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Abstract We consider the topological entropy h(θ) of real unimodal maps as a function of the kneading

parameter θ (equivalently, as a function of the external angle in the Mandelbrot set). We prove that this

function is locally Hölder continuous where h(θ) > 0, and more precisely for any θ which does not lie in a

plateau the local Hölder exponent equals exactly, up to a factor log 2, the value of the function at that point.

This confirms a conjecture of Isola and Politi (1990), and extends a similar result for the dimension of invariant

subsets of the circle.
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1 Introduction

In order to encode and classify the topological dynamics of interval maps, Milnor and Thurston [11]

defined the kneading sequence of a unimodal map f by recording the relative position of the iterates

of the critical point. This information can be packaged in a binary number, known as the kneading

parameter, or kneading angle θ (see Section 2 for a precise definition). One can check that the topological

entropy of f only depends on the kneading angle θ, and hence we can define

h(θ) := htop(f)

the topological entropy of any unimodal map f which has angle θ (see Figure 1).

The function h(θ) has also the following interpretation in complex dynamics. Let θ ∈ R/Z, and suppose

that the external ray of angle θ for the Mandelbrot set lands on some real parameter cθ. Then h(θ) equals

the topological entropy of the quadratic polynomial f(z) = z2 + cθ.

The entropy of unimodal maps has been explored for several decades. In particular, the function h(θ)

(1) is a continuous, weakly increasing function of θ [11], and its maximum value is log 2;

(2) is constant on small copies of the Mandelbrot set whose root has positive entropy [5];
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Figure 1 The entropy of real unimodal maps as a function of the external angle. Note the Feigenbaum angle θ⋆ =

0.412454 · · · , where h(θ⋆) = 0 and the function is continuous but not Hölder continuous. To the right of θ⋆, the function

is locally Hölder continuous, and becomes more and more regular; it is actually almost Lipschitz continuous near the right

endpoint θ = 1/2

(3) is positive for all θ > θ⋆, where θ⋆ is the kneading angle of the Feigenbaum map, whose binary

expansion is the Thue-Morse sequence.

In this paper, we are interested in the regularity of h. Our main result states that the local Hölder

exponent of the entropy function h(θ) equals, up to a constant factor of log 2, the value of the function

itself. Let us denote by α(f, z) the local Hölder exponent of the function f at z (see Section 2 for a precise

definition). It is well known that not all binary sequences are indeed kneading sequences of unimodal

maps: let us denote by R the set of all possible kneading angles. This coincides (up to possibly a set

of Hausdorff dimension zero) with the set of angles of external rays, which land on the real slice of the

Mandelbrot set [5]. Each connected component U of the complement [0, 1/2] \ R corresponds to a real

hyperbolic component, and it is well known that the entropy at the two endpoints of U is the same,

and hence one can extend the definition of entropy h(θ) to each value θ ∈ [0, 1/2] by setting it constant

over each component U . Moreover, we define a plateau for the entropy function as an open interval in

combinatorial parameter space on which the entropy is constant.

Theorem 1.1. For any θ ∈ R with θ > θ⋆, the entropy function h is locally Hölder continuous at θ

with exponent h(θ)
log 2 . Moreover, if θ ∈ R does not lie in a plateau, then the local Hölder exponent of the

entropy function at θ is related to the value of the function by the equation

α(h, θ) =
h(θ)

log 2
.

This result confirms the experimental evidence by Isola and Politi [9, p. 282]. The proof turns out to

be a simple computation using the fact that entropy is the zero of a power series known as the kneading

series: basically, two nearby angles will produce power series with the same leading coefficients, and one

needs to estimate how the zeros of a power series change as the coefficients change. In order to get the

lower bound, however, one needs to analyze carefully the combinatorics of the set R.

By a classical result of Guckenheimer [8], the topological entropy of any C1 family of unimodal maps is

a Hölder continuous function of the parameter. More recently, a formula for the Hölder exponent of the

entropy with respect to the analytic parameter has been obtained in [4]; in this paper, we look instead

at the dependence on the combinatorial parameter.

