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1 Introduction

In this paper, we are concerned with the development of residual-based a posteriori error estimators

for the symmetric mixed finite element methods for planar linear elasticity problems. Let Ω ⊂ R2 be

a bounded polygonal domain with boundary Γ := ∂Ω, based on the Hellinger-Reissner principle, the

linear elasticity problem with homogeneous Dirichlet boundary condition within a stress-displacement

form reads: find (σ, u) ∈ Σ× V := H(div,Ω;S)× L2(Ω;R2), such that{
(Aσ, τ) + (divτ, u) = 0 for all τ ∈ Σ,

(divσ, v) = (f, v) for all v ∈ V,
(1.1)

where S ⊂ R2×2 is the space of symmetric matrices, and the symmetric tensor space for stress and the

space for vector displacement are, respectively,

H(div,Ω; S) := {(τij)2×2 ∈ H(div,Ω) | τ12 = τ21}, (1.2)

L2(Ω;R2) := {(u1, u2)T |u1, u2 ∈ L2(Ω)}. (1.3)
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The compliance tensor A : S → S, characterizing the properties of the material, is symmetric positive

definite and its eigenvalues are uniformly bounded from above. In the homogeneous isotropic case, the

compliance tensor is given by Aτ = (τ − λ/(2µ + 2λ)trτ I)/(2µ), where µ > 0 and λ > 0 are the Lamé

constants, I is the identity matrix, and trτ = τ11 + τ22 is the trace of the matrix τ . For simplicity, we

assume A is a constant matrix in this paper and comment on the generalization to the piecewise constant

matrix case.

Because of the symmetry constraint on the stress tensor, it is extremely difficult to construct stable

conforming finite elements of (1.1) even for 2D problems, as stated in the plenary presentation to the

2002 International Congress of Mathematicians by Arnold [3]. To overcome this difficulty, many weakly

symmetric mixed finite element methods for linear elasticity were developed (see [6, 7, 10, 21, 25]). An

important progress in this direction is the work of Arnold and Winther [8] and Arnold et al. [5]. In

particular, a sufficient condition of the discrete stable method is proposed in these two papers, which

states that a discrete exact sequence guarantees the stability of the mixed method. Based on such a

condition, conforming mixed finite elements on the simplical and rectangular meshes were developed for

both 2D and 3D (see [1, 4, 5, 8, 9]). Recently, based on a crucial structure of symmetric matrix valued

piecewise polynomial H(div) space and two basic algebraic results, Hu [27,28] developed a new framework

to design and analyze the mixed finite element of elasticity problems. As a result, on both simplicial and

tensor product grids, several families of both symmetric and optimal mixed elements with polynomial

shape functions in any space dimension were constructed (see more details in [27–31]). Theoretical and

numerical analysis show that symmetric mixed finite element method is a popular choice for a robust

stress approximation (see [15,17]).

Computation with adaptive grid refinement has been proved to be a useful and efficient tool in scientific

computing over the last several decades. When the domain contains a re-entering corner, the stress has

a singularity at that corner, and non-uniform mesh is necessary to catch the singularity. Adaptive finite

element methods based on local mesh refinement can recover the optimal rate of convergence. The key

behind this technique is to design a good a posteriori error estimator that provides a guidance on how

and where grids should be refined. The residual-based a posteriori error estimators provide indicators for

refining and coarsening the mesh and allow to control whether the error is below a given threshold. Various

error estimators for mixed finite element discretizations of the Poisson equation have been obtained

in [2, 13, 19, 22, 26, 33, 35]. Extension to the mixed finite element for linear elasticity is, however, very

limited. In [14, 32, 34], the authors gave the a posteriori error estimators for the nonsymmetric mixed

finite elements only.

The symmetry of the stress tensor brings essential difficulty to the a posteriori error analysis. Since only

the symmetric part is approximated and not the full gradient, the approach of a posteriori error analysis

developed in [14, 18, 32, 34] cannot be applied directly. In order to overcome this difficulty, Carstensen

and Gedicke [16] proposed to generalize the framework of the a posteriori analysis for nonsymmetric

mixed finite elements to the case of symmetric elements by decomposing the stress into the gradient and

the asymmetric part of the gradient. A robust residual-based a posteriori error estimator for Arnold-

Winther’s symmetric element was proposed in [16], but an arbitrary asymmetric approximation γh of

the asymmetric part of the gradient skew(gradu) = (gradu− (gradu)T)/2 was involved in this estimator.

Furthermore, γh was chosen as the asymmetric gradient of a post-processed displacement to ensure the

efficiency of the estimator.

The goal of this paper is to present an a posteriori error estimator together with a theoretical upper and

lower bounds, for the conforming and symmetric mixed finite element solutions developed in [8, 29] (see

also [27, 31]). We shall follow the guide principle in [8]: use the continuous and discrete linear elasticity

complex (see (2.2) and (2.3)).

Given an approximation σh on the triangulation Th consisting of triangles, we construct the following

a posteriori error estimator: denoted by η,

η2(σh, Th) :=
∑

K∈Th

η2K(σh) +
∑
e∈Eh

η2e(σh),
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where

η2K(σh) := h4K∥curl curl (Aσh)∥20,K , η2e(σh) := he∥Je,1∥20,e + h3e∥Je,2∥20,e,

Je,1 :=

{
[(Aσh)te · te]e, if e ∈ Eh(Ω),
((Aσh)te · te) |e, if e ∈ Eh(Γ),

Je,2 :=

{
[curl(Aσh) · te]e, if e ∈ Eh(Ω),
(curl(Aσh) · te − ∂te((Aσh)te · νe)) |e, if e ∈ Eh(Γ),

with Eh being the collection of all edges of Th. We write Eh = Eh(Ω)∪Eh(Γ), where Eh(Ω) is the collection
of interior edges and Eh(Γ) is the collection of all element edges on the boundary. For any edge e ∈ Eh, let
te = (−n2, n1)

T be the unit tangential vector along edge e for the unit outward normal νe = (n1, n2)
T.

