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Abstract The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic sys-

tems) with nonlinear coupled source terms is considered in order to classify the initial data for the global

existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering

three cases according to initial energy: the low initial energy case, critical initial energy case and high initial

energy case. For the low initial energy case and critical initial energy case the sufficient initial conditions of

global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition,

for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and

then some sufficient initial conditions of finite time blowup and global existence are obtained, respectively.
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1 Introduction

In this paper, we consider the following nonlinear parabolic systems with power type source terms:

ut −∆u = (|u|2p + |v|p+1|u|p−1)u, x ∈ Ω, t > 0,

vt −∆v = (|v|2p + |u|p+1|v|p−1)v, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2 and p satisfies the following

assumptions:

(H) : p > 1 if n = 2, 1 < p <
2

n− 2
if n > 3. (1.2)
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Problem (1.1) is usually referred to as a simple example of a semilinear reaction diffusion system with

coupling source terms to predict the time evolution of the various density distributions. It also describes

heat propagation in a two-component combustible mixture [4, 7, 12], where u(x, t) and v(x, t) represent

the temperatures of the two interacting components, thermal conductivity is supposed constant and

equal for both substances, and a volume energy release given by some powers of u(x, t) and v(x, t) is

assumed. Moreover, it is assumed that the temperatures not only respectively depend on the components

themselves (represented by the terms |u|2pu and |v|2pv, respectively), but also are affected by each other

(represented by the terms |v|p+1|u|p−1u and |u|p+1|v|p−1v). Furthermore, it can be used to describe the

interaction of two biological groups where the speed of diffusion is slow [10] and the model of Bose-Einstein

condensation [8]. The coupled special nonlinear terms in (1.1) can be also found in the interaction of two

scalar fields [35] and the motion of charged mesons in an electromagnetic field [23]. It shows that the

nuclear reactors exchange heat energy with outside, u and v indicate the neutron flux and temperature

of the nuclear reactors [17]. This model is also used in subjects like chemistry [25], physics [1, 9, 11],

biology [41] and ecology [5, 22] systems.

In order to further motivate the studies of this paper, we recall some established results and we like to

begin with the most fundamental model as follows:
ut −∆u = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.3)

The local solvability of (1.3) with f(u) = |u|p−1u was given in [6,18]. A powerful technique for treating the

above problem is the so-called potential well method, which was established by Payne and Sattinger [27].

The technique for proving the global nonexistence of solutions of abstract problems that include (1.3)

was developed in [21]. In [3], a strong result for (1.3) was established, namely pointwise blowup in finite

time. By constructing a family of potential wells, Liu and Zhao [24] and Xu [36] respectively considered

the initial boundary value problem (IBVP) (1.3) with the initial data J(u0) < d and J(u0) = d (here,

J(u) is the so-called potential energy functional in the form J(u) = 1
2∥∇u∥

2 −
∫
Ω
F (u)dx, F (u) is

the anti-derivative of f(u), i.e., F (u) =
∫ u

0
f(s)ds, and the similar functional will be introduced in

the present paper later) and proved that there exist global and non-global solutions under different

conditions on the initial data. Gazzola and Weth [16] studied the initial boundary value problem (1.3),

where f(u) = |u|p−1u and u0 ∈ H1
0 (Ω). They paid much more attention to the initial data at the high

energy level, and obtained the global existence (or nonexistence) solution with an arbitrarily large initial

datum. Following the ideas in [16], Xu and Niu [37] and Xu and Su [38] extended the corresponding

results to the IBVP of the nonlinear pseudo-parabolic equation. In addition, the Cauchy problem of the

corresponding nonlinear pseudo-parabolic system was considered in [40].

For semilinear reaction diffusion systems, we first mention the following model:{
ut −∆u = vp,

vt −∆v = uq.
(1.4)

For the initial boundary value problem of (1.4), Galaktionov et al. [14, 15] proved its local and global

existence of the solution. Escobedo and Herrero [12] considered the initial boundary value problem of (1.4)

in a bounded open domain in RN with smooth boundary. They characterized that every solution exists

globally in time if 0 < pq 6 1; but if pq > 1, solutions may exist globally in time with small enough initial

value data or blow up in finite time with large enough initial value data. The Cauchy problem of (1.4)

was considered in [11] and the global well-posedness of the solutions was obtained. Sato [31] showed the

relationship between the life span and initial data. Kwembe and Zhang [19] considered the system (1.4)

with the general Wentzell boundary condition and obtained the results on Fujita-type global existence

and finite time blowup of solutions.

Considering the combination of interacted nonlinearities, several researchers devoted to the Cauchy



Xu R Z et al. Sci China Math February 2020 Vol. 63 No. 2 323

problem of the following system: {
ut −∆u = vp + ur,

vt −∆v = uq + vs.
(1.5)

Souplet and Tayachi [33] proved that one component of a blowup solution may stay bounded until the

blowup time, and they also investigated the blowup rates of a class of positive radial solutions. Based on

a continuity argument, Rossi and Souplet [30] studied the initial boundary value problem of (1.5). They

showed that, in the range of exponents where either component may blow up alone, there also exist the

initial data for which both components blow up simultaneously.

For the initial boundary value problem of the following system [13,33]:{
ut −∆u = up1vq1 ,

vt −∆v = up2vq2 ,
(1.6)

we can view it as an intermediate problem between the uncoupled problem and coupled problem (1.4),

which is a simpler case of the problem (1.1). The local solution for the IBVP of (1.6) was inferred in [20,26].

Escobedo and Levine [13] obtained Fujita-type global existence and global nonexistence results for the

initial value problem of (1.6) analogous to the classical results of Fujita and others for ut = ∆u + up,

u(x, 0) = u0(x) > 0. By reviewing the above known results and also [2, 7, 13, 28, 34, 39, 42], the authors

got the critical global existence exponent and the critical Fujita exponent for (1.6). The main results are

as follows:

(i) If p1 6 1, q2 6 1, and p2q1 6 (1 − p1)(1 − q2), then all the non-negative solutions of the initial

boundary problem of (1.6) are global.

(ii) If p1 > 1, or q2 > 1, or q2p1 > (1− p1)(1− q2), then there are global solutions (or solutions which

blow up in finite time), depending on the sufficient small (or large) initial values.

It is obvious that the source terms |v|p+1|u|p−1u and |u|p+1|v|p−1v in the problem (1.1) satisfy the

case (ii), i.e., p1 = q2 > 1. From the above discussions, we find that the solution of the problem (1.1)

may exist globally when the initial datum is sufficiently small, and oppositely, it may blow up in finite

time when the initial datum is sufficiently large. Hence these efforts mainly focus on the role of the

power index of the nonlinear term in the global well-posedness of the solution rather than the initial

data, because these results require an extremely strict condition on the initial data, such as large enough

or small enough. Inspired by these studies, we are naturally interested in more relaxed restrictions and

more precise descriptions of the initial data; in other words, we are interested in how small or how large

the initial data are in order to ensure the global existence or non-global existence. To answer the above

questions, in this paper we will discuss these problems in the frame of variational methods. The potential

well theory works well when the energy is controlled by the mountain pass level, also known as the depth

of the potential well, i.e., J(u0) < d, where J(u) is the potential energy of the problem (1.3) and d is

the mountain pass level, that will be introduced later. Then we will also extend the above corresponding

results to the critical case, i.e., J(u) = d in a proper way. The most interesting part of the present

paper is to consider the sup-critical case, also known as the high energy case, i.e., J(u) > d (later we

shall show that the potential energy functional J(u) will be replaced by J(u, v) due to the system of

parabolic equations). We are also aware of the need and the importance of considering the system of

two equations rather than a single equation, especially considering the coupling effects and interactions

of the nonlinear terms. But so far we have no standard method to deal with this issue, because we

cannot simply solve this problem by parallelizing the method for a single equation due to the interactions

in the nonlinearities. At least we need to answer some basic questions. First of all we realize that we

are still unable to handle all but the most important coupling nonlinearities. So we need decide which

nonlinearities can be prioritized. The nonlinear coupling terms we considered in this paper are relatively

general and representative. In addition, they include some simple coupling cases even when they are

relatively complex. At the same time, these nonlinear features have a very clear physical and applied

background. Even so, we must be honest to say that this particular nonlinear case also brings a lot

of convenience to us for constructing the variational structure and conducting corresponding analysis.
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Meanwhile the difficulties associated with these nonlinear couplings are also obvious. We must design

some new variational functionals and variational structures for the coupling nonlinear terms, and as far

as possible make these structures convenient for us to use the well-established techniques for a single

equation. Even so, we still have to face many difficulties in the selection and calculation of the auxiliary

functions for blowup. In addition, the big difficulties always arise in the case of supercritical initial energy,

as small as the re-estimation of the Gâteaux derivative, as large as the analysis of the manifolds and the

differential inequalities, which bring us new challenges and also general interest. Although there are still

a lot of nonlinear cases unsolved in the frame of the potential well method, it is not helpful to point out

some open problems because the special case considered in this paper may be the only one that can be

dealt with now. Therefore, our research can also be regarded as the exploration and a test of the bounds

of the potential well theory.

The structure of the present paper is as follows:

(i) The low initial energy case (J(u0, v0) < d) in Section 3: by using the Galerkin method [24] and the

concave function method [21, 24], we obtain the global existence and finite time blowup of the solution

for the problem (1.1). Furthermore, we characterize the global solution vanishing as t→ ∞.

(ii) The critical initial energy case (J(u0, v0) = d) in Section 4: we prove the global solution, blowup

solution and asymptotic behavior of the problem (1.1) by scaling the initial data [36,37].

(iii) The high initial energy case (J(u0, v0) > d) in Section 5: we discuss the possibility of both global

existence and finite time blowup and try to find out the corresponding initial data with arbitrarily high

initial energy. First, we prove the comparison principle of the coupled parabolic systems. By using it

and the ideas in [16,38], we describe the structures of the initial data and give some sufficient conditions

of the initial data which ensure the finite time blowup and global existence of the solution, respectively.

2 Notation and primary lemmas

We denote by ∥ · ∥q the Lq(Ω) norm for 1 6 q 6 ∞ and by ∥ · ∥H1
0
the Dirichlet norm in H1

0 (Ω). In the

bounded domain, the Poincaré inequality holds to give two equivalent norms ∥u∥H1
0
and ∥∇u∥2, that is

to say there exist constants C1 and C2 such that

C1∥∇u∥22 6 ∥u∥2H1
0
6 C2∥∇u∥22,

which is denoted by ∥u∥2
H1

0
≃ ∥∇u∥22. In addition, we use ∥f∥A . ∥f∥B to denote the estimate ∥f∥A 6

C∥f∥B if the constant C > 0 can be found in a proper way.

It is obvious that if (ϕ, ψ) = (ϕ(x), ψ(x)) verifies the semilinear elliptic systems
−∆ϕ = (|ϕ|2p + |ψ|p+1|ϕ|p−1)ϕ, x ∈ Ω,

−∆ψ = (|ψ|2p + |ϕ|p+1|ψ|p−1)ψ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω,

ψ = 0, x ∈ ∂Ω,

(2.1)

and (ϕ, ψ) ∈ H1
0 (Ω)×H1

0 (Ω) \ {(0, 0)}, then

(u, v) = (u(x, t), v(x, t)) = (ϕ(x), ψ(x)), (x, t) ∈ Rn × (0,∞)

verifies (1.1), which is the stationary solution of (1.1). Consider the energy functional J and the Nehari

functional I defined by

J(u, v) =
1

2

(∫
Ω

|∇u|2dx+

∫
Ω

|∇v|2dx
)

− 1

2(p+ 1)

(∫
Ω

|u|2p+2dx+

∫
Ω

|u|p+1|v|p+1dx+

∫
Ω

|v|2p+2dx

)
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≃ 1

2
(∥u∥2H1

0
+ ∥v∥2H1

0
)− 1

2(p+ 1)
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2) (2.2)

and

I(u, v) =

(∫
Ω

|∇u|2dx+

∫
Ω

|∇v|2dx
)

−
(∫

Ω

|u|2p+2dx+

∫
Ω

|u|p+1|v|p+1dx+

∫
Ω

|v|2p+2dx

)
≃ (∥u∥2H1

0
+ ∥v∥2H1

0
)− (∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2). (2.3)

Next, define the Nehari manifold

N = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) \ {(0, 0)} | I(u, v) = 0}. (2.4)

Then J is bounded from below on N . Next, we introduce the mountain pass level (also called the depth

of the potential well)

d = min
(u,v)∈H1

0 (Ω)×H1
0 (Ω)\{(0,0)}

max
s1,s2>0

J(s1u, s2v). (2.5)

It is obvious that the mountain pass level d defined in (2.5) may also be characterized as

d = inf
(u,v)∈N

J(u, v). (2.6)

Clearly, N separates the two unbounded sets

N+ = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | I(u, v) > 0} ∪ {(0, 0)} (2.7)

and

N− = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | I(u, v) < 0}. (2.8)

We also need to consider the (open) sublevels of J :

Jk = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | J(u, v) < k}.

Hence,

Nα = N ∩ Jα =

{
(u, v) ∈ N

∣∣∣∣ ∥u∥2H1
0
+ ∥v∥2H1

0
<

2α(p+ 1)

p

}
̸= ∅ for all α > d.

The above alternative characterization of d also shows that

dist(0,N ) = min
(u,v)∈N

(∥u∥2H1
0
+ ∥v∥2H1

0
) = δ :=

2d(p+ 2)

p
> 0.

For all α > d, we define

λα = inf{∥u∥22 + ∥v∥22 | (u, v) ∈ Nα} and Λα = sup{∥u∥22 + ∥v∥22 | (u, v) ∈ Nα}.

Clearly, we have the following monotonicity properties:

α 7→ λα is nonincreasing, α 7→ Λα is nondecreasing.

