
SCIENCE CHINA
Mathematics

March 2020 Vol. 63 No. 3: 539–558

https://doi.org/10.1007/s11425-017-9287-6

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 math.scichina.com link.springer.com

. ARTICLES .

Existence and multiplicity of normalized solutions for
a class of fractional Choquard equations

Gongbao Li∗ & Xiao Luo

Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics,
Central China Normal University, Wuhan 430079, China

Email: ligb@mail.ccnu.edu.cn, luoxiaohf@163.com

Received June 30, 2017; accepted March 27, 2018; published online February 21, 2019

Abstract In this paper, we study the existence and multiplicity of solutions with a prescribed L2-norm for a

class of nonlinear fractional Choquard equations in RN :

(−∆)su− λu = (κα ∗ |u|p)|u|p−2u,

where N > 3, s ∈ (0, 1), α ∈ (0, N), p ∈ (max{1+ α+2s
N

, 2}, N+α
N−2s

) and κα(x) = |x|α−N . To get such solutions,

we look for critical points of the energy functional

I(u) =
1

2

∫
RN

|(−∆)
s
2 u|

2
−

1

2p

∫
RN

(κα ∗ |u|p)|u|p

on the constraints

S(c) = {u ∈ Hs(RN ) : ∥u∥2
L2(RN )

= c}, c > 0.

For the value p ∈ (max{1+ α+2s
N

, 2}, N+α
N−2s

) considered, the functional I is unbounded from below on S(c). By

using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c > 0, I

has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that,

we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover,

by using a minimax procedure, we prove that for any c > 0, there are infinitely many radial critical points of I

restricted on S(c).
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1 Introduction and main results

In this paper, we study the nonlinear fractional Schrödinger equation with a Choquard nonlinearity as

follows:

(−∆)su− λu = (κα ∗ |u|p)|u|p−2u, x ∈ RN , (1.1)
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where N > 3, s ∈ (0, 1), α ∈ (0, N), p ∈ (max{1 + α+2s
N , 2}, N+α

N−2s ) and κα(x) = |x|α−N . For any u(x) in

the Schwartz class on RN , the fractional Laplacian (−∆)s is a nonlocal operator defined as

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where P.V. means the Cauchy principal value on the integral and C(N, s) is some positive normalization

constant (see [13] for details).

Equation (1.1) arises from seeking the standing wave solutions for the following time-dependent frac-

tional Choquard equation:

ivt = (−∆)sv − (κα ∗ |v|p)|v|p−2v, (x, t) ∈ RN × (0,+∞). (1.2)

The wave function v(x, t) : RN × R+ → C is normalized according to∫
RN

|v(x, t)|2dx = c, (1.3)

where c is the total number of particles. We point out that Choquard nonlinearities arise in several

models of mathematical physics, as in the mean field limit of weakly interacting molecules [23], in the

Pekar theory of polarons [20,26–28], in the Schrödinger-Newton systems [16] and in the modeling of boson

stars [15]. Specially, for the case s = 1
2 , (1.2) has been used to model the dynamics of pseudo-relativistic

boson stars [14].

Throughout this paper, we denote the norm of Lp(RN ) by ∥u∥p := (
∫
RN |u|p)

1
p for any 1 6 p < ∞.

The Hilbert space Hs(RN ) is defined as

Hs(RN ) := {u ∈ L2(RN ) : (−∆)
s
2u ∈ L2(RN )},

with the inner product and norm given respectively by

(u, v) :=

∫
RN

(−∆)
s
2u(−∆)

s
2 v +

∫
RN

uv, ∥u∥ := (∥(−∆)
s
2u∥22 + ∥u∥22)

1
2 ,

where

∥(−∆)
s
2u∥22 :=

C(N, s)

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
.

H−s(RN ) is the dual space of Hs(RN ) and

Hs
r (RN ) := {u ∈ Hs(RN ) |u(x) = u(|x|)}

with the Hs(RN ) norm. We use respectively “→” and “⇀” to denote the strong and weak convergence

in the related function spaces. C will denote a positive constant unless specified.

We say that u ∈ Hs(RN ) is a weak solution to (1.1) if∫
RN

(−∆)
s
2u(−∆)

s
2 v − λ

∫
RN

uv =

∫
RN

(κα ∗ |u|p)|u|p−2
uv, for all v ∈ Hs(RN )

and (uc, λc) ∈ Hs(RN ) × R is a couple of weak solution to (1.1) if uc is a weak solution to (1.1) with

λ = λc.

Motivated by the fact that physicists are interested in normalized solutions to (1.2), i.e., solutions

to (1.2) satisfying (1.3), we set in (1.2),

v(x, t) = e−iλtu(x), x ∈ RN , t > 0,

and then u satisfies (1.1) with ∫
RN

|u(x)|2dx =

∫
RN

|v(x, 0)|2dx = c.
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Thus, we consider for each c > 0 the following problem:

(Pc) To find a couple (uc, λc) ∈ Hs(RN )× R of weak solution to (1.1) such that ∥uc∥22 = c.

Define

I(u) =
1

2

∫
RN

|(−∆)
s
2u|

2
− 1

2p

∫
RN

(κα ∗ |u|p)|u|p (1.4)

for u ∈ Hs(RN ). Then I ∈ C1(Hs(RN ),R) and a critical point of I restricted on the constraint

S(c) = {u ∈ Hs(RN ) : ∥u∥2L2(RN ) = c}, c > 0 (1.5)

corresponds to a couple (uc, λc) ∈ Hs(RN )× R of weak solution to (1.1) such that ∥uc∥22 = c.

The λ ∈ R in (1.1) is called a frequency. For fixed λ, d’Avenia et al. [12] obtained weak solutions

to (1.1) by looking for critical points of the C1 functional

J(u) =
1

2

∫
RN

|(−∆)
s
2u|

2
− λ

2

∫
RN

|u|2 − 1

2p

∫
RN

(κα ∗ |u|p)|u|p

in Hs(RN ). By minimizing

Σ(u) :=
∥(−∆)

s
2u∥22 − λ∥u∥22

(
∫
RN (κα ∗ |u|p)|u|p)

1
p

onHs(RN )\{0}, d’Avenia et al. [12] obtained a ground state u ∈ Hs(RN ) to (1.1) when p ∈ (1+ α
N ,

N+α
N−2s )

(see [12, Theorem 4.2]). What is more, by using the symmetric mountain pass theorem for the functional

J(u) in Hs(RN ), d’Avenia et al. [12] obtained a multiplicity result for solutions to (1.1) when p ∈
(1 + α

N ,
N+α
N−2s ) (see [12, Theorem 1.2]). In addition, d’Avenia et al. [12] also considered normalized

solutions to (1.1), by minimizing I(u) defined by (1.4) on the constraints S(c) defined by (1.5), and

proved that there is a couple (uc, λc) ∈ Hs(RN ) × R of weak solution to (1.1) with ∥uc∥22 = c when

p ∈ (1 + α
N , 1+

α+2s
N ) (see [12, Theorem 4.5]). Note that, in this case, the frequency λc ∈ R appears as a

Lagrange multiplier.

Recently, normalized solutions to elliptic PDEs and systems attract much attention of researchers

[3–9,18,19,22,25]. In [18], Jeanjean considered the following semi-linear elliptic equation:

−∆u− λu = g(u), λ ∈ R, x ∈ RN , (1.6)

where N > 1 and g satisfies some suitable conditions. By a minimax procedure, Jeanjean [18] proved

that for each c > 0, (1.6) has at least one couple (uc, λc) ∈ H1(RN )×R− of weak solution with ∥uc∥22 = c.

Furthermore, an H1(RN )-bifurcation result of problem (1.6), i.e., the dependence of ∥∇uc∥2 and λc on c

was given.

