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Abstract Various forms of penalized estimators with good statistical and computational properties have been

proposed for variable selection respecting the grouping structure in the variables. The attractive properties

of these shrinkage and selection estimators, however, depend critically on the choice of the tuning parameter.

One method for choosing the tuning parameter is via information criteria, such as the Bayesian information

criterion (BIC). In this paper, we consider the problem of consistent tuning parameter selection in high dimen-

sional generalized linear regression with grouping structures. We extend the results of the extended regularized

information criterion (ERIC) to group selection methods involving concave penalties and then investigate the

selection consistency with diverging variables in each group. Moreover, we show that the ERIC-type selector

enables consistent identification of the true model and that the resulting estimator possesses the oracle property

even when the number of group is much larger than the sample size. Simulations show that the ERIC-type se-

lector can significantly outperform the BIC and cross-validation selectors when choosing true grouped variables,

and an empirical example is given to illustrate its use.
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1 Introduction

Grouping structures arise naturally in many statistical modeling problems. Several methods have been

proposed for variable selection that respect grouping structures in variables. Yuan and Lin [20] proposed

the group LASSO as a natural extension of the LASSO to take into account the grouping structure of the

predictors. Meier et al. [15] further extended the group LASSO to logistic regression. While the group

LASSO has many attractive properties, such as sparsity and estimation consistency (see [11,19]), it is not

selection-consistent in general. To reduce bias and gain selection consistency, various variable selection

methods have been proposed as alternatives of the group LASSO, including the adaptive group LASSO

penalty (see [16,23]), the group smoothly clipped absolute deviation penalty (SCAD [18]), and the group

minimax concave penalty (MCP, see [10]). These methods can identify the true model consistently, and
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the resulting estimator can be as efficient as an oracle. To employ the group-penalized likelihood in

regression analysis, we should first hurdle the computational challenge associated with estimating the

group-penalized likelihood, especially for nonconvex penalties. A group least-angle regression (LARS)

algorithm can be used for the adaptive group LASSO (see [16, 23]). With the aid of a local linear

approximation (LLA) algorithm (see [24]), group LARS can be adopted to solve optimization problems of

nonconcave penalized likelihood functions with a group structure. Block coordinate descent algorithms

for fitting group-penalized models have recently been shown to be competitive particularly in high-

dimensional settings (see [1, 8]). However, the above computational procedures rely on the appropriate

selection of the regularization parameter, which is the primary focus of our paper.

A consistent criterion identifies the true model with a probability that approaches 1 in large samples

when a set of candidate models contains the true model. Several modifications to the criteria BIC

have been proposed to select the tuning parameter consistently in high-dimensional settings (see [2,

7, 21]). Wang et al. [17] considered tuning parameter selection with diverging dimensionality and a

modified BIC criterion. However, their analysis was confined to the penalized least-squares method,

and the dimensionality of covariates was not allowed to exceed the sample size n. Zhang and Shen

[22] and Kim et al. [13] proposed different penalty terms to handle settings where the number of true

predictors was unbounded under linear regression. Recently, Hui et al. [12] proposed an extended

regularized information criterion (ERIC) to select the tuning parameter in adaptive LASSO regression;

this selector accounted for the effect of the Laplace prior on coefficients not shrunken to zero. Fan and

Tang [7] also accommodated tuning parameter selection for general penalized likelihood methods when

the dimensionality grows exponentially with the sample size n. Despite their clear merits, however, all

of the aforementioned works focus on consistently selecting covariates without a group structure. This

gap in the research motivated us to study the issues of regularization parameter selection for penalized

likelihood-based models with different group-penalized functions. Very recently, Gao and Carroll [9]

established the selection consistency of BIC-type criteria for unbounded true predictors under a broad

likelihood setting, including generalized linear models (GLIM, see [14]) as a special case. While this

criterion is also used in group penalization, in the present work, we establish theoretical consistency

independently by comparing the selection performance of several methods in simulations.

In this paper, we adapt the ERIC selector [12] for choosing regularization parameters in group-penalized

likelihood functions. We relate the proposed criterion to the adaptive group LASSO and the group con-

cave penalized likelihood methodology with the GLIM structure. When the true model is among a set of

candidate models, we show that the ERIC tuning parameter selector enables us to identify the true group

consistently with a diverging true number of groups. Moreover, in the ultra-high-dimensional situation,

we also establish group selection consistency for GLIM. Our theoretical investigations, numerical imple-

mentations via simulations, and data analysis illustrate that the approach proposed can be significantly

superior to BIC in GLIM.

The rest of the paper is organized as follows. Section 2 adapts the ERIC-type selector under a gen-

eral group-penalized likelihood setting. Section 3 studies the consistency property of the adapted ERIC

for generalized linear models with both adaptive group LASSO and group concave penalties, and Sec-

tion 4 investigates the selection consistency in ultra-high-dimensional GLIM. Monte Carlo simulations

are presented in Section 5 to illustrate the use of the extended regularization parameter selectors and an

empirical example is given in Section 6. Section 7 provides a discussion of our findings, and technical

proofs are given in Appendix A.

2 Group-penalized likelihood functions

2.1 Group-penalized estimators and penalty functions

We consider group variable selection in GLIM. Let {(Xi, yi); i = 1, . . . , n} be a sample of independent

and identically distributed observations, where yi is a univariate response, Xi = (xT
i,1, . . . ,x

T
i,gn

)T is a

pn-dimensional vector of covariates with gn groups of predictors, and xi,j = (x1
i,j , . . . , x

dj

i,j) is the dj-
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dimensional sub-covariate vector representing the j-th group, j = 1, . . . , g. This relation means there

are dj variables in the j-th group. Let y = (y1, . . . , yn)
T ∈ Rn, Xj = (xT

1,j , . . . ,x
T
n,j)

T ∈ Rn×dj and

X = (X1, . . . ,Xgn). The number of covariates is allowed to grow with the sample size. The conditional

density of yi givenXi is assumed to come from the exponential family of distributions taking the canonical

form

f(yi |Xi, β, ϕ) = exp

(
1

ϕ
(yiθi − b(θi)) + c(yi, ϕ)

)
for suitably chosen functions b(·) and c(·, ·), where θ = Xβ is called the canonical parameter and where

β = (βT
1 , . . . , β

T
gn)

T is a pn =
∑gn

j=1 dj-dimensional coefficient vector with βj = (βj,1, . . . , βj,dj )
T being the

dj-dimensional sub-coefficient vector corresponding to the j-th group. In addition, E(y |X) = b(θ) = µ.

We use the canonical link function, g(µ) = θ, with the nuisance parameter ϕ either known in advance or

requiring estimation.

In this paper, we consider group-penalized methods that are usually used to simultaneously accomplish

group selection and estimation by maximizing the penalized log-likelihood function given by,

ℓp(β) = ℓ(y |β)−
gn∑
j=1

ρ(∥βj∥;
√
djλ, a), (2.1)

where ℓ(y |β) =
∑n

i=1 log f(yi |Xi), and ρ(· ;λ, a) is a penalty function indexed by the penalty parame-

ters λ and a that control the tradeoff between the log-likelihood function and the penalty function. The

penalty parameter
√

djλ accounts for the group size such that large-sized groups and small-sized groups

are fairly penalized.

The penalty function in (2.1) includes many choices. For ρ(t;λ) = λ|t|, the group LASSO penalty

(see [15, 20]) can be written as ρ(∥βj∥;
√
djλ) = λ

√
dj∥βj∥. Let β̃ be the maximum likelihood estimate

(MLE) of β. Note that β̃ is, under general regularity conditions, well-defined provided pn < n. The

adaptive group LASSO estimator is given by

β̂(λ) = argmax
β

{
ℓ(y |β)− λ

gn∑
j=1

√
djw̃j∥βj∥

}
, (2.2)

where w̃j = 1/∥β̃j∥γ with γ > 0 as the power parameter. The SCAD penalty is

ρ(t;λ, a) = λ

∫ |t|

0

min{1, (a− x/λ)+/(a− 1)}dx, a > 2.

The MCP penalty has the form ρ(t;λ, a) = λ
∫ |t|
0

(1 − x/(aλ))+dx, a > 1. These penalties are nearly

unbiased and more aggressive than others in enforcing a sparser solution. Using a composite of these

penalties and an ℓ2 norm of the coefficients in each group, the 2-norm group concave estimator is given

by

β̂(λ) = argmax
β

{
ℓ(y |β)− n

gn∑
j=1

ρ(∥βj∥;
√

djλ, a)

}
. (2.3)

Moreover, when a → ∞, both the group SCAD and group MCP are simplified to the group LASSO

(see [20]), which is defined in (2.2).