In the following, let T denote the maximal existence time of the solution with initial condition (u0, v0) ∈
H1

0 (Ω)×H1
0 (Ω). We denote by S(t) the nonlinear semigroup associated with (1.1). Instead of

(u, v) = (u(t), v(t)),
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we will also write(
S(t)u0 +

∫ t

0

S(t− s)f(u, v)ds, S(t)v0 +

∫ t

0

S(t− s)g(u, v)ds

)
for t < T,

where

f(u, v) = (|u|2p + |v|p+1|u|p−1)u and g(u, v) = (|v|2p + |u|p+1|v|p−1)v.

The smoothing properties of this semigroup suggest that we consider the space

C1
0 (Ω) := {u ∈ C1

0 (Ω̄) |u = 0 on ∂Ω} = C1(Ω̄) ∩H1
0 (Ω),

endowed with the standard norm ∥ · ∥C1 of C1(Ω̄). If T = ∞, we denote by

ω(u0, v0) :=
∩
t>0

{(u(s), v(s)) : s > t}

the ω-limit set of

(u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω).

Now we introduce the stable set W and the unstable set V defined by

W = Jd ∩N+ and V = Jd ∩N−.

For δ > 0, we further define the functional

Iδ(u, v) ≃ δ(∥u∥2H1
0
+ ∥v∥2H1

0
)− (∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2). (2.9)

Now, we define the depth of a family of potential wells for δ > 0,

d(δ) = inf
(u,v)∈Nδ

J(u, v).

For the problem (1.1), it is ready for us to introduce a family of potential wells Wδ together with the

outside Vδ,

Wδ = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | Iδ(u, v) > 0, J(u, v) < d(δ)} ∩ {(0, 0)}, δ > 0

and

Vδ = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) | Iδ(u, v) < 0, J(u, v) < d(δ)}, δ > 0.

Let us introduce the sets

B = {(u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω) | the solution (u(t), v(t)) of (1.1) blows up in finite time},
G = {(u0, v0) ∈ H1

0 (Ω)×H1
0 (Ω) | the solution (u(t), v(t)) of (1.1) exists for all t > 0}

and

G0 = {(u0, v0) ∈ G |u(t) → 0, v(t) → 0 in H1
0 (Ω) as t→ ∞}.

Next, we give four lemmas (see Lemmas 2.1–2.4) without proving them as we can derive them easily

from the arguments in [38]. Lemma 2.1 discusses the monotonicity of the map λ 7→ J(λ), which can

be derived by a scaling of J(u) referring the proof of Lemma 1 in [38]. Lemma 2.2 states the relations

between a ball in H1
0 (Ω)×H1

0 (Ω) and the sign of the Nehari function I(u, v), which can be proved by the

Sobolev embedding inequality and simple estimates like those in the proof of Lemma 2 in [38]. Lemma 2.3

ensures that the sign of Iδ(u, v) does not change for different δ, which is very important if we only have

the information of some fixed δ, and can be proved by contradictory arguments like the proof of Lemma 5

in [38]. Finally, Lemma 2.4 exhibits the behaviour of d(δ) in δ (similar to the arguments of Lemma 4

in [38]).
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Lemma 2.1 (See [38]). Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) \ {(0, 0)}. Then

(i) limλ→0 J(λu, λv) = 0, limλ→+∞ J(λu, λv) = −∞;

(ii) on the interval 0 < λ <∞ there exists a unique λ∗ such that d
dλJ(λu, λv) |λ=λ∗ = 0 and J(λu, λv)

is increasing on 0 6 λ 6 λ∗, decreasing on λ∗ 6 λ <∞ and takes the maximum at λ = λ∗;

(iii) I(λu, λv) > 0 for 0 < λ < λ∗, I(λu, λv) < 0 for λ∗ < λ <∞, and I(λ∗u, λ∗v) = 0.

Lemma 2.2 (See [38]). Assume (u, v) ∈ H1
0 (Ω) ×H1

0 (Ω) and set r(δ) := ( δ

2C2p+2
∗

)
1
p , where C∗ is the

embedding constant from H1
0 into L2p+2.

(i) If 0 < ∥u∥2
H1

0
+ ∥v∥2

H1
0
< r(δ), then Iδ(u, v) > 0. In particular, if 0 < ∥u∥2

H1
0
+ ∥v∥2

H1
0
< r(1), then

I(u, v) > 0.

(ii) If Iδ(u, v) < 0, then ∥u∥2
H1

0
+∥v∥2

H1
0
> r(δ). In particular, if I(u, v) < 0, then ∥u∥2

H1
0
+∥v∥2

H1
0
> r(1).

(iii) If Iδ(u, v) = 0 and ∥u∥2
H1

0
+ ∥v∥2

H1
0
̸= 0, then ∥u∥2

H1
0
+ ∥v∥2

H1
0
> r(δ). In particular, if I(u, v) = 0

then ∥u∥2
H1

0
+ ∥v∥2

H1
0
> r(1).

(iv) If Iδ(u, v) = 0 and ∥u∥2
H1

0
+ ∥v∥2

H1
0
̸= 0, then J(u, v) > 0 for 0 < δ < p + 1, J(u, v) = 0 for

δ = p+ 1, J(u, v) < 0 for δ > p+ 1.

Lemma 2.3 (See [38]). Assume 0 < J(u, v) < d for some (u, v) ∈ H1
0 (Ω) ×H1

0 (Ω), and δ1 < δ2 are

the two roots of the equation d(δ) = J(u, v). Then the sign of Iδ(u, v) does not change for δ1 < δ < δ2.

Lemma 2.4 (See [38]). For d(δ), the following properties hold:

(i) d(δ) > a(δ)r2(δ) for a(δ) = 1
2 − δ

2(p+1) , 0 < δ < p+ 1;

(ii) limδ→0 d(δ) = 0, d(p+ 1) = 0 and d(δ) < 0 for δ > p+ 1;

(iii) d(δ) is increasing on 0 < δ 6 1, decreasing on 1 6 δ 6 p+ 1 and takes the maximum d = d(1) at

δ = 1.

We define the weak solution and the maximal existence time for the problem (1.1) as follows.

Definition 2.5 (Weak solution). A function (u, v) ∈ L∞([0, T ),H1
0 (Ω) × H1

0 (Ω)) with (ut, vt) ∈
L2([0, T ), L2(Ω) × L2(Ω)) is called a weak solution of the problem (1.1) on Ω × [0, T ), if the follow-

ing conditions are satisfied:

(i) for all ω1, ω2 ∈ H1
0 (Ω) and for all t ∈ (0, T ), we have

(ut, ω1) + (∇u, ω1) = ((|u|2p + |v|p+1|u|p−1)u, ω1) (2.10)

and

(vt, ω2) + (∇v, ω2) = ((|v|2p + |u|p+1|v|p−1)v, ω2); (2.11)

(ii) u(x, 0) = u0(x) in H
1
0 (Ω), v(x, 0) = v0(x) in H

1
0 (Ω);

(iii) for all t ∈ (0, T ), we have∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ + J(u, v) 6 J(u0, v0). (2.12)

Definition 2.6 (Maximal existence time). Let (u, v) be a weak solution of the problem (1.1). We

define the maximal existence time T = T (u, v) of (u(t), v(t)) as follows:

(i) if (u, v) exists for 0 6 t <∞, then T = ∞;

(ii) if there exists a t0 ∈ (0,∞) such that (u(t), v(t)) exists for 0 6 t < t0, then T = t0.

Moreover, we present the following local existence and uniqueness theorems referenced in [7, 9].

Proposition 2.7 (Local existence). Let (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω). Assume (1.2) holds and u0 and v0
are non-negative. Then the problem (1.1) admits a local solution (u, v), i.e.,

u ∈ C([0, T );H1
0 (Ω)), ut ∈ C([0, T );L2(Ω))

and

v ∈ C([0, T ); H1
0 (Ω)), vt ∈ C([0, T );L2(Ω)),

where T is the maximal existence time of (u(t), v(t)).
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Proposition 2.8 (Uniqueness, see [9]). Assume u0 > 0, v0 > 0, (u0, v0) ∈ L∞(Ω) × L∞(Ω). For f

and g continuous, (1.1) has a non-negative solution defined in an interval [0, T ). Moreover, f and g

are locally Lipschitz, then the solution is unique in L∞((0, T ) × Ω) × L∞((0, T ) × Ω) and the mapping

(u0, v0) → (u(t), v(t)) is continuous from L∞(Ω)× L∞(Ω) to L∞((0, T )× Ω)× L∞((0, T )× Ω).

3 Global existence and blowup when J(u0, v0) < d

In this section, we first prove the invariant sets under the flow of (1.1), and we show the global existence

(in time) and finite time blowup of the solution. Furthermore, we characterize the asymptotic behavior

of the solution for the problem (1.1).

Theorem 3.1 (Invariant sets). Let (H) hold, (u0(x), v0(x)) ∈ H1
0 (Ω) ×H1

0 (Ω), 0 < e < d, δ1 < δ2 be

the two roots of the equation d(δ) = e. Then

(i) the solution (u, v) of the problem (1.1) with J(u0, v0) = e belongs to Wδ for δ1 < δ < δ2, 0 6 t < T ,

provided I(u0, v0) > 0;

(ii) the solution (u, v) of the problem (1.1) with J(u0, v0) = e belongs to Vδ for δ1 < δ < δ2, 0 6 t < T ,

provided I(u0, v0) < 0, where T is the maximal existence time of u.

Proof. Let (u, v) be any weak solution of the problem (1.1) with J(u0, v0) = e, I(u0, v0) > 0, and

T be the maximal existence time of (u(t), v(t)). From J(u0, v0) = e, I(u0, v0) > 0 and Lemma 2.3, it

follows that Iδ(u0, v0) > 0 and J(u0, v0) < d(δ). Then (u0(x), v0(x)) ∈ Wδ for δ1 < δ < δ2. We prove

(u(t), v(t)) ∈ Wδ for δ1 < δ < δ2 and 0 < t < T . Arguing by contradiction, by continuity of I(u, v)

in time we suppose that there exist δ0 ∈ (δ1, δ2) and t0 ∈ (0, T ) such that (u(t0), v(t0)) ∈ ∂Wδ0 , and

Iδ0(u(t0), v(t0)) = 0, ∥u(t0)∥H1
0
̸= 0, ∥v(t0)∥H1

0
̸= 0 or J(u(t0), v(t0)) = d(δ0). From∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ + J(u, v) 6 J(u0, v0) < d(δ), δ1 < δ < δ2, 0 6 t < T, (3.1)

we can see that J(u(t0), v(t0)) ̸= d(δ0). If Iδ0(u(t0), v(t0)) = 0, ∥u(t0)∥2H1
0
+ ∥v(t0)∥2H1

0
̸= 0, then by the

definition of d(δ) we have J(u0, v0) > d(δ0), which contradicts (3.1). Similarly, we can obtain the second

statement.

Next, we give a global existence theorem for the weak solution of the problem (1.1) in the case of

J(u0, v0) < d.

Theorem 3.2 (Global existence for J(u0, v0) < d). Let (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) and (H) hold.

Assume that 0 < J(u0, v0) < d, I(u0, v0) > 0. Then the solution of the problem (1.1) exists globally on

[0,∞), i.e., (u(t), v(t)) ∈ L∞(0,∞;H1
0 (Ω) × H1

0 (Ω)) with (ut(t), vt(t)) ∈ L2(0,∞;L2(Ω) × L2(Ω)) and

(u(t), v(t)) ∈W for 0 6 t <∞.

Proof. Let {ωj(x)} be a system of base functions in H1
0 (Ω). By the elliptic operator theory, {ωj(x)}

forms base functions in H1
0 (Ω) ∩ Lp(Ω) (1 < p < ∞) and ωj ∈ C∞(Ω̄). Construct the Galerkin approxi-

mate solutions (um(x, t), vm(x, t)) of the problem (1.1),
um(x, t) =

m∑
j=1

gjm(t)ωj(x), m = 1, 2, . . . ,

vm(x, t) =
m∑
j=1

hjm(t)ωj(x), m = 1, 2, . . .

satisfying

(umt, ωs) + (∇um,∇ωs) = ((|um|2p + |vm|p+1|um|p−1)um, ωs), (3.2)

(vmt, ωs) + (∇vm,∇ωs) = ((|vm|2p + |um|p+1|vm|p−1)vm, ωs) (3.3)
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and 
um(0) = u0m =

m∑
j=1

gjm(0)ωj(x) → u0 in H1
0 (Ω),

vm(0) = v0m =

m∑
j=1

hjm(0)ωj(x) → v0 in H1
0 (Ω).

(3.4)

According to the standard ordinary differential equation theory, (3.2)–(3.4) admit a solution

(gjm(t), hjm(t)) ∈ C1([0, tm))× C1([0, tm)),

where tm is the minimum of the existence time of gjm(t) and hjm(t) for each m.

