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Abstract We propose randomized inference (RI), a new statistical inference approach. RI may be realized

through a randomized estimate (RE) of a parameter vector, which is a random vector that takes values in the

parameter space with a probability density function (PDF) that depends on the sample or sufficient statistics,

such as the posterior distributions in Bayesian inference. Based on the PDF of an RE of an unknown parameter,

we propose a framework for both the vertical density representation (VDR) test and the construction of a

confidence region. This approach is explained with the aid of examples. For the equality hypothesis of multiple

normal means without the condition of variance homogeneity, we present an exact VDR test, which is shown as

an extension of one-way analysis of variance (ANOVA). In the case of two populations, the PDF of the Welch

statistics is given by using the RE. Furthermore, through simulations, we show that the empirical distribution

function, the approximated t, and the RE distribution function of Welch statistics are almost equal. The VDR

test of the homogeneity of variance is shown to be more efficient than both the Bartlett test and the revised

Bartlett test. Finally, we discuss the prospects of RI.
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1 Introduction

The parameter θ, which is regarded as the central objective of the frequentist statistical inference, is an

unknown constant, and this parameter may take any value within the specified parameter space Θ. The

frequentist inference focuses on the true value of the parameter by employing data analysis that works

on the basis of the true model and has sensible properties regardless of the true value of θ.

The Bayesian attitude toward the parameter θ is different. Specifically, the parameter is regarded as

a realized value of a random variable ϑ with the PDF fϑ(θ), where θ ∈ Θ; the prior distribution contains

information about the parameter θ before we observe a sample X = x. After obtaining x, one combines
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the information contained in x with the prior distribution and obtains the posterior distribution fϑ(θ, x),

which is the conditional distribution of ϑ, given that X = x. The Bayesian inference emphasizes the

process for obtaining the posterior distribution and making inference to the parameter θ based on the

posterior distribution.

In the 1930s, Fisher [3, 4] attempted to find a distribution over Θ straightly instead of using a prior

distribution, and he called it the fiducial distribution. He gave examples to show how to find the fiducial

distribution. Both Bayesian inference and fiducial inference consider parameter θ as a random variable,

and this diverges from the viewpoint of the frequentist inference (see [1, 6] for more comments).

Instead of considering θ as a random variable, we can infer the parameter θ using a random variable

W = Wθ with the PDF f(· ;x) over the parameter space Θ, where the observed sample x is a parameter

of the distribution. The function f(· ;x) may be a posterior or a fiducial density function, and could also

be a density function of other types. W is called an RE of the parameter θ (see [16]). The inference

can then be performed based on the RE in a frequentist way. Such a frame maintains the concept of

a parameter being an unknown constant, and it is possible that both Bayesian and fiducial inferences

exist in the frequentist inference system. In fact, the frequentist inference is also a source of the RE (see

Subsection 2.1).

For illustrating the main idea, we recall the classical example of a normal distribution. Let x =

(x1, . . . , xn)
′ be the observed sample from the normal distribution N(µ, σ2) and X = (X1, . . . , Xn)

′ be

the corresponding random sample. We denote the sample variance computed from x by s2n and its random

version as S2
n. The pivot of µ is

h(x̄, s2n;µ) =

√
n(x̄− µ)

sn
, h(X̄, S2

n;µ) =

√
n(X̄ − µ)

Sn
∼ dt(·, n− 1),

where dt(· , n − 1) is the PDF of the Student’s t distribution with n − 1 degrees of freedom. Given the

significance level α, it is well known that

1− α = P

(
X̄ − tn−1

(
1− α

2

)
Sn√
n
6 µ 6 X̄ − tn−1

(
α

2

)
Sn√
n

)
. (1.1)

[X̄ − tn−1(1− α
2 )

Sn√
n
, X̄ − tn−1(

α
2 )

Sn√
n
] is a random interval that covers parameter µ with the probability

1− α. Accordingly, when considering the hypothesis

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

we reject H0 with the significance level α if

µ0 ∈ [µ, µ̄] =

[
x̄− tn−1

(
1− α

2

)
sn√
n
, x̄− tn−1

(
α

2

)
sn√
n

]
does not hold.

The above statements are shown in Figure 1 (see also [5]). It shows also that

Tn−1 ∼ dt(· , n− 1), Tn−1 ∈
[
tn−1

(
α

2

)
, tn−1

(
1− α

2

)]
⇔ µ ∈ [µ, µ̄].

This can be formulized as follows:
√
n(x̄− µ)

sn
= Tn−1, Tn−1 ∼ dt(·, n− 1). (1.2)

Then, the fiducial inference takes µ as a random variable and x̄ and s2n as constants. This is also a way

to use a pivot.

The inconformity of µ being both a constant and a random variable could be removed by using the

RE of µ. We consider that parameter µ is an unknown constant while replacing µ in (1.2) with a random

variable W , which is defined as the RE of µ. This implies the following:
√
n(x̄−W )

sn
= Tn−1, Tn−1 ∼ dt(·, n− 1). (1.3)
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Figure 1 (Color online) Statistical inference of µ for N(µ, σ2)

Equation (1.3) is a way to define an RE by using a pivot. The basic idea is just from Fisher [3]. From (1.3),

we find that the PDF of W is
√
n

sn
dt(

√
n(x̄−µ)
sn

, n− 1). The RI is based on this distribution. Here, we use

the notations of the R software.

The rest of this paper is organized as follows. In Section 2, the basic concepts and theorems on RI are

presented. Several applications of RI are discussed in Section 3. In Section 4, we present the concluding

remarks and suggest some future topics for RI.

2 Randomized inference

In this section, we discuss the RI approach in detail and extend all the statements of Section 1 to general

cases. For convenience, we first formulate the model and recall the concept of the RE. Then, we present

the RI including the VDR test, the confidence region, and several basic properties.

2.1 Formulation

Consider a distribution family with the PDF f(x;η,λ), x ∈ Rp, where η = (η1, . . . , ηl)
′ ∈ N ⊆ Rl is the

parameter of interest; λ ∈ Λ ⊆ Rs−l is an unknown nuisance parameter. Let Xn = (X1, . . . ,Xn)
′ and

Xn = (x1, . . . ,xn)
′ denote a random sample from f(· ;η,λ) and its observed value, respectively, and let

the sample space be Xn =×n
i=1R

p. The PDF of Xn is

fn(Xn;η,λ) =
n∏

i=1

f(xi;η,λ), Xn ∈ Xn.

This is a general parametric model. One of basic problems is how to test the hypothesis

H0 : η = η0 vs. H1 : η ̸= η0. (2.1)

This is equivalent to constructing a confidence region of η.

2.2 Randomized estimate

Definition 2.1 (RE [16]). Let W be a random vector over N with a known PDF fw(· ;Xn), Xn ∈ Xn

(or fw(· ;T ), where T = T (Xn) is a sufficient statistic of η) that takes the sample space (or the range
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space of the sufficient statistic) as its parameter space of the distribution family. Then, we call W an

RE of η.

The expectation wn(Xn) = EW =
∫
N wfw(w;Xn)dw, if it exists, is a statistic and can be viewed as

a point estimate of η. We call it as the expectation estimate corresponding to W . If

fw(η̂n;Xn) = max
η∈N

fw(η;Xn),

we call η̂n a randomized mass estimate.