In [7], Bellazzini et al. considered the following Schrödinger-Poisson equation:

−∆u− λu+ (|x|−1 ∗ u2)u =|u|p−2u, λ ∈ R, x ∈ R3. (1.7)

By developing a mountain pass argument on

S1(c) = {u ∈ H1(RN ) : ∥u∥2L2(RN ) = c}, c > 0, (1.8)

Bellazzini et al. [7] proved that if p ∈ ( 103 , 6), there exists c0 > 0 such that for any c ∈ (0, c0), (1.7)

possesses at least one couple (uc, λc) ∈ H1(RN )× R− of weak solution with ∥uc∥22 = c.

In [3], Bartsch and de Valeriola also considered the semi-linear Schrödinger equation (1.6). Under

suitable assumptions on g, Bartsch and de Valeriola [3] proved there are infinitely many normalized

solutions to (1.6). Inspired by [3], Luo [25] proved that if p ∈ ( 103 , 6), there exists a c0 > 0 such that for any

c ∈ (0, c0), there exists an unbounded sequence of couples of weak solutions {(±un, λn)} ⊆ H1
r (RN )×R−

to (1.7) with ∥un∥22 = c for each n ∈ N+.

In [19], Jeanjean et al. considered the quasi-linear Schrödinger equation

−∆u− u∆(u2)− λu = |u|p−1u in RN , (1.9)
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where p ∈ (1, 3N+2
N−2 ) if N > 3 and p ∈ (1,+∞) if N = 1, 2. Using a perturbation method, Jeanjean et

al. [19] proved that there exist at least two normalized solutions to (1.9). One is a mountain pass solution

and the other is a minimizer either local or global.

Motivated by the above papers, in this paper, we discuss the existence of normalized solutions to (1.1),

including the normalized ground state solution and the high energy normalized solution. Since our

definition of the normalized ground state solution does not seem to be completely standard, we now give

the precise definition of it. Following [6], for any fixed c > 0, we say that uc ∈ S(c) is a normalized

ground state solution to (1.1) if I ′|S(c)(uc) = 0 and

I(uc) = inf{I(u) |u ∈ S(c), I ′ |S(c)(u) = 0}.

Furthermore, we say that vc ∈ S(c) is a high energy normalized solution to (1.1) if I ′ |S(c)(vc) = 0

and

I(vc) > inf{I(u) |u ∈ S(c), I ′ |S(c)(u) = 0}.

For any c > 0, we set γ(c) := infu∈S(c) I(u). It is standard that the minimizers of γ(c) are critical points

of I|S(c) as well as normalized ground state solutions to (1.1). By scaling ut(x) = t
N
2 u(tx), t > 0, it is

easy to know that p = 1+ α+2s
N is the L2-critical or mass-critical exponent for our minimizing problem in

the sense that for any c > 0, γ(c) > −∞ if p ∈ (1+ α
N , 1+

α+2s
N ) and γ(c) = −∞ if p ∈ (1+ α+2s

N , N+α
N−2s ).

However, we cannot deduce that γ(c) > −∞ or γ(c) = −∞ for c > 0 if p = 1 + α+2s
N . In the mass-

subcritical case p ∈ (1 + α
N , 1 + α+2s

N ), I(u) is bounded from below and coercive on S(c) (see [12,

Lemma 4.4]). As mentioned above, d’Avenia et al. [12] proved that when p ∈ (1+ α
N , 1+

α+2s
N ), I(u) has

a minimum point on S(c), that can be assumed non-negative, radially symmetric and decreasing (see [12,

Theorem 4.5]). To the best of our knowledge, in the mass-supercritical case where p ∈ (1 + α+2s
N , N+α

N−2s ),

the existence of critical points of I(u) restricted on S(c) is still unknown. In this paper, we consider the

mass-supercritical case where p ∈ (1 + α+2s
N , N+α

N−2s ).

Our main results are as follows:

Theorem 1.1. Let p ∈ (max{1+ α+2s
N , 2}, N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and c > 0. Then there

exists a couple of weak solution (uc, λc) ∈ Hs(RN )× R− to (1.1) with ∥uc∥22 = c and uc can be assumed

positive and radially symmetric-decreasing in RN . Furthermore, uc ∈ S(c) is a normalized ground state

of (1.1) with 
∥(−∆)

s
2uc∥2 → +∞,

λc → −∞,

I(uc) → +∞

as c→ 0 and 
∥(−∆)

s
2uc∥2 → 0,

λc → 0,

I(uc) → 0

as c→ +∞.

Theorem 1.2. Let p ∈ (max{1 + α+2s
N , 2}, N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and c > 0. Then

there exists a sequence of couples of weak solutions {(vn, λ̃n)} ⊆ Hs
r (RN ) × R− to (1.1) with ∥vn∥22 = c

and ∥vn∥Hs(RN ) → +∞ as n→ +∞, while {vn} is uniformly bounded, i.e., there exists a constant C > 0

such that |vn| 6 C on RN .

Remark 1.3. To the best of our knowledge, the main results in this paper are new. Theorem 1.1

indicates that a normalized ground state of (1.1) exists even if the corresponding energy I(u) is unbounded

from below on S(c). This is a complement of the results in [12] about the existence of solutions to (1.1)

with a prescribed L2−norm for p ∈ (1 + α
N , 1 +

α+2s
N ). Roughly speaking, Theorem 1.1 generalizes the

result of Theorem 4.5 in [12] to the mass-supercritical case p ∈ (1 + α+2s
N , N+α

N−2s ).
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Remark 1.4. Theorem 1.2 indicates that (1.1) has infinitely many high energy normalized solutions.

Notice that, although when p ∈ (1 + α+2s
N , N+α

N−2s ) and the frequency λ ∈ R is a fixed and assigned

parameter, as mentioned above, d’Avenia et al. [12] obtained a multiplicity result for solutions to (1.1)

(see [12, Theorem 1.2]), there is no information about the L2-norm of the solutions. So Theorem 1.2 in

this paper can also be viewed as a complement of the main results in [12].

Now, we explain the main idea of the proofs of Theorems 1.1 and 1.2. In the mass-supercritical case

p ∈ (1 + α+2s
N , N+α

N−2s ), the functional I(u) is unbounded from below on S(c) (see Lemma 2.1) and the

minimization argument on S(c) used in [12] does not work any more. For this reason, we try to construct

a submanifold of S(c), on which I(u) is bounded from below and coercive, and we turn to look for

minimizers on such a submanifold. This is motivated by the minimization method developed on the

Nehari manifold and the recent works [17,21,29].

We give the idea of constructing such a submanifold. Notice that, if u is a critical point of I |S(c),

then I ′(u) − λu = 0 in H−s(RN ), where λ ∈ R appears as a Lagrange multiplier. Hence u satisfies

Nλ(u) = ⟨I ′(u)− λu, u⟩ = 0 and the Pohozaev identity (see Lemma 2.5):

Pλ(u) := (N − 2s)

∫
RN

|(−∆)
s
2u|

2
− λN

∫
RN

|u|2 − α+N

p

∫
RN

(κα ∗ |u|p)|u|p = 0. (1.10)

Combining the Nehari functional Nλ(u) with the Pohozaev functional Pλ(u), we construct a submanifold

V (c) as follows:

V (c) := {u ∈ S(c) : Q(u) = 0}, (1.11)

where

Q(u) := N ·Nλ(u)− Pλ(u) = 2s

∫
RN

|(−∆)
s
2u|

2
− pN −N − α

p

∫
RN

(κα ∗ |u|p)|u|p. (1.12)

Next, we consider the following minimization problem:

m(c) := inf
u∈V (c)

I(u). (1.13)

We get a critical point of I restricted to S(c) by proving that every minimizer of I restricted to V (c)

is indeed a critical point of I restricted to S(c). Notice that we have two restrictions in V (c), which is

different from the situation in [17, 21, 29]. In order to use Lagrange’s theorem, we need to prove that

Q′(u) and D′(u) are linearly independent if u is a minimizer of I restricted to V (c), where D(u) := ∥u∥22
(see Lemma 2.9 for details). The set of minimizers of I(u) on V (c) is defined as

Mc :=
{
u ∈ V (c) : I(u) = inf

v∈V (c)
I(v)

}
. (1.14)

Furthermore, we obtain a result concerning some properties of the elements in Mc (see Proposition 2.16).