A natural generalization of this discussion would be to extend the result to the core entropy for the

complex quadratic family, as defined by Thurston1) and studied in [6, 13]. In particular, it is proved

in [13] that the entropy h(θ) is locally Hölder continuous in a neighbourhood of rational external angles

1) Thurston W, Baik H, Gao Y, et al. Degree-d invariant laminations. Preprint, 2015
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θ with h(θ) > 0, and it is not locally Hölder where h(θ) = 0. The exact value for the Hölder exponent

has been conjectured independently by the author (see, e.g., [3, end of introduction]) and by Bruin and

Schleicher [2]. Estimates on the Hölder exponent at dyadic tips have been worked out by Jung [10], and

a complete proof has recently been announced by Fels (private communication).

Relation to open dynamical systems. Theorem 1.1 can be also reformulated in terms of open

dynamical systems, and in this setting it is very close to the results (and the proof) of [3].

Let D(x) := 2x mod 1 be the doubling map, and for each θ ∈ [0, 1/2] let us consider the set K(θ) of

points in the circle whose forward orbit never intersects the interval (θ, 1− θ), i.e.,

K(θ) := {x ∈ R/Z : Dn(x) /∈ (θ, 1− θ),∀n > 0}.

Then for each θ ∈ [0, 1/2] one has

H.dimK(θ) =
h(θ)

log 2
.

Corollary 1.2. Consider for each θ ∈ [0, 1/2] the dimension function

η(θ) := H.dimK(θ).

Then, for each θ not in a plateau, the local Hölder exponent of the dimension function satisfies

α(η, θ) = η(θ).

A completely analogous statement for the set of points whose orbit does not intersect the forbidden

interval (0, t) is proved in [3]. The continuity of entropy (or dimension) for expanding circle maps with

holes has been established in the 1980s by Urbański [14], while bounds on the Hölder exponent of the

dimension for more general holes are proved in [1].

Note that the dimension function of [3] and the one considered in this paper are genuinely different

functions: for example, we will check in Subsection 6.1 that the modulus of continuity of h near θ⋆ is

of order 1
log(1/x) , while for the dimension function considered in [3] the modulus of continuity at the point

where it is not Hölder is of order log log(1/x)
log(1/x) .

2 Background material

Hölder exponents. Let I ⊆ R be an interval. A function f : I → R is locally Hölder continuous at a

point x of exponent α if there exist a neighborhood U of x and a constant C > 0 such that

|f(y)− f(z)| 6 C|y − z|α for all y, z ∈ U.

The local Hölder exponent of f at z is

α(f, z) := sup

{
η > 0 : lim

ϵ→0
sup

|x−z|<ϵ
|y−z|<ϵ

|f(x)− f(y)|
|x− y|η

< +∞
}
.

By definition, f is locally Hölder continuous at z if and only if α(f, z) > 0.

Kneading theory. Let now I = [0, 1]. Recall that a unimodal map is a continuous function f : I → I

with f(0) = f(1) = 0, and for which there exists a point c ∈ (0, 1), which we call critical point, such

that f is increasing on [0, c) and decreasing on (c, 1]. In order to capture the symbolic dynamics of f ,

one defines the address of a point x ̸= c as

A(x) :=

{
0, if x < c

1, if x > c.
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The kneading sequence of f is then defined as the sequence of addresses of the iterates of the critical

point; namely, for any k > 1 set, if fk(c) ̸= c,

sk := A(fk(c))

while, if fk(c) = c, then set

sk := lim
x→c

A(fk(x)),

which is still well-defined as f “folds” a neighbourhood of c. Finally, one defines the kneading angle as

θ :=
∞∑
k=1

θk
2k+1

with θk := s1 + · · ·+ sk mod 2.

Then the kneading series associated to the angle θ is the power series

Pθ(t) = 1 +

∞∑
k=1

ϵkt
k,

where ϵk = (−1)θk . Note that the coefficients of Pθ(t) are uniformly bounded, and hence the power series

defines a holomorphic function in the unit disk {t ∈ C : |t| < 1}. The main result of kneading theory is

the following theorem.

Theorem 2.1 (See [11]). Let f be a unimodal map with kneading angle θ and topological entropy h(f),

and let r := e−h(f). Then the holomorphic function Pθ(t) is non-zero on the disk {t ∈ C : |t| < r}, and if

r < 1 one has Pθ(r) = 0.

The set of real angles. It is well known that not all binary sequences are indeed kneading sequences

of unimodal maps: let us denote by R the set of all possible kneading angles. This coincides (up to

possibly a set of Hausdorff dimension zero) with the set of angles of external rays which land on the real

slice of the Mandelbrot set.

