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Abstract Let M be a complete Riemannian manifold possibly with a boundary ∂M . For any C1-vector field Z,

by using gradient/functional inequalities of the (reflecting) diffusion process generated by L := ∆+Z, pointwise

characterizations are presented for the Bakry-Emery curvature of L and the second fundamental form of ∂M

if it exists. These characterizations extend and strengthen the recent results derived by Naber for the uniform

norm ∥RicZ∥∞ on manifolds without boundaries. A key point of the present study is to apply the asymptotic

formulas for these two tensors found by the first author, such that the proofs are significantly simplified.
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1 Introduction

Let M be a d-dimensional complete Riemannian manifold possibly with a boundary ∂M . Let L = ∆+Z

for a C1 vector field Z. We intend to characterize the Bakry-Emery curvature RicZ := Ric−∇Z and the

second fundamental form I of the boundary ∂M using the (reflecting) diffusion process generated by L.

When ∂M = ∅, we set I = 0.

There are many equivalent characterizations for the (pointwise or uniform) lower bound of RicZ and I
using gradient/functional inequalities of the (Neumann) semigroup generated by L; see, e.g., [13] and the

references therein. However, the corresponding upper bound characterizations are still open. It is known

that for stochastic analysis on the path space, one needs conditions on the norm of RicZ ; see [3–6,8,11,12]

and the references therein. Recently, Naber [7,10] proved that the uniform bounded condition on RicZ for

Z = −∇f is equivalent to some gradient/functional inequalities on the path space, and thus clarified the

necessity of bounded conditions used in the above mentioned references. In this study, we aim to present

pointwise characterizations for the norm of RicZ and I when ∂M ̸= ∅, which allow these quantities to be

unbounded on the manifold.
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Let (Xx
t )t>0 be the (reflecting if ∂M exists) diffusion process generated by L = ∆+ Z on M starting

at point x, and let (Ux
t )t>0 be the horizontal lift onto the frame bundle O(M) :=

∪
x∈M Ox(M), where

Ox(M) is the set of all orthonormal basis of the tangent space TxM at point x. It is well known that

(Xx
t , U

x
t )t>0 can be constructed as the unique solution to the SDEs:

dXx
t =

√
2Ux

t ◦ dWt + Z(Xx
t )dt+N(Xx

t )dl
x
t , Xx

0 = x,

dUx
t =

√
2HUx

t
(Ux

t ) ◦ dWt +HZ(U
x
t )dt+HN (Ux

t )dl
x
t , Ux

0 ∈ Ox(M),
(1.1)

whereWt is the d-dimensional Brownian motion on a complete filtration probability space (Ω, {Ft}t>0,P);

N is the inward unit normal vector field of ∂M ; H· : TM → TO(M) is the horizontal lift, Hu :=

(Huei)16i6d for u ∈ O(M) and the canonical orthonormal basis {ei}16i6d on Rd. Further, lt is an

adapted increasing process which increases only when Xx
t ∈ ∂M which is called the local time of Xx

t on

∂M . In the first part of this paper, we assume that the solution is non-explosive, so that the (Neumann)

semigroup Pt generated by L is given by

Ptf(x) = Ef(Xx
t ), x ∈ M, f ∈ Bb(M), t > 0.

For a fixed T > 0, consider the path space WT (M) := C([0, T ];M) and the class of smooth cylinder

functions

FC∞
T := {F (γ) = f(γt1 , . . . , γtm) : m > 1, γ ∈ WT (M), 0 < t1 < t2 < · · · < tm 6 T, f ∈ C∞

0 (Mm)}.

Let

HT =

{
h ∈ C([0, T ];Rd) : h(0) = 0, ∥h∥2HT

:=

∫ T

0

|h′
s|2ds < ∞

}
.

For any F ∈ FC∞
T with F (γ) = f(γ(t1), . . . , γ(tm)), the Malliavin gradient DF (Xx

[0,T ]) is an HT -valued

random variable satisfying

ḊsF (Xx
[0,T ]) :=

d

ds
DF (Xx

[0,T ])

=
∑
ti>s

(Ux
ti)

−1∇if(X
x
t1 , . . . , X

x
tm), s ∈ [0, T ], (1.2)

where ∇i is the (distributional) gradient operator for the i-th component on Mm, and Pu : Rd → Rd is

the projection along u−1N , i.e.,

⟨Pua, b⟩ := ⟨ua,N⟩⟨ub,N⟩, a, b ∈ Rd, u ∈
∪

x∈∂M

Ox(M).

For K ∈ C(M ; [0,∞)) and σ ∈ C(∂M ; [0,∞)), we introduce the following random measure µx,T

on [0, T ]:

µx,T (ds) := e
∫ s
0
K(Xx

r )dr+
∫ s
0
σ(Xx

r )dl
x
r {K(Xx

s )ds+ σ(Xx
s )dl

x
s}. (1.3)

For any t ∈ [0, T ], consider the energy form

EK,σ
t,T (F, F ) = E

{
(1 + µx,T ([t, T ]))

(
|ḊtF (Xx

[0,T ])|
2 +

∫ T

t

|ḊsF (Xx
[0,T ])|

2µx,T (ds)

)}
for F ∈ FC∞

T . Our main result is as follows.