Next, we shall extend this local approximate solution constructed by gjm(t) and hjm(t) to the global

one. Multiplying (3.2) and (3.3) by g′sm(t) and h′sm(t), respectively, summing for s, integrating with

respect to t from zero to t and adding these two equations, we can deduce∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ + J(um, vm) = J(um(0), vm(0)), t > 0. (3.5)

Noticing that (3.4) gives J(um(0), vm(0)) → J(u0, v0), we have∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ + J(um, vm) < d, t > 0 (3.6)

for sufficiently large m. By (3.6) and Theorem 3.1, we can prove that (um(t), vm(t)) ∈W for 0 6 t <∞
and sufficiently large m. Thus from (3.6) and

J(um, vm) ≃ 1

2
(∥um∥2H1

0
+ ∥vm∥2H1

0
)− 1

2(p+ 1)
(∥um∥2p+2

2p+2 + 2∥umvm∥p+1
p+1 + ∥vm∥2p+2

2p+2)

=

(
1

2
− 1

2(p+ 1)

)
(∥um∥2H1

0
+ ∥vm∥2H1

0
) +

1

2(p+ 1)
I(um, vm)

=
p

2(p+ 1)
(∥um∥2H1

0
+ ∥vm∥2H1

0
) +

1

2(p+ 1)
I(um, vm), (3.7)

we obtain ∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ +
p

2(p+ 1)
(∥um∥2H1

0
+ ∥vmτ∥2H1

0
) < d, 0 6 t <∞ (3.8)

for sufficiently large m, which yields for 0 6 t <∞,

∥um∥2H1
0
<

2(p+ 1)

p
d,

∥vm∥2H1
0
<

2(p+ 1)

p
d,

∥um∥22(p+1) 6 C2
∗∥um∥2H1

0
< C2

∗

(
2(p+ 1)

p
d

)
,

∥vm∥22(p+1) 6 C2
∗∥vm∥2H1

0
< C2

∗

(
2(p+ 1)

p
d

)
,∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ < d,

∥|um|2pum∥qq = ∥um∥2p+2
2p+2 6 C2p+2

∗

(
2(p+ 1)

p
d

)p+1

, q =
2p+ 2

2p+ 1
,

∥|vm|2pvm∥qq = ∥vm∥2p+2
2p+2 6 C2p+2

∗

(
2(p+ 1)

p
d

)p+1

, q =
2p+ 2

2p+ 1
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and

∥vmum∥p+1
p+1 6 ∥vm∥p+1

2p+2∥um∥p+1
2p+2 6 1

2
(∥vm∥2p+2

2p+2 + ∥um∥2p+2
2p+2) 6 C2p+2

∗

(
p

2(p+ 1)
d

)p+1

.

Hence, there exist u, v with their subsequences uν of um and vν of vm such that

uν → u in L∞((0,∞);H1
0 (Ω)) weak-star and a.e. in Q = Ω× [0,∞);

vν → v in L∞((0,∞);H1
0 (Ω)) weak-star and a.e. in Q = Ω× [0,∞);

(|uν |2p + |vν |p+1|uν |p−1)uν → (|u|2p + |u|p+1|v|p−1)u in L∞((0,∞);Lq(Ω)) weak-star and a.e. in

Q = Ω× [0,∞);

(|vν |2p + |uν |p+1|vν |p−1)vν → (|v|2p + |v|p+1|u|p−1)v in L∞((0,∞);Lq(Ω)) weak-star and a.e. in Q =

Ω× [0,∞);

uνt → ut in L
2((0,∞);L2(Ω)) weakly;

vνt → vt in L
2((0,∞);L2(Ω)) weakly.

In (3.2) and (3.3) for fixed s, letting m = ν → ∞, we get

(ut, ωs) + (∇u,∇ωs) = ((|u|2p + |v|p+1|u|p−1)u, ωs)

and

(vt, ωs) + (∇v,∇ωs) = ((|v|2p + |u|p+1|v|p−1)v, ωs).

On the other hand, (3.4) gives u(x, 0) = u0(x) and v(x, 0) = v0(x) in H
1
0 (Ω). Finally, from Theorem 3.1,

we have (u(t), v(t)) ∈W for 0 6 t <∞.

Corollary 3.3. Let (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) and (H) hold. Assume that 0 < J(u0, v0) < d,

Iδ2(u0, v0) > 0, where δ1 < δ2 are the two roots of the equation d(δ) = J(u0, v0). Then the

problem (1.1) admits a global weak solution (u(t), v(t)) ∈ L∞(0,∞;H1
0 (Ω)×H1

0 (Ω)) with (ut(t), vt(t)) ∈
L2(0,∞;L2(Ω)× L2(Ω)) and (u(t), v(t)) ∈Wδ for 0 6 t <∞.

Theorem 3.4 (Global nonexistence for J(u0, v0) < d). Let p satisfy (H) and (u0(x), v0(x)) ∈ H1
0 (Ω)

× H1
0 (Ω). Assume that J(u0, v0) < d and I(u0, v0) < 0. Then the weak solution (u(t), v(t)) of the

problem (1.1) blows up in finite time, i.e., there exists a T > 0 such that

lim
t→T

∫ t

0

(∥u∥22 + ∥v∥22)dτ = +∞. (3.9)

Proof. Let u(t) be any weak solution of the problem (1.1) with J(u0, v0) < d, I(u0, v0) < 0. We define

F (t) =
∫ t

0
(∥u∥22 + ∥v∥22)dτ . Then F ′(t) = ∥u∥22 + ∥v∥22 and

F ′′(t) = 2((ut, u) + (vt, v))

= 2(−(∥∇u∥22 + ∥∇v∥22) + (∥u∥2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2))

= −2I(u, v). (3.10)

By Theorem 3.1, we see that F ′′(t) > 0. From (3.10), (2.12) and

J(u, v) ≃ p

2(p+ 1)
(∥u∥2H1

0
+ ∥v∥2H1

0
) +

1

2(p+ 1)
I(u, v), (3.11)

we deduce

F ′′(t) ≃ 2p(∥u∥2H1
0
+ ∥v∥2H1

0
)− 4(p+ 1)J(u, v)

> 2p(∥u∥2H1
0
+ ∥v∥2H1

0
)− 4(p+ 1)J(u0, v0) + 4(p+ 1)

∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ

> 4(p+ 1)

∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ + 2pCF ′(t)− 4(p+ 1)J(u0, v0), (3.12)
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where the constant C is from the Poincaré inequality ∥u∥22 6 C∥∇u∥22. Note that(∫ t

0

((uτ , u) + (vτ , v))dτ

)2

=

(
1

2

∫ t

0

d

dτ
(∥u∥22 + ∥v∥22)dτ

)2

=
1

4
((∥u∥22 + ∥v∥22)2 − 2(∥u0∥22∥v0∥22)(∥u∥22 + ∥v∥22) + (∥u∥22 + ∥v∥22)2)

=
1

4
(F ′2(t)− 2F ′(t)(∥u0∥22 + ∥v0∥22) + (∥u0∥22 + ∥v0∥22)2). (3.13)

Thus we get

F ′′(t)F (t)− (p+ 1)(F ′(t))2 > 4(p+ 1)

∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ
∫ t

0

(∥u∥22 + ∥v∥22)dτ

+ 2pCF ′(t)F (t)− 4(p+ 1)J(u0, v0)F (t)

− (p+ 1)

(
4

(∫ t

0

((u, ut) + (v, vt))dτ

)2

+ 2F ′(t)(∥u0∥22 + ∥v0∥22)− (∥u0∥22 + ∥v0∥22)2
)

= 4(p+ 1)ξ + 2pCF ′(t)F (t)− 4(p+ 1)J(u0, v0)F (t)

− 2(p+ 1)F ′(t)(∥u0∥22 + ∥v0∥22)
+ (p+ 1)(∥u0∥22 + ∥v0∥22)2, (3.14)

where

ξ :=

∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ
∫ t

0

(∥u∥22 + ∥v∥22)dτ −
(∫ t

0

((u, uτ ) + (v, vτ ))dτ

)2

>
∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ
∫ t

0

(∥u∥22 + ∥v∥22)dτ −
(∫ t

0

(∥u∥2∥uτ∥2 + ∥v∥2∥vτ∥2)dτ
)2

>
∫ t

0

(∥uτ∥22 + ∥vτ∥22)dτ
∫ t

0

(∥u∥22 + ∥v∥22)dτ −
(∫ t

0

√
∥uτ∥22 + ∥vτ∥22

√
∥u∥22 + ∥v∥22dτ

)2

> 0.

Hence we can obtain

F ′′(t)F (t)− (p− 1)(F ′(t))2 > 2pCF ′(t)F (t)− 4(p+ 1)J(u0, v0)F (t)

− 2(p+ 1)F ′(t)(∥u0∥22 + ∥v0∥22)
+ (p+ 1)(∥u0∥22 + ∥v0∥22)2. (3.15)

Then we need to determine the sign of F ′′(t)F (t) − (p − 1)(F ′(t))2. In order to simplify the discussion,

we respectively consider the following two cases, i.e., J(u0, v0) 6 0 and 0 < J(u0, v0) < d.

(i) If J(u0, v0) 6 0, (3.15) becomes

F ′′(t)F (t)− (p− 1)(F ′(t))2

> 2pCF ′(t)F (t)− 2(p+ 1)F ′(t)(∥u0∥22 + ∥v0∥22)
= 2F ′(t)(pCF (t)− (p+ 1)(∥u0∥22 + ∥v0∥22)). (3.16)

So we only need to consider the sign of pCF (t)− (p+ 1)(∥u0∥22 + ∥v0∥22). From F ′(t) = ∥u∥22 + ∥v∥22 > 0

and F ′(0) = ∥u0∥22 + ∥v0∥22 > 0, we have pCF (t) > (p+ 1)(∥u0∥22 + ∥v0∥22). Then

F (t)F ′′(t)− (p+ 1)(F ′(t))2 > 0 for sufficiently large t. (3.17)
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(ii) If 0 < J(u0, v0) < d, then from Theorem 3.1 it follows that (u(t), v(t)) ∈ Vδ for 1 < δ < δ2 and

t > 0, where δ2 is the larger root of the equation d(δ) = e. Hence Iδ(u, v) 6 0 and ∥u∥2
H1

0
+ ∥v∥2

H1
0
> r(δ)

for 0 < δ < δ2 and t > 0. So we get Iδ2(u, v) 6 0 and ∥u∥2
H1

0
+ ∥v∥2

H1
0
> r(δ2) for t > 0, and by (3.12) we

obtain

F ′′(t) = −2I(u, v) ≃ 2(δ2 − 1)(∥u∥2H1
0
+ ∥v∥2H1

0
)− 2Iδ2(u, v)

> 2(δ2 − 1)r(δ2) > 0, t > 0,

F ′(t) = 2(δ2 − 1)r(δ2)t+ F ′(0) > 2(δ2 − 1)r(δ2)t, t > 0

and

F (t) = (δ2 − 1)r(δ2)t
2 + F (0) = (δ2 − 1)r(δ2)t

2, t > 0.

Hence for sufficiently large t we have

pCF (t) > 2(p+ 1)(∥u0∥22 + ∥v0∥22) and pCF ′(t) > 4(p+ 1)J(u0, v0).

Therefore by (3.15) we again obtain (3.17) for sufficiently large t.

For the both two cases above, (3.17) shows

(F−α(t))′′ =
−α

Fα+2(t)
(F (t)F ′′(t)− (α+ 1)(F ′(t))2) < 0, α = p, (3.18)

which gives that there exists a T > 0 such that limt→T F
−α(t) = 0, i.e., limt→T F (t) = +∞, which

contradicts T = +∞.

In the following, we prove the asymptotic behavior of the solution for the problem (1.1) in the frame

of a family of potential wells with J(u0, v0) < d.

Theorem 3.5 (Asymptotic behavior of the solution for J(u0, v0) < d). Let p satisfy (H) and (u0, v0) ∈
H1

0 (Ω) × H1
0 (Ω). Assume that J(u0, v0) < d and I(u0, v0) > 0. Then for the global solution of the

problem (1.1), there exists a constant λ > 0 such that

∥u∥22 + ∥v∥22 6 (∥u0∥22 + ∥v0∥22)e−λt. (3.19)

Proof. First, Theorem 3.2 implies the existence of the global weak solution for the problem (1.1). Now

we only need to prove (3.19). Let (u, v) be a global solution of the problem (1.1) with J(u0, v0) < d and

I(u0, v0) > 0. Then for ω1, ω2 ∈ L∞([0, T ), H1
0 (Ω)) ∩ L2([0, T ), L2(Ω)), (2.10) and (2.11) imply that

(ut, ω1) + (∇u,∇ω1) = ((|u|2p + |v|p+1|u|p−1)u, ω1), (3.20)

(vt, ω2) + (∇v,∇ω2) = ((|v|2p + |u|p+1|v|p−1)v, ω2). (3.21)

Setting ω1 = u, ω2 = v, and adding (3.20) and (3.21) together, we obtain

1

2

d

dt
(∥u∥22 + ∥v∥22) + I(u, v) = 0, 0 6 t <∞. (3.22)

From 0 < J(u0, v0) < d, I(u0, v0) > 0 and Theorem 3.1, we have (u(t), v(t)) ∈ Wδ for δ1 < δ < δ2 and

0 6 t < ∞, where δ1 < δ2 are two roots of the equation d(δ) = J(u0, v0). Hence, we get Iδ(u, v) > 0 for

δ1 < δ < δ2 and Iδ1(u, v) > 0 for 0 6 t < 0. Thus, (3.22) gives

1

2

d

dt
(∥u∥22 + ∥v∥22) + (1− δ1)(∥∇u∥22 + ∥∇v∥22) + Iδ1(u, v) = 0, 0 6 t <∞. (3.23)

From (3.23) and the Poincaré inequality ∥∇u∥22 > C∥u∥22, we also have

1

2

d

dt
(∥u∥22 + ∥v∥22) + C(1− δ1)(∥u∥22 + ∥v∥22) 6 0, 0 6 t <∞.
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Integrating the above inequality we have

∥u∥22 + ∥v∥22 6 (∥u0∥22 + ∥v0∥22)− 2C(1− δ1)

∫ t

0

(∥u(τ)∥22 + ∥v(τ)∥22)dτ, 0 6 t <∞.

Then by Grönwall’s inequality, we arrive at

∥u∥22 + ∥v∥22 6 (∥u0∥22 + ∥v0∥22)e−2C(1−δ1)t, 0 6 t <∞.

Therefore, there exists a constant λ > 0 such that

∥u∥22 + ∥v∥22 6 (∥u0∥22 + ∥v0∥22)e−λt, 0 6 t <∞.

This completes the proof.

4 Global existence and blowup when J(u0, v0) = d

In this section, we consider the global existence, nonexistence and the asymptotic behavior of the solution

for the problem (1.1) with the critical initial conditions.