2.2 High dimensional group-penalized information criteria

Under a general likelihood-based framework, the BIC and CV methods can be used to choose tun-

ing parameters λ in group selection. Denote BIC(λ) = −2ℓ(y | β̂λ) +
∑

j∈αλ
dj log(n), and CV(λ) =

1
N

∑N
i=1 −2ℓ(−i)(y | β̂λ), where ℓ(−i) is the log-likelihood estimation discounting the i-th part of the data

within an interval [λ1, λ2] and N for the N -fold cross validation. The CV method has been shown to

overfit the true model with a positive probability, and it is asymptotically loss efficient (see [17,21]). We
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review the ERIC (see [12]) motivated from a sound Bayesian perspective; this selector extends the BIC to

account for the effect of prior information on the bias-variance tradeoff. If the adaptive LASSO penalty

is asymptotically negligible, the ERIC is reduced to the BIC with unpenalized MLEs. The classifier has

been shown to be selection-consistent when the number of covariates increases with the sample size, and

this consistency holds true in a wider range of cases compared with the BIC (see [12]). However, whether

the ERIC is still consistent by selecting the true group covariates in high-dimensional situations, e.g.,

gn = O(nκ) for some 0 < κ < 1, remains unknown. Thus, we adapt the ERIC-type criteria for high

dimensional group-penalized variable selection as

ERICν(λ) = −2ℓ(y | β̂λ) + 2ν
∑
j∈αλ

dj log(nϕ/λ), (2.4)

where β̂λ is the penalized estimate obtained by maximizing (2.1). We denote the model associated with

β̂λ by αλ, and consider αλ = {j : ∥β̂λ,j∥ ̸= 0} as the active set excluding the intercept. The number of

variables in each group is allowed to diverge with the sample size n.

The way ERIC penalizes models is fundamentally different from the way the BIC does, where the latter

penalizes a constant value for every new covariate entered into the model. The primary difference lies in

the second term, which captures the variance of the nonzero estimates, and the ERIC penalizes models

more severely for over-fitting than the BIC. ERIC-type criteria have a dynamic variance penalty, which

depends on λ itself, meaning it also depends on how complex the model already is. We study (2.4) via

an approach similar to that used in [7,12]. More critically, we establish its uniform asymptotic properties

by defining a proxy version of the criterion

ERIC∗
ν(λ) = −2ℓ(y | β̃αλ

) + 2ν
∑
j∈αλ

dj log(nϕ/λ),

where β̃αλ
is the unpenalized MLE under model αλ and uniform for all |αλ| 6 K, where K can be

unbounded.

Although, the ERIC-type selector in (2.4) was motivated by the Bayesian framework for the adaptive

group LASSO with Laplace priors, our Bayesian friends may also regard the SCAD as the maximum a

posteriori using an SCAD prior (the density is the exponential of the negative SCAD penalty function).

For the case of a group SCAD, we can apply LLA to the SCAD penalty function in (2.3) (see [24])

and then choose ρSCAD(∥βj∥) = ρ′
SCAD

(∥β̃j∥)∥βj∥, which provides better unification of adaptive group

LASSO and the group SCAD penalty. We can also use the same framework of the ERIC to ensure

selection consistency for the group SCAD penalty. The expression in (2.4) can be directly used to the

adaptive group LASSO but needs modification of the tuning parameter λ by multiplying n when applied

to the group nonconvex penalty functions.

3 Selection consistency

In this section, we show that ERIC is selection-consistent for group-penalized GLMs, where both gn
and dj grow at a lower rate than the sample size n. Let β0 = (β0T

1 , . . . , β0T
g )T denote the true parameter

values, with the true model identified by α0 = {j : ∥β0
j ∥ ̸= 0} and p0 =

∑
j∈α0

dj . We will develop the

concept of selection consistency for both adaptive group LASSO and two concave 2-norm group selection

problems.

3.1 Consistency for adaptive group LASSO

To obtain the consistency properties for adaptive group LASSO, we assume the following regularity

conditions are satisfied.

Condition 1. The range of tuning parameters considered in (2.2) lies in the interval λ ∈ [λmin, λmax],

where λmin > 0 and λmax/n → 0, as n → ∞.
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Condition 2. Let limn→∞
log (gn)
log (n) = κ1. Denote dmin = min16j6g{dj} and dmax = max16j6g{dj},

and let limn→∞
log(dmin)
log (n) = limn→∞

log(dmax)
log(n) = κ2, where κ1 + κ2 ∈ [0, 1).

Condition 3. For any model α defined in the interval [λmin, λmax] such that |α| 6 K, with K

satisfying K = o(nι/2), where 0 < ι < ν(1 − κ1) − 2(κ1 + κ2) with 2(κ1 + κ2)/(1 − κ1) < ν < 2(1

+ κ1 + κ2)/(1 − κ1), we have 1
nX

T
αXα →p Γα, and the minimum and maximum eigenvalues satisfy

0 < c1 < ζmin(Γα) < ζmax(Γα) < c2 < ∞. For all θ ∈ R, the function b(θ) has a second-order derivative

with c0 6 b′′(θ)/ϕ 6 1/c0 and |b′′′(θ)/ϕ| 6 1/c0, where c0, c1, and c2 are positive constants.

Condition 4. There exists a positive constant M such that minj∈α0 ∥β0
j /

√
dj∥ > M .

Condition 5. (a) λ
√

p0

n → 0; (b) λ√
ngn

( n
pn

)γ/2 → ∞, as n → ∞.

Remark 3.1. Condition 1 is identical to that in [12], λmax can be easily chosen such that αλmax is

empty, and λmin can be chosen such that K = |αλmin | (see [7]). For group variable selection, Condition 2

permits the numbers of both groups and covariates in each group to diverge with the sample size, as Zou

and Zhang [25] did without the group assumption. With Condition 2, we have limn→∞ log (pn)/log (n) =

κ1 + κ2 < 1. Condition 3 is a mild regularity condition that ensures the Fisher information matrix

exists and is non-singular for each n. Note that under Conditions 2–3, the MLEs for the full model

are well-defined and
√
n/pn-consistent; thus, weights w̃j = 1/∥β̃j∥γ can be calculated for use in the

adaptive group LASSO. Condition 4 guarantees the strength of relevant groups. Condition 5 reduces

to [12, Condition (A5)] for the adaptive LASSO with diverging pn and to the conditions in [16] for the

adaptive group LASSO, thus achieving consistency in the fixed group gn and dj settings.

When the numbers of both groups and variables in each group diverge according to Condition 2,

we must first obtain a generalization of the consistency result for the adaptive group LASSO to non-

Gaussian responses with diverging numbers of groups and variables in each group. Then, to study the

asymptotic behavior of ERIC, we partition the tuning parameter interval [λmin, λmax] into the under-

fitted, true, and over-fitted subsets, respectively, Ω− = {λ : αλ ̸⊃ α0}, Ω0 = {λ : αλ = α0}, and

Ω+ = {λ : αλ ⊃ α0 and αλ = α0}. This partition allows us to assess the performance of regularization

parameter selections. Using the proxy ERIC∗ and the conditions above, we have the following lemma.

Lemma 3.2. Assume Conditions 1–4 are satisfied and that there exists a λ0 ∈ Ω0 satisfying Condi-

tion 5. Then,

(a) P(infλ∈Ω− minαλ ̸⊃α0 ERIC
∗
ν(λ) > ERIC∗

ν(λ0)) → 1.

(b) P(infλ∈Ω+ minαλ!α0 ERIC
∗
ν(λ) > ERIC∗

ν(λ0)) → 1, if γ > 2κ1+(2−ν)κ2

ν(1−κ1−κ2)
− 1.

Remark 3.3. Lemma 3.2 is established for unbounded K by Condition 3, which is also studied in [9].

The condition on γ reduces to γ > 2κ1

ν(1−κ1)
−1, which is identical to that in [12] without a group structure

assumption. In Lemma 3.2(b), the condition on γ reduces to a simple inequality for the case ν = 1

(γ > (2κ1 + κ2)/(1− κ1 − κ2)). Then, choosing a γ > 1 will be satisfied by Condition 3. In simulations,

choosing γ is straightforward since κ1 and κ2 are known. In real applications, we suggest trying several

values of γ, for example, γ = 1, 2, 4, 6, while taking into account the dimensionality of the dataset at

hand.

Based on Lemma 3.2 and the estimation consistency given in Appendix A, we obtain the following

results.

Theorem 3.4. Suppose Conditions 1–5 are satisfied. Then, the tuning parameter λ̂ selected by mini-

mizing ERICν(λ) in (2.4) satisfies P{αλ̂ = α0} → 1.

Corollary 3.5. Let λ̂ be the tuning parameter chosen by minimizing BIC. If κ1 > 1
2 in Condition 2,

then, P{αλ̂ = α0} ̸→ 1.