Theorem 1.1. Let K ∈ C(M ; [0,∞)) and σ ∈ C(∂M ; [0,∞)) be such that for any T > 0, x ∈ M ,

Ee(2+ε)
∫ T
0

{K(Xx
s )ds+σ(Xx

s )dl
x
s} < ∞ (1.4)

holds for some ε > 0. For any p, q ∈ [1, 2], the following statements are equivalent to each other:

(1) For any x ∈ M and y ∈ ∂M ,

∥RicZ∥(x) := sup
X∈TxM,|X|=1

|Ric(X,X)− ⟨∇XZ,X⟩|(x) 6 K(x),
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∥I∥(y) := sup
Y ∈Ty∂M,|Y |=1

|I(Y, Y )|(y) 6 σ(y).

(2) For any f ∈ C∞
0 (M), T > 0, and x ∈ M ,

|∇PT f |p(x) 6 E[(1 + µx,T ([0, T ]))
p|∇f |p(Xx

T )],∣∣∣∣∇f(x)− 1

2
∇PT f(x)

∣∣∣∣q 6 E

[
(1 + µx,T ([0, T ]))

q−1

(∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣q
+

µx,T ([0, T ])

2q
|∇f(Xx

T )|q
)]

.

(3) For any F ∈ FC∞
T , x ∈ M and T > 0,

|∇xEF (Xx
[0,T ])|

q 6 E

[
(1 + µx,T ([0, T ]))

q−1

(
|Ḋ0F (Xx

[0,T ])|
q +

∫ T

0

|ḊsF (Xx
[0,T ])|

qµx,T (ds)

)]
.

(4) For any t0, t1 ∈ [0, T ] with t1 > t0, and any x ∈ M , the following log-Sobolev inequality holds:

E[E(F 2(Xx
[0,T ]) | Ft1) log E(F

2(Xx
[0,T ]) | Ft1)]

− E[E(F 2(Xx
[0,T ]) | Ft0) log E(F

2(Xx
[0,T ]) | Ft0)] 6 4

∫ t1

t0

EK,σ
s,T (F, F )ds, F ∈ FC∞

T .

(5) For any t ∈ [0, T ] and x ∈ M , the following Poincaré inequality holds:

E[{E(F (Xx
[0,T ]) | Ft)}2]− {E[F (Xx

[0,T ])]}
2 6 2

∫ t

0

EK,σ
s,T (F, F )ds, F ∈ FC∞

T .

Remark 1.1. (1) When ∂M = ∅, Z = −∇f and K is a constant, it is proved in [10, Theorem 2.1] that

∥RicZ∥∞ 6 K is equivalent to each of Theorem 1.1(3)–(5) with σ = 0 and a slightly different formulation

of EK,0
s,T . A comparison with these equivalent statements using references functions on the path space

shows that the statement (2) only depends on the reference functions on M and is thus easier to verify.

(2) An important problem in geometry is to identify the Ricci curvature, for example, to characterize

Einstein manifolds where Ric is a constant tensor. According to Theorem 1.1, Ric is identified by ∇Z if

and only if all/some of Theorem 1.1(2)–(5) hold for K = 0.

We prove this result in Section 2. In Section 3, the equivalence of (1), (4) and (5) in Theorem 1.1 is

proved without (1.4) but using the class of truncated cylindrical functions replacing FC∞
T .

2 Proof of Theorem 1.1

We first introduce some known results from the monograph [13], which hold under a condition weaker

than (1.4).

Let f ∈ C∞
0 (M) with |∇f(x)| = 1 and Hessf (x) = 0. According to [13, Theorem 3.2.3], if x ∈ M \∂M

then for any p > 0 we have

RicZ(∇f,∇f)(x) = lim
t↓0

Pt|∇f |p(x)− |∇Ptf |p(x)
pt

= lim
t↓0

1

t

(
Ptf

2(x)− (Ptf)
2(x)

2t
− |∇Ptf(x)|2

)
; (2.1)

and by [13, Theorem 3.2.3], if x ∈ ∂M and ∇f ∈ Tx∂M then

I(∇f,∇f)(x) = lim
t↓0

√
π

2p
√
t
{Pt|∇f |p(x)− |∇Ptf |p(x)}

= lim
t↓0

3
√
π

8
√
t

(
Ptf

2(x)− (Ptf)
2(x)

2t
− |∇Ptf |2(x)

)
. (2.2)
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We note that in [13, (3.2.9)],
√
π is misprinted as π.

Next, for each u ∈ O(M) and for each ũ ∈
∪

x∈∂M OxM , the matrix-valued functions RicZ(u), I(ũ)
and Pũ are given by

⟨RicZ(u)a, b⟩ := RicZ(ua, ub),

⟨Pũa, b⟩ := ⟨ũa,N⟩⟨ũb,N⟩,
⟨I(ũ)a, b⟩ := I(ũa− ⟨ũa,N⟩N, ũb− ⟨ũb,N⟩N), a, b ∈ Rd.

According to [13, Lemma 4.2.3], for any F ∈ FC∞
T with F (γ) = f(γt1 , . . . , γtN ), f ∈ C∞

0 (M) and

0 6 t1 < · · · 6 tN ,

(Ux
0 )

−1∇xE[F (Xx
[0,T ])] =

N∑
i=1

E[Qx
0,ti(U

x
ti)

−1∇if(X
x
t1 , . . . , X

x
tN )], (2.3)

where ∇x denotes the gradient in x ∈ M and ∇i is the gradient with respect to the i-th component,

and for any s > 0, (Qx
s,t)t>s is an adapted right-continuous process on Rd ⊗ Rd satisfies Qx

s,tPUx
t
= 0 if

Xx
t ∈ ∂M and

Qx
s,t =

(
I −

∫ t

s

Qx
s,r{RicZ(Ux

r )dr + I(Ux
r )dl

x
r }

)
(I − 1{Xx

t ∈∂M}PUx
t
). (2.4)