Let hK be the diameter of the element K and he be the length of edge e. The data oscillation is defined as

osc2(f, Th) :=
∑

K∈Th

h2K∥f −Qhf∥20,K ,

where Qh is the L2 orthogonal projection operator onto the discrete displacement space.

Using the Helmholtz decomposition induced from the linear elasticity complex (see [8,14]), we establish

the following reliability:

∥σ − σh∥A 6 C1(η(σh, Th) + osc(f, Th)).

In addition, we will prove the following efficiency estimate:

C2η(σh, Th) 6 ∥σ − σh∥A

by following the approach from [2].

We also generalize the above results to the mixed boundary problems, for which the error estimator is

modified on the Dirichlet boundary edges. Reliability and efficiency of the modified error estimator can

be proved similarly.

In [20], a superconvergent approximate displacement u∗h was constructed by a postprocessing of (σh, uh).

Using this result and the a posteriori error estimation of the stress, we give the a posteriori error estimation

for the displacement ∥u− u∗h∥1,h in a mesh dependent norm.

In order to compare with the a posteriori error estimator in [16], we present their estimator as follows:

η̃2(σh, Th) := osc2(f, Th) + osc2(g, Eh(ΓN ))

+
∑
K∈T

h2K∥curl(Aσh + γh)∥20,K

+
∑

e∈Eh(Ω)

he∥[Aσh + γh]eτe∥20,e

+
∑

e∈Eh(ΓD)

he∥(Aσh + γh −∇uD)τe∥20,e.

(The estimator is rewritten in our notation and the details of the standard notation can be found below.)

To ensure the efficiency of the estimator, a sufficiently accurate polynomial asymmetric approximation γh
of the asymmetric gradient skew(gradu) is used in the above estimator. Since the global approximation

or even minimization may be too costly, Carstensen and Gedicke [16] computed the sufficiently accu-

rate approximation γh = skew(gradu∗h) by the post-processed displacement u∗h in the spirit of Stenberg

[38]. As we can see, this estimator is totally different from ours. The estimators we propose use the

symmetric stress directly and do not need any estimation of the asymmetric part. Therefore it is more

computationally efficient.

The remaining parts of the paper is organized as follows. Section 2 presents the notation and the

discrete finite element problems. Section 3 proposes an a posteriori error estimator for the stress and

proves the reliability and efficiency of the estimator. Section 4 generalizes the results of Section 3 to
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mixed boundary problems. Section 5 gives a posteriori error estimation for the displacement. Section 6

presents numerical experiments to show the effectiveness of the estimator. Throughout this paper, we

use “. · · · ” to mean that “6 C · · · ”, where C is a generic positive constant independent of h and the

Lamé constant λ, which may take different values at different appearances.

2 Notation and preliminaries

The standard notation on Sobolev spaces and norms are adopted throughout this paper and, for brevity,

∥·∥ := ∥·∥L2(Ω) denotes the L
2 norm. (·, ·)K represents, as usual, the L2 inner product on the domain K,

the subscript K is omitted when K = Ω. ⟨·, ·⟩Γ represents the L2 inner product on the boundary Γ. For

brevity, let ∂xi := ∂/∂xi and ∂
2
xixj

:= ∂2/∂xi∂xj , j = 1, 2, ∂ν := ∂/∂ν, ∂t := ∂/∂t. For ϕ ∈ H1(Ω;R),
v = (v1, v2)

T ∈ H1(Ω;R2), set

Curlϕ := (−∂ϕ/∂x2, ∂ϕ/∂x1), Curlv :=

(
−∂v1/∂x2 ∂v1/∂x1
−∂v2/∂x2 ∂v2/∂x1

)
.

The symmetric part of the gradient of a vector field v, denoted by ε(v), is given by

ε(v) := (gradv + (gradv)T)/2.

For τ = (τi,j)2×2 ∈ H1(Ω;R2×2), set

curlτ :=

(
∂τ12/∂x1 − ∂τ11/∂x2

∂τ22/∂x1 − ∂τ21/∂x2

)
, divτ :=

(
∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)
.

Namely the differential operators curl and div are applied rowwise for tensors.

Let Th be a shape-regular triangulation of Ω̄ into triangles with the set of edges Eh. Denote by Eh(Ω)
the collection of all interior element edges in Th and Eh(Γ) the collection of all element edges on the

boundary Γ. For any triangle K ∈ Th, let E(K) be the set of its edges. For any edge e ∈ E(K), let te =

(−n2, n1)
T be the unit tangential vector along edge e for the unit outward normal vector νe = (n1, n2)

T,

hK be the diameter of the element K and he be the length of the edge e, h = maxK∈Th
{hK} be the

diameter of the partition Th. The jump [w]e of w across edge e = K̄+ ∩ K̄− reads

[w]e := (w |K+)e − (w |K−)e.

