u, W)l (up,, wp) = (W, W) || e (4.5)

Proof. From a = 1, we know ran(P*) is the space of eigenfunctions associated with A*. Choose
(u,w) € ran(P) such that (2.40)—(2.41) hold. Define

f((v,2)) = A(P(v, 2), (u,w)), V(v,2) € H.
Since for all (v, z) € H one has

|f((’l),Z))| = |A(P(U,Z), (uﬂ"'})” < HP(vﬂz)”AH(u7W)HA 5 \/XHP(%Z)”Hl 5 ||P||H1||(U7Z)HA’
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f is a linear and bounded functional on H and ||f||a < || P]|g:- Using the Riesz theorem, we know that
there exists (u*,w*) € H satisfying ||(u*,w*)||a = || f]|la and

A((v, 2), (u*,w")) = A(P(v, 2), (u,w)). (4.6)
For any (v, z) € H, notice P(I — P)(v,z) = 0. Then

A((v,2), N7 =T*)(u", W) = A(A" = T)(v, 2), (u*,w*))
= A\ =T)P(v,2), (u*, ")) + A(ANF = T)(I = P)(v, 2), (u*, "))
=0,

ie, (A7t = T%)(u*,w*) = 0; hence (u*,w*) € ran(P*). By (4.6) we have

/\B(<u7w)7 (U*7W*)) = A((uvw)v (UJ*7W*)) = A(P(uaw)7 (uvw))
= A((u,w), (u,w)) = Ap((un,wn), (up,wr)) = 1. (4.7)

Then, there exists (4}, ;) € ran(P;) such that (a}, @) — (u*, w*) satisfies (2.42), and from (2.40), (2.42)
and (4.7), when h is small enough, there is a positive constant Cy independent of h such that

|B((un; wn), (4h,@3))| = Co.

Since (@p,ws) is the orthogonal projection of (up,ws) to ran(Py) in the sense of inner product Ap(, ),

B (), ()| = \jhAh((uh,wh), (u;:,w;;))\

1 (ay,@}) 1 e
> Ah((uh,u;h), R )’ > ——————|B((up, wy), (@}, @}))| 2 Co.
‘Ah (@, @7)n (| (@, 72| ok

In (4.3), choose (v, 2) = (up,ws) and (v*, 2*) = (u};,w;} ), and choose (u*,w™*) such that (u},w}) — (u*,w*)
satisfies (2.44)-(2.45). Noting that Ay = A((un,wn), (u,,w;))/B((un,wn), (u),,w})), we obtain (4.5). O

Remark 4.3. When X is a simple eigenvalue, ran(P;) is a one-dimensional space spanned by the
eigenfunction (u},w;s) of (2.25) with the mesh size h. When the multiplicity ¢ > 1 of A, in actual
computation we can use the two sided Arnoldi algorithm to compute both left and right eigenfunctions
of (2.16) at the same time, and obtain (up,ws) and (u),w}).

The following lemma shows that the a posterior error for eigenfunctions can be derived from that for
the boundary value problem.

Lemma 4.4. Let (A, (up,wp)) be the i-th eigenpair of (2.16) with ||(up,wr)|ln = 1, A be the i-th
eigenvalue of (2.5), and the ascent « of A be equal to 1. Then there exists an eigenfunction (u,w)
corresponding to A, such that

[(un, wn) = (u, @)l = Al T (un, wn) = Th(un, wn)lln + Ra, (4.8)
where |Ry| ST — Th) (wn, wp) || g1 -
Proof.  Using the argument as in [15, Proposition 5.3] we can deduce
[[(un, wn) = (u, )l S (T = Tw) (i, wn) || - (4.9)
A simple calculation shows

B((T = Th)(un, wn), (u*,w")) = B(T'(un,wn), (u*,w")) = B(Th(un, wn), (u*,w"))
= AYA(T (up, w), (u*,w*)) — B(Th(un,wp), (u*,w*))
= B (i, wn), (1%, w7)) — A B (i, wn), (67, )
= (AT = 2D B((uns wi), (u*,w")),
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where (u*,w*) satisfies Theorem 4.2. Then the above equality implies
An = ALS (T = Th) (un, wn) || - (4.10)
Combining (4.9) and (4.10) we get
[An = Al + [[(un, wn) = (u, )| S (T = Th) (un, wn) || 10 (4.11)
From (2.9), (2.10) and (4.11) we have
[[(u, w) = AT (un, wn)l[n = (AT (u, @) = AT (un, wn) ||
S A s w) = An(un, wp) [ S (T = Th) (un, wn) [ a1 (4.12)
Denote
[(un, wn) = (u, @)l[n = Anl[(T = Th) (un, wn)lln + Ry (4.13)
From the triangle inequality and (4.12) we deduce

|R1| = [l (un,wn) — (u,w)[ln = A l|(T — Th) (un, wn) ||
= |[[(un, wn) = (u,w)lln = AT (un, wn) — (un, wn)|ln |
< (w, w) = AT (un,wi)lln S (T = Th) (un, wn) | #- (4.14)