The multiplicative functional Qx
s,t was introduced by Hsu [9] to investigate gradient estimate on Pt. For

convenience, let Qx
t := Qx

0,t. In particular, taking F (γ) = f(γt) in (2.3), we obtain

∇Ptf(x) = Ux
0 E[Q

x
t (U

x
t )

−1∇f(Xx
t )], x ∈ M, f ∈ C∞

0 (M), t > 0. (2.5)

Finally, for the above F ∈ FC∞
T , let

D̃tF (Xx
[0,T ]) =

∑
i:ti>t

Qx
t,tiU

−1
ti ∇if(X

x
t1 , . . . , X

x
tN ), t ∈ [0, T ]. (2.6)

Then [13, Lemma 4.3.2] (see also [12]) implies that

E(F (Xx
[0,T ]) | Ft) = E[F (Xx

[0,T ])] +
√
2

∫ t

0

⟨E(D̃sF (Xx
[0,T ]) | Fs), dWs⟩, t ∈ [0, T ]. (2.7)

Proof of Theorem 1.1. It is well known that the log-Sobolev inequality in (4) implies the Poincaré

inequality in (5). We prove the theorem by verifying the following implications: (1) ⇒ (3) for all q > 1;

(3) ⇒ (2) for all p = q; (2) for some p > 1 and q ∈ [1, 2] ⇒ (1); (5) ⇒ (1); and (1) ⇒ (4).

For simplicity, we will write F and f for F (Xx
[0,T ]) and f(Xx

t1 , . . . , X
x
tN ), respectively.

(a) (1) ⇒ (3) for all q > 1. From (1.2), (2.3) and (2.4) we have

U−1
0 ∇xE[F ] = E

[ N∑
i=1

Qx
ti(U

x
ti)

−1∇if

]

= E

[ N∑
i=1

(
I −

∫ ti

0

Qx
sRicZ(Us)ds−

∫ ti

0

Qx
s IUx

s
dlxs

)
(Ux

ti)
−1∇if

]

= E

[ N∑
i=1

(Ux
ti)

−1∇if −
N∑
i=1

(∫ ti

0

Qx
sRicZ(U

x
s )ds+

∫ ti

0

Qx
s IUx

s
dlxs

)
(Ux

ti)
−1∇if

]

= E

[
Ḋ0F −

∫ T

0

{Qx
sRicZ(U

x
s )ḊsF}ds−

∫ T

0

{Qx
s I(Ux

s )ḊsF}dlxs
]
.

By [13, Theorem 3.2.1], we have

∥Qx
s∥ 6 exp

[ ∫ s

0

K(Xr)dr +

∫ s

0

σ(Xr)dl
x
r

]
. (2.8)
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Combining these with (1), (1.3), and using Hölder’s inequality twice, we obtain

|∇xE[F ]|q 6
{
E|Ḋ0F |+ E

∫ T

0

|ḊsF |µx,T (ds)

}q

6 E

{
|Ḋ0F |+

∫ T

0

|ḊsF |µx,T (ds)

}q

6 E

{(
|Ḋ0F |q +

(
∫ T

0
|ḊsF (Xx

[0,T ])|µx,T (ds))
q

{µx,T ([0, T ])}q−1

)
(1 + µx,T ([0, T ]))

q−1

}
6 E

{(
|Ḋ0F |q +

∫ T

0

|ḊsF (Xx
[0,T ])|

qµx,T (ds)

)
(1 + µx,T ([0, T ]))

q−1

}
.

Thus, the inequality in (3) holds.

(b) (3) ⇒ (2) for all p = q. Take F (γ) = f(γT ). Then EF (Xx
[0,T ]) = PT f(x) and by (1.2), |ḊsF | 6

|∇f(XT )| for s ∈ [0, T ]. So, the first inequality in (2) with p = q follows from (3) immediately. Similarly,

by taking F (γ) = f(γ0)− 1
2f(γT ), we have

EF = f(x)− 1

2
PT f(x)

and

|Ḋ0F | =
∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣,
|ḊsF | 6 1

2
|∇f(Xx

T )|, s ∈ (0, T ].

Then the second inequality in (2) is implied by (3).

(c) (2) for some p > 1 and q ∈ [1, 2] ⇒ (1). Let x ∈ M \ ∂M . There exists r > 0 such that

B(x, r) := {y ∈ M : ρ(x, y) 6 r} ⊂ M \ ∂M,

where ρ is the Riemannian distance. Let τr = inf{t > 0 : ρ(x,Xx
t ) > r}. By [13, Lemma 3.1.1] (see also

[1, Lemma 2.3]), there exists a constant c > 0 such that

P(τr 6 T ) 6 e−c/T , T ∈ (0, 1]. (2.9)

Then P(lxT > 0) 6 e−c/T so that for each n > 1,

lim
T→0

T−nlxT = 0, P-a.s. (2.10)

Combining this with (1.3) we obtain

lim
T→0

µx,T ([0, T ])

T
= K(x). (2.11)

Therefore, by the dominated convergence theorem attributed to (1.4), the first inequality in (2) and (2.1)

yield

−RicZ(∇f,∇f)(x) = lim
T→0

|∇PT f |p(x)− PT |∇f |p(x)
pT

6 lim
T→0

E{[(1 + µx,T ([0, T ]))
p − 1]|∇f |p(Xx

T )}
pT

= K(x), (2.12)

where f ∈ C∞
0 (M) with Hessf (x) = 0 and |∇f(x)| = 1. This implies RicZ(X,X) > −K(x) for any

X ∈ TxM with |X| = 1.
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Next, we prove that the second inequality in (2) implies RicZ 6 K. By Hölder’s inequality, the second

inequality in (2) for some q ∈ [1, 2] implies the same inequality for q = 2:∣∣∣∣∇f(x)− 1

2
∇PT f(x)

∣∣∣∣2
6 E

[
(1 + µx,T ([0, T ]))

(∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2 + µx,T ([0, T ])

4
|∇f(Xx

T )|2
)]

.