Particularly, if e ∈ Eh(Γ), [w]e := w |e.
Let Σh × Vh ⊆ Σ × V be a symmetric conforming mixed element defined on the mesh Th. Then the

discrete mixed formulation for (1.1) is: find (σh, uh) ∈ Σh × Vh, such that{
(Aσh, τh) + (divτh, uh) = 0 for all τh ∈ Σh,

(divσh, vh) = (f, vh) for all vh ∈ Vh.
(2.1)

In the sequel, we briefly introduce Hu-Zhang element (see [27,29,31]). For each K ∈ Th, let Pk(K) be

the space of polynomials of total degree at most k on K and

Pk(K; S) := {τ ∈ L2(K;R2×2) |τi,j ∈ Pk(K), τij = τji, 1 6 i 6 2, 1 6 j 6 2},
Pk(K;R2) := {v ∈ L2(K;R2) |vi ∈ Pk(K), 1 6 i 6 2},

define an H(div,K; S) bubble function as

BK,k := {τ ∈ Pk(K;S) : τν |∂K = 0}.

The Hu-Zhang element space is given by

Σh := Σ̃k,h +Bk,h,
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Vh := {v ∈ L2(Ω;R2) : v |K ∈ Pk−1(K;R2), ∀K ∈ Th},

with integer k > 3, where

Bk,h := {τ ∈ H(div,Ω;S) : τ |K ∈ BK,k, ∀K ∈ Th},

Σ̃k,h := {τ ∈ H1(Ω; S) : τ |K ∈ Pk(K;S), ∀K ∈ Th}.

For the above elements, the following a priori error estimate holds.

Theorem 2.1 (A priori error estimate, see [27, 29, 31]). The exact solution (σ, u) of (1.1) and the

approximate solution (σh, uh) of (2.1) satisfy

∥σ − σh∥0 . hm∥σ∥m, for 1 6 m 6 k + 1,

∥div(σ − σh)∥0 . hm∥divσ∥m, for 0 6 m 6 k,

∥u− uh∥0 . hm∥u∥m+1, for 1 6 m 6 k.

In the continuous case, the following exact sequence:

P1(Ω) −→ H2(Ω)
CurlCurl−→ H(div,Ω; S) div−→ L2(Ω,R2) (2.2)

holds for linear elasticity (see [8]). In the discrete case, the exact sequence holds similarly

P1(Ω) −→ Φh
CurlCurl−→ Σh

div−→ Vh. (2.3)

As stated in [8], the space Φh for the Arnold-Winther element is precisely the space of C1 piecewise

polynomials which are C2 at the vertices, i.e., the well-known high-order Hermite or Argyris finite ele-

ment. The Hu-Zhang element is an enrichment of the Arnold-Winther element, adding all the piecewise

polynomial matrices of degree k which are not divergence-free on each element and belong to H(div,Ω;S)
globally. So the space Φh for the Hu-Zhang element is the same as the one for the Arnold-Winther

element.

Lemma 2.2 (Helmholtz-type decomposition, see [8, 14]). For any τ ∈ L2(Ω; S), there exist v ∈
H1

0 (Ω;R2) and ϕ ∈ H2(Ω)/P1(Ω), such that

τ = Cε(v) +CurlCurlϕ, (2.4)

and the decomposition is orthogonal in the weighted L2-inner product (C−1·, ·) := (A ·, ·), i.e.,

∥τ∥2A = ∥ε(v)∥2A−1 + ∥CurlCurlϕ∥2A, (2.5)

where P1(Ω) is the linear polynomial space on Ω, the norm ∥ · ∥2A = (A ·, ·).
Since

(A−1Aτ, τ) = (τ, τ) = (A(A−1τ), τ),

by the boundedness and coerciveness of the operator A, we obtain the following relationship of the norms:

for any τ ∈ Σ, there exist positive constants C1 and C2, which are independent of the Lamé constant λ,

such that

C2∥τ∥2A = C2(Aτ, τ) 6 ∥τ∥20 6 C1(A
−1τ, τ) = C1∥τ∥2A−1 . (2.6)

It is the goal of this paper to present a posterior error estimate of σ − σh for the Hu-Zhang element

method. It is worth mentioning that the a posterior error estimator designed in this paper can be easily

extended to the Arnold-Winther element (see [8]).
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3 A posteriori error estimation for stress

In this section, we shall prove the reliability and efficiency of the error estimator. The main observation is

that: although it is a saddle point problem, the error of stress σ−σh is orthogonal to the divergence-free

subspace, while the part of the error that is not divergence-free can be bounded by the data oscillation

using the stability of the discretization.

For any τh ∈ Σh, the error estimator is defined as

η2(τh, Th) :=
∑

K∈Th

η2K(τh) +
∑
e∈Eh

η2e(τh), (3.1)

where

η2K(τh) := h4K∥curl curl (Aτh)∥20,K , η2e(τh) := he∥Je,1∥20,e + h3e∥Je,2∥20,e,

Je,1 :=

{
[(Aτh)te · te]e, if e ∈ Eh(Ω),
((Aτh)te · te) |e, if e ∈ Eh(Γ),

Je,2 :=

{
[curl(Aτh) · te]e, if e ∈ Eh(Ω),
(curl(Aτh) · te − ∂te((Aτh)te · νe)) |e, if e ∈ Eh(Γ).

The data oscillation is defined as

osc2(f, Th) :=
∑

K∈Th

h2K∥f −Qhf∥20,K ,

where Qh is the L2 orthogonal projection operator onto the discrete displacement space Vh.

3.1 Stability result

For the ease of exposition, we write the mixed formulation for linear elasticity as L(σ, u) = f . The

natural stability of the operator is ∥σ∥H(div) + ∥u∥ . ∥f∥. However, a stronger stability can be proved

for a special perturbation of the data.

Lemma 3.1. Let fh be the L2 projection of f onto Vh and let (σ, u) = L−1f and (σ̃, ũ) = L−1fh.