Remark 3.6. Theorem 3.4 guarantees the selection of ERIC if the true model is contained within

the set of candidate models. Corollary 3.5 extends the result shown in [2, 12] to the group-penalized

likelihood setting. By the above theorems, ERIC is selection-consistent for a wider range of settings

compared with BIC.
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3.2 Consistency for concave 2-norm group selection

In this section, we extend the concept of selection consistency to nonconvex penalty functions, e.g., group

SCAD and group MCP. To study the consistent property, we need the following regularity conditions.

Condition 1′. The range of tuning parameters considered in (2.3) lies in the interval λ ∈ [λmin, λmax],

where λmax → 0, as n → ∞.

Condition 4′. Assume a > 1 + c−1
∗ for the group SCAD and a > c−1

∗ for the group MCP, where a is

the penalty parameter in (2.1), c∗ = c1c0, and c1 and c2 are the same as those defined in Condition 3.

The nonzero group value β0
j satisfies minj∈α0 ∥β0

j /
√
dj∥/λ → ∞, as n → ∞.

Condition 5′. (a) λ = O(n−1+δ), where 1+κ1

2 < δ < 1; (b) λ
√

ndmin

pn
→ ∞, as n → ∞.

Remark 3.7. Condition 1′ indicates that a smaller regularization parameter is needed if the sample

size is large. Condition 4′ is similar to the one in [5], which is necessary for obtaining the oracle property,

and the condition on a ensures the objective functions in (2.3) are globally convex. Condition 5′ reduces

to the conditions in [5] without a group structure assumption, where κ1 is the same as that in Condition 2.

To understand the selection consistency of ERIC, we first have the following consistency results for

group SCAD selection problems.

Lemma 3.8. Assume Conditions 2–3 and 4′–5′ are satisfied. Then, the group SCAD estimates β̂λ

must satisfy: (a) estimate consistency: ∥β̂λ − β0∥ = Op(
√
pn/n); (b) selection consistency: P({j : ∥β̂λ,j∥

= 0} = αc
0) → 1.

Similar to the adaptive group LASSO, we show that the group nonconcave penalized likelihood of the

generalized linear model with the ERIC selector possesses the oracle property. By the following theorem,

for group nonconvex problems, if the true model is contained within the set of candidate models, it can

be selected by ERIC.

Theorem 3.9. Suppose Conditions 1′, 2–3 and 4′–5′ are satisfied. Then, the tuning parameter λ̂

selected by minimizing ERICν(λ) in (2.4) satisfies P{αλ̂ = α0} → 1.

4 Ultra-high dimensional data

In this section, we extend our methods separately to the convex and 2-norm concave problems in terms

of ultra-high dimensional settings in GLIM (see [6,7]). For the adaptive group LASSO penalty, we apply

the maximum marginal likelihood estimators as weights of the adaptive group LASSO inspired by [6,11].

Then, with our ERIC, we achieve selection consistency. For 2-norm concave penalties, penalties such as

group SCAD can be used directly, and selection consistency can be guaranteed by using ERIC to select

the tuning parameter. We note here that methods such as the LLA algorithm (see [24]) can be used

to solve nonconvex penalties, which can be viewed as solving an adaptive group LASSO-type penalty

problem, and, consequently, enjoys the same oracle property as the original SCAD-regularized estimator.

The detailed implementation for group SCAD is similar to that described by Fan and Tang [7]; thus, we

focused on adaptive group LASSO in this section. To obtain selection consistency for the adaptive group

LASSO in that case of log pn = o(nκ) for some κ > 0, we first need the following conditions:

Condition 6. Conditions 1 and 3 hold true.

Condition 7. log pn = o(n2τ ) and p0 = o(n2τ0), for 0 < τ0 < τ < 1/2.

Condition 8. There exists a positive constant M such that minj∈α0
∥β0

j /
√
dj∥ > M and maxj /∈α0

∥β̃j/
√

dj∥ 6 Mn−τ , for 0 < τ < 1/2, with a probability approaching 1.

Condition 9. Uniformly for all i = 1, . . . , n, E|yi − b′(Xiβ
0)|r 6 1

2r!L
r−2C, for any r > 2 and some

constants L and C.

Condition 10. (a) λ
√

p0

n → 0; (b) λ√
n1−2τ log(pn)

→ ∞.
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Condition 7 allows the rate of group number gn to be large as exp(o(nκ1)) for some 0 < κ1 < 1, which

indicates that gn can be much larger than n, while the number of true nonzero variables p0 is permitted

to grow with the sample size at a certain rate. Condition 8 can be shown according to Fan and Song [6]

without a group structure, where β̃j are the maximum marginal likelihood estimators. Condition 9 is

an assumption on the moments of noise similar to [7, Condition 3]. This condition implies that the tail

distribution of noise undergoes exponential decay, which is reasonable for the generalized linear model.

Condition 10 can be easily satisfied by choosing λ = o(
√
n). Moreover, when the number of covariates

is fixed, the choice of λ reduces to λ/
√
n → 0 and λ/n

1
2−τ → ∞, which is identical to that in [24,

Theorem 5], to establish the oracle properties of the one-step estimator for the adaptive LASSO penalty.

Similar to the results of adaptive group LASSO in the case pn < n, we first obtain a generalization of

the consistency result for adaptive group LASSO in the ultra-high dimensional case, which allows group

number gn = exp(o(nκ1)) for some 0 < κ1 < 1. Then, we obtain the following result.

Theorem 4.1. Suppose Conditions 6–10 hold true. Then, the tuning parameter λ̂ selected by mini-

mizing ERICν(λ) in (2.4) satisfies

P{αλ̂ = α0} → 1.

5 Simulation studies

We conducted a simulation study to compare the performance of ERICν against the BIC criteria used to

select λ in group-penalized GLMs. Three models are considered to compare the performance. To assess

the finite sample performance of the proposed methods, we report the following associated features of

parameter estimation and variable selection by ERIC, BIC, and CV selectors with adgLASSO, gSCAD,

and gMCP: (1) the average of the estimated root mean squared error, RMSE = ∥β̂−β∥, (2) the average

model size of the identified model α̂λ = {j : ∥βj∥ ̸= 0}, MS = |α̂λ|, (3) the average false positive rate,

TPR = |α̂c
λ ∩ α0|/|α0|, (4) the average false negative rate, FNR = |α̂λ ∩ αc

0|/|α0|, and (5) the percentage

of correct identified models, denoted by CM. Ideally, we wish to have CM close to 1. To compare model

fittings, we further calculate the model error ME(β) = EX [µ(Xβ) − µ(Xβ̂)]2, and then report the

median of relative model errors (MRME) of the refitted unpenalized estimates for each selected model,

which is also used in [21]. For comparison, we evaluate the ERICν with ν = 0.75 or ν = 1. Moreover,

we also report the results of a BIC-type criterion proposed in [9], which includes GLM as a special case,

denoted as

BICgc = −2ℓ(y | β̂) + cd̂∗λ log(gn),

where d̂∗λ = tr(Ĥ−1
αλ

V̂αλ
) with Ĥ−1

αλ
the observed Hessian matrix and V̂αλ

as the sample covariance matrix

of the score function. In each of the simulated models, we choose c = 2 in the simulation section, and a

total of 500 replications are conducted.

Example 5.1. We simulate the data from a linear model with pn = ⌊8n1/2⌋, where ⌊·⌋ denotes the floor
function. Covariates {Xi; i = 1, . . . , n} were multivariate normal with the covariance matrix Σ = (σij),

in which σij = 0.2|i−j|, which are divided into 20 groups, each of size 4. The true regression coefficients

shared within each group are (−2, −1, 1, 2), respectively. We consider sample sizes n = 100 and error

variances σ2 = 4 and used γ = 1 in the adaptive group LASSO weights. From Table 1, all ERIC methods

with adaptive group LASSO, group SCAD, and group MCP show better performance than BIC and

10-fold CV in terms of variable selection and model error measures. This result is consistent with the

tendency of ERIC to choose larger values of λ and, thus, smaller models compared with the BIC criteria

(see Figure 1). In model identification, for example, gSCAD-ERIC is more likely than gSCAD-BIC to

correctly detect the five true nonzero coefficients, while BIC is slightly more prone than ERIC to overfit

when the sample size is small. Both ERIC and BICgc are applicable, and using ν = 1 will lead stronger

performance compared with ν = 0.75. Finally, 10-fold CV performs very poorly with regard to selecting

the true model, although its predictive performance is similar to the BIC-type criteria. As mentioned

previously, cross validation is asymptotically less efficient rather than consistent.
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Table 1 Simulation results for the linear regression model