Then

|∇PT f(x)|2 − PT |∇f(x)|2

4T
6 1

T
E

{
⟨∇f(x),∇PT f(x)− E[Ux

0 (U
x
T )

−1∇f(Xx
T )]⟩

+ µx,T ([0, T ])

∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2
+

(1 + µx,T ([0, T ]))µx,T ([0, T ])

4
|∇f(Xx

T )|2
}
. (2.13)

Combining this with (2.1) and (2.11), we arrive at

− 1

2
RicZ(∇f,∇f)(x)

6 1

2
K(x)|∇f(x)|2 + lim sup

T→0

1

T
E⟨∇f(x),∇PT f(x)− E[Ux

0 (U
x
T )

−1∇f(Xx
T )]⟩.

Since by (2.5), (2.4) and (2.10) we have

⟨∇f(x),∇PT f(x)− E[Ux
0 (U

x
T )

−1∇f(Xx
T )]⟩

= −
∫ T

0

⟨∇f(x), Ux
0 RicZ(U

x
r )(U

x
T )

−1∇f(Xx
T )⟩dr

= −TRicZ(∇f,∇f)(x) + o(T )

for small T > 0, this implies RicZ(∇f,∇f)(x) 6 K(x).

On the other hand, to prove the desired bound on ∥I∥, we let x ∈ ∂M , f ∈ C∞
0 (M) with ⟨∇f ,

N⟩(x) = 0, |∇f(x)| = 1 and Hessf (x) = 0. By [13, Lemma 3.1.2],

Eeλl
x
T∧τ1 < ∞, ElxT∧τ1 =

2
√
T√
π

+O(T 3/2)

for all λ > 0 and small T > 0. Combining this with (1.3), (1.4) and (2.9), we obtain

lim
T→0

Eµx,T ([0, T ])√
T

=
2σ(x)√

π
, lim

T→0

[Eµx,T ([0, T ])]
2

√
T

= 0. (2.14)

Then repeating the above argument with (2.2) replacing (2.1), we prove

|I(∇f,∇f)(x)| 6 σ(x).

Indeed, by (2.2) and (2.14), instead of (2.12) we have

−I(∇f,∇f)(x) 6
√
π

2
lim

T→∞

|∇PT f |p(x)− PT |∇f |p(x)
p
√
T

= σ(x),

while multiplying (2.13) by
√
T and letting T → ∞ lead to

− 1√
π
I(∇f,∇f)(x) 6 σ(x)√

π
− 2√

π
I(∇f,∇f)(x).
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(d) (5) ⇒ (1). Let F (γ) = f(γT ). Then (5) implies

PT f
2(x)− (PT f(x))

2 6 2

∫ T

0

E[(1 + µx,T ([s, T ]))
2|∇f(Xx

T )|2]ds. (2.15)

For f in (2.1), by combining this with (2.1) and (2.11), we obtain

RicZ(∇f,∇f)(x) = lim
T→0

1

T

(
PT f

2(x)− (PT f)
2(x)

2T
− |∇PT f |2

)
6 lim

T→0

1

T

{
1

T

∫ T

0

{E[(1 + µ([s, T ]))2|∇f(Xx
T )|2]− |∇PT f(x)|2}ds

}
= lim

T→0

1

T

{
PT |∇f |2(x)− |∇PT f |2(x) +

2|∇f |2(x)
T

∫ T

0

(T − s)K(x)ds

}
= 2RicZ(∇f,∇f)(x) +K(x)|∇f |2(x).

This implies

RicZ(∇f,∇f)(x) > −K(x)|∇f(x)|2.

Next, for f in (2.2), by combining (2.15) with (2.2) and (2.14), we obtain

I(∇f,∇f)(x) = lim
T→0

3
√
π

8
√
T

(
PT f

2(x)− (PT f)
2(x)

2T
− |∇PT f(x)|2

)
6 lim

T→0

3
√
π

8
√
T

{
1

T

∫ T

0

{E[(1 + µ([s, T ]))2|∇f(Xx
T )|2]− |∇PT f(x)|2}ds

}
= lim

T→0

3
√
π

8
√
T

{
PT |∇f |2(x)− |∇PT f |2(x) +

2|∇f(x)|2

T

∫ T

0

2σ(x)(
√
T −

√
s)√

π
ds+ o(

√
T )

}
=

3

2
I(∇f,∇f)(x) +

1

2
σ(x).

Hence, I(∇f,∇f)(x) > −σ(x)|∇f(x)|2.
On the other hand, to prove the upper bound estimates, we take F (γ) = f(γε)− 1

2f(γT ) for ε ∈ (0, T ).

By (1.2),

|ḊtF | =
∣∣∣∣∇f(Xε)−

1

2
Ux
ε (U

x
T )

−1∇f(Xx
T )

∣∣∣∣1[0,ε)(t) + 1

2
|∇f(Xx

T )|1[ε,T ](t).