Then we have

∥σ − σ̃∥A . osc(f, Th). (3.2)

Proof. Use the first equation of (1.1) and let v = u− ũ,

(A(σ − σ̃), σ − σ̃) = −(div(σ − σ̃), u− ũ) = −(f −Qhf, u− ũ)

= (f −Qhf,Qhv − v)

6
∑

K∈Th

∥f −Qhf∥0,K∥v −Qhv∥0,K

.
∑

K∈Th

∥f −Qhf∥0,KhK |v|1,K

.
( ∑

K∈Th

h2K∥f −Qhf∥20,K
) 1

2

∥ε(v)∥0,

where the Korn’s inequality is used. Since ε(v) = A(σ − σ̃), by (2.6),

∥ε(v)∥0 . ∥σ − σ̃∥A.

We acquire the desirable stability result.

The oscillation osc(f, Th) is an upper bound of ∥f − fh∥−1 and is of high order comparing with the

error estimator.
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3.2 Orthogonality

For any ϕ ∈ H2(Ω),CurlCurlϕ ∈ H(div,Ω; S), we can use the exact sequence property divCurlCurl = 0

to get

(Aσ̃,CurlCurlϕ) = −(ũ,divCurlCurlϕ) = 0. (3.3)

Similarly

(Aσh,CurlCurlϕh) = −(uh, divCurlCurlϕh) = 0

for any ϕh ∈ Φh. Therefore we have a partial orthogonality

(A(σ̃ − σh),CurlCurlϕh) = 0, ∀ϕh ∈ Φh. (3.4)

3.3 Upper bound

Let S5
h denote the Argyris finite element space, which consists of C1 piecewise polynomials of degree less

than or equal to 5, i.e.,

S5
h := {v ∈ L2(Ω̄) : v |K ∈ P5(K), ∀K ∈ Th, v and its all first and second

derivatives are continuous at the vertices, v is continuous

along the normal direction at the edge midpoints}.

Following [23, 37], we can define a quasi-interpolation operator Ih : H2(Ω) → S5
h, which preserves the

values of the function at all vertices of Th. On each element K ∈ Th, for any v ∈ H2(Ω), Ihv |K ∈ P5(K)

and it satisfies

• Ihv |K(ai,K) = v(ai,K), 1 6 i 6 3;

• ∂xj (Ihv |K)(ai,K) = N−1
h (ai,K)

∑
K′∈S(ai,K) ∂xj (Phv |K′)(ai,K), 1 6 i 6 3, j = 1, 2;

• ∂2xjxl
(Ihv |K)(ai,K) = N−1

h (ai,K)
∑

K′∈S(ai,K) ∂
2
xjxl

(Phv |K′)(ai,K), 1 6 i 6 3, 1 6 j 6 l 6 2;

• ∂ν(Ihv |K)(a3+i,K) = N−1
h (a3+i,K)

∑
K′∈S(a3+i,K) ∂ν(Phv |K′)(a3+i,K), 1 6 i 6 3,

where ai,K , 1 6 i 6 3, are the vertices of K, a3+i,K , 1 6 i 6 3, are the edge midpoints of K, ν is the edge

outer normal of the element K at the edge midpoint,

S(ai,K) :=
∪

{K ∈ Th : ai,K ∈ K}

and

Nh(ai,K) := card{K : K ∈ S(ai,K)},

Ph is the L2 projection operator from L2(Ω) onto the discontinuous finite element space of polynomial of

degree 6 5 on Th. It is obvious that the interpolation operator Ih is uniquely determined by the above

degrees of freedom. Furthermore, Ih is a projection, i.e.,

Ihv = v, ∀ v ∈ S5
h, (3.5)

and it preserves the value of the function at vertices for any v ∈ H2(Ω), i.e.,

Ihv(ai,K) = v(ai,K), ∀K ∈ Th, 1 6 i 6 3. (3.6)

A similar scaling argument to that in [23,37] gives the following interpolation estimates:

|v − Ihv|m,K . h2−m
K |v|2,SK

, 0 6 m 6 2, ∀K ∈ Th, (3.7)

|v − Ihv|m,e . h
2−m− 1

2
e |v|2,Se , 0 6 m 6 1, ∀ e ∈ Eh, (3.8)

where SK =
∪
{Ki ∈ Th : Ki ∩K ̸= ∅} and Se =

∪
{Ki ∈ Th : Ki ∩ e ̸= ∅}.

Applying the Helmholtz decomposition to the error σ̃ − σh, we have

σ̃ − σh = Cε(v) +CurlCurlϕ = CurlCurlϕ (3.9)
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and

∥CurlCurlϕ∥A = ∥σ̃ − σh∥A, (3.10)

where ϕ ∈ H2(Ω)/P1(Ω). It follows that

∥σ̃ − σh∥2A = (A(σ̃ − σh),CurlCurlϕ).

Since CurlCurl(Ihϕ) ∈ Σh, by the orthogonality (3.4) and the equation (3.3),

(A(σ̃ − σh),CurlCurlϕ) = (A(σ̃ − σh),CurlCurl(ϕ− Ihϕ))

= −(Aσh,CurlCurl(ϕ− Ihϕ)).