Theorem 4.1 (Global existence for J(u0, v0) = d). Assume that p satisfies (H) and (u0, v0) ∈ H1
0 (Ω)

× H1
0 (Ω). If J(u0, v0) = d and I(u0, v0) > 0, then the solution (u(t), v(t)) of the problem (1.1) exists

globally, i.e., (u(t), v(t)) ∈ L∞(0,∞;H1
0 (Ω) ×H1

0 (Ω)) with (ut(t), vt(t)) ∈ L2(0,∞;L2(Ω) × L2(Ω)) and

(u(t), v(t)) ∈W =W ∪ ∂W for 0 6 t <∞.

Proof. First, J(u0, v0) = d implies that ∥u0∥22 + ∥v0∥22 ̸= 0. Let (u0m, v0m) = λm(u0, v0), for m =

1, 2, . . . , where 0 < λm < 1 and λm = 1 − 1
m → 1 as m → ∞. Consider the following initial boundary

value problem: 

umt −∆um = (|um|2p + |vm|p+1|um|p−1)um, x ∈ Ω, t > 0,

vmt −∆vm = (|vm|2p + |um|p+1|vm|p−1)vm, x ∈ Ω, t > 0,

um(x, 0) = u0m(x), x ∈ Ω,

vm(x, 0) = v0m(x), x ∈ Ω,

um(x, t) = vm(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ].

(4.1)

From I(u0, v0) > 0 and 0 < λ < 1, we obtain

I(u0m, v0m) = I(λmu0, λmv0)

≃ λ2m(∥u0∥2H1
0
+ ∥v0∥2H1

0
)− λ2p+2

m (∥u0∥2p+2
2p+2 + ∥u0v0∥p+1

p+1 + ∥v0∥2p+2
2p+2)

= (λ2m − λ2p+2
m )(∥u0∥2H1

0
+ ∥v0∥2H1

0
) + λ2p+2

m I(u0, v0) > 0. (4.2)

Furthermore, by Lemma 2.1(iii) and I(u0, v0) > 0, we obtain

λ∗ =

( ∥u∥2
H1

0
+ ∥v∥2

H1
0

∥u∥2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2

) 1
2p

> 1,

which means λm < 1 6 λ∗. Then combining Lemma 2.1(ii) we have

J(u0m, v0m) = J(λmu0, λmv0) < J(u0, v0) = d. (4.3)

By recalling Theorem 3.2, we obtain that for each m the problem (4.1) admits a global weak solution

(um(t), vm(t)) ∈ L∞(0,∞;H1
0 (Ω)×H1

0 (Ω))

with

(umt(t), vmt(t)) ∈ L2(0,∞;L2(Ω)× L2(Ω))
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and (um(t), vm(t)) ∈W for 0 6 t <∞ satisfying

(umt, ω1) + (∇um, ω1) = ((|um|2p + |vm|p+1|um|p−1)um, ω1), ω1 ∈ H1
0 (Ω), t > 0,

(vmt, ω2) + (∇vm, ω2) = ((|vm|2p + |um|p+1|vm|p−1)vm, ω2), ω2 ∈ H1
0 (Ω), t > 0

and ∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ + J(um, vm) 6 J(u0m, v0m) < d, 0 6 t <∞. (4.4)

By (3.7) and (4.4), we can obtain∫ t

0

(∥umτ∥22 + ∥vmτ∥22)dτ +
p

2(p+ 1)
(∥um∥2H1

0
+ ∥vm∥2H1

0
) < d, 0 6 t <∞.

The remainder of the proof is similar to that in the proof of Theorem 3.2.

Theorem 4.2 (Global nonexistence for J(u0, v0) = d). Assume that p satisfies (H) and (u0, v0) ∈
H1

0 (Ω) × H1
0 (Ω). If J(u0, v0) = d and I(u0, v0) < 0, then the solution (u(t), v(t)) of the problem (1.1)

blows up in finite time.

Proof. Let (u(t), v(t)) be any solution of the problem (1.1) with J(u0, v0) = d, I(u0, v0) < 0, T being

the existence time of (u(t), v(t)). Let us prove T < ∞. Arguing by contradiction, we suppose T = +∞.

Let

F (t) =

∫ t

0

(∥u∥22 + ∥v∥22)dτ.

Taking into account that (3.15) still holds, combining the fact J(u0, v0) = d we arrive at

F ′′(t)F (t)− (p+ 1)(F ′(t))2 > (pCF (t)− 2(p+ 1))(∥u0∥22 + ∥v0∥22)F ′(t)

+ (pCF ′(t)− 4(p+ 1)d)F (t). (4.5)

On the other hand, from J(u0, v0) = d > 0, I(u0, v0) < 0 and the continuity of J(u, v) and I(u, v) with

respect to t, it follows that there exists a sufficiently small t1 > 0 such that J(u(t1), v(t1)) > 0 and

I(u, v) < 0 for 0 < t < t1. Hence (ut, u) + (vt, v) = −I(u, v) > 0 and ∥ut∥22 + ∥vt∥22 > 0 for 0 6 t 6 t1.

From this and the continuity of
∫ t

0
(∥uτ∥22 + ∥vτ∥22)dτ it follows that we can choose a t1 such that

0 < d1 := d−
∫ t1

0

(∥ut∥22 + ∥vt∥22)dt < d. (4.6)

In addition, by (2.12) we have

0 < J(u(t1), v(t1)) 6 d−
∫ t1

0

(∥ut∥22 + ∥vt∥22)dt = d1 < d.

Thus we take t = t1 as the initial time, and then we have (u(t), v(t)) ∈ Vδ for δ ∈ (δ1, δ2), t1 6 t < ∞,

where (δ1, δ2) is the maximal interval including δ = 1 such that d(δ) > d1 for δ ∈ (δ1, δ2). Hence

we have Iδ(u, v) < 0 and ∥u∥2
H1

0
+ ∥v∥2

H1
0
> r(δ) for δ ∈ (1, δ2), t1 6 t < ∞, and Iδ2(u, v) 6 0,

∥u∥2
H1

0
+ ∥v∥2

H1
0
> r(δ2) for t1 6 t <∞. Thus from (3.10) we obtain

F ′′(t) = −2I(u, v) ≃ 2(δ2 − 1)(∥u∥2H1
0
+ ∥v∥2H1

0
)− 2Iδ2(u, v)

> 2(δ2 − 1)r(δ2), t1 6 t <∞, (4.7)

F ′(t) > 2(δ2 − 1)r(δ2)(t− t1) + F ′(t1) > 2(δ2 − 1)r(δ2)(t− t1), t1 6 t <∞ (4.8)

and

F (t) > (δ2 − 1)r(δ2)(t− t1)
2 + F (t1) > (δ2 − 1)r(δ2)(t− t1)

2, t1 6 t <∞. (4.9)
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From (4.8) and (4.9) it follows that for sufficiently large t we have

pCF (t) > 2(p+ 1)(∥u0∥22 + ∥v0∥22)

and

pCF ′(t) > 4(p+ 1)d.

Thus (3.15) yields F (t)F ′′(t) − (p + 1)(F ′(t))2 > 0. The remainder of the proof is similar to that in the

proof of Theorem 3.4.

Recalling Theorems 4.1 and 4.2, we can conclude a sharp condition for the global existence of the

solution for the problem (1.1) with J(u0, v0) = d as follows.

Corollary 4.3 (Sharp condition for J(u0, v0) = d). Assume that p satisfies (H), (u0, v0) ∈ H1
0 (Ω)

× H1
0 (Ω) and J(u0, v0) = d. Then when I(u0, v0) > 0, the problem (1.1) admits a global weak solution

(u(t), v(t)) ∈ L∞(0,∞;H1
0 (Ω) ×H1

0 (Ω)) with (ut(t), vt(t)) ∈ L2(0,∞;L2(Ω) × L2(Ω)) and (u(t), v(t)) ∈
W =W ∪ ∂W for 0 6 t <∞; when I(u0, v0) < 0, the problem does not admit any global weak solution.

Then we show the long time behavior of the solution for the problem (1.1) with the critical initial

condition J(u0, v0) = d.

Theorem 4.4 (Asymptotic behavior for J(u0, v0) = d). Assume that p satisfies (H), (u0, v0) ∈ H1
0 (Ω)

×H1
0 (Ω), J(u0, v0) = d and I(u0, v0) > 0. Then for the global weak solution (u, v) of the problem (1.1),

there exist constants C > 0, t0 > 0 and λ > 0 such that

∥u∥22 + ∥v∥22 6 Ce−λt, t0 6 t <∞. (4.10)

Proof. First, Theorem 4.1 gives the global weak solution for the problem (1.1). Next, we shall show

that if (u(t), v(t)) is a global weak solution of the problem (1.1) with J(u0, v0) = d, I(u0, v0) > 0, one

sees I(u, v) > 0 for any t > 0. Let us suppose by contradiction that t1 > 0 is the first time such that

I(u(t1), v(t1)) = 0. By the definition of the mountain pass level d in (2.6), we see J(u(t1), v(t1)) > d.

Meanwhile, (2.12) gives

J(u(t1), v(t1)) 6 d−
∫ t1

0

(∥uτ∥22 + ∥vτ∥22)dτ 6 d. (4.11)

Then from (4.11) we get
∫ t1
0
(∥uτ∥22 + ∥vτ∥22) = 0, i.e., ut ≡ 0 and vt ≡ 0 for 0 6 t 6 t1, which contradicts

I(u0, v0) > 0. Hence we have I(u, v) > 0 for 0 6 t <∞.

From the continuity of J(u, v) and I(u, v) with respect to t, we reset the initial time to a sufficiently

small t0 such that 0 < J(u(t0), v(t0)) < d and I(u(t0), v(t0)) > 0. Hence, by Theorem 3.5, we obtain

the conclusion.

5 High initial energy J(u0, v0) > d

First, we should recall some simple results. Let

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s), v(s))ds,

v(t) = S(t)v0 +

∫ t

0

S(t− s)g(u(s), v(s))ds

and

K = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) |u > 0, v > 0 a.e. in Ω},

where S(t) is the heat semigroup generator [11].
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Figure 1 The relationship among conclusions in Section 5

For any u ∈ H1
0 (Ω), its positive part and negative part are defined as follows:

u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0}.

In this section, we will give four theorems, ten lemmas and one corollary. In order to well organize

these conclusions to clear show their connections, this section is divided into three subsections according

to their different aspects of the contents, and also the relationship among these conclusions is shown in

Figure 1.

Lemma 5.1 (Grönwall’s inequality). Let y(t) ∈ L1[0, T ] and y(0) = a. If there exists a constant b

such that d
dty(t) 6 by(t), then y(t) 6 aebt.

Lemma 5.2 (See [13, 29]). The function T ∗ : H1
0 (Ω) → (0,∞] is continuous. Moreover, for all u0 ∈

H1
0 (Ω) and for all t ∈ (0, T ∗(u0)), the semigroup S(t) maps an H1

0 (Ω) neighborhood of u0 continuously

into C1
0 (Ω).

From [29,32], we can conclude the following result.

Lemma 5.3. Assume that (u0, v0) ∈ G. Then there exists a solution(
S(t)u0 +

∫ t

0

S(t− s)f(u(s), v(s))ds, S(t)v0 +

∫ t

0

S(t− s)g(u(s), v(s))ds

)
of (1.1) which converges to the solution of (2.1).

5.1 Comparison principle

In this subsection, we prove the comparison principle of the problem (1.1) in order to facilitate the

description of the structure of the manifolds for the initial data.

Lemma 5.4 (Comparison principle). Let (ũ0, ṽ0), (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω) be such that

(ũ0 − u0, ṽ0 − v0) ∈ K.

Then (S(t)ũ0 − S(t)u0, S(t)ṽ0 − S(t)v0) ∈ K for all t > 0.

Moreover, if u0 ̸≡ ũ0, v0 ̸≡ ṽ0, then we have that for t > 0,

ũ(t)− u(t) = S(t)ũ0 − S(t)u0 > 0
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and

ṽ(t)− v(t) = S(t)ṽ0 − S(t)v0 > 0.

Proof. It is well known that C∞
c (Ω) is the dense subspace of H1

0 (Ω). In order to get the comparison

principle for general initial data in H1
0 (Ω), we first prove the statement for u0, v0, ũ0, ṽ0 ∈ C∞

c (Ω) so that

u, v, ũ, ṽ ∈ C(Ω× [0, T ]). We recall

ũ(t) := S(t)ũ0 +

∫ t

0

S(t− s)((|u(s)|2p + |v(s)|p+1|u(s)|p−1)u(s))ds,

u(t) := S(t)u0 +

∫ t

0

S(t− s)((|u(s)|2p + |v(s)|p+1|u(s)|p−1)u(s))ds,

ṽ(t) := S(t)ṽ0 +

∫ t

0

S(t− s)((|v(s)|2p + |u(s)|p+1|v(s)|p−1)v(s))ds

and

v(t) := S(t)v0 +

∫ t

0

S(t− s)((|v(s)|2p + |u(s)|p+1|v(s)|p−1)v(s))ds.

For maximum existence time T := min{T (u0, v0), T (ũ0, ṽ0)}, let ω := ũ− u and φ := ṽ− v. From (1.1),

we have 

ωt −∆ω = ((|ũ|2p + |ṽ|p+1|ũ|p−1)ũ− (|u|2p + |v|p+1|u|p−1)u), x ∈ Ω× (0, T ),

φt −∆φ = ((|ṽ|2p + |ũ|p+1|ṽ|p−1)ṽ − (|v|2p + |u|p+1|v|p−1)v), x ∈ Ω× (0, T ),

ω(0) = ũ(0)− u(0) = ũ0 − u0 > 0, x ∈ Ω,

φ(0) = ṽ(0)− v(0) = ṽ0 − v0 > 0, x ∈ Ω,

ω = φ = 0, x ∈ ∂Ω, t ∈ (0, T ).