Method MRME RMSE MS CM FPR FNR

adgLASSO-ERIC0.75 0.2662 0.1097 (0.0251) 4.070 0.938 0.0001 0.0144

adgLASSO-ERIC1 0.2326 0.1234 (0.0266) 4.048 0.948 0 0.0108

adgLASSO-BICgc 0.2481 0.1101 (0.0241) 4.062 0.944 0 0.0124

adgLASSO-BIC 0.2507 0.1112 (0.0273) 4.176 0.874 0 0.0272

adgLASSO-CV 0.2328 0.1365 (0.0385) 6.514 0.282 0 0.5028

gSCAD-ERIC0.75 0.2194 0.1081 (0.0219) 4.102 0.910 0 0.0204

gSCAD-ERIC1 0.2403 0.1088 (0.0254) 4.042 0.957 0 0.0085

gSCAD-BICgc 0.2213 0.1111 (0.0240) 4.054 0.954 0 0.0108

gSCAD-BIC 0.2397 0.1096 (0.0252) 4.112 0.918 0 0.0224

gSCAD-CV 0.2314 0.1083 (0.0233) 6.010 0.332 0 0.4020

gMCP-ERIC0.75 0.2187 0.1078 (0.0211) 4.024 0.984 0 0.0048

gMCP-ERIC1 0.2173 0.1015 (0.0202) 4.004 0.996 0 0.0008

gMCP-BICgc 0.2182 0.1026 (0.0208) 4.006 0.994 0 0.0012

gMCP-BIC 0.2508 0.1052 (0.0232) 4.036 0.974 0 0.0072

gMCP-CV 0.2300 0.1097 (0.0264) 4.714 0.662 0 0.1428

ERIC.lambda.hat BIC_gc.lambda.hat BIC.lambda.hat CV .lambda.hat

0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1 Boxplots of λ values chosen by ERIC, BICgc, BIC and CV based on the adaptive group LASSO from Exam-

ple 5.1. Both criteria selected the true model
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Table 2 Simulation results for the logistic regression model

Method MRME RMSE MS CM FPR FNR

adgLASSO-ERIC0.75 0.3734 1.3540 (0.2679) 3.970 0.585 0.0126 0.0570

adgLASSO-ERIC1 0.3051 1.3045 (0.2550) 3.695 0.780 0.0126 0.0020

adgLASSO-BICgc 0.2950 1.4381 (0.3712) 3.954 0.654 0.0121 0.0512

adgLASSO-BIC 0.5125 1.5491 (0.4503) 4.620 0.520 0.0025 0.1364

adgLASSO-CV 0.5862 1.6015 (0.1822) 7.104 0.006 0.0016 0.6208

gSCAD-ERIC0.75 0.2907 1.4195 (0.3123) 4.180 0.850 0.0008 0.0400

gSCAD-ERIC1 0.2758 1.3585 (0.2595) 3.980 0.925 0.0020 0.0060

gSCAD-BICgc 0.2878 1.4108 (0.3091) 4.130 0.840 0.0010 0.0310

gSCAD-BIC 0.7661 1.7654 (0.4534) 4.600 0.514 0.0031 0.1352

gSCAD-CV 0.5293 1.5083 (0.2714) 6.665 0.064 0.0006 0.3520

gMCP-ERIC0.75 0.3564 1.3978 (0.2812) 4.125 0.840 0.0014 0.0310

gMCP-ERIC1 0.2541 1.3182 (0.2188) 3.990 0.940 0.0112 0.0180

gMCP-BICgc 0.2772 1.3586 (0.2557) 4.085 0.855 0.0018 0.0260

gMCP-BIC 0.5415 1.6174 (0.4012) 4.481 0.570 0.0027 0.1096

gMCP-CV 0.5308 1.4787 (0.2307) 6.200 0.080 0.0012 0.2460

Table 3 Simulation results for the ultra-high dimensional regression model

Method RMSE MS CM FPR FNR

adgLASSO-ERIC0.75 0.0461 (0.0065) 4.100 0.904 0 0.0200

adgLASSO-ERIC1 0.0463 (0.0061) 4.054 0.946 0 0.0108

adgLASSO-BICgc 0.0461 (0.0062) 4.070 0.934 0 0.0140

adgLASSO-BIC 0.0455 (0.0062) 4.120 0.890 0 0.0240

adgLASSO-CV 0.0434 (0.0052) 4.526 0.562 0 0.1052

gSCAD-ERIC0.75 0.0358 (0.0075) 4.048 0.956 0 0.0096

gSCAD-ERIC1 0.0397 (0.0086) 4.016 0.984 0 0.0032

gSCAD-BICgc 0.0332 (0.0075) 4.012 0.988 0 0.0024

gSCAD-BIC 0.0358 (0.0074) 4.080 0.932 0 0.0160

gSCAD-CV 0.0329 (0.0027) 7.040 0.022 0 0.6080

gMCP-ERIC0.75 0.0338 (0.0074) 4.050 0.964 0 0.0100

gMCP-ERIC1 0.0332 (0.0071) 4.003 0.997 0 0.0005

gMCP-BICgc 0.0333 (0.0076) 4.002 0.998 0 0.0004

gMCP-BIC 0.0337 (0.0072) 4.286 0.836 0 0.0572

gMCP-CV 0.0332 (0.0018) 8.044 0.010 0 0.8088

Example 5.2. We consider a logistic regression model with a rate of divergence of pn = ⌊6n1/2⌋,
and covariates X are generated independently from a multivariate Gaussian distribution; the covari-

ance matrix has a compound symmetric structure with ρ = 0.5. Predictors are divided into 30 groups

with an equal group size 2. In addition, the true regression coefficients of the first and the last four

groups are equal to (−3, 1.5, 0, 0, 3,−1.5, 0, 0). An unpenalized intercept of 1 is also included in the

true model. We choose a suitable γ = 6 for the adaptive group LASSO weights considering compu-

tational efficiency. ERIC1 performs best in this setting, with substantial gains in both the proportion

of correct models and the model fittings over all BIC-type criteria (see Table 2). The improvement

is driven largely by a reduction in false negative rates for ERIC, with little compromise in false pos-

itive rates, and results in less over-fitting compared with the BIC criteria. Compared with adaptive

group LASSO, the group nonconcave penalties show stronger performance with ERIC. For example,

gMCP-ERIC applies greater shrinkage to dramatically reduce the number of false negatives at the risk

of missing some truly informative coefficients. Both BIC and 10-fold CV consistently over-fitted for all

three group penalties, although this over-fitting did lead to lower false negative rates compared with

the ERIC.
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Example 5.3. For the ultra-high dimensional case, we simulate data from the linear model with

p = 800 and σ = 1.5. The covariate vector is normally distributed with mean zero, and the covariance

matrix specified is similar to that of Huang et al. [11]. The first 16 covariates (Xi1, . . . , Xi16) are

multivariate normal with the covariance matrix Σ = (σij), in which σij = 0.6|i−j|, which are divided

into 4 groups, each of size 4. The rest of the covariates are generated in the same way with σij = 0.2|i−j|,

and these two parts are independent. The value of X is generated once and then kept fixed. The

true regression coefficients are identical to those in Example 5.1. The sample size used in estimation is

n = 100, and summary statistics are computed based on 500 replications. Results are similar to those

obtained from Examples 5.1 and 5.2, ERICν and BICgc are comparable with ERIC1 outperforming the

BIC criteria and 10-fold CV in model selection and prediction (see Table 3), i.e., ERIC is marginally

more successful at detecting true nonzeros than either BIC or CV. ERIC continues to show lower false

negative rates than the BIC methods.