Then we prove the first part of Theorem 1.1.

The idea of proving the dependence of ∥(−∆)
s
2uc∥2 and λc on the value of c comes from [18, 31, 32].

The fact that uc is a minimizer of I(u) restricted on V (c) and Q(uc) = 0 are crucial. The case of c→ 0+

is easy to prove. However, in the case of c → +∞, for a prescribed function u ∈ V (1), we need to

construct a function ũ ∈ V (c) whose energy I(ũ) → 0 as c → +∞. By the fact that m(c) > 0 and uc is

a minimizer, we end the proof with a careful analysis.

The proof of Theorem 1.2 is inspired by Bartsch and de Valeriola [3]. Since I is unbounded from below

on S(c) if p ∈ (1 + α+2s
N , N+α

N−2s ), the genus of the sublevel set

Id := {u ∈ S(c) : I(u) 6 d}

is always infinite. Thus the classical argument based on the Kranoselski genus [31] does not work in

obtaining the existence of infinitely many normalized solutions to (1.1). First, we present a new type of

linking geometry for the functional I restricted on

Sr(c) = {u ∈ Hs
r (RN ) : ∥u∥22 = c}, c > 0. (1.15)
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Then a min-max procedure is set up to construct an unbounded sequence {γn(c)} of critical values for I

on Sr(c). At each level γn(c), by using an abstract lemma developed by Jeanjean [18, Lemma 2.3],

we get a Palais-Smale sequence {vnk }
+∞
k=1 with an additional condition Q(vnk ) → 0 as k → +∞ (see

Proposition 2.21), where Q(u) is defined in (1.12). With this extra condition, we prove the boundness

and non-vanishing of {vnk } (see the proof of Proposition 2.23). Since the radially symmetric Sobolev

space Hs
r (RN ) embeds compactly in Lq(RN ) for 2 < q < 2∗s, where 2∗s = 2N

N−2s , we get the compactness

of the Palais-Smale sequence. Thus, we get a critical point vn at each level γn(c). Finally, we prove that

the critical point sequence {vn} is unbounded in Hs(RN ). In addition, by using a decay and regularity

property of solutions to (1.1) (see Lemma 2.5), we prove that {vn} is in C2(RN ) and uniformly bounded

on RN .

Remark 1.5. The hypothesis p > 2 is used to get a better regularity of solutions to (1.1) and to

guarantee the Pohozaev identity (see Lemma 2.5), which is useful for our purpose.

2 Preliminary results

In this section, we give some preliminary results. First, we define, for short, the following quantities:

A(u) := ∥(−∆)
s
2u∥22 =

C(N, s)

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
,

B(u) :=

∫
RN

(κα ∗ |u|p)|u|p =

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
,

D(u) := ∥u∥22 =

∫
RN

|u|2.

Next, we introduce a scaling. For u ∈ S(c), set ut(x) = t
N
2 u(tx), t > 0. Then

A(ut) = t2sA(u), D(ut) = D(u), B(ut) = tNp−N−αB(u)

and

I(ut) =
1

2
t2sA(u)− 1

2p
tNp−N−αB(u). (2.1)

Lemma 2.1. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then for any u ∈ S(c),

ut ∈ S(c), A(ut) → +∞ and I(ut) → −∞ as t→ ∞.

Proof. For any u ∈ S(c), since D(ut) = D(u), ut(x) ∈ S(c). By (2.1), A(ut) → +∞ and I(ut) → −∞
as t→ ∞ follow from the fact that p ∈ (1 + α+2s

N , N+2α
N−2s ).

Lemma 2.2 (See [12, Lemma 2.1]). Let p ∈ (1 + α
N ,

N+α
N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N). Then for

any u ∈ Hs(RN ), ∫
RN

(κα ∗ |u|p)|u|p 6 C∥u∥2p2Np
N+α

, (2.2)∫
RN

(κα ∗ |u|p)|u|p 6 C∥(−∆)
s
2u∥2δp2 ∥u∥2(1−δ)p

2 , δ =
Np−N − α

2sp
. (2.3)

Now we show that the set V (c) constructed in (1.11) is nonempty in Hs(RN ).

Lemma 2.3. Let p ∈ (1 + 2s+α
N , N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then for any u ∈ S(c),

c > 0, there exists a unique t0 > 0 such that I(ut0) = maxt>0 I(u
t) and ut0 ∈ V (c). In particular,

(i) t0 < 1 ⇔ Q(u) < 0;

(ii) t0 = 1 ⇔ Q(u) = 0.

Proof. Define

τ(t) := I(ut) =
1

2
t2sA(u)− 1

2p
tNp−N−αB(u).
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By Lemma 2.1 and an elementary analysis, we know that τ(t) has a unique critical point t0 > 0 corre-

sponding to its maximum on (0,+∞). Hence

I(ut0) = max
t>0

I(ut) and τ ′(t0) = st2s−1
0 A(u)− Np−N − α

2p
tNp−N−α−1
0 B(u) = 0.

Thus Q(ut0) = 2st2s0 A(u)−
Np−N−α

p tNp−N−α
0 B(u) = 0, i.e., ut0 ∈ V (c). Moreover,

Q(u) = 2sA(u)− Np−N − α

p
B(u) = 2sA(u)(1− t2s+N+α−Np

0 ),

which concludes (i) and (ii).

Let X0 be a subset of a Banach space X. Recall that a functional E : X → R is called coercive on X0

if, for every sequence {uk} ⊂ X0, ∥uk∥ → +∞ implies E(uk) → +∞ (see [1, Definition 1.5.5]). Having

this in mind, we give the following result.

Lemma 2.4. Let p ∈ (1 + 2s+α
N , N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then I(u) is bounded

from below and coercive on V (c). Moreover, there exists a constant C0 > 0 such that I(u) > C0 for all

u ∈ V (c).

Proof. For any u ∈ V (c), Q(u) = 2sA(u)−Np−N−α
p B(u) = 0, and then B(u) = 2sp

Np−N−αA(u). We have

I(u) =
1

2
A(u)− 1

2p
B(u) =

(
1

2
− s

Np−N − α

)
A(u) > 0,

and I is coercive on V (c). Furthermore, by Lemma 2.2,

2sp

Np−N − α
A(u) = B(u) 6 C ·A(u)

Np−N−α
2s D(u)

2sp−Np+N+α
2s .

Since p ∈ (1 + 2s+α
N , N+α

N−2s ), there exists a constant C̃0 > 0 such that A(u) > C̃0 > 0. Then there exists

C0 =

(
1

2
− s

Np−N − α

)
C̃0

such that

I(u) =

(
1

2
− s

Np−N − α

)
A(u) > C0.

This completes the proof.

Next, we show some results related to weak solutions to (1.1).

Lemma 2.5 (See [12, Theorem 3.3] and [30, Proposition 2]). Let p ∈ (1+ α
N ,

N+α
N−2s ), N > 3, s ∈ (0, 1),

α ∈ (0, N) and u is a weak solution to (1.1). Then

(i) there exists C > 0 such that

|u(x)| 6 C
1

(1 + |x|2)
N+2s

2

, if p > 2;

(ii) u ∈ C2(RN ) and satisfies the following Pohozaev identity:

(N − 2s)

∫
RN

|(−∆)
s
2u|

2
− λN

∫
RN

|u|2 − α+N

p

∫
RN

(κα ∗ |u|p)|u|p = 0, if p > 2.