In order to prove this lemma, it is enough to prove ω > 0 and ϕ > 0. Firstly, we set

f(s, l) := (|s|2p + |l|p+1|s|p−1)s and g(s, l) := (|l|2p + |s|p+1|l|p−1)l.

Then for θ ∈ (0, 1) we have

f(ũ, ṽ)− f(u, v) = ω

∫ 1

0

((2p+ 1)|u+ θ(ũ− u)|2p + p|v|p+1|u+ θ(ũ− u)|p−1)dθ

+ (p+ 1)φ

∫ 1

0

|v + θ(ṽ − v)|p|ũ|p−1ũdθ (5.1)

and

g(ũ, ṽ)− g(u, v) = φ

∫ 1

0

((2p+ 1)|v + θ(ṽ − v)|2p + p|u|p+1|v + θ(ṽ − v)|p−1)dθ

+ (p+ 1)ω

∫ 1

0

|u+ θ(ũ− u)|p|ṽ|p−1ṽdθ. (5.2)

For x ∈ Ω, t > 0, we define

h11(x, t) :=

∫ 1

0

((2p+ 1)|u+ θ(ũ− u)|2p + p|v|p+1|u+ θ(ũ− u)|p−1)dθ > 0,

h12(x, t) :=

∫ 1

0

(p+ 1)|v + θ(ṽ − v)|p|ũ|p−1ũdθ > 0,

h21(x, t) :=

∫ 1

0

((2p+ 1)|v + θ(ṽ − v)|2p + p|u|p+1|v + θ(ṽ − v)|p−1)dθ > 0,

h22(x, t) := ω

∫ 1

0

(p+ 1)|u+ θ(ũ− u)|p|ṽ|p−1ṽdθ > 0.
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Then we have

ωt −∆ω = h11(t)ω + h12(t)φ, (x, t) ∈ Ω× (0, T ), (5.3)

φt −∆φ = h21(t)φ+ h22(t)ω, (x, t) ∈ Ω× (0, T ), (5.4)

ω(0) = ũ(0)− u(0) = ũ0 − u0 > 0, x ∈ Ω, (5.5)

φ(0) = ṽ(0)− v(0) = ṽ0 − v0 > 0, x ∈ Ω, (5.6)

ω = φ = 0, (x, t) ∈ ∂Ω× (0, T ). (5.7)

Since u, v, ũ and ṽ are all continuous functions, we know that

M1T := sup
Ω×(0,T )

h11(x, t) <∞,

M2T := sup
Ω×(0,T )

h12(x, t) <∞,

M3T := sup
Ω×(0,T )

h21(x, t) <∞

and

M4T := sup
Ω×(0,T )

h22(x, t) <∞.

We multiply (5.3) by ω− and integrate on Ω, and then∫
Ω

ωtω
−dx =

∫
Ω

∆ωω−dx+

∫
Ω

h11(t)ωω
−dx+

∫
Ω

h12(t)φω
−dx,

which gives

1

2

d

dt
∥ω−∥22 = −∥∇ω−∥22 +

∫
Ω

h11(t)|ω−|2 dx+

∫
Ω

h12(t)φω
−dx

6M1T ∥ω−∥22 +
∫
Ω

h12(t)(φ
+ω− + φ−ω−)dx

6M1T ∥ω−∥22 +M2T

∫
Ω

φ−ω−dx

6M1T ∥ω−∥22 +M2T ∥φ−∥2∥ω−∥2

6M1T ∥ω−∥22 +
1

2
M2T (∥φ−∥22 + ∥ω−∥22). (5.8)

Similar to (5.8), we get from (5.4) that

1

2

d

dt
∥φ−∥22 6M3T ∥φ−∥22 +

1

2
M4T (∥ω−∥22 + ∥φ−∥22). (5.9)

Adding (5.8) and (5.9), we get

1

2

d

dt
(∥ω−∥22 + ∥φ−∥22) 6

(
M1T +

1

2
M2T +

1

2
M4T

)
∥ω−∥22

+

(
M3T +

1

2
M2T +

1

2
M4T

)
∥φ−∥22

6MT (∥ω−∥22 + ∥φ−∥22),

where

MT = max

{(
M1T +

1

2
M2T +

1

2
M4T

)
,

(
M3T +

1

2
M2T +

1

2
M4T

)}
.
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By Grönwall’s inequality and the arbitrariness of T , this proves that ω−(t) ≡ 0 and φ−(t) ≡ 0. So for

the initial data u0, ũ0, v0, ṽ0 ∈ C∞
c (Ω), we have ũ− u > 0 and ṽ − v > 0, i.e.,

(S(t)ũ0 − S(t)u0, S(t)ṽ0 − S(t)v0) ∈ K,

where u, v, ũ, ṽ ∈ C(Ω× [0, T ]).

Next, we consider the initial data u0, ũ0, v0, ṽ0 ∈ H1
0 (Ω), and pick four sequences {um0 }, {ũm0 }, {vm0 },

{ṽm0 } ⊂ C∞
0 (Ω). From the denseness, we have um0 → u0, ũ

m
0 → ũ0, v

m
0 → v0, ṽ

m
0 → ṽ0 in H1

0 (Ω) as

m → ∞, um0 6 u0 6 ũ0 6 ũm0 and vm0 6 v0 6 ṽ0 6 ṽm0 in Ω for all m. Then we just need to prove

um 6 u 6 ũ 6 ũm and vm 6 v 6 ṽ 6 ṽm, where

um(t) = S(t)um0 +

∫ t

0

S(t− s)((|u(s)|2p + |v(s)|p+1|u(s)|p−1)u(s))ds, (5.10)

ũm(t) = S(t)ũm0 +

∫ t

0

S(t− s)((|u(s)|2p + |v(s)|p+1|u(s)|p−1)u(s))ds, (5.11)

vm(t) = S(t)vm0 +

∫ t

0

S(t− s)((|v(s)|2p + |u(s)|p+1|v(s)|p−1)v(s))ds (5.12)

and

ṽm(t) = S(t)ṽm0 +

∫ t

0

S(t− s)((|v(s)|2p + |u(s)|p+1|v(s)|p−1)v(s))ds. (5.13)

Arguing by contradiction, we suppose that there exists a point (X,T ) ∈ Ω × (0, T ) such that u(X,T )

> ũ(X,T ). Then by Lemma 5.2 and (5.10)–(5.11) we also have um(X,T ) > ũm(X,T ) for sufficiently

large m. This contradicts the just proved comparison principle for smooth initial data. Then we have

ω(t) = S(t)ũ0 − S(t)u0 > 0.

Similarly we also have

φ(t) = S(t)ṽ0 − S(t)v0 > 0,

i.e.,

(S(t)ũ0 − S(t)u0, S(t)ṽ0 − S(t)v0) ∈ K.

Since h11(t) > 0, h12(t) > 0, h21(t) > 0 and h22(t) > 0, we get

ωt −∆ω = h11ω + h12φ > 0

and

φt −∆φ = h21φ+ h22ω > 0.

Therefore, from the maximum principle, if ω(0) > 0, φ(0) > 0 with ω = 0, φ = 0 on ∂Ω× (0, T ), together

with

ωt −∆ω = h11ω + h12φ > 0

and

φt −∆φ = h21φ+ h22ω > 0,

we have ω > 0 and φ > 0 in Ω. The comparison principle is proved.

5.2 Stationary problem

In order to show the comparison between the nontrivial solution of (2.1) and the initial data u0, v0
∈ H1

0 (Ω) (see Theorem 5.9), we shall first consider the characteristic of the nontrivial solution of (2.1)

in Lemmas 5.5–5.8. Before this we define the first order derivatives and the second order derivatives of

energy functional J as follows:

Ju(u, v)u := lim
ε→0

J((1 + ε)u, v)− J(u, v)

ε
,
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Jv(u, v)v := lim
ε→0

J(u, (1 + ε)v)− J(u, v)

ε
,

Juu(u, v)u
2 := 2 lim

ε→0

J((1 + ε)u, v)− J(u, v)

ε2

and

Jvv(u, v)v
2 := 2 lim

ε→0

J(u, (1 + ε)v)− J(u, v)

ε2
,

where J(u, v) is the same as (2.2).

Lemma 5.5. If (u, v) is a nontrivial solution of (2.1), then we have Ju(u, v)u = 0, Jv(u, v)v = 0,

Juu(u, v)u
2 < 0, Jvv(u, v)v

2 < 0 and the first eigenvalue (λ, ρ) of the eigenvalue problem

−∆ϕ− ((2p+ 1)|u|2p + p|v|p+1|u|p−1)ϕ = λϕ in Ω, (5.14)

−∆ψ − ((2p+ 1)|v|2p + p|u|p+1|v|p−1)ψ = ρψ in Ω, (5.15)

ψ = ϕ = 0 on ∂Ω

is negative.

Proof. A nontrivial solution (u, v) of (2.1) satisfies

∥∇u∥22 = (∥u∥2p+2
2p+2 + ∥uv∥p+1

p+1),

∥∇v∥22 = (∥v∥2p+2
2p+2 + ∥uv∥p+1

p+1),

which implies that I(u, v) = 0. Next, we have

Ju(u, v)u = lim
ε→0

J((1 + ε)u, v)− J(u, v)

ε

≃ lim
ε→0

( 1
2 (∥(1 + ε)u∥2

H1
0
+ ∥v∥2

H1
0
)

ε

−
1

2(p+1) (∥(1 + ε)u∥2p+2
2p+2 + 2∥(1 + ε)uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε

−
1
2 (∥u∥

2
H1

0
+ ∥v∥2

H1
0
)

ε
+

1
2(p+1) (∥u∥

2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε

)
= lim

ε→0

( 1
2 (∥u∥

2
H1

0
+ 2ε∥u∥2

H1
0
+ o(ε) + ∥v∥2

H1
0
)

ε

−
1

2(p+1) (∥u∥
2p+2
2p+2 + (2p+ 2)ε∥u∥2p+2

2p+2 + o(ε))

ε

−
1

p+1 (∥uv∥
p+1
p+1 + (p+ 1)ε∥uv∥p+1

p+1 + o(ε))

ε
−

1
2p+2∥v∥

2p+2
2p+2

ε

−
1
2 (∥u∥

2
H1

0
+ ∥v∥2

H1
0
)

ε
+

1
2(p+1) (∥u∥

2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε

)
≃ ∥∇u∥22 − (∥u∥2p+2

2p+2 + ∥uv∥p+1
p+1) = 0.

In addition, similarly we have

Jv(u, v)v = lim
ε→0

J(u, (1 + ε)v)− J(u, v)

ε

= ∥∇v∥22 − (∥v∥2p+2
2p+2 + ∥uv∥p+1

p+1) = 0.

It is interesting to see that (even we shall not use it in the following discussion)

Juu+ Jvv = I(u, v) = 0.
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Moreover, we also have the following observations:

Juu(u, v)u
2 = 2 lim

ε→0

J((1 + ε)u, v)− J(u, v)

ε2

≃ 2 lim
ε→0

( 1
2 (∥(1 + ε)u∥2

H1
0
+ ∥v∥2

H1
0
)

ε2

−
1

2(p+1) (∥(1 + ε)u∥2p+2
2p+2 + 2∥(1 + ε)uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε2

−
1
2 (∥u∥

2
H1

0
+ ∥v∥2

H1
0
)

ε2
+

1
2(p+1) (∥u∥

2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε2

)
= 2 lim

ε→0

( 1
2 (∥u∥

2
H1

0
+ 2ε∥u∥2

H1
0
+ ε2∥u∥2

H1
0
+ ∥v∥2

H1
0
)

ε2

−
1

2(p+1) (∥u∥
2p+2
2p+2 + (2p+ 2)ε∥u∥2p+2

2p+2)

ε2

−
1

2(p+1) ((p+ 1)(2p+ 1)ε2∥u∥2p+2
2p+2 + o(ε2))

ε2

−
1

2(p+1) (2∥uv∥
p+1
p+1 + 4(p+ 1)ε∥uv∥p+1

p+1)

ε2

−
1

2(p+1) (p(p+ 1)ε2∥uv∥p+1
p+1 + o(ε2) + ∥v∥2p+2

2p+2)

ε2

−
1
2 (∥u∥

2
H1

0
+ ∥v∥2

H1
0
)

ε2
+

1
2(p+1) (∥u∥

2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2)

ε2

)
≃ ∥∇u∥22 − ((2p+ 1)∥u∥2p+2

2p+2 + p∥uv∥p+1
p+1)

= ∥∇u∥22 − ∥u∥2p+2
2p+2 − ∥uv∥p+1

p+1 − (2p∥u∥2p+2
2p+2 + (p− 1)∥uv∥p+1

p+1)

= −2p∥u∥2p+2
2p+2 − (p− 1)∥uv∥p+1

p+1 < 0.

Similarly, we have

Jvv(u, v)v
2 = 2 lim

ε→0

J(u, (1 + ε)v)− J(u, v)

ε2

= ∥∇v∥22 − ((2p+ 1)∥v∥2p+2
2p+2 + p∥uv∥p+1

p+1) < 0

and

Juuu
2 + Jvvv

2 < 0.

As (u, v) is the nontrivial solution of the problem (2.1), together with Juu(u, v)u
2 < 0 and Jvv(u, v)v

2 < 0,

we can show that the corresponding eigenvalue of (u, v) is negative as follows:

∥∇u∥22 − ((2p+ 1)∥u∥2p+2
2p+2 + p∥uv∥p+1

p+1) = λ∥u∥22 < 0,

∥∇v∥22 − ((2p+ 1)∥v∥2p+2
2p+2 + p∥uv∥p+1

p+1) = ρ∥v∥22 < 0.

Hence the first eigenvalue of (5.14) is negative.