If E(wn(Xn)) =
∫

Xn
wn(X )fn(X ;η,λ)dX = η, we call W an unbiased RE (URE). If wn(Xn) is the

uniformly minimum variance unbiased estimator, then we callW a uniformly minimum variance unbiased

randomized estimate (UMVURE) . If

lim
n→∞

P(|wn(Xn)− η| > ϵ) = 0, ∀ ϵ > 0

holds for any η ∈ N , then we call W a consistent RE (CRE). Many RE concepts could be defined but

have been omitted here.

Suppose that A = A(Xn) ⊆ N and

P(W ∈ A(Xn)) =

∫
A

fw(w;Xn)dw = 1− α, ∀Xn ∈ Xn.

A(Xn) is a random set. If

P(η ∈ A(Xn)) = 1− α, (2.2)

we call W an equivalent RE (ERE). This concept specifies a way of constructing a confidence region

using ERE.

Example 2.2. Let x be a sample of size n (n > 2) from N(µ, σ2), and both µ and σ2 are unknown.

With the notation in Section 1, denote

W = x̄− sn√
n
Tn−1, Tn−1 ∼ dt(·, n− 1),

W1 = x̄− sn√
n
Z, Z ∼ N(0, 1).

Then it is easy to see that both W and W1 are URE, CRE, and UMVURE of µ, but W is an ERE

and W1 is not. If σ2 is known, neither W nor W1 is an ERE of µ, while x̄− σ√
n
Z is an ERE.

2.3 VDR test

Now, consider the test of the hypothesis (2.1). We propose the VDR test, which is based on the PDF

fW (·;Xn) of an RE [16]. From the likelihood principle, when fW (η0;Xn) is too small, we should reject H0.

Let Z = fW (W ;Xn), and we call it a test random variable. Note that Z is always one-dimensional

regardless of the dimension of W . The PDF of Z is as follows (see [11] or [12]):

fZ(z;Xn) = −z
∂Ll(D(z;Xn))

∂z
,

where Lk is the Lebesgue measure on Rk and D(z,Xn) = {η : fW (η;Xn) > z,η ∈ N}. Let QZ(α;Xn)

be the α quantile of Z that satisfies

P(Z 6 QZ(α;Xn)) =

∫ QZ(α;Xn)

0

fZ(z;Xn)dz = α. (2.3)

The VDR test rejects H0 : η = η0 if fW (η0;Xn) 6 QZ(α;Xn).

A 1− α VDR confidence region denoted by CR(1− α;Xn) is defined as

CR(1− α;Xn) = {η : fW (η;Xn) > QZ(α;Xn)}. (2.4)

It is obvious from (2.3) that P(W ∈ CR(1 − α;Xn)) = 1 − α. If W is an ERE, then CR(1 − α;Xn) is

also a 1− α confidence region in the sense of the frequentist inference.
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Remark 2.3. Martin and Liu [8] introduced an interesting inference framework for asserting the

uncertainty of the unknown parameter. Similar to this study, they employed an unobserved auxiliary

random variable, which led to a data-dependent probability measure; however, both the basic idea about

the parameter information and the inference procedure were very different from those used herein.

2.4 Pivotal quantity for a vector parameter

From the above subsection, we see that an ERE is helpful for finding a confidence region. In this

subsection, we illustrate how to obtain an ERE through a pivot.

Definition 2.4 (Pivot [7]). Let h(Xn;η) be a function from Xn ×N to Nh. If this function satisfies

the conditions that (i) for a given Xn, h(Xn; ·) is a one-to-one mapping from N to Nh and (ii) for a

given η, the distribution function FH(·) of H = h(Xn;η) does not involve any parameters, then h(· ; ·)
is called a pivot of the parameter η.

Example 2.5. The example of pivots. We consider the normal population Np(µ,Σ) and denote

h(X ;µ,Σ) =

(
h1(X ;µ,Σ)

h2(X ;µ,Σ)

)
=

( ∑n
i=1 Σ̂

− 1
2 (xi − µ)∑n

i=1 Σ
− 1

2 (xi − µ)(xi − µ)′Σ− 1
2

)
.

Then

h(X;µ,Σ) ∼

(
tp(n− 1)

Wp(n, Ip)

)
,

where

Σ̂ =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)′,

tp(n− 1) is the p-dimensional t distribution with n− 1 degrees of freedom, and Wp(n, Ip) is the Wishart

distribution with n degrees of freedom and the scale matrix Ip. This means h(X ;µ,Σ) is a pivot

of (µ, Σ).

It is difficult to infer a vector parameter directly from its pivots, but we can achieve this using an RE

defined through a pivot. The RE W of η is defined by

h(Xn;W ) = H, H ∼ fH(·). (2.5)

The PDF of W is

fW (· ;Xn) = fH(h(Xn; ·))
∣∣∣∣det(∂h(Xn; ·)

∂ ·

)∣∣∣∣ = fH(h(Xn; ·))J(Xn; ·).

We call (2.5) an RE equation of η. The idea of obtaining the distribution is from Fisher [4]. The RE

defined through a pivot is an ERE.

Lemma 2.6. Let W be the RE of η defined by (2.5) through h(Xn;u), and fW (· ;Xn) be the PDF

of W . If C ⊂ N satisfies

P(W ∈ C) =

∫
C

fW (u;Xn)du = 1− α, (2.6)

then C is a 1− α confidence region in the sense of the frequentist inference.

Proof. Assume that Ch = {z : z = h(Xn,η), η ∈ C} ⊂ Nh. Then from the definition of a pivot, we

have

C = {η : h(Xn,η) ∈ Ch, η ∈ N}, (2.7)

and thus,

1− α = P(W ∈ C) =

∫
C

fW (u;Xn)du =

∫
C

J(Xn;u)fH(h(Xn;u))du
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=

∫
Ch

fH(z)dz = P(H ∈ Ch). (2.8)

Set X c(α,η) = {X ∗ : h(X ∗,η) ∈ Ch} and

CC(1− α,Xn) = {η0 : Xn ∈ X c(α,η0)} = {η0 : h(Xn,η0) ∈ Ch}. (2.9)

Then from (2.8), it holds that

P(η0 ∈ CC(1− α,Xn)) = P(h(Xn,η0) ∈ Ch) = 1− α.

Therefore, CC(1 − α,Xn) is a 1 − α confidence region of η. By comparing (2.9) with (2.7), we have

CC(1− α,X ) = C.

Lemma 2.7. Suppose that f(·) is a PDF over N and

Cf (1− α) = {η : f(η) > h(α)},
∫
Cf (1−α)

f(η)dη = 1− α.

Then, the following expression holds:

Ll(Cf (1− α)) = min

{
Ll(C) :

∫
C

f(η)dη > 1− α

}
,

where Lk is Lebesgue measure on Rk.

Proof. Let C satisfy
∫
C
f(η)dη > 1− α, and let

C∗ = Cf (1− α) ∩ C, C1 = Cf (1− α) \ C∗, C2 = C \ C∗.

Then, we have

f(z) > h(α), ∀z ∈ C1, f(z) 6 h(α), ∀ z ∈ C2.

Therefore, ∫
C∗

f(z)dz + h(α)Ll(C1)

6
∫
C∗

f(z)dz +

∫
C1

f(z)dz =

∫
Cf (1−α)

f(z)dz = 1− α

6
∫
C

f(z)dz =

∫
C∗

f(z)dz +

∫
C2

f(z)dz

6
∫
C∗

f(z)dz + h(α)Ll(C2).

Since h(α) > 0, the above inequality implies Ll(C1) 6 Ll(C2). Therefore,

Ll(Cf (1− α)) = Ll(C
∗) + Ll(C1) 6 Ll(C

∗) + Ll(C2) = Ll(C).

The conclusion is thus obtained.