An integration by parts gives

(Aσh,CurlCurl(ϕ− Ihϕ))

= −
∑

K∈Th

(curl(Aσh),Curl(ϕ− Ihϕ))K +
∑

K∈Th

⟨(Aσh)t,Curl(ϕ− Ihϕ)⟩∂K

=
∑

K∈Th

(curlcurl(Aσh), ϕ− Ihϕ)K +
∑

K∈Th

⟨(Aσh)t,Curl(ϕ− Ihϕ)⟩∂K

−
∑

K∈Th

⟨curl(Aσh) · t, ϕ− Ihϕ⟩∂K . (3.11)

The second term of the right-hand side can be rewritten as∑
K∈Th

⟨Aσht,Curl(ϕ− Ihϕ)⟩∂K =
∑

K∈Th

⟨(Aσh)t · t,Curl(ϕ− Ihϕ) · t⟩∂K

+
∑

K∈Th

⟨(Aσht) · ν,Curl(ϕ− Ihϕ) · ν⟩∂K .

Since the compliance tensor A is symmetric and continuous, (Aσht) · ν = (Aσhν) · t = (tTσhν)/(2µ) and

(Aσht) · ν is continuous across the interior element edge, which implies∑
K∈Th

⟨(Aσht) · ν,Curl(ϕ− Ihϕ) · ν⟩∂K = −
∑

e∈Eh(Γ)

⟨(Aσhte) · νe, ∂te(ϕ− Ihϕ)⟩e

=
∑

e∈Eh(Γ)

⟨∂te((Aσhte) · νe), ϕ− Ihϕ⟩e,

where the fact ϕ− Ihϕ vanishing at the vertices (3.6) is used. So∑
K∈Th

⟨Aσht,Curl(ϕ− Ihϕ)⟩∂K =
∑

e∈Eh(Ω)

⟨[(Aσhte) · te]e, ∂νe(ϕ− Ihϕ)⟩e

+
∑

e∈Eh(Γ)

⟨(Aσhte) · te, ∂νe(ϕ− Ihϕ)⟩e

+
∑

e∈Eh(Γ)

⟨∂te((Aσhte) · νe), ϕ− Ihϕ⟩e.

Substituting it into (3.11), we get

(Aσh,CurlCurl(ϕ− Ihϕ)) =
∑

K∈Th

(curl curl (Aσh), ϕ− Ihϕ)K

+
∑

e∈Eh(Ω)

⟨[(Aσhte) · te]e, ∂νe(ϕ− Ihϕ)⟩e

−
∑

e∈Eh(Ω)

⟨[curl(Aσh) · te]e, ϕ− Ihϕ⟩e
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+
∑

e∈Eh(Γ)

⟨(Aσhte) · te, ∂νe(ϕ− Ihϕ)⟩e

+
∑

e∈Eh(Γ)

⟨∂te((Aσhte) · νe)− curl(Aσh) · te, ϕ− Ihϕ⟩e

and

∥σ̃ − σh∥2A = (A(σ̃ − σh),CurlCurlϕ)

.
[ ∑
K∈Th

h4K∥curlcurl(Aσh)∥20,K +
∑
e∈Eh

(he∥Je,1∥20,e + h3e∥Je,2∥20,e)
] 1

2

|ϕ|2

.
[ ∑
K∈Th

η2K(σh) +
∑
e∈Eh

η2e(σh)

] 1
2

∥CurlCurlϕ∥0. (3.12)

By [14], the ϕ defined in (3.9) satisfies that div(CurlCurlϕ) = 0 and∫
Ω

tr(CurlCurlϕ)dx =

∫
Ω

tr(σ̃ − σh)dx = 0.

Using [11, Proposition 9.1.1], we get

∥CurlCurlϕ∥0 6 C∥CurlCurlϕ∥A,

where the constant C is independent of the Lamé constant λ. Combining this with (3.10) and (3.12), we

obtain

∥σ̃ − σh∥A .
[ ∑
K∈Th

η2K(σh) +
∑
e∈Eh

η2e(σh)

] 1
2

.

Together with the triangle inequality and the perturbation result (3.2), we get the desired error bound

∥σ − σh∥A 6 ∥σ − σ̃∥A + ∥σ̃ − σh∥A

.
[ ∑
K∈Th

η2K(σh) +
∑
e∈Eh

η2e(σh)

] 1
2

+ osc(f, Th).

In summary, we obtain the following upper bound estimation.

Theorem 3.2 (Reliability of the error estimator). Let (σ, u) be the solution of the mixed formu-

lation (1.1) and (σh, uh) be the solution of the mixed finite element method (2.1). If the compliance

tensor A is continuous, there exists a positive constant C1 depending only on the shape-regularity of the

triangulation and the polynomial degree k such that

∥σ − σh∥A 6 C1(η(σh, Th) + osc(f, Th)). (3.13)

Remark 3.3. When A is discontinuous, we can modify η(σh, Th) as follows:

η2(σh, Th) :=
∑

K∈Th

h4K∥curl curl(Aσh)∥20,K +
∑
e∈Eh

he∥[(Aσh)te · te]∥20,e

+
∑
e∈Eh

h3e∥[curl(Aσh) · te − ∂te((Aσh)te · νe)]∥20,e.

Compared with the case of continuous coefficient A, this estimator includes an additional term, the jump

of ∂te((Aσh)te · νe) on all interior edges, owing to the discontinuity of the matrix A. Similarly, we can

prove the reliability of the estimator

∥σ − σh∥A . η(σh, Th) + osc(f, Th).
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Remark 3.4. By [11, Proposition 9.1.1], it holds

∥τ∥0 . ∥τ∥A + ∥div τ∥−1, ∀ τ ∈ Σ̂,

where Σ̂ := {τ ∈ Σ : (trτ, 1) = 0} with tr being the trace operator of matrix. Then we also have

from (3.13) and the fact that ∥f − fh∥−1 . osc(f, Th),

∥σ − σh∥0 . ∥σ − σh∥A + ∥div(σ − σh)∥−1 . η(σh, Th) + osc(f, Th),

i.e., we can control the L2 norm of the stress with constant independent of the Lamé constant λ.