Table 4 The preprocessed student-related variables

Attribute Description (domain)

Sex Student’s sex (binary: female or male)

Age Student’s age (numeric: from 15 to 22)

School Student’s school (binary: Gabrie Pereira or Mousinho da Silveira)

Address Student’s home address type (binary: urban or rural)

Pstatus Parent’s cohabitation status (binary: living together or apart)

Medu Mother’s education (numeric: from 0 to 4a)

Mjob Mother’s job (nominalb)

Fedu Father’s education (numeric: from 0 to 4a)

Fjob Father’s job (nominalb)

Guardian Student’s guardian (nominal: mother, father or other)

Famsize Family size (binary: 6 3 or > 3)

Famrel Quality of family relationships (numeric: from 1 - very bad to 5 - excellent)

Reason Reason to choose this school (nominal: close to home, school reputation, course preference or other)

Traveltime Home to school travel time (numeric: 1 - < 15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour or 4 - > 1 hour)

Studytime Weekly study time (numeric: 1 - < 2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours or 4 - > 10 hours)

Failures Number of past class failures (numeric: n if 1 < n < 3, else 4)

Schoolsup Extra educational school support (binary: yes or no)

Famsup Family educational support (binary: yes or no)

Activities Extra-curricular activities (binary: yes or no)

Paidclass Extra paid classes (binary: yes or no)

Internet Internet access at home (binary: yes or no)

Nursery Attended nursery school (binary: yes or no)

Higher Wants to take higher education (binary: yes or no)

romantic With a romantic relationship (binary: yes or no)

Freetime Free time after school (numeric: from 1 - very low to 5 - very high)

Goout Going out with friends (numeric: from 1 - very low to 5 - very high)

Walc Weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)

Dale Workday alcohol consumption (numeric: from 1 - very low to 5 - very high)

Health Current health status (numeric: from 1 - very bad to 5 - very good)

Absences Number of school absences (numeric: from 0 to 93)

G1 First period grade (numeric: from 0 to 20)

G2 Second-period grade (numeric: from 0 to 20)

G3 Final grade (numeric: from 0 to 20)

a: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education.

b: teacher, health care related, civil services (e.g., administrative or police), at home or other.
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Table 5 Selection methods comparison for mushroom data

gSCAD-ERIC1 gSCAD-BIC gSCAD-CV

Mathematics:

Logistic classification model

No. of factors selected 1.6300 (1.2198) 3.0300 (2.6985) 1.3600 (0.8105)

Outsample TPR 0.8841 (0.0992) 0.8545 (0.0740) 0.8886 (0.0970)

Outsample FPR 0.1624 (0.0610) 0.1522 (0.0569) 0.1631 (0.0606)

Outsample PCC 0.9078 (0.0105) 0.9018 (0.0194) 0.9091 (0.0214)

Linear regression model

No. of factors selected 1.7100 (1.3126) 6.8900 (2.5776) 3.6600 (3.3851)

Outsample RMSE (×10−1) 0.5247 (0.0204) 0.5253 (0.0192) 0.5253 (0.0198)

Portuguese language:

Logistic classification model

No. of factors selected 1.4500 (0.9143) 2.2300 (1.5364) 1.8300 (1.2477)

Outsample TPR 0.6851 (0.0675) 0.7005 (0.0739) 0.6904 (0.0754)

Outsample FPR 0.1033 (0.0708) 0.1557 (0.1051) 0.1324 (0.1019)

Outsample PCC 0.9375 (0.0105) 0.9322 (0.0127) 0.9341 (0.0122)

Linear regression model

No. of factors selected 1.3700 (0.9604) 7.3800 (2.3689) 4.5700 (4.6823)

Outsample RMSE (×10−1) 0.4769 (0.1939) 0.4775 (0.1895) 0.4777 (0.1914)

6 An empirical example

In this section, we consider a real data set on student achievement in the secondary level of education

in two Portuguese schools; this data set contains 33 attributes, including student grades, demographic,

and social- and school-related features, and was collected from school reports and questionnaires (see

Table 4). Two data sets with the same attributes and related to performance in two distinct subjects,

i.e., Mathematics (mat) and Portuguese language studies (por), were also provided; these data sets were

modeled under binary, five-level classification and regression tasks by Cortez and Silva [3]. The target

attribute G3 has a strong correlation with attributes G2 and G1 because G3 is the final-year grade (issued

at the 3rd period), while G1 and G2 correspond to the 1st- and 2nd-period grades, respectively. To enable

complete comparison, we consider both logistic and linear regression to model these two datasets. For

fair evaluation, we randomly split the observations equally into two parts. One part of the observations

is used to build the model, and the other part is used to evaluate the outsample forecasting accuracy.

For reliable comparison, we repeat this procedure 100 times and report key findings in Table 5. We

evaluate the prediction performance of the classification model by calculating the outsample percentage

of correct classifications (PCC), false positive rate (FPR), and true positive rate (TPR). The results show

that, regardless of the selection method used, the optimal model selected by ERIC consistently returns

the smallest average model size. When evaluating student grades, a less-sensitive rule, which means a

relatively smaller TPR, and a smaller FPR for decreasing rates of Type I errors are preferred. These

findings reveal the greater power of the ERIC selector as a logistic classifier compared with other selector

types. Using linear regression, we evaluate the outsample forecasting error by calculating the RMSE and

find that the optimal model selected by ERIC consistently demonstrates the smallest average model size

and the best prediction accuracy.

All of the methods tested suggest that attribute G2 should be included in the final model for both

mat and por grades. However, when evaluating the mat grade with the linear model, the proposed ERIC

only selected three attributes, i.e., G2, famrel, and absences, while BIC select another five attributes,

including age, failures, activities, romantic, and G1. Our ERIC selected fewer attributes than BIC without

significantly sacrificing RMSEs, which were 6.1704 and 6.1376, respectively. When evaluating por grades

with the classification model, besides G2, BIC selected three other attributes, including school, age, and

G1. Moreover, the ERIC selector showed a PCC identical to that of the BIC selector with a relatively
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lower FPR, which was 0.0707 and 0.1616, respectively. Therefore, we can conclude that the quality of

family relationships, number of school absences, and second-period grades could more directly affect a

student’s final grade than other factors.

7 Discussion

For all penalized likelihood methods, choosing an appropriate tuning parameter is critical to ensure

good performance. In this work, we extended the proposed information criterion in Hui et al. [12], to

high-dimensional group-penalized regression. We showed that ERIC is selection-consistent when both

the true number of groups and the covariates in each group increase with the sample size and that the

consistency holds true in a wider range of cases compared with BIC for both convex and nonconvex

penalties. Simulations showed that ERIC can outperform the BIC criteria and CV when choosing the

optimal tuning parameter. For ultra-high dimensional data, especially with the adaptive group LASSO,

we proposed a direct approach to obtain consistency by constructing weights based on fitting GLMs to

each group. Simulation results further revealed that all three penalized methods incorporating ERIC

showed competitive empirical performance in the ultra-high dimensional case.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant

Nos. 11571337 and 71631006) and the Fundamental Research Funds for the Central Universities (Grant No.

WK2040160028).

References

1 Breheny P, Huang J. Group descent algorithms for nonconvex penalized linear and logistic regression models with

grouped predictors. Stat Comput, 2015, 25: 173–187

2 Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika,

2008, 95: 759–771

3 Cortez P, Silva A. Using data mining to predict secondary school student performance. In: Proceedings of the 5th

Annual Future Business Technology Conference. Http://www3.dsi.uminho.pt/pcortez/student.pdf, 2008

4 Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer Statist Assoc,

2001, 96: 1348–1360

5 Fan J, Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Ann Statist, 2004, 32: 928–961

6 Fan J, Song R. Sure independence screening in generalized linear models with NP-dimensionality. Ann Statist, 2010,

38: 3567–3604

7 Fan Y, Tang C Y. Tuning parameter selection in high dimensional penalized likelihood. J R Stat Soc Ser B Stat

Methodol, 2013, 75: 531–552

8 Friedman J, Hastie T, Tibshirani R. A note on the group LASSO and a sparse group LASSO. ArXiv:1001.0736, 2010

9 Gao X, Carroll R J. Data integration with high dimensionality. Biometrika, 2017, 104: 251–272

10 Huang J, Breheny P, Ma S. A selective review of group selection in high-dimensional models. Statist Sci, 2012, 27:

481–499

11 Huang J, Ma S, Zhang C H. Adaptive LASSO for sparse high-dimensional regression models. Statist Sinica, 2008, 18:

1603–1618

12 Hui F K C, Warton D I, Foster S D. Tuning parameter selection for the adaptive LASSO using ERIC. J Amer Statist

Assoc, 2015, 110: 262–269

13 Kim Y, Kwon S, Choi H. Consistent model selection criteria on high dimensions. J Mach Learn Res, 2012, 13:

1037–1057

14 McCullagh P, Nelder J A. Generalized Linear Models. Boca Raton: CRC Press, 1989
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Appendix A

We present the proof of our main theorem and some lemmas that are essential to the proof here as an

appendix.

Appendix A.1

Lemma A.1. Assume Conditions 1–5 are satisfied. The adaptive group LASSO estimates β̂λ in (2.2)

must satisfy: (a) estimate consistency: ∥β̂λ − β0∥ = Op(
√
pn/n) and (b) selection consistency: P({j :

∥β̂λ,j∥ = 0} = αc
0) → 1.