Lemma 5.6. Let (u0, v0) ∈ G and put

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s), v(s))ds

and

v(t) = S(t)v0 +

∫ t

0

S(t− s)g(u(s), v(s))ds
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for t ∈ [0, T ∗(u0, v0)). Then

dJ(u(t), v(t))

dt
= −

∫
Ω

u2tdx−
∫
Ω

v2t dx (5.16)

for all t ∈ (0, T ∗(u0, v0)).

Proof. Multiplying the two equations in (1.1) by ut and vt respectively and integrating by parts, we

can obtain ∫
Ω

ututdx+

∫
Ω

∇u∇utdx =

∫
Ω

(|u|2p + |v|p+1|u|p)uutdx (5.17)

and ∫
Ω

vtvtdx+

∫
Ω

∇v∇vtdx =

∫
Ω

(|v|2p + |u|p+1|v|p)vvtdx. (5.18)

Combining (2.2), (5.17) and (5.18), we can directly calculate

dJ(u(t), v(t))

dt
=

∫
Ω

∇u∇utdx+

∫
Ω

∇v∇vtdx−
∫
Ω

|u|2puutdx

−
∫
Ω

|v|p+1|u|puutdx−
∫
Ω

|u|p+1|v|pvvtdx−
∫
Ω

|v|2pvvtdx

= −
∫
Ω

u2tdx−
∫
Ω

v2t dx.

This completes the proof.

Lemma 5.7. Assume that (u1, v1), (u2, v2) ∈ H1
0 (Ω)\{0} × H1

0 (Ω)\{0} solve (2.1) with u1 6 u2 and

v1 6 v2. Then either u1 < 0 < u2, v1 < 0 < v2 or u1 ≡ u2, v1 ≡ v2.

Proof. Suppose that u1 ̸≡ u2 and v1 ̸≡ v2. By the comparison principle, we have u1 < u2 and v1 < v2
in Ω. By Lemma 5.5, the first eigenvalues (λu1 , ρv1) and (λu2 , ρv2) of the eigenvalue problems

−∆ϕ− ((2p+ 1)|ui|2p + p|vi|p+1|ui|p−1)ϕ = λui
ϕ in Ω,

−∆ψ − ((2p+ 1)|vi|2p + p|ui|p+1|vi|p−1)ψ = ρviψ in Ω,

ϕ = ψ = 0 on ∂Ω, i = 1, 2

are negative. Due to the proof of Lemma 5.5, the corresponding positive first eigenfunctions (eu1 , ev1)

and (eu2 , ev2) satisfy (for δ > 0)

Ju(u1, v1)eu1 = 0,

Jv(u1 + δeu1 , v1)ev1 = 0,

Ju(u2, v2)ev2 = 0,

Jv(u2 − δeu2 , v2)ev2 = 0,

Juu(u1, v1)e
2
u1
< 0,

Jvv(u1 + δeu1 , v1)e
2
v1 < 0,

Juu(u2, v2)e
2
v2 < 0

and

Jvv(u2 − δeu2 , v2)e
2
v2 < 0.

First, we treat J(u1 + δeu1 , v1) as the function of u1 + δeu1 , and by Taylor’s theorem for J(δ) with the

remainder for the Gâteaux derivative we have

J(u1 + δeu1 , v1) = J(u1, v1) + δJu(u1, v1)eu1 +
δ2

2
Juu(u1, v1)e

2
u1

+ o(δ2)
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= J(u1, v1) +
δ2

2
Juu(u1, v1)e

2
u1

+ o(δ2) < J(u1, v1). (5.19)

Similarly, we obtain that

J(u1 + δeu1 , v1 + δev1) = J(u1 + δeu1 , v1) +
δ2

2
Jvv(u1 + δeu1 , v1)e

2
v1

+ o(δ2)

< J(u1 + δeu1 , v1), (5.20)

J(u2 − δeu2 , v2) = J(u2, v2) +
δ2

2
Juu(u2, v2)e

2
u2

+ o(δ2) < J(u2, v2) (5.21)

and

J(u2 − δeu2 , v2 − δev2) = J(u2 − δeu2 , v2) +
δ2

2
Jvv(u2 − δeu2 , v2)e

2
v2

+ o(δ2)

< J(u2 − δeu2 , v2) (5.22)

for sufficiently small δ > 0. We consider the closed set

Q := {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) |u1 < u < u2, v1 < v < v2 a.e. in Ω}

and

m := inf
(u,v)∈Q

J(u, v).

Since for some properly small δ > 0,

u1 < u1 + δeu1 < u2 − δeu2 < u2 and v1 < v1 + δev1 < v2 − δev2 < v2,

that is to say

(u1 + δeu1 , v1 + δev1) ∈ Q and (u2 − δeu2 , v2 − δev2) ∈ Q,

and then (5.19)–(5.22) imply that

m 6 J(u1 + δeu1 , v1 + δev1) < J(u1 + δeu1 , v1) < J(u1, v1)

and

m 6 J(u2 − δeu2 , v2 − δev2) < J(u2 − δeu2 , v2) < J(u2, v2),

i.e.,

m < min{J(u1, v1), J(u2, v2)}. (5.23)

Next, we will verify that m can be achieved by some (ω, µ) ∈ Q. Indeed, let {(ωn, µn)} ⊂ Q be a

minimizing sequence for J |Q = J(u, v) |(u,v)∈Q. Then (2.2) and the characteristic of the minimizing

sequence give

∥∇ωn∥22 + ∥∇µn∥22 = 2J(ωn, µn) +
1

p+ 1
(∥ωn∥2p+2

2p+2 + 2∥ωnµn∥p+1
p+1 + ∥µn∥2p+2

2p+2)

6 2(J(u1, v1) + J(u2, v2)) +
1

p+ 1
(∥u1∥2p+2

2p+2 + 2∥u1v1∥p+1
p+1 + ∥v1∥2p+2

2p+2

+ ∥u2∥2p+2
2p+2 + 2∥u2v2∥p+1

p+1 + ∥v2∥2p+2
2p+2) 6 C,

where C > 0 is a constant independent of n. Passing to a subsequence, that is to select subsequences to

make ωn ⇀ ω in H1
0 (Ω) and µn ⇀ µ in H1

0 (Ω) (weak convergence), we have

(ωn, µn) → (ω, µ),

∥ωn∥2p+2
2p+2 → ∥ω∥2p+2

2p+2,
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∥ωnµn∥p+1
p+1 → ∥ωµ∥p+1

p+1

and

∥µn∥2p+2
2p+2 → ∥µ∥2p+2

2p+2.

We conclude that (ω, µ) ∈ Q and from Fatou’s lemma we also have

J(ω, µ) ≃ 1

2
(∥ω∥2H1

0
+ ∥µ∥2H1

0
)− 1

2p+ 2
(∥ω∥2p+2

2p+2 + 2∥ωµ∥p+1
p+1 + ∥µ∥2p+2

2p+2)

6 1

2
lim inf
n→∞

(∥ωn∥2H1
0
+ ∥µn∥2H1

0
)

− 1

2p+ 2
lim inf
n→∞

(∥ωn∥2p+2
2p+2 + 2∥ωnµn∥p+1

p+1 + ∥µn∥2p+2
2p+2)

= lim inf
n→∞

J(ωn, µn) = m.

This forces J(ω, µ) = m so that (ω, µ) is a minimizer for J |Q.
By (5.23) we have ω ̸≡ u1, ω ̸≡ u2, µ ̸≡ v1 and µ ̸≡ v2. Moreover, from (ω, µ) ∈ Q, we have u1 < ω < u2

and v1 < µ < v2. Combining the comparison principle, for all t > 0 or any fixed t = t0, we conclude

ω(x, t) = S(t)ω +

∫ t

0

S(t− s)f(ω(s), µ(s))ds, (5.24)

µ(x, t) = S(t)µ+

∫ t

0

S(t− s)g(ω(s), µ(s))ds, (5.25)

S(t)u1 +

∫ t

0

S(t− s)f(u1, v1)ds < ω(x, t) < S(t)u2 +

∫ t

0

S(t− s)f(u2, v2)ds

and

S(t)v1 +

∫ t

0

S(t− s)g(u1, v1)ds < µ(x, t) < S(t)v2 +

∫ t

0

S(t− s)g(u2, v2)ds.

As (u1, v1) and (u2, v2) solve (2.1) (the stationary solutions to the problem (1.1)), that is to say

S(t)u1 +

∫ t

0

S(t− s)f(u1, v1)ds = u1,

S(t)v1 +

∫ t

0

S(t− s)g(u1, v1)ds = v1,

S(t)u2 +

∫ t

0

S(t− s)f(u2, v2)ds = u2

and

S(t)v2 +

∫ t

0

S(t− s)g(u2, v2)ds = v2,

i.e.,

u1 < ω(x, t) < u2, v1 < µ(x, t) < v2 and (ω(x, t), µ(x, t)) ∈ Q.

By the definition of m, we obtain that

J(ω(x, t), µ(x, t)) > m for all t > 0. (5.26)

On the other hand, by Lemma 5.6, we know that t 7→ J(ω(x, t), µ(x, t)) is decreasing along nonconstant

trajectories. As (5.24) and (5.25) show that ω(x, t) and µ(x, t) come from the initial data ω and µ,

respectively, J(ω, µ) < m and (5.16) imply that

J(ω(x, t), µ(x, t)) 6 m for all t > 0. (5.27)
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These two facts (5.26) and (5.27) enable us to conclude that

J(ω(x, t), µ(x, t)) = J(ω, µ) = m for all t > 0,

which means

ω(x, t) = ω and µ(x, t) = µ.

Consequently, (ω, µ) is a solution of (2.1) and by the comparison principle we have u1 < ω < u2 and

v1 < µ < v2 in Ω. For |ε| sufficiently small, we have

((1 + ε)ω, (1 + ε)µ) ∈ Q

such that the minimization property of ω and µ yields

Jωωω
2 =2 lim

ε→0

J((1 + ε)ω, µ)− J(ω, µ)

ε2
> 0

and

Jµµµ
2 =2 lim

ε→0

J(ω, (1 + ε)µ)− J(ω, µ)

ε2
> 0.

By Lemma 5.5, this implies ω ≡ 0, µ ≡ 0 and the proof is completed.

Before starting the next lemma, we define some sets

S± :=

{
(u, v) ∈ C1

0 (Ω)× C1
0 (Ω)

∣∣∣∣ ± u > 0, ±v > 0 in Ω; ±∂u
∂ν

< 0, ±∂v
∂ν

< 0 on ∂Ω

}
and

Sn := {(u, v) ∈ C1
0 (Ω)× C1

0 (Ω) |u(x) < 0 < u(y), v(x) < 0 < v(y) for some points x, y ∈ Ω},

which are open and disjoint in C1
0 (Ω)× C1

0 (Ω).

Lemma 5.8. Let (u1, v1) ∈ G \ G0. Then

(i) if ω(u1, v1) ⊂ S+ ∪ Sn, then (u2, v2) ∈ B for every u2 > u1, v2 > v1, u2 ̸≡ u1 and v2 ̸≡ v1;

(ii) if ω(u1, v1) ⊂ S− ∪ Sn, then (u2, v2) ∈ B for every u2 6 u1, v2 6 v1, u2 ̸≡ u1 and v2 ̸≡ v1.

Proof. From the Hopf boundary lemma, every nontrivial solution of (2.1) lies either in S+, in S− or Sn.

We just prove (i), and (ii) is similar. Let (u1, v1) ∈ G \G0, u2 > u1, v2 > v1, u2 ̸≡ u1 and v2 ̸≡ v1. Denote

u(t) := S(t)u1 +

∫ t

0

S(t− s)f(u1, v1)ds,

v(t) := S(t)v1 +

∫ t

0

S(t− s)g(u1, v1)ds,

û(t) := S(t)u2 +

∫ t

0

S(t− s)f(u2, v2)ds

and

v̂(t) := S(t)v2 +

∫ t

0

S(t− s)g(u2, v2)ds.

From the comparison principle and the definition of ω(u0, v0), we have

û(t) > u(t) and v̂(t) > u(t),

i.e., (u2, v2) /∈ G0. Arguing by contradiction to prove (u2, v2) ∈ B, considering (u2, v2) /∈ G0, we suppose

that (u2, v2) /∈ G \ G0 and distinguish the following two cases:
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Case (1) There are an ε > 0 and a sequence tn → ∞ such that

∥û(x, tn)− u(x, tn)∥C1 > ε

and

∥v̂(x, tn)− v(x, tn)∥C1 > ε

for all n.

Case (2) ∥û(x, t)− u(x, t)∥C1 → 0 and ∥v̂(x, t)− v(x, t)∥C1 → 0 as t→ ∞.

If Case (1) occurs, by compactness of ω(u1, v1) and ω(u2, v2), we may pass to a subsequence such that

as tn → ∞: u(tn) → u′, v(tn) → v′, û(tn) → û′, v̂(tn) → v̂′ in C1
0 (Ω), where (u′, v′) and (û′, v̂′) are

nontrivial solutions of the problem (2.1). By the comparison principle we have û′ > u′ and v̂′ > v′. Here

from Lemma 5.3 we remind that for (u1, v1) ∈ G the solution(
S(t)u1 +

∫ t

0

S(t− s)f(u(s), v(s))ds, S(t)v1 +

∫ t

0

S(t− s)g(u(s), v(s))ds

)
of the problem (1.1) converges to the solution (u′, v′) of (2.1) having the sequence ω(u1, v1) with its

subsequence (u(tn), v(tn)) → (u′, v′) in C1
0 (Ω) as tn → ∞. Due to the assumption (i) of this lemma, i.e.,

ω(u1, v1) ⊂ S+ ∪Sn, we have that (u′, v′) is not negative. Hence, Lemma 5.7 implies û′ ≡ u′ and v̂′ ≡ v′.

But this is impossible, since

∥û′ − u′∥C1 = lim
n→∞

∥û(tn)− u(tn)∥C1 > ε

and

∥v̂′ − v′∥C1 = lim
n→∞

∥v̂(tn)− v(tn)∥C1 > ε.