Lemma 2.7 means that the VDR confidence region defined by (2.4) has the minimal Lebesgue measure.

2.5 RE defined by confidence distribution

For some models, the interest parameter does not have any pivots. An example of this is the parameter p

of the binomial distribution B(n, p). However, p still has an RE, which is given by a random variable

with a confidence distribution (CD) (see [10]).

Suppose X ∼ B(n, p) and x is an observation of X. Then, a γ upper confidence limit p̄ of p satisfies

γ =
n∑

i=x+1

(
n

i

)
p̄i(1− p̄)n−i = Fn(p̄;x).
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The right-hand side is a function of the upper confidence limit p̄, and it is solely a CD function. Now,

let us suppose that the distribution function of the random variable W is Fn(· ;x). Then, W is an RE

of p. Its PDF is

fn(w;x) =
∂Fn(w;x)

∂w
= x

(
n

x

)
wx(1− w)n−x

= dbe(w, x+ 1, n− x+ 1), 0 6 w 6 1.

The corresponding expectation estimate EW = x+1
n+2 is solely the Bayesian estimate with the uniform

prior distribution. This example clearly shows that the distribution of W plays the role of a posterior

distribution.

Generally, when the interested parameter is one-dimensional, one can always use a CD to define an

RE similarly; this is called a CD random variable in [10]. Conversely, an RE also leads to a CD function.

However, it is difficult to use a CD to deal with multiple parameters (see [10]). For more interesting

applications of CD, please refer to [13–15].

2.6 Basic theorem of RE for composite parameters

Composite parameters are functions of natural parameters. For example, the failure rate is a natural

parameter in an exponential distribution and reliability is a composite parameter. Generally, it is easy

to find a pivot for natural parameters with closed forms and thus find an RE. The following theorem is

useful for the construction of REs for composite parameters.

Theorem 2.8 (Theorem of REs for composite parameters). Suppose that X is a sample drawn from

f(·;η,λ), η = (η1, . . . , ηl)
′ ∈ N , h(X ;η) = (h1(X ;η), . . . , hl(X ;η))′ is a pivot of η, and the PDF of

h(X,η) is fh(·). The RE W = (W1, . . . ,Wl)
′ of η satisfies

h(X ;W ) = H, H ∼ fH(·).

γ = (γ1, . . . , γk)
′ = ϕ(η) = (ϕ1(η), . . . , ϕk(η))

′ is a one-to-one smooth function from N to Φ = {γ : γ

= ϕ(η), η ∈ N} ⊆ Rk (k > l), an l-dimensional surface in Rk. Set

J = J (η) =

(
∂ϕ(η)

∂η′

)
=


∂ϕ1(η)
∂η1

· · · ∂ϕ1(η)
∂ηl

∂ϕ2(η)
∂η1

· · · ∂ϕ2(η)
∂ηl

...
. . .

...
∂ϕk(η)
∂η1

· · · ∂ϕk(η)
∂ηl

 .

If rk(J ) = l, ∀η ∈ N , then

V = ϕ(W1, . . . ,Wl) = ϕ(W ) (2.10)

is an ERE of γ. The PDF of V is

fV (v) = C−1|det(J ′(ϕ−1(v))J (ϕ−1(v)))|− 1
2 fH(ϕ−1(v)), ∀v ∈ Φ,

where

C =

∫
Φ

|det(J ′(ϕ−1(v))J (ϕ−1(v)))|− 1
2 fH(ϕ−1(v))Ll(dv,Φ).

Proof. Let h∗(X ;γ) = h(X ;ϕ−1(γ)). Then,

h∗(X;γ) = h(X;ϕ−1(γ)) ∼ fH(·).

Thus, h∗(X ,γ) is a pivot of γ; the RE V of γ given by

H = h∗(X ,V ) = h(X ,ϕ−1(V ))

is an ERE. This RE is equivalent to ϕ(W ).
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Corollary 2.9. Suppose that W is the RE of η given in Theorem 2.8. Let γ = ϕ(η1, . . . , ηl) ∈ Λ ⊆ R,

where ϕ(·) is a multivariate continuously differentiable function and

l∑
i=1

(
∂ϕ

∂ηi

)2

> 0.

Then, an ERE of γ is given by

V = ϕ(W1, . . . ,Wl) = ϕ(W ). (2.11)

Proof. Let γ = (γ1, . . . , γl−1, γ)
′ = (η1, . . . , ηl−1, ϕ(η1, . . . , ηl))

′ = ϕ(η). Then,∣∣∣∣det(∂γ

∂η

)∣∣∣∣ ̸= 0, ∀η ∈ N

and ϕ(·) satisfies the conditions of Theorem 2.8. Hence,

V = (V1, . . . , Vl, V )′ = ϕ(W ) = (W1, . . . ,Wl−1, ϕ(W ))

is an ERE of γ and V = ϕ(W ) is an ERE of γ.

Theorem 2.8 shows that an ERE is equivariant under parameter transformations. When composite

parameters do not have any closed-form pivot, we can find an ERE using Theorem 2.8 and Corollary 2.9.

Thus, we can perform the VDR test for the hypothesis

H0 : γ = γ0 vs. H1 : γ ̸= γ0,

and construct a confidence region of γ.

3 Examples of randomized inference

We will list some applications of RI in this section.

3.1 Classical problems for normal distribution

Let x = (x1, . . . , xn)
′ be an observation of a random sample X = (X1, . . . , Xn)

′ from N(µ, σ2). Consider

the following hypotheses:

H0 : µ = µ0 vs. H1 : µ ̸= µ0 (3.1)

and

H0 : σ2 = σ2
0 vs. H1 : σ2 ̸= σ2

0 . (3.2)

The pivot of µ is

h(x, µ) =

√
n(x̄− µ)

sn
, h(X, µ) =

√
n(X̄ − µ)

Sn
∼ dt(·, n− 1).

Let W be the RE of µ given by

√
n(x̄−W )

sn
= Tn−1, Tn−1 ∼ dt(·, n− 1).

The PDF of W is

fW (u, x̄, s2n) =

√
n

sn
dt

(√
n

sn
(x̄− u), n− 1

)
.

The VDR test random variable is taken as

Z =
sn√
n
fW (W, x̄, s2n) = dt

(√
n

sn
(x̄−W ), n− 1

)
= dt(Tn−1, n− 1).
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Let QZ(α, n) be the α quantile of Z. Then,

α = P(Z 6 QZ(α, n)) = P(dt(Tn−1, n− 1) 6 QZ(α, n))

= P

(
Tn−1 6 qt

(
α

2
, n− 1

))
+ P

(
Tn−1 > qt

(
1− α

2
, n− 1

))
.

This means that QZ(α, n) = dt(qt(α2 , n − 1), n − 1) = dt(qt(1 − α
2 , n − 1), n − 1). Therefore, the rule of

the VDR test for the hypothesis (3.1) is that if

sn√
n
fW (µ0, x̄, s

2
n) 6 QZ(α, n) or equivalently

∣∣∣∣√n(x̄− µ0)

sn

∣∣∣∣ > qt

(
1− α

2
, n− 1

)
,

then reject the null hypothesis. This rule is exactly the same as that used for the frequentist inference.

All the above steps show the RI procedure by employing the RE. We can find the VDR test of the

hypothesis (3.2) in the same manner. The RE of σ2 is V =
(n−1)s2n
χ2
n−1

, χ2
n−1 ∼ dchisq(· , n− 1). The PDF

of V is

fV (v, s
2
n, n− 1) =

(n− 1)s2n
v2

dchisq

(
(n− 1)s2n

v
, n− 1

)
.