The angles corresponding to real parameters are characterized in terms of the dynamics of the angle

doubling map D(θ) := 2θ mod 1. In fact, from [5] one has the identity

R = {θ ∈ [0, 1/2] : Dn(θ) /∈ (θ, 1− θ) for all n > 0}.

(Obviously, the set of angles of external rays landing on the real slice of the Mandelbrot set is symmetric

about 1/2, but we will only focus on the interval [0, 1/2] in this paper.) Many facts are known about the

structure of the set R. In particular, it is a closed set of Lebesgue measure zero and Hausdorff dimension

one [15]. Moreover, one knows that for each angle θ ∈ R which is purely periodic for the doubling map,

one can produce its period doubling θ′ as follows: if θ has (minimal) period p and its binary expansion is

θ = .s1 · · · sp,

then we define

θ′ = .s1 · · · spš1 · · · šp,

where ši = 1− si. The following lemma is well-known.

Lemma 2.2. If θ′ is the period doubling of θ ∈ R, then θ′ ∈ R, and moreover,

h(θ′) = h(θ).

Proof. It is immediate to check by the definitions that the two kneading series are related by

Pθ′(t) = Pθ(t)
1− tp

1 + tp
,

from which the claim holds, as 1−tp

1+tp does not have any root inside the unit disk.
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Moreover, the connected components of the complement of R are precisely (see, e.g., [15])

[0, 1/2] \ R =
∪

θ∈R0

(θ, pd(θ)),

where pd(θ) is the period doubling of θ, and R0 is the subset of R consisting of purely periodic angles.

Note that θ = 0 = .0 belongs to R, and the above equation is correct if one interprets its period doubling

to be

pd(0) = .01 =
1

3
.

For each purely periodic

θ = .s1 · · · sp ∈ R,

one defines the small copy of root θ as the interval

I(θ) := (θ, θ),

where θ has binary expansion

θ := .s1 · · · spš1 · · · šp.

The reason for the name “small copy” is that the interval I(θ) corresponds to the set of external rays

landing on the real slice of the small copy of the Mandelbrot set with root of external angle θ.

Lemma 2.3 (See [5]). If h(θ) > 0, then the entropy is constant on the small copy I(θ).

3 Simplicity of the minimal root

We start by proving that the smallest root of the kneading series is actually simple. This fact may be of

independent interest, and is probably known to experts even though we could not find it in the literature.

Theorem 3.1. Let f : I → I be a unimodal map with topological entropy h(f) > 0. Denote by P (t)

its kneading series, and let s = eh(f). Then r = 1
s is a simple root of P (t).

Proof. Let us assume first that f is piecewise linear with slope ±s, and consider the lap counting

function

L(t) :=
∑
n>0

ℓ(fn+1)tn,

where ℓ(f) is the number of monotonicity intervals (also known as laps) of f . Recall also the kneading

identity (see [11, Corollary 5.9])

L(t) =
1

1− t
+

1

P (t)(1− t)2
.

Now, by [12, Proposition 9.6] r is a simple pole of L(t), and hence by the above identity it is a simple zero

of P (t). In the general case, by Milnor and Thurston [11], for any unimodal map of entropy h(f) = log s

there exists a semiconjugacy π : I → J of f to a piecewise linear unimodal map g : J → J of slope ±s,

i.e., there is a continuous, surjective, weakly monotone map π : I → J such that π◦f = g◦π. Denote by c

the critical point of f , and let c̃ = π(c) be the critical (or turning) point of g. Moreover, let L := π−1(c̃),

which is a closed interval containing c. There are two cases:

(1) Either fn(c) /∈ L for all n > 1. This implies that

Pf (t) = Pg(t),

and hence the claim follows, since from the above we know that r is a simple root of Pg(t).

(2) Otherwise, there exists n such that fn(c) ∈ L. Let p be the smallest such n. This implies that

gp(c̃) = gp(π(c)) = π(fp(c)) = c̃,
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since fp(c) ∈ L. Then we get the factorisation

Pf (t) = P̃g(t)Ph(t
p),

where h = fp |L is the first return map of f to L, which is also a unimodal map, and P̃g(t) is the

polynomial (of degree p− 1) such that

Pg(t) =
P̃g(t)

1− tp
.