Then (5) implies

Iε := E

[
f(Xx

ε )−
1

2
E(f(Xx

T ) | Fε)

]2
−
(
Pεf(x)−

1

2
PT f(x)

)2

6 2εE

{
(1 + µx,T ([0, T ]))

∣∣∣∣∇f(Xx
ε )−

1

2
Ux
ε (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2
+

µx,T ([0, T ])|∇f(Xx
T )|2

4

}
+ cε2

=: Jε, ε ∈ (0, T ) (2.16)

for some constant c > 0. Obviously,

lim
ε→0

Jε
ε

= E

{
(1 + µx,T ([0, T ]))

(∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2 + µx,T ([0, T ])

4
|∇f |2(Xx

T )

)}
. (2.17)

On the other hand, we have

Iε
ε

=
Pεf

2 − (Pεf)
2

ε
+

1

4ε
E[{E(f(Xx

T ) | Fε)}2 − (PT f)
2(x)]

+
E[f(Xx

T ){Pεf(x)− f(Xx
ε )}]

ε
. (2.18)
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Let f ∈ C∞
0 (M) satisfy the Neumann boundary condition. Then we have

lim
ε→0

Pεf
2 − (Pεf)

2

ε
= 2|∇f |2(x). (2.19)

Next, (2.6) and (2.7) yield

E(f(Xx
T ) | Fε) = PT f(x) +

√
2

∫ ε

0

⟨E(Qx
s,T (U

x
T )

−1∇f(Xx
T ) | Fs), dWs⟩. (2.20)

Then

E[E(f(Xx
T ) | Fε)]

2 = (PT f)
2 + 2

∫ ε

0

E|Qx
0,T (U

x
T )

−1∇f(Xx
T )|2ds.

Along with (2.5), this leads to

lim
ε→0

1

4ε
E[{E(f(Xx

T ) | Fε)}2 − (PT f)
2(x)]

=
1

2
|E[Qx

0,T (U
x
T )

−1∇f(Xx
T )]|2 =

1

2
|∇PT f(x)|2. (2.21)

Finally, using Itô’s formula we have

Pεf(x)− f(Xx
ε ) = Pεf(x)− f(x)−

∫ ε

0

Lf(Xx
s )ds−

√
2

∫ ε

0

⟨∇f(Xx
s ), U

x
s dWs⟩

= o(ε)−
√
2

∫ ε

0

⟨∇f(Xx
s ), U

x
s dWs⟩.

Combining this with (2.20) and (2.5), we arrive at

lim
ε→0

E[f(Xx
T ){Pεf(x)− f(Xx

ε )}]
ε

= −2⟨∇f(x),∇Ptf(x)⟩.

Substituting this and (2.19)–(2.21) into (2.18), we obtain

lim
ε→0

Iε
ε

= 2

∣∣∣∣∇f(x)− 1

2
∇PT f(x)

∣∣∣∣2.
Combining this with (2.16) and (2.17), we prove the second inequality in (2) for q = 2, which implies

RicZ 6 K and I 6 σ as shown in Step (c).

(e) (1) ⇒ (4). According to (2.7),

Gt := E(F 2 | Ft) = E(F 2) +
√
2

∫ t

0

⟨E(D̃sF
2 | Fs), dWs⟩, t ∈ [0, T ]. (2.22)

By Itô’s formula,

d(Gt logGt) = (1 + logGt)dGt +
|E(D̃sF

2 | Fs)|2

Gt
dt

6 (1 + logGt)dGt + 4E(|D̃sF |2 | Fs)dt. (2.23)

Then

E[Gt1 logGt1 ]− E[Gt0 logGt0 ] 6 4

∫ t1

t0

E|D̃sF |2ds. (2.24)

By (2.6) we have

D̃sF =
N∑
i=1

1{s<ti}Q
x
s,ti(U

x
ti)

−1∇if
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=
N∑
i=1

1{s<ti}

(
I −

∫ ti

s

Qx
s,t{RicV (Ux

t )dt+ IUx
t
dlxt }

)
(I − 1{Xx

ti
∈∂M}PUx

ti
)(Ux

ti)
−1∇if

= Ḋ0F −
∫ T

s

Qx
s,t{RicZ(Ux

t )dt+ I(Ux
t )dl

x
t }.

Combining this with (1), (2.8) and (2.11), and using the Schwarz inequality, we prove

|D̃sF |2 6 (1 + µx,T ([s, T ]))

(
|Ḋ0F |2 +

∫ T

s

|ḊsF |2µx,T (ds)

)
. (2.25)

This together with (2.24) implies the log-Sobolev inequality in (4).

3 Extension of Theorem 1.1

In this section, we aim to remove the condition (1.4) in Theorem 1.1 and allow the (reflecting) diffusion

process generated by L to be explosive. The idea is to make a conformal change of metric such that the

condition (1.4) holds on the new Riemannian manifold. Since both RicZ and I are local quantities, they

do not change at x if the new metric coincides with the original one around point x.

Let (M, g) be a Riemannian manifold with boundary, and let N be the inward pointing unit normal

vector field of ∂M . Let ϕ ∈ C∞
0 (M) be non-negative with non-empty Mϕ := {ϕ > 0}. Then, Mϕ is a

complete Riemannian manifold under the metric gϕ := ϕ−2g. Let ∇ϕ,∆ϕ,Ricϕ and Iϕ be the associated

Laplacian, gradient, Ricci curvature and the second fundamental form of ∂Mϕ respectively. By e.g., [2,

Theorem 1.159 d)],

∇ϕ
XY = ∇XY − ⟨X,∇ log ϕ⟩Y − ⟨Y,∇ log ϕ⟩X + ⟨X,Y ⟩∇ log ϕ.