Proof. The proof below follows an approach similar to that of Fan and Li [4]. Let αn =
√
pn/n and

D(u) = ℓp(β
0 + αnu)− ℓp(β

0), where ℓp(β) was defined in (2.1) of the main text. If we can prove that

for any given ε > 0, there exists a constant C such that, for a large enough n, we have

P
(

sup
∥u∥=C

D(u) < 0
)
> 1− ε, (A.1)

then a local maximizer β̂λ of the penalized log-likelihood ℓp(β) is guaranteed to exist such that ∥β̂λ−β0∥ =

Op(
√
pn/n). Let ℓ(β) = ℓ(y |β) denote the log-likelihood function. To prove the above statement, we

first use a Taylor expansion to obtain

D(u) 6 ℓ(β0 + αnu)− ℓ(β0)− λ

( ∑
j∈α0

√
djw̃j(∥β0

j + αnuj∥ − ∥β0
j ∥)

)

6 αnu
′∇ℓ(β0)− 1

2
nα2

nu
′
(
− 1

n
∇2ℓ(β̄)

)
u+ λαn

∑
j∈α0

√
djw̃j∥uj∥

≡ I1 + I2 + I3,

where β̄ lies on the line segment joining β0 and (β0 + αnu). Following an argument similar to [4], we

have ∇ℓ(β0) = Op(
√
npn) and, thus, |I1| 6 Op(

√
npnαn)∥u∥ = Op(nα

2
n)∥u∥. By Conditions 1–5, we

also have I2 6 −(1/2)nα2
nc0c1∥u∥2. Finally, we consider I3; for j ∈ α0, we have w̃j 6 M−γd

−γ/2
max by

Condition 4. Thus

I3 = λαn

∑
j∈α0

√
djw̃j∥uj∥ 6 λαn

( ∑
j∈α0

djw̃
2
j

) 1
2

∥u∥ 6 nα2
n∥u∥

Mγd
γ/2
max

λ

√
p0
np

,

so we have |I3| = op(nα
2
n)∥u∥ by Condition 5(a). Based on the above results, for a large enough ∥u∥,

we know that terms I1 and I3 are asymptotically dominated by I2, which is negative. The probability

statement in (A.1) follows immediately from this, and we obtain ∥β̂λ − β0∥ = Op(
√
pn/n) as stated.

We now prove selection consistency by showing that, for any β̂ satisfying ∥β̂ − β0∥ = Op(
√
pn/n),

P({j : ∥β̂j∥ ̸= 0} = α0) → 1. We first prove that, as the probability approaches 1, β̂ = (β̂α0 ,0) is the

solution of (2.2). Consider the score equation for βj : by the Taylor expansion, we have

∂ℓp(β)

∂βj
=

∂ℓ(β)

∂βj
− λ

√
djw̃j

βj

∥βj∥
=

∂ℓ(β0)

∂βj
+

gn∑
k=1

∂2ℓ(β̄)

∂βj∂βk

(
βk − β0

k

)
− λ

√
djw̃j

βj

∥βj∥
, (A.2)
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where β̄ lies on the line segment joining β0 and β. According to the definition of β̂, it is equivalent to

show

P

(
∃ j ∈ αc

0,

∥∥∥∥∂ℓ(β̂)∂βj

∥∥∥∥ > λ
√
djw̃j

)
→ 0. (A.3)

For j ∈ αc
0, maxj∈αc

0
{∥β̃j∥} = Op(

√
p/n), and by (A.2), we have

P

(
∃ j ∈ αc

0,

∥∥∥∥∂ℓ(β̂)∂βj

∥∥∥∥ > λ
√
djw̃j

)
6 P

(
∃ j ∈ αc

0,

∥∥∥∥∂ℓ(β0)

∂βj

∥∥∥∥ >
λ
√
djw̃j

2

)
+ P

(
∃ j ∈ αc

0,

∥∥∥∥ gn∑
k=1

∂2ℓ(β̄)

∂βj∂βk

(
β̂k − β0

k

)∥∥∥∥ >
λ
√
djw̃j

2

)
≡ K1 +K2.

For K1, under Condition 5(b) and for a large constant C, based on Boole’s inequality,

K1 = P

(
∃ j ∈ αc

0, ∥XT
j (y − µ0)∥ >

λ
√

djw̃j

2

)
6 P

(
∃ j ∈ αc

0, ∥XT
j (y − µ0)∥ >

λ
√

dj

2

1

(maxj∈αc
0
∥β̃j∥)γ

)
6 P

(
∃ j ∈ αc

0, ∥XT
j (y − µ0)∥ >

λ
√

dj

2

(
C

√
p

n

)−γ)
6

∑
j∈αc

0

P

(
∥XT

j (y − µ0)∥ >
λ
√
dj

2

(
C

√
p

n

)−γ)

6
∑
j∈αc

0

E∥XT
j (y − µ0)∥2

λ2dj

4 (C
√

p
n )

−2γ
6

∑
j∈αc

0

4c2n

λ2(C
√

p
n )

−2γ
→ 0.

For K2, based on Condition 3 and Markov’s inequality,

K2 6 P

(
∃ j ∈ αc

0,

∥∥∥∥ g∑
k=1

∂2ℓ(β̄)

∂βj∂βk
(β̂k − β0

k)

∥∥∥∥ >
λ
√
djw̃j

2

)

6
E(

∑
j∈αc

0
∥
∑g

k=1
∂2ℓ(β̄)
∂βj∂βk

(β̂k − β0
k)∥2)

λ2dmin

4 (C
√

p
n )

−2γ
6

Mζmax(X
TX) · ζmax(X

T
αc

0
Xαc

0
)∥β̂ − β0∥2

c20λ
2dmin(C

√
p
n )

−2γ
.

Note that ζmax(X
T
j Xj) 6 ζmax(X

TX) 6 nc2 and ∥β̂ − β0∥ = Op(
√
pn/n); thus

K2 6 C
npn

λ2dmin(
√

p
n )

−2γ
→ 0,

under Condition 5(b). We only need to prove that P(minj∈α0 ∥β̂j∥ > 0) → 1. By Condition 4,

min
j∈α0

∥β̂j∥ > min
j∈α0

∥β0
j ∥ −max ∥β̂α0 − β0

α0
∥ > M

√
dmax − op(1) > 0.

Thus, the proof is completed.

Appendix A.2 Proof of Lemma 3.2

Proof of Lemma 3.2(a). For simplicity, we shall prove this lemma assuming ϕ = 1 (e.g., Binomial,

Poisson response). The proof can be straightforwardly extended to the linear model case with the known

ϕ ≡ σ2, since σ̃2
αλ

= (1/n)∥y −XT
αλ

β̃αλ
∥2 = Op(1) regardless of αλ.
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Since λ0 satisfies Condition 5, by Lemma A.1, the adaptive group LASSO estimates are
√
n/pn-

consistent and selection-consistent. Define β̃λ = (β̃αλ
, β̃αc

λ
= 0), note that αλ0 = α0, and let ℓ(β) =

ℓ(y |β) denote the log-likelihood function. Then, we have

ERIC∗
ν(λ)− ERIC∗

ν(λ0)

n
= − 2

n
(ℓ(β̃αλ

)− ℓ(β̃α0)) +
2ν

n

( ∑
j∈αλ

dj log

(
n

λ

)
−

∑
j∈α0

dj log

(
n

λ0

))

> − 2

n
(ℓ(β̃αλ

)− ℓ(β̃α0))−
2νp0
n

log

(
n

λ0

)
(by Condition 1)

≡ J1 + J2.

From Conditions 1–2, we have J2 = −(2νp0/n) log(n) + (2νp0/n) log(λ0) , L1 + L2. By Condition 5(a),

L2 → 0 can be easily seen. Thus, that J1 +L1 is asymptotically positive and uniform for all λ ∈ Ω− and

models {αλ ̸⊃ α0; |αλ| 6 K} is left to be proven.

Without loss of generality, we can rearrange the coefficient vector β̃λ as

β̃λ = (β̃αλ
, β̃αc

λ ∩ α0 = 0, β̃(α0∪αλ)c = 0)

= (β̃λ(S), β̃λ(S
c) = 0),

where S = α0 ∪ αλ, shift the under-fitted coefficients out of αc
λ, and concatenate them with β̃αλ

to form

β̃S , which will then contain some coefficients that are zero. As this rearrangement of β̃λ does not alter

the value of the likelihood, we can write ℓ(β̃λ(S)) = ℓ(β̃αλ
). In the same way, we can rearrange β̃λ0 and

β0 as follows:

β̃λ0 = (β̃α0 , β̃αλ ∩ αc
0
= 0, β̃(α0 ∪ αλ)c = 0) = (β̃λ0(S), β̃λ0(S

c) = 0),

β0 = (β0
α0
,β0

αc
0 ∩ αλ

= 0,β0
(α0 ∪ αλ)c

= 0) = (β0(S),β0(Sc) = 0),

where S = α0 ∪ αλ. On the same principle, we have ℓ(β̃λ0(S)) = ℓ(β̃α0). By the Taylor expansion,

− 2

n
(ℓ(β̃αλ

)− ℓ(β̃α0)) =
1

n
(β̃λ(S)− β̃λ0(S))