We know in [11] that r is a root of Pg(t), and we now claim that r is not a root of Ph(t
p); by the above

factorisation, this implies that r is a simple root of Pf (t). In order to prove the claim, let k > 1 be the

integer such that
log 2

2k
< h(g) 6 log 2

2k−1
.

Note that the above inequality implies that g must be renormalizable of period 2 at least k − 1 times,

i.e., that there exists an interval I ′ which contains the critical point and such that the restriction of g2
k−1

to I ′ is a unimodal map ĝ. Note now that

Period(g) = 2k−1Period(ĝ),

and Period(ĝ) > 2 since g, and hence ĝ, has positive entropy. Thus, the period p of g is at least 2k. On

the other hand, since h is unimodal, each of the roots of Ph(t) has modulus > 1
2 , and thus each root

of Ph(t
p) has modulus at least

1

21/p
> 1

21/2k
> e−h(g) = r.

This means that r is not a root of Ph(t
p), and by the above discussion r is a simple root of Pg(t). This

proves that r is a simple root of Pf (t).

Lemma 3.2. Let θ ∈ (0, 1/2] be a real angle with h(θ) > 0, and let r = e−h(θ). Then there exists ϵ > 0

such that for any θ′ ∈ R∩(0, 1/2] with |θ−θ′| < ϵ the kneading series Pθ′(t) has exactly one root (counted

with multiplicity) inside the disk {t ∈ C : |t− r| < ϵ}. Moreover, there exists c > 0 such that |P ′
θ′(t)| > c

for all |θ′ − θ| < ϵ and |t− r| < ϵ.

Proof. There are two cases. If θ is not purely periodic for the doubling map, then for θ′ sufficiently

close to θ the coefficients of Pθ′(t) eventually stabilize to the coefficients of Pθ(t). Hence, Pθ′(t) converges

to Pθ(t) uniformly on compact subsets of the unit disk. Moreover, Theorem 3.1 implies that r is the

only root of Pθ(t) in a neighborhood of z = r, counting with multiplicities, so the first claim follows by

Rouché’s theorem. On the other hand, if θ is purely periodic of period p, then there are two possible

limits of the power series Pθ′(t) as θ′ → θ. Indeed, one checks that

lim
θ′→θ−

Pθ′(t) = Pθ(t)

while

lim
θ′→θ+

Pθ′(t) = P̂θ(t) = Pθ(t)
1− tp

1 + tp

(in both cases, the limit is taken over θ′ ∈ R). Since the function φ(t) = 1−tp

1+tp is never vanishing inside

the unit disk, then the claim follows by Rouché’s theorem as before. To prove the second claim, note that

we just proved that P ′
θ(r) ̸= 0, and P̂ ′

θ(r) ̸= 0, so the claim follows by noting that the derivative P ′
θ′(t)

also converges uniformly on compact sets to either P ′
θ(t) or P̂

′
θ(t).

4 The local Hölder exponent: The upper bound

Let us start with an elementary lemma.
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Lemma 4.1. Let θ and θ′ be two real angles, and let us assume θ′ < θ 6 1
2 . Let their binary

expansions be

θ =
∑
k=1

θk2
−k and θ′ =

∑
k=1

θ′k2
−k

and let n := min{k : θk ̸= θ′k}. Then

c2−n 6 |θ − θ′| 6 2−n+1,

where c = 2(1− 2θ) if θ < 1/2, and c = 1 if θ = 1/2.

Proof. Let us first consider the case θ < 1/2. Recall that the set R is characterized as

R = {θ ∈ [0, 1/2] : Dn(θ) /∈ (θ, 1− θ), ∀n > 0}.

Now, by definition of n one has

Dn−1(θ′) <
1

2
< Dn−1(θ),

and hence by the definition of R,

Dn−1(θ′) 6 θ′ < θ <
1

2
< 1− θ 6 Dn−1(θ).

This implies

2n−1(θ − θ′) = Dn−1(θ)−Dn−1(θ′) > 1− 2θ,

which yields the lower bound.

If θ = 1/2, then Dn−1(θ) = 1, and hence Dn−1(θ)−Dn−1(θ′) > 1/2, and the proof proceeds as before.