Hence Case (1) does not hold.

We now suppose that Case (2) occurs. For every (ue, ve) ∈ ω(u1, v1), let (λue , ρve) be the first eigenvalue

of the Dirichlet eigenvalue problem

−∆ϕ− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)ϕ = λueϕ in Ω, (5.28)

−∆ψ − ((2p+ 1)|ve|2p + p|ue|p+1|ve|p−1)ψ = ρveψ in Ω, (5.29)

ϕ = ψ = 0 on ∂Ω,

and let (eue , eve) denote the unique positive L∞ normalized eigenfunction corresponding to (λue , ρve).

By Lemma 5.5 and the compactness of ω(u1, v1) in C
1
0 (Ω), we have

λ0 := sup
(u,v)∈ω(u0,v0)

λu < 0

and

ρ0 := sup
(u,v)∈ω(u0,v0)

ρv < 0.

Moreover, let θ ∈ C(Ω) denote the distance function to the boundary ∂Ω, i.e., θ(x) = dist(x, ∂Ω) for

x ∈ Ω. Then, again by compactness, there are C1 > 0 and C2 > 0 such that

C1θ(x) 6 eue(x) 6 C2θ(x) (5.30)

C1θ(x) 6 eve(x) 6 C2θ(x) for all (ue, ve) ∈ ω(u1, v1), x ∈ Ω. (5.31)

Let ω(t) = û(t)− u(t) and ξ(t) = v̂(t)− v(t). Then in aid of the comparison principle and the spirits of

Lemma 5.4, we see that ω(x, t) > 0 and ξ(x, t) > 0 for x ∈ Ω, t > 0, and ω and ξ solve the problem

ωt = ∆ω + h̄11ω + h̄12ξ, (5.32)

ξt = ∆ξ + h̄21ξ + h̄22ω, (5.33)
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where

h̄11(x, t) :=

∫ 1

0

((2p+ 1)|u+ sω|2p + p|v|p+1|u+ sω|p−1)ds,

h̄12(x, t) :=

∫ 1

0

(p+ 1)|v + sξ|p|û|p−1ûds,

h̄21(x, t) :=

∫ 1

0

((2p+ 1)|v + sξ|2p + p|u|p+1|v + sξ|p−1)ds

and

h̄22(x, t) :=

∫ 1

0

(p+ 1)|u+ sω|p|v̂|p−1v̂ds.

Now fix τ > 0 such that

C2 6 C1e
|λue |

2 τ (5.34)

and

C2 6 C1e
|ρve |

2 τ , (5.35)

which will be used in the estimate of (5.46) later. We claim that

inf
(ue,ve)∈ω(u1,v1)

sup
t6s6t+τ

∥h̄11(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ → 0 as t→ ∞ (5.36)

and

inf
(ue,ve)∈ω(u1,v1)

sup
t6s6t+τ

∥h̄21(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ → 0 as t→ ∞. (5.37)

Indeed, suppose by contradiction that for a sequence tn → ∞ and some ε > 0 we have

inf
(ue,ve)∈ω(u1,v1)

sup
tn6s6tn+τ

∥h̄11(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ > ε for all n (5.38)

and

inf
(ue,ve)∈ω(u1,v1)

sup
tn6s6tn+τ

∥h̄21(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ > ε for all n. (5.39)

There exist (ue, ve) ∈ ω(u1, v1) and a subsequence (still denoted by tn) such that

sup
tn6s6tn+τ

∥u(s)− ue∥∞ → 0 as n→ ∞

and

sup
tn6s6tn+τ

∥v(s)− ve∥∞ → 0 as n→ ∞.

Moreover, when ∥ω(t)∥C1 → 0 and ∥ξ(t)∥C1 → 0 as t→ ∞ occur, we obtain that as tn → ∞,

sup
tn6s6tn+τ

∥h̄11(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ → 0

and

sup
tn6s6tn+τ

∥h̄21(x, s)− ((2p+ 1)|ve|2p + p|ue|p+1|ve|p−1)∥∞ → 0.
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These contradict (5.38)–(5.39) and prove (5.36)–(5.37). We may therefore take T0 > 0 such that

inf
(ue,ve)∈ω(u1,v1)

sup
t6s6t+τ

∥h̄11(x, s)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ 6 |λue |
2

(5.40)

and

inf
(ue,ve)∈ω(u1,v1)

sup
t6s6t+τ

∥h̄21(x, s)− ((2p+ 1)|ve|2p + p|ue|p+1|ve|p−1)∥∞ 6 |ρve |
2

(5.41)

for t > T0.

Next, we claim that ∫
Ω

ω(t+ τ)θdx >
∫
Ω

ω(t)θdx for t > T0 (5.42)

and ∫
Ω

ξ(t+ τ)θdx >
∫
Ω

ξ(t)θdx for t > T0. (5.43)

Indeed, by (5.40)–(5.41) and compactness, for any t > T0 we may find (ue, ve) ∈ ω(u1, v1) such that

∥h̄11(s, t)− ((2p+ 1)|ue|2p + p|ve|p+1|ue|p−1)∥∞ 6 |λue |
2

(5.44)

and

∥h̄21(s, t)− ((2p+ 1)|ve|2p + p|ue|p+1|ve|p−1)∥∞ 6 |ρve |
2

(5.45)

for all s ∈ [t, t+ τ ]. Using Green’s formula, (5.28) and (5.44), for ω(x, t) and ξ(x, t), we have

d

ds

∫
Ω

ω(x, s)euedx =

∫
Ω

(∆ω(x, s)dx+ h̄11(s)ω(x, s) + h̄12ξ(x, s))euedx

=

∫
Ω

((∆eue
+ h̄11(s)eue

)ω(x, s) + h̄12ξ(x, s)eue
)dx

=

∫
Ω

(ω(x, s)eue(h̄11(s)− (2p+ 1)|ue|2p − p|ve|p+1|ue|p−1)

+ h̄12ξ(x, s)eue
)dx

> |λue |
2

∫
Ω

ω(x, s)euedx+

∫
Ω

h̄12ξ(x, s)euedx

> |λue |
2

∫
Ω

ω(x, s)euedx, (5.46)

where ∫
Ω

h̄12ξ(x, s)euedx > 0, s ∈ [t, t+ τ ].

Similarly, for s ∈ [t, t+ τ ] we obtain

d

ds

∫
Ω

ξ(x, s)evedx > |ρve |
2

∫
Ω

ξ(x, s)evedx. (5.47)

Since
∫
Ω
ξ(x, s)eve > 0 for s ∈ [t, t + τ ], integrating (5.46) and (5.47) with respect to s from t to t + τ ,

we obtain ∫
Ω

ω(t+ τ)eue
dx > e

|λue |
2 τ

∫
Ω

ω(t)eue
dx (5.48)
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and ∫
Ω

ξ(t+ τ)evedx > e
|ρve |

2 τ

∫
Ω

ξ(t)evedx. (5.49)

Combining (5.48)–(5.49) with (5.30)–(5.31), we get

C2

∫
Ω

ω(t+ τ)θdx >
∫
Ω

ω(t+ τ)euedx > e
|λue |

2 τ

∫
Ω

ω(t)euedx > C1e
λue
2 τ

∫
Ω

ω(t)θdx

and

C2

∫
Ω

ξ(t+ τ)θdx >
∫
Ω

ξ(t+ τ)evedx > e
|ρve |

2 τ

∫
Ω

ξ(t)evedx > C1e
ρve
2 τ

∫
Ω

ξ(t)θdx.

From the relationship between C1 and C2 we required in (5.34)–(5.35) and the above estimates, now we

obtain (5.42)–(5.43) as we claimed, which easily indicate that∫
Ω

ω(T0 + lτ)dx >
∫
Ω

ω(T0)θdx > 0 (5.50)

and ∫
Ω

ξ(T0 + lτ)dx >
∫
Ω

ξ(T0)θdx > 0 (5.51)

for every l ∈ N. It is obvious that (5.50)–(5.51) contradict the assumption that ∥ω(t)∥C1 → 0 and

∥ξ(t)∥C1 → 0 as t→ ∞. The proof is finished.

From the essence of Lemma 5.8, we obtain the following theorem.

Theorem 5.9. Let (u, v) be a nontrivial solution of (2.1), and let u0, v0 ∈ H1
0 (Ω), u0 ̸≡ ±u, v0 ̸≡ ±v.

(i) If u+ ̸≡ 0, v+ ̸≡ 0, u0 > u and v0 > v, then (u0, v0) ∈ B.
(ii) If u− ̸≡ 0, v− ̸≡ 0, u0 6 u and v0 6 v, then (u0, v0) ∈ B.
(iii) If 0 6 u0 < u and 0 6 v0 < v, then (u0, v0) ∈ G0.

Proof. (i) Let (u, v) be a nontrivial solution of (2.1), so that (u, v) is the stationary solution of (1.1),

i.e., (u, v) ∈ G\G0. If u
+ ̸≡ 0 and v+ ̸≡ 0, considering Lemma 5.8(i), we obtain that (u0, v0) ∈ B.

(ii) Analogously, if u− ̸≡ 0 and v− ̸≡ 0, considering Lemma 5.8(ii), we obtain that (u0, v0) ∈ B.
(iii) Since 0 6 u0 < u, 0 6 v0 < v and by the comparison principle, we may conclude (u0, v0) ∈ G.

Therefore, from Lemma 5.3, we have(
S(t)u0 +

∫ t

0

S(t− s)f(u(s), v(s))ds, S(t)v0 +

∫ t

0

S(t− s)g(u(s), v(s))ds

)
→ (û, v̂)

in H1
0 (Ω)×H1

0 (Ω) as t → ∞, where (û, v̂) is a nontrivial solution of (2.1). By the comparison principle

and combining 0 6 u0 < u, 0 6 v0 < v, we may conclude that 0 6 û < u and 0 6 v̂ < v. Arguing by

contradiction, we suppose that û ̸≡ 0, v̂ ̸≡ 0 (a nontrivial solution). Combining 0 6 u0 < u, 0 6 v0 < v,

u0 ̸≡ ±u, v0 ̸≡ ±v with Lemma 5.7, we infer the following two cases:

(a) û < 0 < u, v̂ < 0 < v or

(b) û ≡ u, v̂ ≡ v.

On one hand, as u0, v0 > 0 and u0(x) ̸≡ 0, v0(x) ̸≡ 0, the comparison principle tells that Case (a) is not

possible. On the other hand, u0(x) < u and v0(x) < v with the comparison principle give that û ̸≡ u

and v̂ ̸≡ v, which means that (b) is not possible either. Hence (û, v̂) is a trivial solution of (2.1), i.e.,

ω(u0, v0) = {(0, 0)}, (u0, v0) ∈ G0.
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5.3 Global existence and blowup with high energy

Lemma 5.10. Let (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω), and for t ∈ [0, T ∗(u0, v0)) put

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s), v(s))ds

and

v(t) = S(t)v0 +

∫ t

0

S(t− s)g(u(s), v(s))ds.

Then

d

dt
(∥u∥22 + ∥v∥22) = −2I(u, v) for all t ∈ (0, T ∗(u0, v0)). (5.52)

Proof. Multiplying (1.1) by u(t) and v(t) and integrating by parts, we can obtain∫
Ω

utudx−
∫
Ω

∆uudx =

∫
Ω

(|u|2p + |v|p+1|u|p)uudx

and ∫
Ω

vtvdx−
∫
Ω

∆vvdx =

∫
Ω

(|v|2p + |u|p+1|v|p)vvdx.

Then

1

2

d

dt
(∥u(t)∥22 + ∥v(t)∥22) = −

∫
Ω

(|∇u|2 + |∇v|2)dx+ (∥u∥2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2).

Hence, for any t ∈ (0, T ∗(u0, v0)), we have

d

dt
(∥u∥22 + ∥v∥22) = −2I(u, v).

This completes the proof.

Theorem 5.11 (Global existence and blowup at the high energy level). For any M > 0, there exist

(uM− , vM−), (uM+ , vM+) ∈ N+ ∩K ∩ (C1
0 (Ω)× C1

0 (Ω))

with J(uM− , vM−), J(uM+
, vM+

) >M and (uM− , vM−) ∈ G0, (uM+
, vM+) ∈ B.

Proof. Let M > 0 and (u, v) denote a positive solution. Assume that

Ω′ = {x ∈ Ω | (u, v) ∈ H1
0 (Ω)×H1

0 (Ω), u > ε and v > ε}

is an open subset of Ω for a positive constant ε and denote Ω′′ = Ω\Ω′. For fixed k > 0, we pick functions

ϕk ∈ C1
0 (Ω

′) such that

∥∇ϕk∥L2(Ω′) > k, ∥ϕk∥L∞(Ω′) 6 ε, ϕk > 0 in Ω′ and ϕk ≡ 0 in Ω′′

and we define ω+ := u+ϕk, ω− := u−ϕk, φ+ := v+ϕk and φ− := v−ϕk. It follows that (ω±, φ±) ∈ K,

∥∇ω±∥L2(Ω′) > ∥∇ϕk∥L2(Ω′) − ∥∇u∥L2(Ω′) > k − ∥∇u∥L2(Ω′),

∥∇φ±∥L2(Ω′) > ∥∇ϕk∥L2(Ω′) − ∥∇v∥L2(Ω′) > k − ∥∇v∥L2(Ω′).