TXT
S W̄SXS(β̃λ(S)− β̃λ0(S)), (A.4)

where W̄S is a diagonal matrix with elements b′′(θ̄i)/ϕ calculated at β̄α0 , which lies on the line segment

joining β̃S and β̃α0 . From (A.4) and using Conditions 3–4, we have

min
αλ ̸⊃α0

(
− 2

n
(ℓ(β̃λ(S))− ℓ(β̃λ0(S)))

)
> 2c0c1∥β̃λ(S)− β̃λ0(S)∥2

> 2c0c1(∥β̃λ(S)− β0(S)∥2 − ∥β̃λ0(S)− β0(S)∥2)

> 2c0c1

(
min
j∈α0

{∥β0
j ∥2} −Op

(
pn
n

))
,

where the triangular inequality is used to go from the first to the second line, and the result ∥β̃λ0(S)

− β0(S)∥2 = ∥β̃λ0 − β0∥2 = Op(
√
pn/n) is used to go from the second to the third line. By Condi-

tion 4, we can straightforwardly show that the quantity 2c0c1(minj∈α0
{∥β0

j ∥2} − Op(
pn

n )) − 2νp0

n log(n)

is asymptotically positive. Combining the results of J1 and J2, we have

P
(

inf
λ∈Ω−

min
αλ ̸⊃α0;|αλ|6K

ERIC∗
ν(λ) > ERIC∗

ν(λ0)
)
→ 1.

This relation completes the proof.

Proof of Lemma 3.2(b). As in the proof of Lemma 3.2(a), we shall assume that ϕ = 1 for simplicity.

Since λ0 satisfies Condition 5, by Lemma A.1 the adaptive group LASSO estimates are
√
n/pn-estimation-

consistent and selection-consistent. As before, let ℓ(β) = ℓ(y|β) denote the log-likelihood function and
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|ωλ| = |αλ ∩ αc
0| denote the number of over-fitted coefficients. Note it can take values ωλ = 1, 2, . . . ,

(gn − g0). We have

ERIC∗
ν(λ)− ERIC∗

ν(λ0) = −2(ℓ(β̃αλ
)− ℓ(β̃α0)) + 2ν

∑
j∈αλ

dj log

(
n

λ

)
− 2ν

∑
j∈α0

dj log

(
n

λ0

)

> −2(ℓ(β̃αλ
)− ℓ(β0

α0
)) + 2ν

∑
j∈αλ

dj log

(
n

λ

)
− 2ν

∑
j∈α0

dj log

(
n

λ0

)

> −2(ℓ(β̃αλ
)− ℓ(β0

α0
)) + 2ν

∑
j∈ωλ

dj log

(
n

λ

)
+ 2ν

∑
j∈α0

dj log

(
λ0

λ

)
.

By the definition of over-fitting, i.e., λ0/λ > 1 and so 2ν
∑

j∈α0
dj log(λ0/λ) > 0. Next, using the Taylor

expansion, we have

ℓ(β̃αλ
)− ℓ(β0

α0
) = ∇ℓ(β0

αλ
)T(β̃αλ

− β0
αλ

)− n

2
(β̃αλ

− β0
αλ

)T
(
1

n
XT

αλ
W̄αλ

Xαλ

)
(β̃αλ

− β0
αλ

)

6 ∇ℓ(β0
αλ

)T(β̃αλ
− β0

αλ
)− n

2
c0c1∥β̃αλ

− β0
αλ

∥2,

where W̄αλ
is a diagonal matrix with elements b′′(θ̄i)/ϕ calculated using β̄αλ

, which lies on the line

segment joining β̃αλ
and β0

αλ
. By using a perfect square trinomial, we can show that

ℓ(β̃αλ
)− ℓ(β0

α0
) 6 1

2nc0c1
∇ℓ(β0

αλ
)T∇ℓ(β0

αλ
) 6 1

2nc0c1
∥XT

αλ
(y − µ0)∥2,

where µ0 is calculated using β0. We thus have

ERIC∗
ν(λ)− ERIC∗

ν(λ0) > − 1

nc0c1
∥XT

αλ
(y − µ0)∥2 + 2ν

∑
j∈ωλ

dj log

(
n

λ

)
. (A.5)

Hence, we can prove uniformly for all λ ∈ Ω+ that

P

(
max

αλ!α0;|αλ|6K

(
1

nc0c1
∥XT

αλ
(y − µ0)∥2

)
> 2ν

∑
j∈ωλ

dj log

(
n

λ

))
→ 0. (A.6)

The required result will then follow immediately. To prove (A.6), we have

P

(
1

nc0c1
∥XT

αλ
(y − µ0)∥2 > 2ν

∑
j∈ωλ

dj log

(
n

λ

))

6
∑
l∈αλ

dl∑
k=1

P

(
1

√
nc0c1

|xkT
l (y − µ0)| >

√
2ν

∑
j∈ωλ

dj log(
n
λ )

dl

)
. (A.7)

First, for some l ∈ αλ, denote xk
l = (x1k, . . . , xnk)

T. Consider the tail probability,

P

( n∑
i=1

xik(yi − µ0
i )

ϕ
√
nc0c1

> Mn

)
= P

( n∑
i=1

aik(yi − µ0
i )

ϕ
> M ′

n

)

for some Mn > 0, where aik = xik/
√

nc0c1
∑n

i=1 x
2
ikb

′′(θ̄i) and M ′
n = Mn/

√∑n
i=1 x

2
ikb

′′(θ̄i), where θ̄i is

defined shortly. By the exponential Chebychev’s inequality, we have for some t > 0,

P

( n∑
i=1

xik(yi − µ0
i )√

nc0c1
> Mn

)
6 exp(−tM ′

n)
n∏

i=1

E(exp(taik(yi − µ0
i )))

6 exp(−tM ′
n)

n∏
i=1

exp(b(θ0i + aikt)− b(θ0i )− taikµ
0
i ).
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6 exp(−tM ′
n)

n∏
i=1

exp

(
1

2
a2ikt

2b′′(θ̄i)

)
6 exp(−tM ′

n) exp

(
t2

2nc0c1

)
,

where θ̄i lies between θ0i and (θ0i + aikt). If we take t = M ′
nnc0c1 and Mn =

√
2ν

∑
j∈ωλ

dj

dl
log(n/λ), then

for all λ ∈ Ω+ and fixed ωλ, we have

P

( n∑
i=1

xik(yi − µ0
i )√

nc0c1
>

√
2ν

∑
j∈ωλ

dj log(n/λ)

dl

)
6 exp

(
−

2ν
∑

j∈ωλ
dj log(n/λ)

2dl

(
nc0c1∑n

i=1 x
2
ikb

′′(θ̄i)

))
6 exp

(
−Cν

dl

∑
j∈ωλ

dj log(n/λ)

)
,

for some arbitrary constant C that is assumed to be greater than 1.

Since ∥XT
αλ

(y − µ0)∥2/(nc0c1) is an even function about (y − µ0), by (A.7), we have

P

(∥XT
αλ

(y − µ0)∥2

nc0c1
> 2ν

∑
j∈ωλ

dj log

(
n

λ

))
6 2

∑
l∈αλ

dl∑
k=1

exp

(
−Cν

dl

∑
j∈ωλ

dj log

(
n

λ

))
. (A.8)

For any ωλ, there are less than g
|ωλ|
n over-fitted models. Thus, by Boole’s inequality and (A.8),

P

(
max

αλ!α0;|αλ|6K

(
1

nc0c1
∥XT

αλ
(y − µ0)∥2

)
> 2ν

∑
j∈ωλ

dj log

(
n

λ

))

6 g|ωλ|
n × 2

∑
l∈αλ

dl∑
k=1

exp

(
−Cν

dl

∑
j∈ωλ

dj log

(
n

λ

))

6 Op

( ∑
l∈αλ

dl exp

{
|ωλ|

(
log(gn)−

ν
∑

j∈ωλ
dj

|ωλ|dl
log

(
n

λ

))})
.

For λ ∈ Ω+, Condition 5(b) is not satisfied, i.e., λ√
ngn

( n
pn

)γ/2 6 C for a constant C. Thus, based on

Condition 2, with a probability approaching 1, we have∑
l∈αλ

dl exp

{
|ωλ|

(
log(gn)−

ν
∑

j∈ωλ
dj

|ωλ|dl
log

(
n

λ

))}

6 Kdmax exp

{
|ωλ|

(
log(gn)−

ν

2

(
log

(
n

gn

)
+ γ log

(
n

pn

)))}
6 Kdmax exp

{
|ωλ| log(n)

(
κ1 −

ν

2
(1− κ1)−

νγ

2
(1− κ1 − κ2)

)}
6 Kdmax exp{ζ|ωλ| log(n)}

(
where ζ = κ1 −

ν

2
(1− κ1)−

νγ

2
(1− κ1 − κ2)

)
6 Kdmax

n−ζ
→ 0 if

(
γ > 2κ1 + (2− ν)κ2

ν(1− κ1 − κ2)
− 1

)
.