The upper bound follows simply because

2n−1(θ − θ′) = Dn−1(θ)−Dn−1(θ′) 6 1.

This completes the proof.

Proposition 4.2. For each θ ∈ R with h(θ) > 0, there exists C = C(θ) > 0 such that the modulus of

continuity of the entropy is bounded by

|h(θ)− h(θ′)| 6 C|θ − θ′|
h(θ)
log 2

for each θ, θ′ ∈ R with θ′ < θ 6 1/2.

Proof. Let θ and θ′ be two real angles, with θ′ < θ 6 1
2 . Let their binary expansions be

θ =
∑
k=1

θk2
−k and θ′ =

∑
k=1

θ′k2
−k

and let n := min{k : θk ̸= θ′k}. Then by Lemma 4.1 one gets

c2−n 6 |θ − θ′| 6 2−n+1.

Let us now compare the two kneading series Pθ(t) and Pθ′(t). As the first n − 1 coefficients of the two

series coincide, one gets

Pθ(t)− Pθ′(t) = 2tn +
∞∑

k=n+1

(ϵk − ϵ′k)t
k = tng(t), (4.1)

where

g(t) = 2 +
∞∑
k=1

(ϵn+k − ϵ′n+k)t
k.



2306 Tiozzo G Sci China Math December 2018 Vol. 61 No. 12

On the other hand, as Pθ(r) = Pθ′(r′) = 0, one has

Pθ(r)− Pθ′(r) = Pθ′(r′)− Pθ′(r) = P ′
θ′(ξ)(r′ − r) (4.2)

with ξ ∈ [r, r′]. Thus, combining the two previous equations we get

r′ − r = rn
g(r)

P ′
θ′(ξ)

. (4.3)

In order to get the upper bound, let us note that |g(r)| 6 2
1−r as the coefficients of g(t) are bounded

in the absolute value by 2. Moreover, by Lemma 3.2 we have

inf
|θ−θ′|<ϵ
|ξ−θ|<ϵ

|P ′
θ′(ξ)| = c1 > 0.

Finally, by Lemma 4.1 one gets

n > log c− log |θ − θ′|
log 2

,

and hence

rn = en log r 6 c2|θ − θ′|
− log r
log 2 , (4.4)

where c2 = e
log r log c

log 2 . Thus, putting together the previous estimates

r′ − r 6 c2
c1(1− r)

|θ − θ′|
− log r
log 2 , (4.5)

which using the definition h(θ) = − log r yields the upper bound

r′ − r 6 C|θ − θ′|
h(θ)
log 2 ,

where we set C = c2
c1(1−r) . The claim then follows as h(θ) = − log r and the function x 7→ log x is

differentiable with the bounded derivative (hence Lipschitz) on the interval [1, 2].

5 Primitive angles

In order to prove the lower bound for the local Hölder exponent we need the following definition.

Definition 5.1. An angle θ ∈ R is called primitive if it is purely periodic for the doubling map, and

moreover such that Dk(θ) ̸= 1− θ for all k > 0.

A purely periodic, real angle which is not primitive will be called satellite. The external rays corre-

sponding to these parameters land at roots of satellite components of the Mandelbrot set.

Lemma 5.2. If θ ∈ R is satellite, then the entropy is locally constant at θ.

Proof. Indeed, if Dk(θ) = 1− θ then the binary expansion of θ is of the form

θ = .s1 · · · skš1 · · · šk,

where ši := 1 − si. This means that θ is the period doubling of the angle θ′ = .s1 · · · sk, and thus

h(θ) = h(θ′) by Lemma 2.2.

The reason we introduce this definition is because we need it to prove that primitive angles can be

approximated by real angles with controlled combinatorics.

Lemma 5.3. Let θ ∈ R ∩ (0, 1
2 ) be a primitive angle with Dp(θ) = θ. Pick δ > 0 such that Dk(θ) /∈

[θ, 1−θ+2δ] for 0 < k < p, and let θ′ ∈ R be a purely periodic angle with θ−δ < θ′ < θ and Dq(θ′) = θ′.

Let

θ =
∞∑
k=1

sk2
−k and θ′ =

∞∑
k=1

tk2
−k
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be the binary expansions of θ and θ′, respectively. Then the point of binary expansion

ξ := .s1 · · · spt1 · · · tq

belongs to R.