Moreover, according to [13, Theorem 1.2.4] and the proof of [13, Theorem 1.2.5], we have

Ricϕ = Ric + (d− 2)ϕ−1Hessϕ + (ϕ−1∆ϕ− (d− 3)|∇ log ϕ|)g,
Iϕ = ϕ−1I+ (N log ϕ)g.

Noting that |X| = 1 if and only if gϕ(ϕX, ϕX) = 1, we obtain

∥Ig∥∞ = sup
X∈T∂Mϕ,|X|=1

|Iϕ(ϕX, ϕX)| < ∞,

and for RicϕϕZ the curvature of Lϕ := ∆ϕ + ϕZ,

∥RicϕϕZ∥∞ = sup
X∈TMϕ,|X|=1

|Ricϕ(ϕX, ϕX)− gϕ(∇ϕX(ϕZ), ϕX)| < ∞.

Therefore, Theorem 1.1 applies to Lϕ on the manifold Mϕ. In particular, by taking ϕ such that ϕ = 1

around a point x, we have RicZ = Ricϕ and I = Iϕ at point x. Thus we characterize these two quantities

at x. To this end, we will take ϕ = ℓ(ρx), where ρx is the Riemannian distance to x and ℓ ∈ C∞
0 (R) is

such that 0 6 ℓ 6 1, ℓ(s) = 1 for s 6 r and ℓ(s) = 0 for s > 2r for some constant r > 0 with compact

B2r(x) := {ρx 6 2r}.
Obviously, before exiting the ball Br(x), the diffusion process generated by L coincides with that

generated by Lϕ. Therefore, to use the original diffusion process in place of the new one, we will take

references functions which vanishes as soon as the diffusion exits this ball. To this end, we will truncate

the cylindrical functions in terms of the uniform distance

ρ̃x(γ) := sup
t∈[0,1]

ρ(γ(t), x).
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To make the manifold Mϕ complete, let δ : M → (0,∞) be a smooth function such that BR(x) is compact

for any R 6 δx. Consider the class of truncated cylindrical functions

FC∞
T,loc := {Fℓ(ρ̃x) : F ∈ FC∞

T , x ∈ M, ℓ ∈ C∞
0 (R), suppℓ ⊂ [0, δx)}. (3.1)

To define EK,σ
t,T (F̃ , F̃ ) for F̃ = Fℓ(ρ̃x) ∈ FC∞

T,loc, we take ϕ ∈ C∞
0 (M) such that 0 6 ϕ 6 1, ϕ = 1

for ℓ(ρx) > 0, and ϕ = 0 for ρx > δx. Then Mϕ is complete with bounded RicϕϕZ and Iϕ. Let Xx,ϕ
[0,T ] be

the (reflecting) diffusion process generated by Lϕ. Similar to the proof of [4, Lemma 2.1] for the case

without a boundary, we see that |ḊsF̃ (Xx,ϕ
[0,T ])| is well-defined and bounded for s ∈ [0, T ]. Note that F̃

is supported on {ℓ(ρ̃x) > 0} ⊂ WT (M
ϕ) and Xx,ϕ

[0,T ] = Xx
[0,T ] if ℓ(ρ̃x(X

x,ϕ
[0,T ])) > 0 (see (3.4)). Therefore,

we conclude that |ḊsF̃ (Xx
[0,T ])| = |ḊsF̃ (Xx,ϕ

[0,T ])| is well-defined and bounded in s ∈ [0, T ] as well, which

does not depend on the choice of ϕ. Again since F̃ is supported on {ℓ(ρ̃x) > 0} ⊂ WT (M
ϕ) and Mϕ is

relatively compact in M , we have

EK,σ
t,T (F̃ , F̃ ) := E

{
(1 + µx,T ([t, T ]))

(
|ḊtF̃ (Xx

[0,T ])|
2 +

∫ T

t

|ḊsF̃ (Xx
[0,T ])|

2µx,T (ds)

)}
< ∞.

Theorem 3.1. Let K ∈ C(M ; [0,∞)) and σ ∈ C(∂M ; [0,∞)). The following statements are equivalent

to each other:

(1) For any x ∈ M and y ∈ ∂M ,

∥RicZ∥(x) := sup
X∈TxM,|X|=1

|Ric(X,X)− ⟨∇XZ,X⟩|(x) 6 K(x),

∥I∥(y) := sup
Y ∈Ty∂M,|Y |=1

|I(Y, Y )|(y) 6 σ(y).

(2) For any t0, t1 ∈ [0, T ] with t1 > t0, and any x ∈ M , the following log-Sobolev inequality holds:

E[E(F 2(Xx
[0,T ]) | Ft1) log E(F

2(Xx
[0,T ]) | Ft1)]

− E[E(F 2(Xx
[0,T ]) | Ft0) log E(F

2(Xx
[0,T ]) | Ft0)] 6 4

∫ t1

t0

EK,σ
s,T (F, F )ds, F ∈ FC∞

T,loc.

(3) For any t ∈ [0, T ] and x ∈ M , the following Poincaré inequality holds:

E[{E(F (Xx
[0,T ]) | Ft)}2]− {E[F (X[0,T ])]}2 6 2

∫ t

0

EK,σ
s,T (F, F )ds, F ∈ FC∞

T,loc.

Proof. Since (2) ⇒ (3) is well-known, we only prove (1) ⇒ (2) and (3) ⇒ (1).

(a) (1) ⇒ (2). Fix x ∈ M . For any F̃ := Fℓ(ρ̃x) ∈ FC∞
T,loc, there exists R ∈ (0, δx) such that

supp(ℓ(ρ̃x)) ⊂ BR(x) := {y ∈ M : ρ(x, y) 6 R}.