3.4 Lower bound

We shall follow Alonso [2] to prove the efficiency of the error estimator defined in (3.1). Similar to [2],

we need the following lemma.

Lemma 3.5. For any K ∈ Th, given pK ∈ L2(K), qe ∈ L2(e), re ∈ L2(e), e ∈ ∂K, there exists a

unique ψK ∈ Pk+5(K), k > 1, satisfying that
(ψK , v) = (pK , v)K for any v ∈ Pk−1(K),

⟨ψK , s⟩e = ⟨qe, s⟩e for any s ∈ Pk−1(e),

⟨∂νψK , s⟩e = ⟨re, s⟩e for any s ∈ Pk(e),

∂αψK(P ) = 0, |α| 6 2 for any vertex P ∈ K,

(3.14)

where Pk(e) denotes the spaces of polynomial of degree less than or equal to k on edge e. Moreover, it

holds that

∥ψK∥20,K . ∥pK∥20,K +
∑
e∈∂K

(he∥qe∥20,e + h3e∥re∥20,e). (3.15)

Proof. Similar to [36], such a function ψK is determined uniquely by the above degrees of freedoms. A

standard homogeneity argument gives (3.15).

Theorem 3.6 (Efficiency of the error estimator). Let (σ, u) be the solution of the mixed formula-

tion (1.1) and (σh, uh) be the solution of the mixed finite element method (2.1). If the compliance ten-

sor A is continuous, there exists a positive constant C2 depending only on the shape-regularity of the

triangulations and the polynomial degree k such that

C2η(σh, Th) 6 ∥σ − σh∥A. (3.16)

Proof. The estimator η2(σh, Th) can be rewritten as

η2(σh, Th) =
∑

K∈Th

(curlcurl(Aσh), h
4
Kcurlcurl(Aσh))K

+
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te · te, heJe,1⟩e

+
∑

K∈Th

∑
e∈∂K∩Eh(Ω)

⟨curl (Aσh) · te, h3eJe,2⟩e

+
∑

K∈Th

∑
e∈∂K∩Eh(Γ)

⟨curl (Aσh) · te − ∂te((Aσh)te · νe), h3eJe,2⟩e.

On each element K ∈ Th, we apply Lemma 3.5 for pK = h4Kcurlcurl(Aσh) |K , qe = −h3eJe,2, re = heJe,1

for each edge e ∈ ∂K. Let ψ |K = ψK , ψ is in fact in the high-order Argyris finite element space of degree

k + 5 (k > 1), and hence ψ ∈ H2(Ω). Using (3.15), it follows that

∥ψ∥20,K . h8K∥curlcurl(Aσh)∥20,K +
∑
e∈∂K

(h7e∥Je,2∥20,e + h5e∥Je,1∥20,e). (3.17)
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This, in conjunction with (3.14), yields

η2(σh, Th) =
∑

K∈Th

(curlcurl(Aσh), ψK)K

−
∑

K∈Th

∑
e∈∂K

⟨curl(Aσh) · te, ψK⟩e

+
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te · te, ∂νe
ψK⟩e

+
∑

K∈Th

∑
e∈∂K∩Eh(Γ)

⟨∂te((Aσh)te · νe), ψK⟩e. (3.18)

Since (Aσh)te · νe is continuous across the interior element edge e, [Aσhte · νe]e = 0 on interior edges.

Note that ψ ∈ H2(Ω) and vanishes at the mesh vertices,∑
K∈Th

∑
e∈∂K∩Eh(Γ)

⟨∂te((Aσh)te · νe), ψK⟩e

= −
∑

K∈Th

∑
e∈∂K∩Eh(Γ)

⟨(Aσh)te · νe, ∂teψK⟩e

= −
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te · νe, ∂teψK⟩e. (3.19)

Hence the last two terms of (3.18) become∑
K∈Th

∑
e∈∂K

⟨(Aσh)te · te, ∂νeψK⟩e +
∑

K∈Th

∑
e∈∂K∩Eh(Γ)

⟨∂te((Aσh)te · νe), ψK⟩e

=
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te · te, CurlψK · te⟩e −
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te · νe,−CurlψK · νe⟩e

=
∑

K∈Th

∑
e∈∂K

⟨(Aσh)te, CurlψK⟩e. (3.20)

Substituting (3.20) into (3.18) leads to

η2(σh, Th) =
∑

K∈Th

(
(curlcurl(Aσh), ψK)K −

∑
e∈∂K

⟨curl(Aσh) · te, ψK⟩e +
∑
e∈∂K

⟨(Aσh)te,CurlψK⟩e
)
.

Integrating the first term by parts twice,

η2(σh, Th) =
∑

K∈Th

(Aσh, CurlCurlψK)K

=
∑

K∈Th

(A(σh − σ),CurlCurlψK)K

. ∥σ − σh∥A
( ∑

K∈Th

h−4
K ∥ψ∥20,K

) 1
2

,

where CurlCurlψ ∈ Σ and the inverse inequality are used. By (3.17),∑
K∈Th

h−4
K ∥ψ∥20,K .

∑
K∈Th

h4K∥curl curl (Aσh)∥20,K +
∑
e∈Eh

(he∥Je,1∥20,e + h3e∥Je,2∥20,e)

=̂ η2(σh, Th).

Combining the above two inequalities, we have that

η(σh, Th) . ∥σ − σh∥A.

This completes the proof.