Proof. In order to simplify the notation, let us introduce the binary sequences s = s1 · · · sp and t =

t1 · · · tq. Since the map Dp is uniformly expanding, if we let x = .st ∈ [θ′, θ], then Dp is a homeomorphism

between [x, θ] and [θ′, θ]. Similarly, the point y = .ts ∈ [θ′, θ] is so that Dq is a homeomorphism between

[θ′, y] and [θ′, θ]. We have that ξ ∈ [x, θ] and Dp(ξ) ∈ [θ′, y], with Dp+q(ξ) = ξ. We now check that ξ

belongs to R. In order to do so, we will check that for all iterates 0 < k < p+ q the point Dk(ξ) does not

lie in the “forbidden” interval (ξ, 1− ξ). Let us first consider the earlier iterates, Dk(ξ) with 0 < k 6 p.

Then as Dk is expanding and orientation-preserving on [x, θ] one gets the estimates

θ − ξ 6 Dk(θ)−Dk(ξ) 6 Dp(θ)−Dp(ξ) 6 θ − θ′.

There are two cases:

• If Dk(θ) < 1
2 , then Dk(θ) 6 θ, and hence

Dk(ξ) 6 (Dk(θ)− θ) + ξ 6 ξ.

• If Dk(θ) > 1
2 , then by hypothesis

Dk(θ) > 1− θ + 2δ > 1− θ + 2(θ − θ′),

which implies

Dk(ξ) > Dk(θ)− θ + θ′ > 1− θ′ > 1− ξ

as required.

Let us consider now Dp+k(ξ), with 0 < k < q. Recall that by construction Dp+q(ξ) = ξ. Moreover,

the map Dk is expanding and orientation-preserving on [θ′, y], and thus

0 6 Dp+k(ξ)−Dk(θ′) 6 Dp+q(ξ)−Dq(θ′) = ξ − θ′.

Now, there are two cases:

• Suppose Dk(θ′) < 1
2 . Then Dk(θ′) 6 θ′ as θ′ belongs to R, and hence one gets

Dp+k(ξ) 6 ξ + (Dk(θ′)− θ′) 6 ξ

as required.

• Suppose instead Dk(θ′) > 1
2 . Then Dk(θ′) > 1− θ′, and hence we can write

Dp+k(ξ) > Dk(θ′) > 1− θ′ > 1− ξ.

In both cases, Dp+k(ξ) belongs to [ξ, 1− ξ], and hence ξ belongs to R.

Corollary 5.4. In the hypotheses of the previous lemma, if we denote s = s1 · · · sp and t = t1 · · · tq,
then for each m > 1 the sequence of points θm = .smt belongs to R.

Corollary 5.5. If θ ∈ R∩ (0, 1/2) is a purely periodic, primitive angle, then for any δ > 0 there exists

a purely periodic θ′ ∈ R with θ − δ < θ′ < θ.

6 The lower bound

We now turn to the proof of the lower bound on the modulus of continuity, i.e., we show that the entropy

function is not more regular than expected, and in particular it is not Hölder continuous of any exponent

higher than h(θ)/ log 2. We start by proving it for primitive angles.
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Proposition 6.1. Let θ ∈ R be a primitive angle which does not lie in a plateau. Then one has the

bound

lim sup
θ′→θ

|h(θ)− h(θ′)|

|θ − θ′|
h(θ)
log 2

= c > 0.

Proof. Let θ ∈ R ∩ (0, 1
2 ) be a purely periodic, primitive angle of period p, and let us define

δ :=
1

2
min{Dk(θ)− 1 + θ : k > 0, Dk(θ) > 1− θ} > 0.

Then, by Corollary 5.5, there exists a purely periodic θ′ ∈ R ∩ (θ − δ, θ): let q be the period of θ′, and

denote P = pq. Now by Corollary 5.4, for any m, the angle

θm = .(ϵ1 · · · ϵP )m(ϵ′1 · · · ϵ′P )

belongs to R, where (ϵk) and (ϵ′k) are, respectively, the digits in the binary expansions of θ and θ′. Now,

if we let

g(t) =
P∑

k=1

(ϵk − ϵ′k)t
k−1,

then for each m the difference between the two kneading series Pθm(t) and Pθ(t) can be written as

Pθ(t)− Pθm(t) =

∑P
k=1(ϵk − ϵ′k)t

mP+k−1

1− tP (m+1)
=

g(t)tmP

1− tP (m+1)
.