By the condition K = o(nι/2), we have a limit that converges to 0.

Thus,

P

(
max

αλ!α0;|αλ|6K

(
1

nc0c1
∥XTTαλ

(y − µ0)∥2
)

> 2ν
∑
j∈ωλ

dj log

(
n

λ

))
6 op(1),

for all λ ∈ Ω+, as required in (A.6). Consequently, we have

P
(

inf
λ∈Ω+

min
αλ!α0

ERIC∗
ν(λ) > ERIC∗

ν(λ0)
)
→ 1.

This relation completes the proof.
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Appendix A.3 Proof of Theorem 3.4

Proof of Theorem 3.4. As before, let ℓ(β) = ℓ(y |β) denote the log-likelihood function. Also, we let

β̂λ = (β̂αλ
, β̂αc

λ
= 0), and β̃λ = (β̃αλ

, β̃αc
λ
= 0), noting that αλ0 = α0.

We first prove the following result linking the log-likelihood functions evaluated at the penalized β̂λ0

and unpenalized β̃λ0 estimators:

1

n
ℓ(β̂λ0) =

1

n
ℓ(β̃λ0) + op

(
1

n

)
. (A.9)

To prove (A.9), consider the following Taylor expansion:

1

n
(ℓ(β̂λ0)− ℓ(β̃λ0)) =

1

n
(ℓ(β̂αλ0

)− ℓ(β̃α0))

= −1

2
(β̂αλ0

− β̃α0)
T

(
1

n
XT

α0
W̄α0Xα0

)
(β̂αλ0

− β̃α0)

> − c2
2c0

∥β̂αλ0
− β̃α0

∥2, (A.10)

where W̄α0 is a diagonal matrix with elements b′′(θ̄i)/ϕ calculated by using β̄α0 , which lies on the line

segment joining β̂αλ0
and β̃α0 . For GLMs with a canonical link function, we have, by definition with a

Taylor expansion,

∇ℓ(β0
α0
) +∇2ℓ(β̄α0)(β̃α0 − β0

α0
) = 0,

∇ℓ(β0
α0
) +∇2ℓ( ¯̄βα0)(β̂α0 − β0

α0
) = λ0p

′(β̂αλ0
),

where p′(β̂αλ0
) is an |α0|× 1 vector with elements {

√
djw̃j

β̂T
j

∥β̂j∥
; j ∈ α0}. Hence, by Condition 3, we have

∥β̃α0 − β̂αλ0
∥2 =

∥∥∥∥ λ0

nc0

(
1

n
XT

α0
Xα0

)−1

p′(β̂αλ0
)

∥∥∥∥2 + op(1)

6 Op

((
λ0

n

)2 ∑
j∈α0

djω̃
2
j

)
6 Op

((
λ0

n

)2
p0

minj∈α0 ∥β̃j∥2γ

)
.

It follows that ∥β̃α0 − β̂αλ0
∥2 = Op((λ0/n)

2p0). Applying this result to (A.10), we obtain

− c2
2c0

Op

((
λ0

n

)2

p0

)
6 1

n
(ℓ(β̂λ0)− ℓ(β̃λ0)) < 0.

By Condition 5(a), we have (λ0/n)
2p0 = op(1/n) and, thus, the left-hand side of the inequality above

approaches 0. The result in (A.9) follows immediately from this.

Given the forms of ERICν(λ) and ERIC∗
ν(λ) and using the result in (A.9), we can write

ERICν(λ)− ERICν(λ0)

n
> ERIC∗

ν(λ)− ERIC∗
ν(λ0)

n
+ op

(
1

n

)
.

From Lemma 3.2, we know that ERIC∗
ν(λ)− ERIC∗

ν(λ0) is guaranteed to be asymptotically positive for

both over- and under-fitted models. It follows immediately that

P
(

inf
λ∈Ω−∪Ω+

ERICν(λ) > ERICν(λ0)
)
→ 1.

By Lemma A.1, λ0 ∈ Ω0 asymptotically identifies the true model α0; therefore, P(αλ̂ = α0) → 1 .
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Appendix A.4 Proof of Corollary 3.5

Proof of Corollary 3.5. Define a proxy version of BIC(λ) as BIC∗(λ) = −2ℓ(y | β̃αλ
)+

∑
j∈αλ

dj log(n).

Following a development similar to the proof of Lemma 3.2(b), we obtain a result analogous to the one

in (A.5),

BIC∗(λ)− BIC∗(λ0) > − 1

nc0c1
∥XT

αλ
(y − µ0)∥2 +

∑
j∈ωλ

dj log(n).

Furthermore, similar to (A.8), we obtain the following result on tail probability:

P

(
1

nc0c1
∥XT

αλ
(y − µ0)∥2 >

∑
j∈αλ

dj log(n)

)
6 2

∑
l∈αλ

dl∑
k=1

exp

(
−

C
∑

j∈αλ
dj log(n)

2dl

)
.

For a fixed ωλ, less than g
|ωλ|
n over-fitted models are available. Thus, by Condition 2,

P

(
max

αλ!α0;|αλ|6K

(
1

nc0c1
∥XT

αλ
(y − µ0)∥2

)
>

∑
j∈αλ

dj log(n)

)

6
∑
j∈αλ

dj × g|ωλ|
n × 2 exp

(
−

C
∑

j∈ωλ
dj log(n)

2dl

)
6 Op

(
exp

{
|ωλ| log(n)

(
κ1 −

1

2

)})
.

Hence, if κ1 > 1
2 , then the above probability does not approach 0. Following a development of proof

similar to that of Theorem 3.4, we obtain P(αλ̂ = α0) ̸→ 1.

Appendix A.5 Proof of Lemma 3.8

The proof below follows an approach similar to that in Fan and Peng [5]. Considering the same note in

the proof of Lemma A.1, we can easily obtain estimation consistency. We can obtain selection consistency

via the same approach applied to Lemma A.1. Thus, the proof is completed.

Lemma A.2. Assume Conditions 2–3 and 4′ are satisfied and that there exists a λ0 ∈ Ω0 satisfying

Condition 5′. Then,

(a) P(infλ∈Ω− minαλ ̸⊃α0 ERIC
∗
ν(λ) > ERIC∗

ν(λ0)) → 1.

(b) P(infλ∈Ω+ minαλ!α0 ERIC
∗
ν(λ) > ERIC∗

ν(λ0)) → 1, if ν > 2(κ1+κ2)
1−κ1

.

Proof. The proof is similar to that of Lemma 3.2; thus, we omit it here.

Appendix A.6 Proof of Theorem 3.9

Proof of Theorem 3.9. As before, let ℓ(β) = ℓ(y |β) denote the log-likelihood function. Also, we let

β̂λ = (β̂αλ
, β̂αc

λ
= 0), and β̃λ = (β̃αλ

, β̃αc
λ
= 0), noting that αλ0 = α0. We first prove the following result

linking the log-likelihood functions evaluated at the penalized β̂λ0 and unpenalized β̃λ0 estimators:

1

n
ℓ(β̂λ0) =

1

n
ℓ(β̃λ0) + op(1). (A.11)

We can prove (A.11) via the same approach as that applied to Theorem 3.4. Given the forms of ERICν(λ)

and ERIC∗
ν(λ) and using the result in (A.11), we can write

ERICν(λ)− ERICν(λ0)

n
> ERIC∗

ν(λ)− ERIC∗
ν(λ0)

n
+ op(1).

From Lemma A.2, it follows immediately that P(infλ∈Ω−∪Ω+
ERICν(λ) > ERICν(λ0)) → 1. By

Lemma 3.8, λ0 ∈ Ω0 asymptotically identifies the true model α0; therefore, P(αλ̂ = α0) → 1.
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Appendix A.7

Lemma A.3. Assume Conditions 6–10 are satisfied and define

β̂α0 = argmax
β

{
ℓ(y |β)− λ

∑
j∈α0

√
djw̃j∥βj∥

}
.

Then, with a probability approaching 1, β̂λ = (β̂′
α0
,0′)′ is the adaptive group LASSO estimate to (2.2)

that satisfies (a) estimate consistency: ∥β̂α0 − β0
α0
∥ = Op(

√
p0/n) and (b) selection consistency: P({j :

∥β̂λ,j∥ = 0} = αc
0) → 1.

Proof. The proof is similar to the proof of Lemma A.1; thus, it is omitted here.

Proof of Theorem 4.1. The proof is nearly identical to that for Theorem 3.4 except for the condition

ν > c log(gn)/ log(n) for some 1 < c < 2; thus, the proof is omitted here.
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