Lemma 2.6. Let p ∈ (max{1 + α+2s
N , 2}, N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and λ ∈ R. If

v ∈ Hs(RN ) is a weak solution to (1.1), then Q(v) = 0. Moreover, v = 0 if λ > 0.
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Proof. By Lemma 2.5, the following Pohozaev identity holds for v ∈ Hs(RN ):

(N − 2s)

∫
RN

|(−∆)
s
2 v|

2
− λN

∫
RN

|v|2 − α+N

p

∫
RN

(κα ∗ |v|p)|v|p = 0.

Multiplying (1.1) by v and integrating we derive a second identity,∫
RN

|(−∆)
s
2 v|

2
− λ

∫
RN

|v|2 −
∫
RN

(κα ∗ |v|p)|v|p = 0.

Thus we immediately have

Q(v) = 2s

∫
RN

|(−∆)
s
2 v|

2
− pN −N − α

p

∫
RN

(κα ∗ |v|p)|v|p = 0.

Also with the simple calculations, we obtain

λD(v) =
(N − 2s)p− (N + α)

Np− (N + α)
A(v).

(1) If λ > 0, we get v ≡ 0 immediately.

(2) If λ = 0, A(v) = 0 then v ≡ 0.

Lemma 2.7. Let p ∈ (max{1+ α
N , 2},

N+α
N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). If u is a critical point

of I |S(c), then I
′(u)− λcu = 0 in H−s(RN ) for some λc < 0.

Proof. Since u is a critical point of I |S(c), there exists λc ∈ R such that I ′(u)− λcu = 0 in H−s(RN ).

Thus

⟨I ′(u)− λcu, u⟩ = A(u)−B(u)− λcD(u) = 0. (2.4)

By the Pohozaev identity (see Lemma 2.5), u satisfies

(N − 2s)A(u)− α+N

p
B(u)− λcN ·D(u) = 0. (2.5)

Combining (2.4) with (2.5), we have

λc =
(N − 2s)p− (N + α)

[Np− (N + α)]c
A(u) < 0

for p ∈ (1 + α
N ,

N+α
N−2s ).

Recall a useful result for constrained minimization problems in the following lemma.

Lemma 2.8 (See [11, Corollary 4.1.2]). Let X be a real Banach space, U ⊂ X be an open set. Suppose

that f, g1, . . . , gm : U → R1 are C1 functions and x0 ∈M is such that f(x0) = infx∈M f(x) with

M = {x ∈ U | gi(x) = 0, i = 1, 2, . . . ,m}.

If {g′i(x0)}mi=1 is linearly independent, then there exist λ1, . . . , λm ∈ R such that

f ′(x0) +

m∑
i=1

λig
′
i(x0) = 0.

Lemma 2.9. Let p ∈ (max{1 + α+2s
N , 2}, N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then each

minimizer of I |V (c) is a critical point of I |S(c).

Proof. Suppose that u is a minimizer of I |V (c). Then by Lemma 2.8, either (i) Q′(u) and D′(u) are

linearly dependent, or (ii) there exist λ1, λ2 ∈ R such that

I ′(u)− λ1Q
′(u)− λ2u = 0 in H−s(RN ). (2.6)
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If (i) holds, then u satisfies

2s(−∆)su− λ∗u = (Np−N − α)(κα ∗ |u|p)|u|p−2u

for some λ∗ ∈ R. Multiplying the above equation by u and integrating, we get

2sA(u)− (Np−N − α)B(u)− λ∗D(u) = 0.

By the Pohozaev identity, we derive

2s(N − 2s)A(u)− α+N

p
(Np−N − α)B(u)− λ∗ND(u) = 0.

Thus we have

4s2A(u)− (Np−N − α)2

p
B(u) = 0.

Notice that Q(u) = 0 and p > 1 + 2s+α
N . Then we have immediately B(u) = 0, which leads to a

contradiction. This implies that (i) does not occur and (ii) is true. It is enough to show that λ1 = 0.

By (2.6) we have

⟨I ′(u)− λ1Q
′(u)− λ2u, u⟩

= (1− 4λ1s)A(u)− [1− 2λ1(Np−N − α)]B(u)− λ2D(u) = 0. (2.7)

By the Pohozaev identity,

(1− 4λ1s)(N − 2s)A(u)− [1− 2λ1(Np−N − α)]
N + α

p
B(u)− λ2N ·D(u) = 0. (2.8)

Combining (2.7) with (2.8), we have

(1− 4λ1s) · 2sA(u) = [1− 2λ1(Np−N − α)]

(
N − N + α

p

)
B(u). (2.9)

Since u ∈ V (c), B(u) = 2sp
Np−N−αA(u), and then by (2.9) we have 4λ1s = 2λ1(Np − N − α). Hence

λ1 = 0, for p > 1 + 2s+α
N . Finally, by Lemma 2.7, we have λ2 < 0.

Lemma 2.9 indicates that the restriction Q(u) = 0 in V (c) is a natural constraint. In order to prove

the minimizing problem (1.13) is attained, we need the following monotonic condition of m(c).

Lemma 2.10. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and c > 0. Define m(c) :=

infu∈V (c) I(u). Then the function c → m(c) is strictly decreasing on (0,+∞), where V (c) is given

in (1.11).

Proof. By Lemma 2.4, m(c) > C0 > 0 is well-defined. For any 0 < c1 < c2 < +∞, by Lemma 2.3,

there exists {un} ⊆ V (c1) such that

I(un) = max
t>0

I(utn) 6 m(c1) +
1

n
.

Similar to the proof of Lemma 2.4, we get that there exist constants ki > 0 (i = 1, 2, 3, 4) which are

independent of n, such that k1 6 A(un) 6 k2 and k3 6 B(un) 6 k4. Set

vn(x) =

(
c1
c2

) 1
2s ·

N−2s
2

un

((
c1
c2

) 1
2s

x

)
.

Then

A(vn) = A(un), B(vn) =

(
c1
c2

) (N−2s)p−N−α
2s

B(un), D(vn) =
c2
c1
D(un) = c2.
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Moreover, by Lemma 2.3, there exists tn > 0 such that vtnn ∈ V (c2) and I(vtnn ) = maxt>0 I(v
t
n). By

Q(vtnn ) = 0 and the boundness of A(un) and B(un), there exists a positive constant C > 0 such that

tn > C > 0. Therefore,

m(c2) 6 I(vtnn )

=
1

2
t2sn A(un)−

1

2p
tNp−N−α
n

(
c1
c2

) (N−2s)p−N−α
2s

B(un)

= I(utnn ) +
1

2p
tNp−N−α
n B(un)−

1

2p
tNp−N−α
n

(
c1
c2

) (N−2s)p−N−α
2s

B(un)

= I(utnn )− 1

2p
tNp−N−α
n B(un)

[(
c1
c2

) (N−2s)p−N−α
2s

− 1

]

6 m(c1) +
1

n
−
[(

c1
c2

) (N−2s)p−N−α
2s

− 1

]
CNp−N−αk3, (2.10)

which implies that m(c2) < m(c1), by letting n→ +∞.

Lemma 2.11 (See [12, Lemma 2.3]). If {un} is bounded in Hs(RN ) and for some σ > 0 and 2 6 q < 2∗s
we have

sup
x∈RN

∫
Bσ(x)

|un|q → 0, as n→ +∞,

then un → 0 in Lr(RN ) for 2 < r < 2∗s.

Lemma 2.12 (Brezis-Lieb type theorem, see [26, Lemma 2.4]). Let N ∈ N, α ∈ (0, N), p ∈ [1, 2N
N+α )

and {un} be a bounded sequence in L
2Np
N+α (RN ). If un → u a.e. in RN , as n→ +∞, then

lim
n→+∞

(B(un)−B(un − u)) = B(u).