The test random variable of the hypothesis (3.2) is

Z1 = fV (V, s
2
n, n− 1) =

(n− 1)s2n
V 2

dchisq

(
(n− 1)s2n

V
, n− 1

)
.

Let Q1(α, s
2
n, n− 1) be the α quantile of Z1. Then,

α = P(Z1 6 Q1(α, s
2
n, n− 1))

= P((χ2
n−1)

2dchisq(χ2
n−1, n− 1) 6 Q1(α, n− 1))

= P(χ2
n−1 6 v1) + P(χ2

n−1 > v2),

where Q1(α, n− 1) = (n− 1)s2nQ1(α, s
2
n, n− 1), v1 and v2 satisfy

Q1(α, n− 1) = v21dchisq(v1, n− 1) = v22dchisq(v2, n− 1), v1 < v2.

The rule for the VDR test of the hypothesis (3.2) is that if

fV (σ
2
0 , s

2
n, n− 1) 6 Q1(α, s

2
n, n− 1),

or equivalently

σ2
0 > (n− 1)s2n

v1
or σ2

0 6 (n− 1)s2n
v2

,

then reject the null hypothesis of (3.2).

Furthermore, a 1−α confidence interval of σ2 is [
(n−1)s2n

v2
,
(n−1)s2n

v1
]. Note that the length of the interval

is less than that of the conventional confidence interval [
(n−1)s2n

qchisq(1−α
2 ,n−1) ,

(n−1)s2n
qchisq(α

2 ,n−1) ].

3.2 Empirical Bayesian procedure of RI

Certainly, an RE may be introduced from the posterior distribution in Bayesian analysis, i.e., a random

variable with the posterior distribution can be viewed as an RE. In this subsection, we show by means

of examples that the RE’s distribution could be taken as the prior distribution in the empirical Bayesian

procedure.

Example 3.1. Suppose x = (x1, . . . , xn)
′ is an observed sample from N(µ, σ2).

Case 1. σ2 is known. An RE of µ is given by W = x̄− σ√
n
Z, Z ∼ N(0, 1), and hence, W ∼ N(x̄, σ2

n ).

If there is a historical sample y = (y1, . . . , ym)′, then we may take N(ȳ, σ2

m ), which is the distribution

of µ’s RE corresponding to y, as a prior distribution of µ in the Bayesian inference.
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Case 2. σ2 is unknown. A similar RE of µ is W = x̄ − sn√
n
Tn−1, Tn−1 ∼ dt(·, n − 1). Based on a

historical sample y of size m, we may take dt(
√
m(ȳ−·)
sm

) as a prior distribution of µ. However, it is not a

conjugate prior distribution.

Case 3. An RE of σ2 is W =
(n−1)s2n
χ2
n−1

, χ2
n−1 ∼ dchisq(·, n− 1), and its PDF is

fW (w) =
1

(n− 1)s2n

(
(n− 1)s2n

w

)2

dchisq

(
(n− 1)s2n

w

)
.

Similarly, if one has a historical sample y = (y1, . . . , ym)′, the distribution of the corresponding RE of σ2

can be taken as a prior distribution.

Example 3.2. Assume that the lifetime of a color TV follows an exponential distribution with the

following PDF:

p(t; θ) =
1

θ
e−

t
θ , t > 0,

where θ > 0 is the mean lifetime. Consider a type-II censoring lifetime test with n TV sets, which was

stopped after r sets failed. The observed failure times are t(1) 6 t(2) 6 · · · 6 t(r), and the PDF of the

censored sample Tr = (T(1), . . . , T(r))
′ is

p(t; θ) =
n!

(n− r)!

1

θr
e−

sr
θ ,

where sr =
∑r

i=1 t(i) + (n− r)t(r) and t = (t(1), . . . , t(r))
′. h(t; θ) = sr

θ is a pivot of θ, and

h(T ; θ) =
Sr

θ
∼ Γ(r, 1), (3.3)

where Γ(r, 1) is the Γ distribution with the shape parameter r and scale 1. Thus, an RE W of θ can be

defined as

W =
sr
Γr,1

, Γr,1 ∼ Γ(r, 1).

It is an ERE and has the density

fW (w; sr) =
srr

(r − 1)!
w−(r+1)e−

sr
w = dIΓ(w; r, sr).

If there is a historical data set (r′, sr′), one may take dIΓ(· ; r′, sr′) as a prior distribution. This is a

common type of prior distributions in the Bayesian method. The prior distribution is objective, with no

subjective elements [7]. The posterior distribution is

π(θ | sr′ , sr) =
(sr′ + sr)

r′+r

(r′ + r − 1)!
θr

′+r+1e−
s
r′+sr

θ .

It combines the information on θ from both the historical data and the current sample.

3.3 Multiple population comparison problem

Testing the equality of the means or the homogeneity of the variances for multiple normal distributions

is difficult in frequentist inference only because of the lack of a closed-form pivot. In this section, we

propose RI solutions that are quite different from the classical solutions.

Let xi = (xi1, . . . , xini)
′ and Xi = (Xi1, . . . , Xini)

′ be an observed sample and a random sample,

respectively, drawn from N(µi, σ
2
i ) with the sample size ni, where i = 1, . . . , p, and Xi, i = 1, . . . , p be

independent of each other. Next, we will study the following problems:

1. Testing the equality of the mean parameters

H0 : µ1 = · · · = µp vs. H1 : µ1 = · · · = µp is not true. (3.4)
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This has been solved only when all variances are equal, known as the analysis of variance for one factor.

When p = 2 and σ2
1 ̸= σ2

2 , we have the famous Behrens-Fisher problem.

2. Testing the homogeneity of the variances

H0 : σ2
1 = · · · = σ2

p vs. H1 : σ2
1 = · · · = σ2

p is not true. (3.5)

There are many ways to test (3.5). For the case of p = 2, the F test is an exact test. When p > 2, the

Hartley test can be performed when all sample sizes are equal. The Bartlett test is for all cases, and the

revised Bartlett test is for small sample sizes. However, these are all asymptotic tests, whereas the VDR

test is an exact test.

We will use the following notations:

σ2 = (σ2
1 , . . . , σ

2
p)

′, µ = (µ1, . . . , µp)
′,

x̄i =
1

ni

ni∑
j=1

xij , s2i =
1

ni − 1

ni∑
j=1

(xij − x̄i)
2, i = 1, . . . , p,

x̄ = (x̄1, . . . , x̄p)
′, s2 = (s21, . . . , s

2
p)

′,

n = (n1, . . . , np)
′, f = n− 1p = (n1 − 1, . . . , np − 1)′,

N = diag(n), F = diag(f),

S = diag(s2), 1p = (1, . . . , 1)′ ∈ Rp.