Remark 3.7. For discontinuous A and the modified error estimator in Remark 3.3, efficiency can be

also proved using a similar argument.
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4 A posteriori error estimation for mixed boundary problems

The a posteriori error estimation for the linear elasticity problems with the homogeneous Dirichlet bound-

ary condition can be generalized to problems with mixed boundary conditions. In this section, we will

discuss the following linear elasticity problems with mixed boundary conditions. Let Ω ⊂ R2 be a bounded

polygonal domain with boundary Γ := ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅, ΓN ̸= ∅. Given data f ∈ L2(Ω;R2),

uD ∈ H1(Ω;R2) and g ∈ L2(ΓN ;R2), seek the solution (σ, u) ∈ Σg × V , such that{
(Aσ, τ) + (divτ, u) = ⟨uD, τν⟩ΓD for all τ ∈ Σ0,

(divσ, v) = (f, v) for all v ∈ V,
(4.1)

where

Σ0 :=

{
σ ∈ H(div,Ω;S)

∣∣∣∣ ∫
ΓN

ψ · (σν)ds = 0, for all ψ ∈ D(ΓN ;R2)

}
,

Σg :=

{
σ ∈ H(div,Ω;S)

∣∣∣∣ ∫
ΓN

ψ · (σν)ds =
∫
ΓN

ψ · gds, for all ψ ∈ D(ΓN ;R2)

}
,

where D denotes the space of test functions. Let Σ0,h := Σ0 ∩ Σh, Σg,h := Σg ∩ Σh, the mixed finite

element method seeks (σh, uh) ∈ Σg,h × Vh, such that{
(Aσh, τh) + (divτh, uh) = ⟨uD, τhν⟩ΓD

for all τh ∈ Σ0,h,

(divσh, vh) = (f, vh) for all vh ∈ Vh.
(4.2)

We modify the a posterior error estimator defined in Section 3 as follows:

η2(σh, Th) :=
∑

K∈Th

η2K(σh) +
∑
e∈Eh

η2e(σh),

where

η2K(σh) := h4K∥curlcurl(Aσh)∥20,K , η2e(σh) := he∥Je,1∥20,e + h3e∥Je,2∥20,e,

Je,1 :=

{
[(Aσh)te · te]e, if e ∈ Eh(Ω),
((Aσh)te · te − ∂te(uD · te)) |e, if e ∈ Eh(ΓD),

Je,2 :=

{
[curl(Aσh) · te]e, if e ∈ Eh(Ω),
(curl(Aσh) · te + ∂tete(uD · ν)− ∂te((Aσh)te · νe)) |e, if e ∈ Eh(ΓD),

where Eh(ΓD) is the collection of element edges on the Dirichlet boundary.

Similar to Section 3, we can prove the reliability and efficiency of this a posteriori error estimator.

Theorem 4.1 (Reliability and efficiency of the error estimator). Let (σ, u) be the solution of the mixed

formulation (4.1) and (σh, uh) be the solution of the mixed finite element method (4.2). If the compliance

tensor A is continuous, there exist positive constants C3 and C4 depending only on the shape-regularity

of the triangulation and the polynomial degree k such that

∥σ − σh∥A 6 C3(η(σh, Th) + osc(f, Th) + osc(g, Eh(ΓN ))), (4.3)

and

C4η(σh, Th) 6 ∥σ − σh∥A + osc(uD, Eh(ΓD)), (4.4)

where the data oscillations for the Dirichlet boundary uD and the Neumann boundary condition g are

defined as

osc(g, Eh(ΓN ))2 :=
∑

e∈Eh(ΓN )

he∥g − gh∥20,e,
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osc(uD, Eh(ΓD))2 :=
∑

e∈Eh(ΓD)

he∥∂te(uD · te)− ∂te(uD,h · te)∥20,e

+
∑

e∈Eh(ΓD)

h3e∥∂tete(uD · νe)− ∂tete(uD,h · νe)∥20,e,

where gh is the piecewise L2 projection of g onto Pk(Eh(ΓN ),R2) and uD,h is the piecewise L2 projection

of uD onto Pk(Eh(ΓD),R2).

5 A posteriori error estimation for displacement

In this section, we shall discuss the a posteriori error estimate for a superconvergent postprocessed

displacement recently constructed in [20]. The key points of the theoretical analysis involve the discrete

inf-sup condition and the norm equivalence on H1(Th;R2) developed in [20], and the a posteriori error

estimates (3.13) and (3.16). Here, the broken space

H1(Th;R2) := {v ∈ L2(Ω;R2) : v |K ∈ H1(K;R2), ∀K ∈ Th}.

For any v ∈ H1(Th;R2), define the following mesh dependent norm

|v|21,h := ∥εh(v)∥20 +
∑
e∈Eh

h−1
e ∥[v]∥20,e,

where εh(v) |K = ε(v |K) for any K ∈ Th.
We first recall the superconvergent postprocessed displacement from (σh, uh) developed in [20]. To this

end, let

V ∗
h := {v ∈ L2(Ω;R2) : v |K ∈ Pk+1(K;R2), ∀K ∈ Th}.