Lemma 2.13 (See [24, Theorem 3.7]). Let f , g and h be three Lebesgue measurable non-negative

functions on RN . Then, with

Φ(f, g, h) :=

∫
RN

∫
RN

f(x)g(x− y)h(y)dxdy,

we have

Φ(f, g, h) 6 Φ(f⋆, g⋆, h⋆),

where f⋆, g⋆ and h⋆ denote the symmetric-decreasing rearrangement of f , g and h.

Then we prove that m(c) can be attained.

Proposition 2.14. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and c > 0. Then

m(c) := infu∈V (c) I(u) is attained, where V (c) is given in (1.11).

Proof. Let {un} be a minimizing sequence for m(c). By Lemma 2.4, {un} is bounded in Hs(RN ).

Then up to a subsequence and up to a translation, there exists u ̸= 0 in Hs(RN ) such that
un ⇀ u in Hs(RN ),

un → u in L
q

loc(RN ),

un → u a.e. in RN ,

for 2 < q < 2∗s. Otherwise, by Lemma 2.11, un → 0 in L
2Np
N+α (RN ). Then by Lemma 2.2, B(un) → 0.

Since Q(un) = 2sA(un) − Np−N−α
p B(un) = 0, A(un) → 0. Therefore, I(un) → 0 and m(c) = 0,

which contradicts the fact that m(c) > 0. Let u⋆n be the symmetric-decreasing rearrangement of un.

By Lemma 2.13 with f(x) = |un(x)|p, h(y) = |un(y)|p and g(x) = |x|α−N . We have B(u⋆n) > B(un).

In addition, from the fact that A(u⋆n) 6 A(un) (see [2, Theorem 3]), we have I(u⋆n) 6 I(un), Q(u⋆n) 6
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Q(un) = 0. By Lemma 2.3, there exists tn ∈ (0, 1] such that Q((u⋆n)
tn) = 0. For un ∈ V (c), (u⋆n)

tn ∈ V (c),

by the relationship between I(u) and Q(u),

I(u)− 1

2(Np−N − α)
Q(u) =

(
1

2
− s

Np−N − α

)
A(u),

we have I(un), I((u
⋆
n)

tn) > 0. Thus,

I((u⋆n)
tn) = I((u⋆n)

tn)− 1

2(Np−N − α)
Q((u⋆n)

tn)

=
Np−N − α− 2s

2(Np−N − α)
A((u⋆n)

tn)

=
Np−N − α− 2s

2(Np−N − α)
tn

2sA((u⋆n))

6 Np−N − α− 2s

2(Np−N − α)
tn

2sA(un)

= t2sn

(
I(un)−

1

2(Np−N − α)
Q(un)

)
= t2sn I(un)

6 I(un). (2.11)

Denote ûn = (u⋆n)
tn . By (2.11), {ûn} is a minimizing sequence for m(c). Then by Lemma 2.4, {ûn} is

bounded in Hs(RN ) and up to a subsequence, there exists û ̸= 0 in Hs(RN ) such that
ûn ⇀ û in Hs

r (RN ),

ûn → û in Lq(RN ),

ûn → û a.e. in RN ,

for 2 < q < 2∗s. Next, we shall prove that ∥û∥22 = c. Just suppose that ∥û∥22 = c ∈ (0, c), and then by

Lemma 2.10, m(c) > m(c). Since ûn ⇀ û in Hs
r (RN ), Q(û) 6 limn→∞Q(ûn) = 0. By Lemma 2.3, there

exists t0 ∈ (0, 1] such that ût0 ∈ V (c). Then

m(c) 6 I(ût0) = I(ût0)− 1

2(Np−N − α)
Q(ût0)

=
Np−N − α− 2s

2(Np−N − α)
A(ût0)

=
Np−N − α− 2s

2(Np−N − α)
t2s0 A(û)

6 Np−N − α− 2s

2(Np−N − α)
A(û)

6 lim
n→∞

Np−N − α− 2s

2(Np−N − α)
A(ûn)

= lim
n→∞

[
I(ûn)−

1

2(Np−N − α)
Q(ûn)

]
= m(c), (2.12)

which leads to a contradiction. So t0 = 1, c = c, i.e., ∥û∥22 = c and I(û) = m(c). Then by (2.12) we have

A(ûn − û) = o(1), ûn → û in Hs(RN ) and û is a minimizer for m(c).

In order to get a positive normalized ground state solution to (1.1), we need the following property of

the set Mc defined in (1.14).

Proposition 2.15. Let p ∈ (max{1 + α+2s
N , 2}, N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N) and c > 0. Then

(i) |uc| ∈ Mc if uc ∈ Mc;

(ii) |uc| > 0 if uc ∈ Mc.
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Proof. Let uc ∈ Hs(RN ) with uc ∈ V (c). Since B(|uc|) = B(uc), A(|uc|) 6 A(uc), we have that

I(|uc|) 6 I(uc) and Q(|uc|) 6 Q(uc) = 0. In addition, by Lemma 2.3, there exists t0 ∈ (0, 1] such

that Q(|uc|t0) = 0. We claim that I(|uc|t0) 6 t2s0 · I(uc). Indeed, for uc ∈ V (c), |uc|t0 ∈ V (c), by the

relationship between I(u) and Q(u), we have I(uc), I(|uc|t0) > 0. Thus,

I(|uc|t0) = I(|uc|t0)−
1

2(Np−N − α)
Q(|uc|t0)

=
Np−N − α− 2s

2(Np−N − α)
A(|uc|t0)

=
Np−N − α− 2s

2(Np−N − α)
t0

2sA(|uc|)

6 Np−N − α− 2s

2(Np−N − α)
t0

2sA(uc)

= t2s0

(
I(uc)−

1

2(Np−N − α)
Q(uc)

)
= t2s0 I(uc). (2.13)

Therefore, if uc ∈ Hs(RN ) is a minimizer of I(u) on V (c) we have

I(uc) = inf
u∈V (c)

I(u) 6 I(|uc|t0) 6 t2s0 I(uc),

which implies t0 = 1. Then Q(|uc|) = 0 and we conclude that A(|uc|) = A(uc) and I(|uc|) = I(uc). (i) is

proved.

Now, since |uc| is a minimizer of I(u) on V (c), by Lemmas 2.7 and 2.9, (|uc|, λc) ∈ Hs(RN )×R− satisfies

(1.1) for some λc < 0. Next, we claim that |uc| > 0 for all x ∈ RN . We argue by contradiction. Just

suppose that there exists x0 ∈ RN such that |uc|(x0) = 0. Then, it follows from (1.1) that (−∆)s|u|(x0)
= 0. So

(−∆)s|uc|(x0) = C(N, s)P.V.

(
lim
ε→0

∫
ε6|x0−y|6r

−|uc|(y)
|x0 − y|N+2s

dy +

∫
RN\B(x0,r)

−|uc|(y)
|x0 − y|N+2s

dy

)
= 0,

which implies that ∫
RN\B(x0,r)

−|uc|(y)
|x0 − y|N+2s

dy = 0 for all r > 0.

Therefore, |uc| ≡ 0 in RN , which leads to a contradiction. Thus the proof is completed.

Afterwards, we give some preliminaries for the proof of Theorem 1.2. Let {Vn} ⊂ Hs
r (RN ) be a strictly

increasing sequence of finite-dimensional linear subspaces in Hs
r (RN ) such that

∪
n Vn is dense in Hs

r (RN ).

We denote by V ⊥
n the orthogonal space of Vn in Hs

r (RN ).

Lemma 2.16. Let p ∈ (1 + α
N ,

N+α
N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then it holds that

µn := inf
u∈V ⊥

n−1

∫
RN (|(−∆)

s
2u|

2
+ |u|2)

(
∫
RN (κα ∗ |u|p)|u|p)

1
p

= inf
u∈V ⊥

n−1

∥u∥2

B(u)
1
p

→ +∞, n→ ∞.