3.3.1 Testing the hypothesis (3.4)

Let Wi be the RE of µi defined by

h(x̄i, s
2
i ;Wi) =

√
ni(x̄i −Wi)

si
= Tni−1, Tni−1 ∼ dt(· , ni − 1), i = 1, . . . , p,

and denote W = (W1, . . . ,Wp)
′. Then, from the above equations, we have

N 1
2S− 1

2 (x̄−W ) = Tn−1, Tn−1 = (Tn1−1, . . . , Tnp−1)
′. (3.6)

Take a constant vector r = (r1, . . . , rp)
′ with

∑p
i=1 ri = 1, ri > 0 for all i, and let µ̄ = µ̄(r) = r′µ, ν =

(ν1, . . . , νp)
′ = µ− 1pµ̄. Hence, the test of the hypothesis (3.4) is equivalent to the test of

H0 : ν = 0p vs. H1 : ν ̸= 0p. (3.7)

If we set

Φ =

{
u = (u1, . . . , up+1)

′ :

p∑
i=1

riui = 0, up+1 ∈ R

}
= {u = (u1, . . . , up)

′ : r′u = 0, u ∈ Rp} ×R ≡ Φ0 ×R,

then the function u(v) = ((v − 1pv̄)
′, v̄)′ is a one-to-one map from Rp to Φ. We have

∂((v − 1pv̄)
′, v̄)′

∂v′ =

(
Ip − 1pr

′

r′

)
,

J(((v − 1pv̄)
′, v̄)′ → v) =

∣∣∣∣∣det
(
(Ip − r1′

p, r)

(
Ip − 1pr

′

r′

))∣∣∣∣∣
1
2

= p− 1−
(
1− 1√

r′r

)2

= c = constant.

(3.8)
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Table 1 Empirical significance level given by simulations

Weight Sizes of Nominal levels

r samples Variances 0.0100 0.0500 0.1000 0.5000 0.9000 0.9500 0.9900

n/n 10, 20, 25, 37 1, 3, 6, 7 0.0079 0.0478 0.0953 0.4908 0.8920 0.9460 0.9908

14/4 10, 20, 25, 37 1, 3, 6, 7 0.0094 0.0461 0.0920 0.4954 0.8959 0.9489 0.9902

n/n 10, 20, 30 1, 2, 3 0.0083 0.0439 0.0938 0.4852 0.8974 0.9468 0.9892

13/3 10, 20, 30 1, 2, 3 0.0070 0.0422 0.0925 0.4947 0.8964 0.9463 0.9906

Let W̄ and V be the REs of µ̄ = r′µ and ν, respectively. Then,

W = x̄− S 1
2N− 1

2Tn−1,

W̄ = r′W = r′x̄− r′S 1
2N− 1

2Tn−1,

V = W − 1pW̄ = (Ip − 1pr
′)x̄− (Ip − 1pr

′)S 1
2N− 1

2Tn−1.

(3.9)

Note that rank(Ip − 1pr
′) = p− 1. The joint PDF of (Ip − 1pr

′)S 1
2N− 1

2Tn−1 and r′S 1
2N− 1

2Tn−1 is

c−1

p∏
i=1

dt

(√
ni

si
(vi + v), ni − 1

)
according to Theorem 2.8. If we denote the PDF of (Ip − 1pr

′)S 1
2N− 1

2Tn−1 by fT (· , s2,n), then

fT (v, s
2,n) = c−1

∫ ∞

−∞

p∏
i=1

dt

(√
ni

si
(vi + v), ni − 1

)
dv, r′v = 0. (3.10)

The PDF of V is

fV (v, s2,n) = fT ((x̄− 1pr
′x̄)− v, s2,n),

= c−1

∫ ∞

−∞

p∏
i=1

dt

(√
ni

si
((x̄i − r′x̄)− vi + v), ni − 1

)
dv,

p∑
j=1

rjvj = 0. (3.11)

The test variable is Z = cfV (V , s2,n). From (3.9), it holds that

Z = cfT ((Ip − 1pr
′)S 1

2N− 1
2Tn−1, s

2,n).

The α quantile of Z, denoted by QZ(α, s
2,n), can be obtained via simulation. The VDR test rule of the

hypothesis (3.7) is that if∫ ∞

−∞

p∏
i=1

dt

(√
ni

si
((x̄i − x̄) + v), ni − 1

)
dv 6 QZ(α, s

2,n),

then reject the null hypothesis, where x̄ = x̄(r) = r′x̄.

In general, r should be chosen according to the alternative hypothesis. We can choose r = n
n , where

n =
∑p

i=1 ni, for the alternative hypothesis of (3.4).

We performed two group simulations with 10,000 repetitions. The first group had four populations,

with the variances 1, 3, 6 and 7 respectively, whereas the second group had three populations, with the

variances 1, 2 and 3, respectively. The empirical significance levels under the various nominal levels are

listed in Table 1. All results are very close to the nominal levels.

3.3.2 ANOVA for a single factor

Suppose that σ2
1 = · · · = σ2

p = σ2. This is the case of the variance analysis for a single factor. The pivots

of µ and σ2 are given by

h(X ,µ) = (h(x̄1, s
2
n;µ1), . . . , h(x̄p, s

2
n;µp))

′
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=

(√
n1(x̄1 − µ1)

sn
, . . . ,

√
np(x̄p − µp)

sn

)′

= N 1
2
(x̄− µ)

sn
,

h1(X , σ2) =
(n− p)s2n

σ2
,

where n =
∑p

i=1 ni and s2n = 1
n−p

∑p
i=1(ni − 1)s2i . It is well known that

(
h(X,µ)
h1(X, σ2)

)
d
=

 Z√
χ2
n−p
n−p

χ2
n−p

 ,

where Z ∼ Np(0p, Ip) and χ2
n−p ∼ dchisq(·, n− p) are independent of each other. We specify

Tp,n = (T1,n, . . . , Tp,n)
′ =

Z√
χ2
n−p

n−p

=

(
Z1√
χ2
n−p

n−p

, . . . ,
Zp√
χ2
n−p

n−p

)′

.

Its PDF is

dtp(t,n) =

∫ ∞

0

dnormp

(
z,

v

n− p
Ip

)
dchisq(v, n− p)dv

=
Γ(n−p+1

2 )

((n− p)π)
p
2Γ(n−2p+1

2 )

(
1 +

t′t

n− p

)−n
2

. (3.12)

The RE equations of W , r′W and V are

x−W = snN− 1
2Tp,n,

r′x− r′W = snr
′N− 1

2Tp,n,

(Ip − 1pr
′)x− V = sn(Ip − 1pr

′)N− 1
2Tp,n,

V = W − 1pr
′W .

(3.13)

From (3.12), the PDF of

U = (Ip − 1pr
′)N− 1

2Tp,n

can be expressed as

fU (u,n) =

p∏
i=1

n
1
2
i

∫ ∞

−∞
dtp(N

1
2 (u+ 1s),n)ds

= C

∫ ∞

−∞

(
1 +

(u+ 1ps)
′N (u+ 1ps)

n− p

)−n
2

ds

according to Theorem 2.8. Let r = n
n and r′x̄ = 1

n

∑p
i=1

∑ni

j=1 xij = x. Then, it is easy to show that

fU (u,n) = C

(
1 +

u′Nu

n− p

)−n−1
2

.

Thus, the PDF of V is

fV (v,x,n) = C∗
0

(
1 +

((Ip − 1pr
′)x− v)′N ((Ip − 1pr

′)x− v)

(n− p)s2n

)−n−1
2

.

Note that

(Ip − 1pr
′)N− 1

2Tp,n = N− 1
2 (Ip −N 1

21pr
′N− 1

2 )Tp,n

= N− 1
2 (Ip − aa′)Tp,n,
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a =

(√
n1

n
, . . . ,

√
np

n

)′

.

The test variable is

Z =
1

C∗
0

fV (V ,x,n).

From the RE equation of V and the above equation, the following holds:

Z =

(
1 +

(x̄− 1pr
′x̄− V )′N (x̄− 1pr

′x̄− V )

(n− p)s2n

)−n−1
2

=

(
1 +

(sn(Ip − 1pr
′)N− 1

2Tp,n)
′N (sn(Ip − 1pr

′)N− 1
2Tp,n)

(n− p)s2n

)−n−1
2

=

(
1 +

T ′
p,n(Ip − aa′)Tp,n

n− p

)−n−1
2

.