Then we have

J(ω±, φ±) =
1

2
(∥∇ω±∥2L2(Ω) + ∥∇φ±∥2L2(Ω))−

1

2p+ 2
(∥ω±∥2p+2

L2p+2(Ω)

+ 2∥ω±φ±∥p+1
Lp+1(Ω) + ∥φ±∥2p+2

L2p+2(Ω))
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> 1

2
(∥∇ω±∥2L2(Ω′) + ∥∇φ±∥2L2(Ω′))−

1

p+ 1
(∥ω±∥2p+2

L2p+2(Ω′) + ∥ω±∥2p+2
L2p+2(Ω′′)

+ ∥φ±∥2p+2
L2p+2(Ω′) + ∥φ±∥2p+2

L2p+2(Ω′′))

> 1

2
(∥∇ω±∥2L2(Ω′) + ∥∇φ±∥2L2(Ω′))−

1

p+ 1
(∥ω±∥2p+2

L2p+2(Ω′) + ∥u∥2p+2
L2p+2(Ω′′)

+ ∥φ±∥2p+2
L2p+2(Ω′) + ∥v∥2p+2

L2p+2(Ω′′))

> 1

2
((k − ∥∇u∥L2(Ω′))

2 + (k − ∥∇v∥L2(Ω′))
2)− 1

p+ 1
(∥ω±∥2p+2

L2p+2(Ω′)

+ ε2p+2|Ω′′|+ ∥φ±∥2p+2
L2p+2(Ω′) + ε2p+2|Ω′′|)

> 1

2
((k − ∥∇u∥L2(Ω′))

2 + (k − ∥∇v∥L2(Ω′))
2)− 1

p+ 1
(2ε2p+2|Ω′′|

+ (∥u∥L2p+2(Ω′) + ∥ϕk∥L2p+2(Ω′))
2p+2 + (∥v∥L2p+2(Ω′) + ∥ϕk∥L2p+2(Ω′))

2p+2)

> 1

2
((k − ∥∇u∥L2(Ω′))

2 + (k − ∥∇v∥L2(Ω′))
2)− 1

p+ 1
(2ε2p+2|Ω′′|

+ (∥u∥L2p+2(Ω′) + ε|Ω′|
1

2p+2 )2p+2 + (∥v∥L2p+2(Ω′) + ε|Ω′|
1

2p+2 )2p+2).

Similarly,

I(ω±, ϕ±) > (k − ∥∇u∥L2(Ω′))
2 + (k − ∥∇v∥L2(Ω′))

2 − 2((∥u∥L2p+2(Ω′) + ε|Ω′|
1

2p+2 )2p+2

+ (∥v∥L2p+2(Ω′) + ε|Ω′|
1

2p+2 )2p+2 + 2ε2p+2|Ω′′|).

Therefore, for a sufficiently large k we have both J(ω±, φ±) > M and I(ω±, φ±) > 0, and hence

(ω±, φ±) ∈ N+. For such a number k, take (uM− , vM−) = (ω−, φ−) and (uM+ , vM+) = (ω+, φ+).

Since 0 6 uM− 6 u and 0 6 vM− 6 v, we have (uM− , vM−) ∈ G0 by Theorem 5.9(iii); while uM+ > u and

vM+ > v we have (uM+ , vM+) ∈ B by Theorem 5.9(i).

Lemma 5.12. We have J(u, v) > 0 for any (u, v) ∈ N+. Moreover, for all (u, v) ∈ N , we have

J(u, v) = maxλ>0 J(λu, λv). Finally, for any k > 0, the set Jk ∩N+ is bounded in H1
0 (Ω)×H1

0 (Ω).

Proof. As in Lemma 2.1, for s > 0, we have

J(λu, λv) ≃ λ2

2
(∥u∥2H1

0
+ ∥v∥2H1

0
)− λ2p+2

2(p+ 1)
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2),

d

dλ
J(λu, λv) ≃ λ(∥u∥2H1

0
+ ∥v∥2H1

0
)− λ2p+1(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2)

and there exists a λ∗ such that d
dsJ(su, sv) |s=s∗ = 0. For (u, v) ∈ N+, we have

I(u, v) = ∥∇u∥22 + ∥∇v∥22 − (∥u∥2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2) > 0.

Then

J(u, v) =
1

2
(∥∇u∥22 + ∥∇v∥22)−

1

2p+ 2
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2)

>
1

2p+ 2
I(u, v) +

p

2p+ 2
(∥∇u∥22 + ∥∇v∥22) > 0.

For (u, v) ∈ N , we get

I(u, v) = ∥∇u∥22 + ∥∇v∥22 − (∥u∥2p+2
2p+2 + 2∥uv∥p+1

p+1 + ∥v∥2p+2
2p+2) = 0.

Hence

d

dλ
J(λu, λv) ≃ λ(∥u∥2H1

0
+ ∥v∥2H1

0
)− λ2p+1(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2) = 0,
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which implies that λ = 1 and J(u, v) = maxλ>0 J(λu, λv) for any (u, v) ∈ N . Since J(u, v) < k and

I(u, v) > 0, we get

k > J(u, v) =
1

2
(∥∇u∥22 + ∥∇v∥22)−

1

2p+ 2
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2)

>
1

2p+ 2
I(u, v) +

p

2p+ 2
(∥∇u∥22 + ∥∇v∥22)

>
p

2p+ 2
(∥∇u∥22 + ∥∇v∥22),

which yields

∥∇u∥22 + ∥∇v∥22 <
2p+ 2

p
k.

Then for any k > 0, the set Jk ∩N+ is bounded in H1
0 (Ω)×H1

0 (Ω).

Theorem 5.13. If (u0, v0) ∈ N+ and ∥u0∥22 + ∥v0∥22 6 λJ(u0,v0), then (u0, v0) ∈ G0. If (u0, v0) ∈ N−
and ∥u0∥22 + ∥v0∥22 > ΛJ(u0,v0), then (u0, v0) ∈ B.
Proof. Let

u(t) := S(t)u0 +

∫ t

0

S(t− s)f(u, v)ds

and

v(t) := S(t)v0 +

∫ t

0

S(t− s)g(u, v)ds

for t ∈ [0, T (u0, v0)). As (5.16), ut ̸≡ 0 and vt ̸≡ 0 give

dJ(u, v)

dt
= −

∫
Ω

u2tdx−
∫
Ω

v2t dx < 0,

and then

J(u(t), v(t)) < J(u0, v0) for all t ∈ (0, T ). (5.53)

Assume first that (u0, v0) ∈ N+ satisfies

∥u0∥22 + ∥v0∥22 6 λJ(u0,v0).

We claim that (u(t), v(t)) ∈ N+ for all t ∈ [0, T ). By contradiction, if there is an s > 0 such that

(u(t), v(t)) ∈ N+ for 0 6 t < s and (u(s), v(s)) ∈ N , then (5.52) and (5.53) imply

∥u(s)∥22 + ∥v(s)∥22 < ∥u0∥22 + ∥v0∥22 6 λJ(u0,v0)

and

J(u(s), v(s)) < J(u0, v0),

which contradict the definition of λJ(u0,v0) and prove the claim. Hence, Lemma 5.12 shows that the

orbit {(u(t), v(t))} remains bounded in H1
0 (Ω) × H1

0 (Ω) for t ∈ [0, T ) so that T = ∞. Now for every

(ω, φ) ∈ ω(u0, v0), by (5.16) and (5.52) we get

∥ω∥22 + ∥φ∥22 < λJ(u0,v0) and J(ω, φ) 6 J(u0, v0).

By the definition of λJ(u0,v0), (u0, v0) ∈ N+ and the definition of ω(u0, v0), we get ω(u0, v0) ⊂ N+. Hence,

we conclude ω(u0, v0) ∩ N = ∅. As N includes the nontrivial solutions of the problem (2.1), we know

ω(u0, v0) = {(0, 0)}. In other words, (u0, v0) ∈ G0, as claimed.
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Next, we consider the case that (u0, v0) ∈ N− and ∥u0∥22 + ∥v0∥22 > ΛJ(u0,v0). We claim that

(u(t), v(t)) ∈ N− for all t ∈ [0, T ). By contradiction, if there is an s > 0 such that (u(t), v(t)) ∈ N− for

0 6 t < s and (u(s), v(s)) ∈ N , then by (5.52), we have

d

dt
(∥u∥22 + ∥v∥22) = −2I(u, v) > 0, 0 6 t < s. (5.54)

Furthermore, from the above combined with (5.53), we have

∥u(s)∥22 + ∥v(s)∥22 > ∥u0∥2 + ∥v0∥22 > ΛJ(u0,v0)

and

J(u(s), v(s)) < J(u0, v0),

which contradict the definition of ΛJ(u0,v0). Hence for every (ω, φ) ∈ ω(u0, v0), T = ∞, we then infer that

ω(u0, v0) ∩ N = ∅. However, since dist(0,N−) > 0, we also have (0, 0) /∈ ω(u0, v0). This gives ω(u0, v0)

= ∅, contrary to the assumption that (u(t), v(t)) is a global solution. We conclude that T <∞.

Corollary 5.14. If (u0, v0) ∈ N− and

∥u0∥2p+2
2 + ∥v0∥2p+2

2 > ΥJ(u0,v0) := sup{∥u∥2p+2
2 + ∥v∥2p+2

2 | (u, v) ∈ NJ(u0,v0)},

then (u0, v0) ∈ B.
Proof. We claim that (u(t), v(t)) ∈ N− for all t ∈ [0, T ). By contradiction, suppose that there is an

s > 0 such that (u(t), v(t)) ∈ N− for 0 6 t < s and (u(s), v(s)) ∈ N . Hence (5.54) tells that ∥u∥22 + ∥v∥22
is monotonically increasing on 0 6 t < s, which also means that ∥u∥2p+2

2 + ∥v∥2p+2
2 is monotonically

increasing on 0 6 t < s, i.e.,

∥u(s)∥2p+2
2 + ∥v(s)∥2p+2

2 > ∥u0∥2p+2
2 + ∥v0∥2p+2

2 > ΥJ(u0,v0). (5.55)

From another perspective, (5.53) gives

J(u(s), v(s)) < J(u0, v0). (5.56)

We can show the contradiction between (5.55) and (5.56). Due to (u(s), v(s)) ∈ N and (5.56), we see that

(u(s), v(s)) ∈ NJ(u0,v0) = N ∩ JJ(u0,v0),

and then (5.55) contradicts the definition of ΥJ(u0,v0) immediately. This contradiction means the solution

(u(t), v(t)) cannot go through the boundary of N−, i.e., (u(t), v(t)) ∈ N− for all t ∈ [0, T ).

Next, we go to prove T <∞. By the contradiction, we assume that T = ∞, which means ω(u0, v0) ̸= ∅.
Hence ω(u0, v0) ⊂ N−, i.e., ω(u0, v0) ∩ N = ∅ for T = ∞. Since dist(0,N−) > 0, we also have (0, 0) /∈
ω(u0, v0). For T = ∞, combining ω(u0, v0) ∩ N = ∅, (0, 0) /∈ ω(u0, v0) and Lemma 5.3 (which tells that

the solution converges into N as time tends to infinity), we obtain ω(u0, v0) = ∅. This contradiction

proves T <∞.

Theorem 5.15. Assume that (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω) satisfies

∥u0∥2p+2
2 + ∥v0∥2p+2

2 > 2(p+ 1)

p
|Ω|pJ(u0, v0). (5.57)

Then (u0, v0) ∈ N− ∩ B.
Proof. By using Hölder’s inequality we obtain (the same for v0)

∥u0∥22 =

∫
Ω

|u0|2dx 6
(∫

Ω

|u0|2·
2p+2

2 dx

) 2
2p+2

(∫
Ω

1dx

) 2p
2p+2

= ∥u0∥22p+2|Ω|
2p

2p+2 . (5.58)
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From the above combined with (5.57), we have

|Ω|p(∥u0∥2p+2
2p+2 + ∥v0∥2p+2

2p+2) > ∥u0∥2p+2
2 + ∥v0∥2p+2

2 > 2(p+ 1)

p
|Ω|pJ(u0, v0). (5.59)

Furthermore, from (5.59) and (noting u0 ̸≡ 0 and v0 ̸≡ 0)

J(u0, v0) =
1

2
(∥∇u0∥22 + ∥∇v0∥22)−

1

2(p+ 1)
(∥u0∥2p+2

2p+2 + 2∥u0v0∥p+1
p+1 + ∥v0∥2p+2

2p+2)

=
p

2(p+ 1)
(∥u0∥2p+2

2p+2 + 2∥u0v0∥p+1
p+1 + ∥v0∥2p+2

2p+2) +
1

2
I(u0, v0)

>
p

2(p+ 1)
(∥u0∥2p+2

2p+2 + ∥v0∥2p+2
2p+2) +

1

2
I(u0, v0), (5.60)

we have I(u0, v0) < 0, i.e., (u0, v0) ∈ N−.

Next, we will detect the upper bound of ∥u0∥2p+2
2 + ∥v0∥2p+2

2 in order to apply Corollary 5.14. Similar

to (5.58), Hölder’s inequality also gives (the same for v)

∥u∥22 6 ∥u∥22p+2|Ω|
2p

2p+2 .

Then we notice

J(u, v) =
1

2
(∥∇u∥22 + ∥∇v∥22)−

1

2(p+ 1)
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2)

=
p

2(p+ 1)
(∥u∥2p+2

2p+2 + 2∥uv∥p+1
p+1 + ∥v∥2p+2

2p+2) +
1

2
I(u, v)

> p

2(p+ 1)
(∥u∥2p+2

2p+2 + ∥v∥2p+2
2p+2) +

1

2
I(u, v),

and (5.59) for any (u, v) ∈ NJ(u0,v0), which yields

|Ω|
1
p (∥u∥2p+2

2 + ∥v∥2p+2
2 ) 6 ∥u∥2p+2

2p+2 + ∥v∥2p+2
2p+2 6 2(p+ 1)

p
J(u0, v0). (5.61)

Therefore, taking the maximum over NJ(u0,v0), we immediately get

ΥJ(u0,v0) 6
2(p+ 1)

p
|Ω|pJ(u0, v0). (5.62)

Hence (5.57) means

∥u0∥2p+2
2 + ∥v0∥2p+2

2 > ΥJ(u0,v0),

which ensures (u0, v0) ∈ B by Corollary 5.14.
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