Proof. Just suppose that there exists a sequence {un} ⊆ Hs
r (RN ) such that un ∈ V ⊥

n−1, B(un) = 1 and

∥un∥ → c∗ < +∞. Then there exists u ∈ Hs
r (RN ) such that, up to a subsequence

un ⇀ u in Hs
r (RN ),

un → u in L
2Np
N+α (RN ),

un → u a.e. in RN .

Let v ∈ Hs
r (RN ) and {vn} ⊆ Hs

r (RN ) such that vn ∈ Vn−1 and vn → v in Hs(RN ). Then

|(un, v)| 6 |(un, v − vn)|+ |(un, vn)| 6 ∥un∥∥v − vn∥ → 0.
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Thus un ⇀ 0 = u in Hs
r (RN ). While by (2.2), 1 = B(un) 6 C∥un∥2p2Np

N+α

→ 0, which leads to a

contradiction.

Now for c > 0 fixed and for each n ∈ N+ and n > 2, we define Sr(c) by (1.15),

ρn :=

(
N + α+ 2s

NL
µp
n

) 1
p−1

with L = max
x>0

(x+ c)
p

xp + cp
,

Bn := {u ∈ V ⊥
n−1 ∩ Sr(c) : ∥(−∆)

s
2u∥22 = ρn} (2.14)

and

bn := inf
u∈Bn

I(u). (2.15)

Then we have the following lemma.

Lemma 2.17. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then bn → ∞ as n→ ∞.

Proof. For any u ∈ Bn, we have that

I(u) =
1

2

∫
RN

|(−∆)
s
2u|

2
− 1

2p

∫
RN

(κα ∗ |u|p)|u|p

> 1

2

∫
RN

|(−∆)
s
2u|

2
− 1

2p
· 1

µp
n
·
(∫

RN

(|(−∆)
s
2u|

2
+ |u|2)

)p

> 1

2

∫
RN

|(−∆)
s
2u|

2
− 1

2p
· 1

µp
n
· L

[(∫
RN

|(−∆)
s
2u|

2
)p

+ cp
]

=

(
Np−N − α− 2s

2Np

)
ρn − Lcp

2pµp
n
. (2.16)

From this estimate and Lemma 2.16, it follows since p > 1 + α+2s
N , that bn → ∞ as n→ ∞.

Next, we begin to set up our min-max procedure. First we introduce the map

κ : Hs
r (RN )× R → Hs

r (RN )

(u, θ) → κ(u, θ) := e
N
2 θu(eθx).

(2.17)

Observe that for any given u ∈ Sr(c), we have κ(u, θ) ∈ Sr(c) for all θ ∈ R. Also we know from Lemma 2.1

that {
A(κ(u, θ)) → 0, I(κ(u, θ)) → 0, θ → −∞,

A(κ(u, θ)) → +∞, I(κ(u, θ)) → −∞, θ → +∞.
(2.18)

Thus, we deduce that for each n ∈ N, there exists θn > 0, such that

gn : [0, 1]× (Sr(c) ∩ Vn) → Sr(c), gn(t, u) → κ(u, (2t− 1)θn) (2.19)

satisfying {
A(gn(0, u)) < ρn, A(gn(1, u)) > ρn,

I(gn(0, u)) < bn, I(gn(1, u)) < bn.
(2.20)

Now we define

Γn := {g : [0, 1]× (Sr(c) ∩ Vn) → Sr(c) | g is continuous, odd in u

and such that ∀u : g(0, u) = gn(0, u), g(1, u) = gn(1, u)}. (2.21)

Clearly gn ∈ Γn. Before proving the key intersection result, we need the following linking property.

Lemma 2.18. For each g ∈ Γn, there exists (t, u) ∈ [0, 1]× (Sr(c)∩Vn) such that g(t, u) ∈ Bn with Bn

defined in (2.14).
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Proof. The idea of the proof of this lemma comes from [3]. First, we recall some properties of the

cohomological index for spaces with an action of the group G = {−1, 1}. It associates to a G-space X an

element i(X) ∈ N ∪ {∞}. We need the following three properties (see [3, Lemma 2.3]):

(I1) If G acts on Sn−1 via multiplication, then i(Sn−1) = n.

(I2) If there exists an equivariant map X → Y , then i(X) 6 i(Y ).

(I3) Let X = X0 ∪ X1 be metrisable and X0, X1 ⊂ X be closed G-invariant subspaces. Let Y be

a G-space and consider a continuous map ϕ : [0, 1] × Y → X such that each ϕt = ϕ(t, ·) : Y → X is

equivariant. If ϕ0(Y ) ⊂ X0 and ϕ1(Y ) ⊂ X1, then

i(Im(ϕ) ∩X0 ∩X1) > i(Y ),

where Im(ϕ) := ϕ([0, 1] × Y ) and a map h : X → X is equivariant if g ◦ h = h ◦ g for every g ∈ G. Let

Pn−1 : Hs
r (RN ) → Vn−1 be the orthogonal projection and set

hn : Sr(c) → Vn−1 × R+, u→ (Pn−1u, ∥(−∆)
s
2u∥22).

Then clearly, Bn = h−1
n (0, ρn). We fix g ∈ Γn and consider the map

ϕ = hn ◦ g : [0, 1]× (Sr(c) ∩ Vn) → Vn−1 × R+ =: X.

Then

ϕ0(Sr(c) ∩ Vn) ⊂ Vn−1 × (0, ρn] =: X0

and

ϕ1(Sr(c) ∩ Vn) ⊂ Vn−1 × [ρn,+∞) =: X1.

By (I1)–(I3),

i(Im(ϕ) ∩X0 ∩X1) > i(Sr(c) ∩ Vn) = dimVn.

Just suppose that there would not exist (t, u) ∈ [0, 1]× (Sr(c) ∩ Vn) such that g(t, u) ∈ Bn. Then

Im(ϕ) ∩X0 ∩X1 ⊂ (Vn−1 \ {0})× {ρn}.

By (I1) and (I2), we have

i(Im(ϕ) ∩X0 ∩X1) 6 i((Vn−1 \ {0})× {ρn}) = dimVn−1.

Then dimVn 6 dimVn−1, which leads to a contradiction. Thus the proof is completed.

Lemma 2.19. For each n ∈ N+,

γn(c) := inf
g∈Γn

max
06t61,u∈Sr(c)∩Vn

I(g(t, u)) > bn.

Proof. It follows from Lemma 2.18 immediately.

Next, we shall prove that the sequence {γn(c)} is indeed a sequence of critical values for I restricted

to Sr(c). To this end, we first show that there exists a bounded Palais-Smale sequence at each level γn(c).

From now on we fix an arbitrary n ∈ N+. To find such a Palais-Smale sequence, we apply the approach

developed by Jeanjean [18], already applied in [3]. Notice that, in [3, 18], the function space is H1
r (RN ),

where we only need to change it to Hs
r (RN ). First, we introduce the auxiliary functional

Ĩ : Sr(c)× R → R, (u, θ) → I(κ(u, θ)),

where κ(u, θ) is given in (2.17), and the set

Γ̃n := {g̃ : [0, 1]× (Sr(c) ∩ Vn) → Sr(c)× R | g̃ is continuous, odd in u,

and such that κ ◦ g̃ ∈ Γn}. (2.22)
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Clearly, for any g ∈ Γn, g̃ := (g, 0) ∈ Γ̃n.

Observe the definition

γ̃n(c) := inf
g̃∈Γ̃n

max
06t61,u∈Sr(c)∩Vn

Ĩ(g̃(t, u)),

we have that γ̃n(c) = γn(c). Indeed, by the definitions of γ̃n(c) and γn(c), this identity follows immediately

from the fact that the maps

φ : Γn → Γ̃n, g → φ(g) := (g, 0)

and

ψ : Γ̃n → Γn, g̃ → ψ(g̃) := κ ◦ g̃

satisfy

Ĩ(φ(g)) = I(g) and I(ψ(g̃)) = Ĩ(g̃).