Based on the definition of Tp,n and the fact that Ip − aa′ is idempotent, we have

n− p

p− 1

T ′
p,n(Ip − aa′)Tp,n

n− p
=

Z′(Ip−aa′)Z
p−1

χ2
n−p

n−p

∼ dF (·, p− 1, n− p).

Let QZ(α,n) be the α quantile of Z. Then,

α = P(Z 6 QZ(α,n)) = P

((
1 +

T ′
p,n(Ip − aa′)Tp,n

n− p

)−n−1
2

6 QZ(α,n)

)
= P

(
T ′
p,n(Ip − aa′)Tp,n

p− 1
>

n− p

p− 1

(
1

(QZ(α,n))
2

n−1

− 1

))
.

Hence,

Fp−1,n−p(1− α) =
n− p

p− 1

(
1

(QZ(α,n))
2

n−1

− 1

)
.

The VDR test rule is that if

1

C∗
0

fV (0p,x,n) =

(
1 +

((Ip − 1pr
′)x)′N ((Ip − 1pr

′)x)

(n− p)s2n

)−n−1
2

6 QZ(α,n),

which is equivalent to

n− p

p− 1

((Ip − 1pr
′)x)′N ((Ip − 1pr

′)x)

(n− p)s2n
=

∑p
i=1 ni(x̄i−x̄)2

p−1

s2n
> Fp−1,n−p(1− α),

then reject the null hypothesis. This means that the VDR test is equivalent to the single-factor variance

analysis.

3.3.3 Testing the equality of means for the case of p = 2

When p = 2, the test of µ1 = µ2 is the famous Behrens-Fisher problem. The difficulty lies in having no

closed-form pivot for µ1 − µ2. In this case, a well-known test is the Welch test [5], which is given by

Wh(X ) =
x̄1 − x̄2 − (µ1 − µ2)√

s21
n1

+
s22
n2

. (3.14)

When µ1 = µ2, Wh(X)’s distribution function is approximated by

FW (w) = pt(w, l), (3.15)
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where

l =
(
s21
n1

+
s22
n2

)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

.

Next, we discuss the RI with the Welch statistics. By dividing the two sides of the last equation in (3.9)

by b =
√∑p

i=1
s2i
ni
, we obtain

(Ip − 1pr
′)x̄

b
− V

b
= (Ip − 1pr

′)
S 1

2

b
N− 1

2Tn−1. (3.16)

If we set

b2 = (b21, . . . , b
2
p)

′ =

(
s21
b2

, . . . ,
s2p
b2

)′

,

then the PDF of S
1
2

b N− 1
2Tn−1 is

dtp(v; b
2,n) =

p∏
i=1

√
ni

bi
dt

(√
ni

bi
vi, ni − 1

)
,

and the PDF of (Ip − 1pr
′)S

1
2

b N− 1
2Tn−1 is

fp(v; b
2,n, r) = C−1

∫ ∞

−∞
dtp(v + 1pv, b

2,n)dv

= C−1

∫ ∞

−∞

p∏
i=1

dt

(√
ni

bi
(vi + v), ni − 1

)
dv. (3.17)

Let p = 2, r = ( n1

n1+n2
, n2

n1+n2
)′ and v = (Ip − 1pr

′)t. Then, the PDF becomes

f2(t, b
2
1, b

2
2, n1, n2)

=

√
n1n2

b1b2

∫ ∞

−∞
dt

(√
n1

b1
(t1 − t̄+ v), n1 − 1

)
dt

(√
n2

b2
(t2 − t̄+ v), n1 − 1

)
dv

=

√
n1n2

b1b2

∫ ∞

−∞
dt

(√
n1

b1

(
t1 − t2

2
+ v

)
, n1 − 1

)
dt

(√
n2

b2

(
t2 − t1

2
+ v

)
, n2 − 1

)
dv

=

√
n1n2

b1b2

∫ ∞

−∞
dt

(√
n1

b1
v, n1 − 1

)
dt

(√
n2

b2
(t2 − t1 + v), n2 − 1

)
dv

= f1(t2 − t1, b1, b2, n1, n2). (3.18)

f1(t1 − t2, b1, b2, n1, n2) is a symmetric function of t1 − t2. Let Z be the test random variable and

QZ(α, n1, n2) be the corresponding critical value. Put u = t1 − t2. Consequently, we have

α = P(Z 6 QZ(α, n1, n2))

= 1−
∫
{f1(u,b1,b2,n1,n2)>QZ(α,n1,n2)}

f1(u, b1, b2, n1, n2)du

= 1−
∫ q(α,n1,n2)

−q(α,n1,n2)

f1(u, b1, b2, n1, n2)du

= 2

(
1−

∫ q(α,n1,n2)

−∞
f1(u, b1, b2, n1, n2)du

)
= 2

(
1−

√
n1n2

s1s2

∫ ∞

−∞
dt

(√
n1

b1
v, n1 − 1

)
dv

∫ −q(α,n1,n2)

−∞
dt

(√
n2

b2
(u+ v), n2 − 1

))
du

= 2

(
1−

√
n1n2

b1b2

∫ ∞

−∞
dt

(√
n1

b1
v, n1 − 1

)
pt

(√
n2

b2
(−q(α, n1, n2) + v), n2 − 1

)
dv

)
, (3.19)
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Table 2 Comparison of FV (·), Fn(·) and pt via simulation with 10,000 repetitions

Sizes of v

Method samples Variances −4.0 −3.5 −3.0 −2.5 −2.0 −1.5

FV (v) 10 1 0.000240 0.000979 0.003439 0.010857 0.030788 0.077350

Fn(v) 21 4 0.000600 0.000900 0.002800 0.009700 0.026000 0.072600

pt(v, l) 0.000183 0.000830 0.003228 0.009613 0.028182 0.072619

Sizes of v

Method samples Variances −1.0 −0.5 0.0 0.5 1.0 1.5

FV (v) 10 1 0.168903 0.313445 0.499873 0.685520 0.832433 0.922926

Fn(v) 21 4 0.164400 0.315600 0.504200 0.696600 0.843400 0.932800

pt(v, l) 0.163185 0.310886 0.499871 0.689101 0.836070 0.926604

Sizes of v

Method samples Variances 2.0 2.5 3.0 3.5 4.0

FV (v) 10 1 0.967861 0.988992 0.996442 0.998786 0.999597

Fn(v) 21 4 0.971400 0.989500 0.996900 0.999000 0.999800

pt(v, l) 0.972354 0.990453 0.996865 0.998964 0.999628

where

QZ(α, n1, n2) = f1(q(α, n1, n2), b1, b2, n1, n2)

= f2(−q(α, n1, n2), b1, b2, n1, n2), q(α, n1, n2) > 0.

The simulation results are listed in Table 2 for the case that n1 = 10, n2 = 21, σ2
1 = 1 and σ2

2 = 4.

The results show that

Fn(v) ≃ FV (v) ≃ pt(v, l), (3.20)

where Fn(·), FV (·) and pt(·, l) are the empirical distribution functions of Wh(X), RE, and t approxima-

tion, respectively.