Due to (4.13) and (4.14), (4.8) is obtained. O

Theorem 4.5.  Let (A, (up,wp)) be the i-th eigenpair of (2.16) with ||(up,wn)||n = 1, and X be the i-th
eigenvalue of (2.5). Assume that R(Q) holds, n € WH°(Q) N H?(Q) and h < 1. Then there exists an
eigenfunction (u,w) corresponding to A, such that

||(uhawh) - (U,(U)Hh ,S?’]h(F,Uh,(JJh,Q), (415)

i (F, up, wh, Q) S [ (un, wp) — (u,w) || + OSC;(F, up). (4.16)

Proof.  Combining (4.11) with (4.1) we get (4.15). Combining (4.11) with (4.2) and neglecting the

higher-order small quantity R; we get (4.16). O
For the dual problem (2.11), denote

F*=F*(f,g9) = —wAf — A(nwf) — nwg.

Using the same argument as in Theorem 4.5 we can prove the following theorem.

Theorem 4.6.  Let (A}, (u},w;)) be the i-th eigenpair of (2.25) with ||(u),wi)|ln = 1, and A* be the
i-th eigenvalue of (2.11). Assume that R(Q)) holds, n € WH>(Q) N H%(Q) and h < 1. Then there exists
an eigenfunction (u*,w*) corresponding to \*, such that

([ (ur,, wp) = (", W) |0 S 10 (F7, u, wpy, ),
M (F s s wp, Q) S [ (ugs wy) = (0" w")[|n + OSCH(F7, ug),

where f = Ajuy, g = A\jwy, in F*.
Theorem 4.7. Assume that the conditions of Theorem 4.2 hold and h < 1. Then the following
estimate holds:

Mo = A S 03 (Fyup, wn, Q) + 07 (F*,ul, wi, Q) + Ry, (4.17)

where Ry = ZI{Eﬂ'h hiaH(uv w) - Ih(uﬂ W)”%—PJra(R) + Zneﬂh hi"H(u*, W*) - Ih(U*7W*)||?—12+a(K)'
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Proof.  Thanks to Poincaré-Friedrichs inequalities in [10], we have ||(un,wn) — (u,w) || < ||| (un, wp)
= (w,)[[n and || (uf, wiy) = (") [ S [l (wh;w5) = (@ w")[[n. Thus from (4.5) we get

A = AL I Cuns wn) = (s @)l (up, wp) = (u® @) |- (4.18)
Due to (2.20), the triangle inequality, (2.21), (2.22) and the interpolation estimate, we deduce

(1 Cuns wn) = In(u, )] 4[] (u, w) = Tn(u, w)|[[n)?
(s wr) = Tn(w, ) [l + |1 (w, @) = In(u,w)||[n)*
(Il (s wn) = (w, )l + [I(w, ) = Tn(u, w)][[)?

M (Fy s wn, ) + > 221, w) = Tn(t,0) | Fr2 -

KETY

11 (uns wn) = (uw)|Il7 <

2/\ ANRZA /

Similarly, we can get

(s wit) = (s )R S i (i, s @) + Y B, w0*) = (0", w0") 20 ) -

KETh
Submitting the above two estimates into (4.18), we get (4.17). O

Remark 4.8.  From Theorems 4.6 and 4.7, we know the indicator n? (F, up, wp, ) + 07 (F*,u}, wj, Q)
of the eigenfunction error ||(up,ws) — (u,w)||? + ||(u},w}) — (u*,w*)|? is reliable and efficient up to data
oscillation, so Algorithm 1 in Section 5 can generate a good graded mesh, which makes approximation
eigenfunctions can get the optimal convergent rate h™~! in || - ||,. Thus we are able to expect to
get Ry < h2m=1 | and thereby from (4.17) we have |\, — A| < h2(m=1. Therefore, we think that
n2(F, up, wp, ) + i (F*,uj,w;i, Q) can be viewed as the indicator of A,. The numerical experiments
in Section 5 show this indicator of Aj is reliable and efficient. In addition, A;, can achieve the optimal
convergent rate.