We denote by E the space Hs
r (RN )×R endowed with the norm ∥ · ∥2E = ∥ · ∥2 + | · |2R, and by E∗ its dual

space and give a useful result, which was proved by using Ekeland’s variational principle.

Lemma 2.20. Let ε > 0. Suppose that g̃0 ∈ Γ̃n satisfies

max
06t61,u∈Sr(c)∩Vn

Ĩ(g̃0(t, u)) 6 γ̃n(c) + ε.

Then there exists a pair of (u0, θ0) ∈ Sr(c)× R such that

(1) Ĩ(u0, θ0) ∈ [γ̃n(c)− ε, γ̃n(c) + ε];

(2) min06t61,u∈Sr(c)∩Vn
∥(u0, θ0)− g̃0(t, u)∥E 6 √

ε;

(3) ∥Ĩ ′|Sr(c)×R(u0, θ0)∥E∗ 6 2
√
ε, i.e., |⟨Ĩ ′(u0, θ0), z⟩E∗×E | 6 2

√
ε∥z∥E holds, for all

z ∈ T̃(u0,θ0) := {(z1, z2) ∈ E, ⟨u0, z1⟩L2 = 0}.

Proof. The proof is the same as the proof of Lemma 2.3 in [18] and we only need to change the function

space from H1
r (RN ) to Hs

r (RN ), so we omit it here.

Proposition 2.21. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1) and α ∈ (0, N). Then for any fixed

c > 0 and n ∈ N+, there exists a sequence {vnk } ⊂ Sr(c) satisfying as k → ∞,
I(vnk ) → γn(c),

I ′ |Sr(c)
(vnk ) → 0,

Q(vnk ) → 0.

(2.23)

In particular {vnk } ⊂ Sr(c) is bounded in Hs
r (RN ).

Proof. From the definition of γn(c), we know that for each k ∈ N+, there exists a gk ∈ Γn such that

max
06t61,u∈Sr(c)∩Vn

I(gk(t, u)) 6 γn(c) +
1

k
.

Since γ̃n(c) = γn(c), g̃k = (gk, 0) ∈ Γ̃n satisfies

max
06t61,u∈Sr(c)∩Vn

Ĩ(g̃k(t, u)) 6 γ̃n(c) +
1

k
.

Thus applying Lemma 2.20, we obtain a sequence {(unk , θnk )} ⊂ Sr(c)× R such that

(i) Ĩ(unk , θ
n
k ) ∈ [γn(c)− 1

k , γn(c) +
1
k ];

(ii) min06t61,u∈Sr(c)∩Vn
∥(unk , θnk )− (gk(t, u), 0)∥E 6

√
1
k ;

(iii) ∥Ĩ ′ |Sr(c)×R(u
n
k , θ

n
k )∥E∗ 6 2

√
1
k , i.e., |⟨Ĩ

′(unk , θ
n
k ), z⟩E∗×E | 6 2

√
1
k∥z∥E holds for all

z ∈ T̃(un
k ,θ

n
k ) := {(z1, z2) ∈ E, ⟨unk , z1⟩L2 = 0}.
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For each k ∈ N+, let vnk = κ(unk , θ
n
k ). We shall prove that {vnk } ⊂ Sr(c) satisfies (2.23). First from (i) we

have that I(vnk ) → γn(c) as k → ∞, since I(vnk ) = I(κ(unk , θ
n
k )) = Ĩ(unk , θ

n
k ). Secondly, note that

⟨Ĩ ′(u, θ), (ϕ, r)⟩

= e2θs
∫
RN

(−∆)
s
2u(−∆)

s
2ϕ+ rse2θs

∫
RN

|(−∆)
s
2u|

2

− (Np−N − α)r

2p
eθ(Np−N−α)

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α

− eθ(Np−N−α)

∫
RN

(κα ∗ |u|p)|u|p−2
uϕ. (2.24)

Then we obtain

Q(vnk ) = 2sA(vnk )−
NP −N − α

p
B(vnk )

= 2se2θ
n
k sA(unk )−

NP −N − α

p
eθ

n
k (Np−N−α)B(unk )

= 2⟨Ĩ ′(unk , θnk ), (0, 1)⟩. (2.25)

Thus (iii) yields Q(vnk ) → 0 as k → ∞, for (0, 1) ∈ T̃(un
k ,θ

n
k ). Finally, we prove that

I ′ |Sr(c)
(vnk ) → 0 as k → ∞.

We claim that for k ∈ N sufficiently large,

|⟨I ′(vnk ), ω⟩| 6
2
√
2√
k
∥ω∥ holds for all ω ∈ Tvn

k
,

where Tvn
k
= {ω ∈ Hs

r (RN ), ⟨vnk , ω⟩L2 = 0}. Indeed, for ω ∈ Tvn
k
, setting ω̃ = κ(ω,−θnk ), one has

⟨I ′(vnk ), ω⟩ =
∫
RN

(−∆)
s
2 vnk (−∆)

s
2ω −

∫
RN

(κα ∗ |vnk |
p
)|vnk |

p−2
vnkω

= e2θ
n
k s

∫
RN

(−∆)
s
2unk (−∆)

s
2 ω̃

− eθ
n
k (Np−N−α)

∫
RN

(κα ∗ |unk |
p
)|unk |

p−2
unk ω̃

= ⟨Ĩ ′(unk , θnk ), (ω̃, 0)⟩. (2.26)

Since
∫
RN u

n
k ω̃ =

∫
RN v

n
kω, we obtain (ω̃, 0) ∈ T̃(un

k ,θ
n
k ) ⇔ ω ∈ Tvn

k
. From (ii) it follows that

|θnk | = |θnk − 0| 6 min
06t61,u∈Sr(c)∩Vn

∥(unk , θnk )− (gk(t, u), 0)∥E 6 1√
k
,

by which we deduce that, for k large enough,

∥(ω̃, 0)∥2E = ∥ω̃∥2 =

∫
RN

|ω|2 + e−2θn
k sA(ω) 6 2∥ω∥2.

Thus, by (iii) we have

|⟨I ′(vnk ), ω⟩| = ⟨Ĩ ′(unk , θnk ), (ω̃, 0)⟩ 6
2√
k
∥(ω̃, 0)∥E 6 2

√
2√
k
∥ω∥.

As a consequence,

∥I ′ |Sr(c)
(vnk )∥ = sup

ω∈Tvn
k
,∥ω∥61

|⟨I ′(vnk ), ω⟩| 6
2
√
2√
k

→ 0, k → ∞.
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To end the proof of the proposition, it remains to show that {vnk } ⊂ Sr(c) is bounded in Hs
r (RN ). But

since p ∈ (1 + α+2s
N , N+α

N−2s ), this follows from the relationship between I(u) and Q(u),

I(u)− 1

2(Np−N − α)
Q(u) =

Np−N − α− 2s

2(Np−N − α)
A(u). (2.27)

This completes the proof.

Next, we show the compactness of our Palais-Smale sequence {vnk } obtained in Proposition 2.21. First,

we give a useful lemma.

Lemma 2.22. Let F be a C1 functional on Hs(RN ). If {xk} ⊂ S(c) is bounded in Hs(RN ), then

F ′ |S(c)(xk) → 0 in H−s(RN ) ⇔ F ′(xk)− ⟨F ′(xk), xk⟩xk → 0 in H−s(RN ) as k → ∞.

Proof. The proof is the same as the proof of Lemma 3 in [10], so we omit it here.

Proposition 2.23. Let p ∈ (1 + α+2s
N , N+α

N−2s ), N > 3, s ∈ (0, 1), α ∈ (0, N), c > 0 and {vk} ⊂ Sr(c)

be a sequence satisfying as k → ∞, 
I(vk) → ρ(c) ∈ R \ {0},
I ′ |Sr(c)

(vk) → 0,

Q(vk) → 0.