3.3.4 Testing the homogeneity of variances

The RE of σ2
i is

Wi = fis
2
iχ

−2
fi

, χ2
f1

∼ dchisq(·, fi), i = 1, . . . , p, (3.21)

and the RE of σ2 is

W = (W1, . . . ,Wp)
′ = (f1s

2
1χ

−2
f1

, . . . , fps
2
pχ

−2
fp

)′ = FSχ−2
f . (3.22)

Hence, the PDF of W is

fW (w;f , s2) = det−1(FS)fχ−2
f
((FS)−1w,f)

=

( p∏
i=1

f−1
i s−2

i

2
fi
2 Γ( fi2 )

) p∏
i=1

(
fis

2
i

wi

) fi
2 +1

e
− 1

2

∑p
i=1

fis
2
i

wi , w ∈ Rp+.

We now perform parameter transformation to represent the hypothesis of homogeneous variances in a

simple hypothesis way. Let

ν = ln(Ḡ(σ2)) = ln

( p∏
i=1

σ2
i

) 1
p

=
1

p

p∑
i=1

ln(σ2
i ) ∈ R,

ν = (ν1, . . . , νp)
′ = (ln(σ2

1)− ν, . . . , ln(σ2
p)− ν)′ ∈ L0,

where

L0 =

{
u = (u1, . . . , up)

′ :

p∑
i=1

ui = 0, u ∈ Rp

}
.
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Testing the homogeneity of variances is equivalent to testing the hypothesis

H0 : ν = 0p vs. H1 : ν ̸= 0p. (3.23)

The REs of ν and ν are given by

Wν =
1

p

p∑
i=1

ln((ni − 1)s2i ) +
1

p

p∑
i=1

ln(χ−2
ni−1) = ln(Fs2) + ln(χ−2

n−1),

Wν = (ln(χ−2
n−1)− ln(χ−2

n−1)1p) + (ln(Fs2)− ln(Fs2)1p),

(3.24)

respectively. The PDF of V = ln(χ−2
n−1) is

fln(χ−2)(v,f) =

( p∏
i=1

1

2
fi
2 Γ( fi2 )

)
e−

1
2

∑p
i=1 fivie−

1
2

∑p
i=1 e−vi

.

The PDF of V ∗ = V − V̄ 1p is

f0(v;f) =

∫ ∞

−∞
fln(χ−2)(v + 1pv,f)dv

= C0

p∏
i=1

(
e−vi∑p
j=1 e

−vj

) 1
2 fi

, ∀v ∈ L0. (3.25)

From (3.25), the PDF of Wν can be expressed as

fν (v;f , s
2) = f0

(
v − ln

(
Fs2

Ḡ(Fs2)

)
,f

)

= C0

p∏
i=1

(
e
−(vi−ln(

fis
2
i

Ḡ(Fs2)
))

∑p
j=1 e

−(vj−ln(
fjs

2
j

Ḡ(Fs2)
))

) 1
2 fi

, v ∈ L0,

where

Ḡ(Fs2) = ln(Fs2)

and

C0 =
Γ( 12

∑p
i=1(ni + 1))∏p

i=1 Γ(
ni+1

2 )
.

If we consider the test variable as

Z = fν (Wν ;f , s
2) = C0

p∏
i=1

(
e
−((Wν)i−ln(

fis
2
i

Ḡ(Fs2)
))

∑p
i=1 e

−((Wν)i−ln(
fis

2
i

Ḡ(Fs2)
))

) 1
2 fi

= C0

p∏
i=1

(
e−Vi∑p
i=1 e

−Vi

) 1
2 fi

= C0

p∏
i=1

(
χ2
fi∑p

i=1 χ
2
fi

) 1
2 (ni+1)−1

,

and denote the α quantile of Z by QZ(α,f), then

α = P(Z 6 QZ(α,f))

= P

(
Γ( 12

∑p
i=1(ni + 1))∏p

i=1 Γ(
ni+1

2 )

p∏
i=1

(
χ2
ni−1∑p

i=1 χ
2
ni−1

) 1
2 (ni+1)−1

6 QZ(α,n)

)
= P

(
dDirichlet

(
D,

1

2
(n+ 1)

)
6 QZ(α,n)

)
,
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Table 3 Empirical levels of the VDR test

Nominal Sizes of samples

significance 10, 15 7, 10 10, 15, 35 5, 10, 15 10, 10, 14, 15

levels 5, 10, 12 10, 15, 20 20, 30, 40 25, 40 13, 15 40, 50 18, 21, 30 20, 23, 30

0.01 0.0094 0.0106 0.0108 0.0068 0.0104 0.0113 0.0099 0.0094

0.05 0.0478 0.0506 0.0506 0.0491 0.0493 0.0522 0.0482 0.0466

0.10 0.1002 0.1015 0.1020 0.0977 0.1012 0.1071 0.0983 0.0976

0.15 0.1481 0.1495 0.1509 0.1476 0.1515 0.1584 0.1472 0.1498

0.20 0.1995 0.2014 0.2009 0.1976 0.2047 0.2089 0.2015 0.1978

0.25 0.2480 0.2501 0.2499 0.2470 0.2545 0.2593 0.2510 0.2484

0.30 0.3009 0.2983 0.2954 0.3014 0.3026 0.3047 0.3027 0.2960

0.40 0.4033 0.3969 0.3964 0.4037 0.4000 0.4036 0.4005 0.4013

0.50 0.5110 0.4949 0.5033 0.5035 0.4983 0.4961 0.5036 0.4982

Table 4 Comparison of the VDR test (V) with the Bartlett test (B) and the revised Bartlett test (rB)

Test Sizes of Significance Vector of variances

methods samples levels 1, 1, 1 1, 1, 1.5 1, 1, 2 1, 1, 2.5 1, 1, 3 1, 1, 3.5 1, 1, 4 1, 1, 4.5

V (10, 15, 20) 0.01 0.0117 0.0302 0.0958 0.2084 0.3263 0.4511 0.5757 0.6691

B 0.01 0.0117 0.0302 0.0962 0.2087 0.3268 0.4514 0.5760 0.6698

rB 0.01 0.0117 0.0303 0.0965 0.2090 0.3271 0.4517 0.5763 0.6702

V (10, 15, 20) 0.05 0.0526 0.1167 0.2573 0.4317 0.5785 0.7003 0.7950 0.8579

B 0.05 0.0525 0.1165 0.2572 0.4314 0.5782 0.6999 0.7948 0.8577

rB 0.05 0.0526 0.1166 0.2572 0.4316 0.5783 0.7001 0.7950 0.8578

V (10, 15, 20) 0.10 0.1013 0.2004 0.3707 0.5596 0.6963 0.7969 0.8719 0.9172

B 0.10 0.1016 0.2005 0.3711 0.5601 0.6967 0.7971 0.8719 0.9176

rB 0.10 0.1017 0.2005 0.3713 0.5601 0.6968 0.7972 0.8719 0.9177

Test Sizes of Significance Vector of variances

methods samples levels 1, 1, 1 1, 1, 1.5 1, 1, 2 1, 1, 2.5 1, 1, 3 1, 1, 3.5 1, 1, 4 1, 1, 4.5

V (10, 25, 40) 0.01 0.0120 0.0508 0.1916 0.4054 0.6095 0.7647 0.8694 0.9303

B 0.01 0.0120 0.0511 0.1922 0.4059 0.6107 0.7650 0.8697 0.9306

rB 0.01 0.0120 0.0512 0.1924 0.4062 0.6116 0.7650 0.8698 0.9308

V (10, 25, 40) 0.05 0.0516 0.1684 0.4129 0.6610 0.8221 0.9151 0.9616 0.9830

B 0.05 0.0517 0.1695 0.4141 0.6625 0.8230 0.9156 0.9620 0.9832

rB 0.05 0.0518 0.1696 0.4143 0.6626 0.8231 0.9156 0.9620 0.9832

V (10, 25, 40) 0.10 0.1036 0.2658 0.5521 0.7686 0.8941 0.9567 0.9827 0.9926

B 0.10 0.1036 0.2658 0.5521 0.7686 0.8941 0.9567 0.9827 0.9926

rB 0.10 0.1036 0.2657 0.5515 0.7683 0.8941 0.9566 0.9827 0.9926

where

D = (D1, . . . , Dp)
′ ∼ dDirichlet

(
·, 1
2
(n1 + 1), . . . ,

1

2
(np + 1)

)
def
= dDirichlet

(
·, 1
2
(n+ 1)

)
.