Let ϕR ∈ C∞
0 (M) such that ϕR |BR(x) = 1 and 0 6 ϕR 6 1. We consider the following Riemannian metric

on the manifold MR := {y ∈ M : ϕR(y) > 0}:

gR := ϕ−2
R g.

As explained above, (MR, gR) is a complete Riemannian manifold with

KR := sup
MR

∥RicRZ∥∞ < ∞, σR := sup
MR

∥IR∥∞ < ∞. (3.2)

We consider the SDE (1.1) on M ,{
dUx

t =
√
2HUx

t
(Ux

t ) ◦ dWt +HZ(U
x
t )dt+HN (Ux

t )dl
x
t ,

U0 = u0.
(3.3)
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Then Xt := π(Ut) is the (reflecting if ∂M exists) diffusion process on M generated by L = ∆+ Z.

Similarly, let {Hi,R}ni=1 and HϕRZ,R be the orthonormal basis of horizontal vector fields and horizontal

lift of ϕRZ under the metric gR. Since gR = g and ϕR = 1 on BR(x), for u ∈ O(MR) with πu ∈ BR(x)

we have Hi,R(u) = Hi(u) and HϕZ,R(u) = HZ(u). For Wt and u0 in (3.3), we consider the following SDE

on the manifold MR:dUt,R =

n∑
i=1

Hi,R(Ut,R) ◦ dW i
t +HϕRZ,R(U

x
t )dt+HN (Ux

t )dl
x
R,t,

U0,R = u0.

Then Xx,R
· := π(U·,R) is the (reflecting if ∂MR exists) diffusion process on MR generated by LR :=

∆R + ϕRZ, where ∆R is the Laplacian on MR. Obviously,

Ut,R = Ut, lxR,t = lxt for t 6 τR := inf{t > 0 : Xt /∈ BR(x)}. (3.4)

Denote by PT
R,x the distribution of the process Xx,R

[0,T ]. From [13] and (2.24), the damped logarithmic

Sobolev inequality holds

E[Gt1 logGt1 ]− E[Gt0 logGt0 ] 6 4Ẽt1,t0
R (G,G), G ∈ FC∞

T , (3.5)

where

Gt := E(G2(Xx,R
[0,T ]) | Ft)

and

Ẽt1,t0
R (H,G) =

∫
WT

x (MR)

∫ t1

t0

⟨D̃R
s F, D̃

R
s G⟩dsdPT

R,x.

According to [13], the form (Ẽt1,t0
R ,FC∞

T ) is closable in L2(PT
R,x). Let (Ẽt1,t0

R ,D(Ẽt1,t0
R )) be its closure.

Let ρR be the Riemannian distance on MR and

ρ̃x
R(γ) := sup

t∈[0,1]

ρR(γ(t), x), γ ∈ WT
x (MR).

We have ρ̃x
R(γ) = ρ̃x(γ) for each γ ∈ WT

x (MR) ⊆ WT
x (M) satisfying ρRx (γ) 6 R. Then [4, Lemma 2.1]

implies that ℓ(ρ̃x) is in D(ẼPT
R,x

), and so is F̃ := Fℓ(ρ̃x). Combining this with (3.4) and (3.5), we get

E[E(F̃ 2(Xx
[0,T ]) | Ft1) log E(F̃

2(Xx
[0,T ]) | Ft1)]

− E[E(F̃ 2(Xx
[0,T ])|Ft0) log E(F̃

2(Xx
[0,T ]) | Ft0)]

= E[E(F̃ 2(Xx,R
[0,T ]) | Ft1) log E(F̃

2(Xx,R
[0,T ]) | Ft1)]

− E[E(F̃ 2(Xx,R
[0,T ]) | Ft0) log E(F̃

2(Xx,R
[0,T ]) | Ft0)]

6 4

∫
WT

x (MR)

∫ t1

t0

⟨D̃R
s F̃ , D̃R

s F̃ ⟩dsdPT
R,x

= 4

∫
WT

x (M)

∫ t1

t0

⟨D̃sF̃ , D̃sF̃ ⟩dsdPT
x . (3.6)

By combining this with (2.25), we prove (2).

(a) (3) ⇒ (1). We first prove the lower bound estimates. When x ∈ M \ ∂M , there exists r ∈ (0, 1
2δx)

such that B2r(x) ⊂ M \ ∂M . Let Φ = ℓ(ρ̃x), where ℓ ∈ C∞
0 (R) such that 0 6 ℓ 6 1, ℓ(s) = 1 for s 6 r

and ℓ(s) = 0 for s > 2r. Let

τs = inf{t > 0 : ρ(x,Xx
t ) > s} for s > 0.

Consider F̃ (γ) = (ΦF )(γ) = Φ(γ)f(γT ) for f in (2.1). Then (3) and (2.9) imply

E[(FΦ)2(Xx
[0,T ])]− {E[(FΦ)(X[0,T ])]}2
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6 2

∫ T

0

EK,σ
t,T (F̃ , F̃ )dt

= 2

∫ T

0

E

{
(1 + µx,T ([t, T ]))

(
|ḊtF̃ (Xx

[0,T ])|
2 +

∫ T

t

|ḊsF̃ (Xx
[0,T ])|

2µx,T (ds)

)}
dt

6 2

∫ T

0

E[1{τ2r>T}(1 + µx,T ([t, T ]))
2|∇f(Xx

T )|2]dt+ CP(τr 6 T )

= 2

∫ T

0

E[1{τ2r>T}(1 + µx,T ([t, T ]))
2|∇f(Xx

T )|2]dt+ o(T 3), (3.7)

where C > 0 is a constant depending on f and Φ. On the other hand, by (2.1) and (2.9), we have

lim
T→0

1

T

(
E[F 2Φ2(Xx

[0,T ])]− {E[FΦ(X[0,T ])]}2

2T
− |∇PT f |2

)
= lim

T→0

1

T

(
PT f

2(x)− (PT f)
2(x)

2T
− |∇PT f |2

)
= RicZ(∇f,∇f)(x).