(2.28)

Then there exist v ∈ Hs
r (RN ) and {λk} ⊂ R such that up to a subsequence, as k → +∞,

(i) vk ⇀ v ̸= 0 in Hs
r (RN );

(ii) λk → λ̃ 6 0 in R;
(iii) (−∆)svk − λkvk − (κα ∗ |vk|p)|vk|p−2vk → 0 in H−s

r (RN );

(iv) (−∆)sv − λ̃v − (κα ∗ |v|p)|v|p−2v = 0 in H−s
r (RN ).

Moreover, if λ̃ < 0, then we have vk → v in Hs
r (RN ) as k → ∞.

Proof. Since by (2.27) and (2.28), {vk} ⊂ Sr(c) is bounded, up to a subsequence, there exists v ∈
Hs

r (RN ) such that 
vk ⇀ v in Hs

r (RN ),

vk → v in L
2Np
N+α (RN ),

vk → v a.e. in RN .

If v = 0, by (2.2), we have B(vk) = o(1). Thus we obtain A(vk) = o(1) for Q(vk) = o(1). As a

consequence, I(vk) = o(1), which contradicts ρ(c) ̸= 0. Thus (i) is obtained. By Lemma 2.22,

I ′ |Sr(c)(vk) → 0 in H−s
r (RN ) ⇔ I ′(vk)− ⟨I ′(vk), vk⟩vk → 0 in H−s

r (RN ) as k → ∞.

Since for any ω ∈ Hs
r (RN ),

⟨I ′(vk)− ⟨I ′(vk), vk⟩vk, ω⟩ =
∫
RN

(−∆)
s
2 vk(−∆)

s
2ω

−
∫
RN

(κα ∗ |vk|p)|vk|p−2
vkω − λk

∫
RN

vkω, (2.29)

where

λk = ⟨I ′(vk), vk⟩ = A(vk)−B(vk). (2.30)

Thus (iii) is proved. Since each term on the right-hand side of (2.30) is bounded, there exists λ̃ ∈ R such

that λk → λ̃ as k → +∞ up to a subsequence. Furthermore, for p ∈ (1 + α+2s
N , N+α

N−2s ), Q(vk) = o(1),

λ̃ = lim
k→∞

λk = lim
k→∞

[A(vk)−B(vk)]
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= lim
k→∞

[
(N − 2s)p− (N + α)

Np−N − α
A(vk)

]
6 0. (2.31)

Thus (ii) is proved and (iv) follows from (iii). By (ii) and (iii) we have∫
RN

(−∆)
s
2 vk(−∆)

s
2 (vk − v)− λ̃

∫
RN

vk(vk − v)−
∫
RN

(κα ∗ |vk|p)|vk|p−2
vk(vk − v) = o(1). (2.32)

From (iv) we have∫
RN

(−∆)
s
2 v(−∆)

s
2 (vk − v)− λ̃

∫
RN

v(vk − v)−
∫
RN

(κα ∗ |v|p)|v|p−2
v(vk − v) = 0. (2.33)

Combining (2.32) with (2.33), we obtain

A(vk − v)− λ̃D(vk − v) =

∫
RN

[(κα ∗ |vk|p)|vk|p−2
vk − (κα ∗ |v|p)|v|p−2

v](vk − v).

By the Hardy-Littlewood-Sobolev inequality,∫
RN

(κα ∗ |v|p)|v|p−2
v(vk − v) 6 ∥v∥2p−1

2Np
N+α

∥vk − v∥ 2Np
N+α

→ 0

and ∫
RN

(κα ∗ |vk|p)|vk|p−2
vk(vk − v) 6 ∥vk∥2p−1

2Np
N+α

∥vk − v∥ 2Np
N+α

→ 0.

Then, A(vk − v) − λ̃D(vk − v) = o(1). If λ̃ < 0, A(vk − v) = o(1) and D(vk − v) = o(1), then we have

vk → v in Hs
r (RN ) as k → ∞.

3 Proof of main results

At this point we can prove our main results.

Proof of Theorem 1.1. The first part follows from Lemmas 2.7, 2.9 and Propositions 2.14 and 2.15.

Furthermore, we shall prove that uc ∈ S(c) is a ground state. Indeed, if u ∈ S(c) and I ′ |S(c)(u) = 0, by

Lemmas 2.6 and 2.7, we get that Q(u) = 0, i.e., u ∈ V (c). This concludes that I(u) > m(c) = I(uc). By

Lemma 2.6, Q(uc) = 2sA(uc)− Np−N−α
p B(uc) = 0, and then B(uc) =

2sp
Np−N−αA(uc). By (2.3),

2sp

Np−N − α
A(uc) = B(uc) 6 C(N,α, s)A(uc)

Np−N−α
2s D(uc)

(N+α)−(N−2s)p
2s ,

and then

A(uc)
Np−N−α−2s

2s > C(N,α, s)c
(N−2s)p−(N+α)

2s → +∞

as c→ 0+, i.e., A(uc) → +∞ as c→ 0+. Moreover,

m(c) = I(uc) =
Np−N − α− 2s

2(Np−N − α)
A(uc) → +∞

as c→ 0+. From (1.1), we have A(uc)− λcD(uc) = B(uc). Then

λc =
1

c
[A(uc)−B(uc)]

=
1

c

[
A(uc)−

2sp

Np−N − α
A(uc)

]
=

1

c
· (N − 2s)p− (N + α)

Np−N − α
A(uc)
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→ −∞ (3.1)

as c → 0+, for p ∈ (1 + α+2s
N , N+α

N−2s ). Next, we consider the case when c → +∞. Let u ∈ V (1), ũ(x) =
√
ct

N
2
c u1(tcx) with tc = c−

p−1
Np−N−α−2s . Then ũ ∈ V (c), A(ũ) = ct2sc A(u1) and B(ũ) = cptNp−N−α

c B(u1).

By calculation, we have

I(ũ) =
1

2
A(ũ)− 1

2p
B(ũ)

=
1

2
A(ũ)− s

Np−N − α
A(ũ)

=
Np−N − α− 2s

2(Np−N − α)
c · t2sc A(u1)

=
Np−N − α− 2s

2(Np−N − α)
c · c−

2(p−1)s
Np−N−α−2sA(u1)

=
Np−N − α− 2s

2(Np−N − α)
c

(N−2s)p−(N+α)
Np−N−α−2s A(u1)

→ 0 (3.2)

as c→ +∞, for p ∈ (1 + α+2s
N , N+α

N−2s ). Therefore, 0 < m(c) = I(uc) 6 I(ũ) → 0 as c→ +∞. So

A(uc) =
2(Np−N − α)

Np−N − α− 2s
m(c) → 0

and

λc =
1

c

(N − 2s)p− (N + α)

[Np− (N + α)]
A(uc) → 0

as c→ +∞. Thus the proof is completed.

Proof of Theorem 1.2. By Propositions 2.21 and 2.23, it is enough to prove that if (vn, λ̃n) ∈ Hs(RN )\
{0}×R satisfies (1.1), then λ̃n < 0, for each n ∈ N+. However, this point has been proved in Lemma 2.6.

Since

I(vn)−
1

2(Np−N − α)
Q(vn) =

Np−N − α− 2s

2(Np−N − α)
A(vn) = γn(c),

for Q(vn) = 0, then we get that {vn} is unbounded in Hs
r (RN ) from the fact in Lemmas 2.17 and 2.19

that γn(c) > bn → ∞ as n→ ∞. Finally, by Lemma 2.5(i), there exists a constant C > 0 such that

|vn(x)| 6
C

(1 + |x|2)
N+2s

2

6 C.

Thus the proof is completed.
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