The rule of the VDR test for the hypothesis (3.23) is that if

dDirichlet

(
Fs2∑p
i=1 fis

2
i

,
1

2
(n+ 1)

)
< QZ(α,n),

then reject the null hypothesis H0 : σ2
1 = · · · = σ2

p.

When p = 2, the VDR test is solely the F test for two normal distributions.
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Table 3 lists the empirical levels of the test obtained via simulations for p equal to 3, 4, 5, 6 and 7 with

various sample sizes. We performed 10,000 repeated samplings in each case. The underlined values in

the table mark the empirical levels that show the maximum divergence from the nominal levels on the

line. In general, the empirical levels are very close to the nominal levels.

A well-known test for the homogeneity of variances is the Bartlett test [7]. Table 4 summarizes the

simulation results of comparing the VDR test with the Bartlett test and the revised Bartlett test given by

Box (see [7]). The entries in Table 4 are the empirical powers of the tests obtained from simulations, with

10,000 repetition samplings. The results show that the performances of the three tests are very close for

the simulated cases. Note that both the Bartlett test and its revised version are based on approximated

distributions, whereas the VDR test is an exact test.

3.4 Testing parameters of multivariate normal distribution

When applying RI to the multivariate normal distribution Np(µ,Σ), the VDR test for the hypothesis

H0 : µ = µ0 vs. H1 : µ ̸= µ0

is simply the Hotelling test. Furthermore, the VDR test for the hypothesis

H0 : Σ = Σ0 vs. H1 : Σ ̸= Σ0

is an exact test and the simulation results of the VDR test’s level are more accurate than those of the

likelihood ratio test. We omit the details here because of space considerations.

4 Prospect of randomized inference

The RI proposed in this paper is a new framework for statistical inference. The main idea is to consider

a random variable, which takes values in the parameter space and depends on the observed sample, as

an estimate of the constant parameter. As stated in previous sections, this idea was taken from Fisher’s

fiducial inference; however, we do not need to consider the parameter as a random variable. Note that RI

is based on the distribution of an RE, which is a distribution that depends on the observed sample such

as the posterior distribution; it acts similarly to the Bayesian inference to some extent. However, the

idea of VDR is based on the likelihood principle, and as is shown in the previous sections, RI technically

follows the frequentist way, except that it is based on the RE.

On the other hand, both the fiducial and posterior distributions depend on the observed samples, and

can thus be employed to define an RE. Thus, RI could be seen as a unified inference framework. Many

other methods, such as the generalized p-value method, are related to RI; hence, it is possible to apply

RI to a great variety of problems.

4.1 RI as a tool

Parallel to CD inference and prior-free inference (see, for example, [10] and [8] among others), the RE

includes a general view of statistical inference, and may be applied to wide range of problems. Some

problems cannot be easily solved by using the conventional frequentist method although the problems

might seem very elementary. For example, the coefficient of variation for a normal distribution is a

common parameter, but it is difficult to construct a confidence interval for it. If we apply Theorem 2.8

to it, it is easy to find an RE and its PDF, and thus obtain a confidence interval.

The comparison of multiple univariate normal populations can be extended to multivariate normal

distributions or to even other location and scale distribution families.
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4.2 Further developments

The following are a few points pertaining to the development of RI.

1. Computation of a quantile of the test variable.

In general, we can obtain the quantile QZ(α,x,n) of the test variable Z via simulations. It is possible

to obtain an expression or an equation for it using the VDR theory. Let f(x), x ∈ RP be a PDF over Rp,

and denote

D[f ] = {(z′, z)′ : 0 < z 6 f(z), z ∈ Rp, z ∈ R}.

Assume that the PDF of the random vector (Z ′, Zp+1)
′ is

p(z, zp+1) = ID[f]
((z′, zp+1)

′),

i.e., (Z ′, Zp+1)
′ is uniformly distributed on D[f ]. Then it is not difficult to verify that the PDF of Z

is f(·) and that the density of Zp+1 is Lp(D[f ](z)). Here,

D[f ](v) = {z : f(z) > v, z ∈ Rp},

and Lp(·) is the Lebesgue measure. See the formulas in Figure 2 (see [2, 9, 12]).

Let g(z) and G(z) be the PDF and the distribution function, respectively, of Z = f(Z), where z ∈ R.

From Figure 2, we have

G(h) = P(f(Z) 6 h)

= P({(z′, zp+1)
′ : zp+1 6 h, (z′, zp+1)

′ ∈ D[f ](h)} \D[f ](h)× (0, h))

=

∫ h

0

Lp(D[f ](v))dv − Lp(D[f ](h))h,

g(h) =
dG(h)

dh
= −h

Lp(D[f ](h))

dh
.

QZ(α,x,n) satisfies G(QZ(α,x,n)) = α. In some special cases, it is possible to obtain a closed-form

solution of the equation. However, in general, it is difficult to solve the equation even numerically. Any

algorithm for solving the equation would be helpful.

2. New ways to determine REs.

D (h)[f]

h

f((z)) <<h f((z)) <<h

f((z))

Figure 2 The VDR theorem

Rp

R

lim
∆→0

P(h−∆6Zp+16h)

∆

= lim
∆→0

∫ h
h−∆ Lp(D[f](v))dv

∆

= Lp(D[f ](h))

F (zh) = P(Z 6 zh) = Lp+1({z 6 zh} ∩D[f ])

=
∫
{z6zh}∩D[f]

f(z)dz

•zh
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The key point of RI is to find an RE and its density. We have shown several methods to find an RE,

including the CD method, the pivot method and Theorem 2.8. There are certainly other ways to find

the REs of parameters. For example, the generalized p-value method may be employed in some cases.

Furthermore, it is interesting to compare REs.

3. Applying RI to censored data.

RI can be applied to type-II censored data, as has been shown in Example 3.1. There are many kinds

of censored data. Currently, the use of RI for other kinds of censored data remains a problem.

4. Test of parameters.

In Section 3, we transformed a composite hypothesis into a simple one. The obtained value space of

the test parameter is often a surface in the parameter space. In this case, the VDR test variable was

related to a degenerate population. This may be useful for massive data analysis.

We also note that the way to construct a test parameter is not unique. For example, another transfor-

mation to construct the test parameter for the hypothesis (3.4) is as follows. Let A = Ap×p be a positive

definite matrix and

µ =
1

1′
pA1p

1p1
′
pAµ+

(
Ip −

1

1′
pA1p

1p1
′
pA

)
µ = µ̄A + νA.

Then, 1′
pAν = 0 and the hypothesis (3.4) is equivalent to the following hypothesis:

H0 : νA = 0p vs. H1 : νA ̸= 0p.

5. Asymptotic theory.

The problems discussed in this paper only focus on exact inference. Extension to asymptotic concepts

and theory could be established further. These are not presented in this paper considering the space

constraint.
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