5 Adaptive algorithms and numerical experiments

Using the a posteriori error estimates and consulting the existing standard algorithms (see, e.g., [20,25]),
we present the following algorithm:

Algorithm 1

Require: Choose the parameter o, ;1,0 < 0 < 1;

1: set | = 0 and pick any initial mesh 7, with the mesh size h;;

2: solve (2.16) on 7, for discrete solution (An;, (un,;,wn,)) with [|(up,,ws,)|ln =1 and find (u’;”,w;l) € ran(P;:l) by (4.4)

(also see Remark 4.3);

3: compute the local indicators nil (Fyup, Wy, k) + n}%l (F*,u,*ll,w,*” JK);
4: construct 7y, C 7, by Marking Strategy E;
5
6:

: refine 7, to get a new mesh Thyt1 by procedure refine;
: set I =14 1 and goto Step 2.

Marking Strategy E

Require: Given parameter 0 < 6 < 1;
1: construct a minimal subset %hl of 7y, by selecting some elements in 7, such that

> 0, (Fyung, whys &) + 7, (F* uj, wis €)= 0007, (Fyun,, iy, Q) + 17, (F* ufh, wh 5 Q));

ne?rhl

2: mark all the elements in 7y, .

The above marking strategy was introduced in [21] (see also [33]).
We compute the transmission eigenvalues on the unit square domain with a slit [0,1]% \ [0.5,1] and

the L-shaped domain [—1,1]2\ [0,1] x [~1,0] using Algorithm 1 with m = 2,3. All the initial meshes
f

are made up of congruent triangles. In addition, the mesh sizes take ho = %5 and ho ‘[ for the
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domain with a slit and the L-shaped domain, respectively. § = 0.25 and 6 = 0.5 for m = 2 and m = 3,
respectively. We use MATLAB2012a and the iFEM package (see [16]) on an HP-Z230 workstation (CPU

3.6 GHZ and RAM 32 GB).

We use the sparse solver eigs to solve (2.16) and (2.25) for eigenvalues. Before showing the results,

some symbols need to be explained:

ki =/

Ajn: the j-th eigenvalue derived from the I-th iteration using Algorithm 1, k; 5, = v/Aj n;

DOF: the number of degrees of freedom.

The accurate eigenvalues for the problems on the two above domains are unknown. For the domain with

a slit, we take k1 =~ 2.80677803, ko = 2.98066000 for n = 16, and take k;

2

— 1.31142340i¢ for n = 8 + « — y. For the L-shaped domain, we take k1 =~ 1.47609911, ks
for n = 16, and take ky & 2.30212024, k5 =~ 2.92423162 — 0.56458999i for n = 8 + x — y. All of them with
high accuracy are obtained by Algorithm 1. By computation we also know that the first ten smallest

eigenvalues are all simple.

4.14438323, k~

~ 5.57000885
~ 1.56972499

We present some adaptive refined mesh in Figure 1, and the curves of the error of the numerical
eigenvalues in Figures 2—-5. From Figure 1, we can see that the singularities of the eigenfunctions for the

two domains mainly center on the corner points.

From Figures 2-5, we see that the curves of the indicator are parallel to the curves of the error of A; 3,
which shows the posteriori error estimators are reliable and efficient for all the cases; we also see that the

accuracy of the numerical eigenvalues on adaptive meshes, better than that on uniform meshes, can get

the optimal convergence order O(DOF ™) m = 2, 3.

However, from Figures 2-5, we also see that there exists the fluctuation in the results on adaptive
meshes when DOF is large enough. This is probably the consequence of the performance of linear algebra
routine on this problem. To treat such problems to get higher accurate approximation much more careful

design of the routine is needed.
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Figure 1 Adaptive meshes for the smallest eigenvalue on the domain with a slit with DOF = 28,688, n = 16, m = 3
(a), on the L-shaped domain with DOF = 29,972, n = 16, m = 3 (b), on the domain with a slit with DOF = 29,564,
n=8+x—y, m=3 (c) and on the L-shaped domain with DOF = 32,954, 4n =8 + =z —y, m = 3 (d)
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Figure 4 The convergence rates of eigenvalues for the domain with a slit (a) and for the L-shaped domain (b) when
n:8+x—y,m:2,0:20,u:é
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Figure 5 The convergence rates of eigenvalues for the domain with a slit (a) and for the L-shaped domain (b) when

n=8+xfy,m:3,a=20“u=é
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