Thus, by denoting by rm the smallest real root of Pθm and using Pθ(r) = Pθm(rm) = 0, one has

Pθ(r)− Pθm(r) = Pθm(rm)− Pθm(r) = P ′
θm(ξ)(rm − r)

for some ξ ∈ [r, rm]. By combining the previous equations we get

rm − r =
1

P ′
θm

(ξ)

g(r)rmP

1− rP (m+1)
. (6.1)

Note that, since θ does not lie in a plateau, rm ̸= r for m sufficiently large, and hence g(r) ̸= 0. Now,

observe that the binary expansions of θm and θ have at least mP common initial digits, and hence

|θ − θm| 6 2−mP .

Thus

rmP = emP log r > |θ − θm|−
log r
log 2 = |θ − θm|

h(θ)
log 2 .

On the other hand, the coefficient of tk in P ′
θm

(t) has modulus less than or equal to k + 1, and hence

|P ′
θm(t)| 6

∑
k=0

(k + 1)tk =
1

(1− t)2
,

so using ξ < r1 < 1 one gets
1

|P ′
θm

(ξ)|
> (1− r1)

2

and hence setting c3 = g(r)(1− r1)
2 yields the final estimate

rm − r > c3|θ − θm|
h(θ)
log 2 , (6.2)

which as θm → θ for m → ∞ establishes the required lower bound.

Proof of Theorem 1.1. The first claim follows directly from Proposition 4.2. The second claim is proved

by noticing that every θ ∈ R which does not lie in a plateau can be approximated by primitive angles

which do not lie in a plateau, and hence the lower bound on the modulus of continuity follows directly

from Proposition 6.1.
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6.1 The Feigenbaum point

Let us recall in the end that the entropy function is not Hölder continuous at θ = θ⋆, and in fact one can

compute its modulus of continuity using the combinatorics of period doubling.

Let us consider the binary string (Sn) defined recursively as S0 := 0 and Sn+1 := SnŠn. The limit

S∞ := limn→∞ Sn is the well-known Thue-Morse sequence, which is the binary expansion of the Feigen-

baum angle θ⋆. For each n, the angle ηn := .Sn lands at the root of a hyperbolic component of period 2n

which is given by n-times period doubling of the main cardioid, and there is an associated small copy Mn

of the Mandelbrot set. We will consider the angle θn := .SnŠn, whose ray lands at the tip of Mn, and

so that θ⋆ = limn→∞ θn. Since θn is given by tuning of the tip of the Mandelbrot set with a zero entropy

map of period 2n, one has

h(θn) =
log 2

2n

while by looking at the binary expansions one gets θn − θ⋆ ≍ 2−2n , which yields the estimate

|h(θn)− h(θ⋆)| ≍
1

− log |θn − θ⋆|

(up to a multiplicative constant), and thus the modulus of continuity is of order 1
log( 1

x )
.

6.2 Relation to open dynamical systems

Proof of Corollary 1.2. Let f be a real quadratic polynomial of kneading angle θ, and let J be the

Julia set of f , which we know to be locally connected. Thus, there exists a continuous Caratheodory map

γ : R/Z → J which semiconjugates the doubling map D to f . Let us consider the set K̃ := γ−1(J ∩ R)
of external angles of rays which land on the real section of the Julia set. By Douady [5], this set can be

characterized as

K̃ = {x ∈ R/Z : Dn(x) /∈ (θ, 1− θ), ∀n > 1}.

Since the map γ is finite-to-one, one gets the equality

h(f) = h(f |J∩R) = h(D |K̃).

Moreover, the map D is uniformly expanding with derivative 2, and hence (see, e.g., [7, Proposition III.1])

H.dim K̃ =
h(D |K̃)

log 2
.

Finally, if we denote

K(θ) := {x ∈ R/Z : Dn(x) /∈ (θ, 1− θ), ∀n > 0}

then clearly

D(K̃) ⊆ K(θ) ⊆ K̃,

and hence

H.dimK(θ) = H.dim K̃ =
h(f)

log 2
=

h(θ)

log 2
,

and thus the Corollary follows directly from Theorem 1.1.
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