Since lxs = 0 for s 6 τ2r, these two estimates together with (2.9) and (1.3) lead to

RicZ(∇f,∇f)(x)

= lim
T→0

1

T

(
E[(FΦ)2(Xx

[0,T ])]− {E[(FΦ)(X[0,T ])]}2

2T
− |∇PT f |2

)
6 lim

T→0

1

T

{
1

T

∫ T

0

{E[1{τ2r>T}(1 + µ([s, T ]))2|∇f(Xx
T )|2]− |∇PT f(x)|2}ds

}
6 lim

T→0

(
PT |∇f |2(x)− |∇PT f |2(x)

T
+

∫ T

0
E{1{τ2r>T}[(1 + µ([s, T ]))2 − 1]|∇f(Xx

T )|2}ds
T 2

)
= 2RicZ(∇f,∇f)(x) +K(x)|∇f |2(x).

Therefore,

RicZ(∇f,∇f)(x) > −K(x)|∇f(x)|2.

Next, let x ∈ ∂M . For f in (2.2), by (2.9) we have

lim
T→0

3
√
π

8
√
T

(
E[(FΦ)2(Xx

[0,T ])]− {E[(FΦ)(X[0,T ])]}2

2T
− |∇PT f |2

)
= lim

T→0

3
√
π

8
√
T

(
PT f

2(x)− (PT f)
2(x)

2T
− |∇PT f |2

)
= I(∇f,∇f)(x). (3.8)

Combining this with (3.7) and (2.14), we obtain

I(∇f,∇f)(x) = lim
T→0

3
√
π

8
√
T

(
E[(FΦ)2(Xx

[0,T ])]−
{
E[(FΦ)(X[0,T ])]

}2

2T
− |∇PT f(x)|2

)
6 lim

T→0

3
√
π

8
√
T

(∫ T

0

E{1{τ2r>T}(1 + µx,T ([t, T ]))
2|∇F (Xx

T )|2}
T

dt− |∇PT f(x)|2
)

= lim
T→0

3
√
π

8
√
T

{
PT |∇f |2(x)− |∇PT f |2(x) +

2|∇f(x)|2

T

∫ T

0

2σ(x)(
√
T −

√
s)√

π
ds

}
=

3

2
I(∇f,∇f)(x) +

1

2
σ(x).

Therefore,

I(∇f,∇f)(x) > −σ(x)|∇f(x)|2.
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To prove the upper bound estimates, we take F (γ) = f(γε)− 1
2f(γT ) for ε ∈ (0, T ). From (1.2),

|ḊtF | =
∣∣∣∣∇f(Xε)−

1

2
Ux
ε (U

x
T )

−1∇f(Xx
T )

∣∣∣∣1[0,ε)(t) + 1

2
|∇f(Xx

T )|1[ε,T ](t).

Moreover, from (3) and (2.9), we may find a constant C > 0 depending on f and Φ such that for any

ε, T ∈ (0, 1),

Iε := E

[
E

(
Φ(Xx

[0,T ])f(X
x
ε )−

1

2
Φ(Xx

[0,T ])f(X
x
T ) | Fε

)]2
−

[
E

(
Φ(Xx

[0,T ])f(X
x
ε )−

1

2
Φ(Xx

[0,T ])f(X
x
T )

)]2
6 2

∫ ε

0

E

{
(1 + µx,T ([t, T ]))|Φ(Xx

[0,T ])ḊtF |2

+

∫ T

t

|Φ(Xx
[0,T ])ḊsF |2µx,T (ds)

}
dt+ CεT 4. (3.9)

Then

lim sup
ε→0

Iε
ε

6 E

{
Φ(Xx

[0,T ])(1 + µx,T ([0, T ]))

(∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2
+

Φ(Xx
[0,T ])µx,T ([0, T ])

4
|∇f |2(Xx

T )

)}
+ o(T 3) (3.10)

for small T > 0. On the other hand, according to (d) of the proof in Theorem 1.1, we have

Iε
ε

=
Pεf

2 − (Pεf)
2

ε
+

1

4ε
E[{E(f(Xx

T ) | Fε)}2 − (PT f)
2(x)]

+
E[f(Xx

T ){Pεf(x)− f(Xx
ε )}]

ε
+ o(T 3)

= 2

∣∣∣∣∇f(x)− 1

2
∇PT f(x)

∣∣∣∣2 + o(T 3). (3.11)

Combining this with (3.10), we arrive at the following:

2

∣∣∣∣∇f(x)− 1

2
∇PT f(x)

∣∣∣∣2
6 E

{
Φ(Xx

[0,T ])(1 + µx,T ([0, T ]))

(∣∣∣∣∇f(x)− 1

2
Ux
0 (U

x
T )

−1∇f(Xx
T )

∣∣∣∣2
+

Φ(Xx
[0,T ])µx,T ([0, T ])

4
|∇f |2(Xx

T )

)}
+ o(T 3). (3.12)

With this estimate, we may repeat the last part in the proof of (2) ⇒ (1) of Theorem 1.1 to derive the

desired upper bound estimates on RicZ and I at point x.
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