Then a postprocessed displacement is defined as follows (see [12,20,35]): find u∗h ∈ V ∗
h such that

(u∗h, v)K = (uh, v)K , ∀ v ∈ Pk−1(K;R2), (5.1)

(ε(u∗h), ε(w))K = (Aσh, ε(w))K , ∀w ∈ (I −Qh)V
∗
h |K , (5.2)

for any K ∈ Th.
We recall the following two useful results (see [20]): the discrete inf-sup condition

|vh|1,h . sup
0̸=τh∈Σh

(div τh, vh)

∥τh∥0
, ∀ vh ∈ Vh, (5.3)

and norm equivalence

|v −Qhv|1,h h ∥εh(v −Qhv)∥0, ∀ v ∈ H1(Th;R2). (5.4)

Theorem 5.1. Let (σ, u) be the solution of the mixed formulation (1.1), (σh, uh) be the solution of the

mixed finite element method (2.1), and u∗h be the postprocessed displacement defined by (5.1)–(5.2). Then

we have

∥σ − σh∥A + |u− u∗h|1,h . η(σh, Th) + ∥Aσh − εh(u
∗
h)∥0 + osc(f, Th), (5.5)

η(σh, Th) + ∥Aσh − εh(u
∗
h)∥0 . ∥σ − σh∥A + |u− u∗h|1,h. (5.6)

Proof. Using the discrete inf-sup condition (5.3) with vh = Qh(u−u∗h), (5.1), the first equation of (1.1)

and (2.1), we get

|Qh(u− u∗h)|1,h . sup
0̸=τh∈Σh

(div τh, Qh(u− u∗h))

∥τh∥0

= sup
0̸=τh∈Σh

(div τh, u− uh)

∥τh∥0
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= sup
0̸=τh∈Σh

(A(σ − σh), τh)

∥τh∥0
6 ∥A(σ − σh)∥0.

Choosing v = u− u∗h in (5.4), we have

|v −Qhv|1,h h ∥εh(v −Qhv)∥0 6 ∥εh(u− u∗h)∥0 + |Qh(u− u∗h)|1,h
= ∥Aσ − εh(u

∗
h)∥0 + |Qh(u− u∗h)|1,h

. ∥Aσh − εh(u
∗
h)∥0 + ∥A(σ − σh)∥0.

Then it follows from the last two inequalities that

|u− u∗h|1,h . ∥Aσh − εh(u
∗
h)∥0 + ∥A(σ − σh)∥0,

which combined with (3.13) implies (5.5).

Next, we prove the efficiency (5.6). By the triangle inequality,

∥Aσh − εh(u
∗
h)∥0 6 ∥A(σ − σh)∥0 + ∥Aσ − εh(u

∗
h)∥0

= ∥A(σ − σh)∥0 + ∥εh(u− u∗h)∥0
. ∥σ − σh∥A + |u− u∗h|1,h.

Therefore we can end the proof by using (3.16).

6 Numerical experiments

We will testify the a posteriori error estimator by some numerical examples in this section.

In the first example, let Ω = (0, 1)2, k = 3, µ = 1, the right-hand side

f(x, y) = π3

(
− sin(2πy)(2 cos(2πx)− 1)

sin(2πx)(2 cos(2πy)− 1)

)
,

and the exact solution (see [16, Section 5.2])

u(x, y) =
π

2

(
sin2(πx) sin(2πy)

− sin2(πy) sin(2πx)

)
.

We subdivide Ω by a uniform triangular mesh. The a priori and a posteriori error estimates for λ = 10

and λ = 10,000 are listed in Tables 1 and 2, from which we can see that the convergence rates of

∥σ − σh∥A, ∥∇h(u − u∗h)∥0, η(σh, Th) and ∥Aσh − εh(u
∗
h)∥0 are all O(h4). Hence, the a posteriori error

estimators η(σh, Th) and η(σh, Th)+∥Aσh−εh(u∗h)∥0 are both uniformly reliable and efficient with respect

to the mesh size h and λ for smooth solutions.

Table 1 Numerical errors for the first example when λ = 10

h ∥σ − σh∥A Order ∥∇h(u− u∗
h)∥0 Order η(σh, Th) Order ∥Aσh − εh(u

∗
h)∥0 Order

2−1 6.6998E−01 − 7.9544E−01 − 1.6615E+01 − 4.0073E−02 −
2−2 5.2451E−02 3.68 6.0585E−02 3.71 1.3585E+00 3.61 9.3899E−03 2.09

2−3 3.6139E−03 3.86 4.5839E−03 3.72 1.0918E−01 3.64 7.1387E−04 3.72

2−4 2.2714E−04 3.99 3.0676E−04 3.90 7.4510E−03 3.87 4.5925E−05 3.96

2−5 1.4193E−05 4.00 1.9600E−05 3.97 4.7919E−04 3.96 2.8824E−06 3.99

2−6 8.8742E−07 4.00 1.2347E−06 3.99 3.0263E−05 3.99 1.8040E−07 4.00

2−7 5.5567E−08 4.00 7.7435E−08 3.99 1.8992E−06 3.99 1.1306E−08 4.00
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Table 2 Numerical errors for the first example when λ = 10,000

h ∥σ − σh∥A Order ∥∇h(u− u∗
h)∥0 Order η(σh, Th) Order ∥Aσh − εh(u

∗
h)∥0 Order

2−1 6.6096E−01 − 7.7905E−01 − 1.6050E+01 − 4.3292E−02 −
2−2 5.1630E−02 3.68 5.8762E−02 3.73 1.3066E+00 3.62 9.0182E−03 2.26

2−3 3.5430E−03 3.87 4.3977E−03 3.74 1.0508E−01 3.64 6.8780E−04 3.71

2−4 2.2220E−04 4.00 2.9277E−04 3.91 7.1542E−03 3.88 4.4330E−05 3.96

2−5 1.3873E−05 4.00 1.8668E−05 3.97 4.5947E−04 3.96 2.7853E−06 3.99

2−6 8.6708E−07 4.00 1.1751E−06 3.99 2.8998E−05 3.99 1.7442E−07 4.00

2−7 5.4210E−08 4.00 7.3695E−08 4.00 1.8195E−06 3.99 1.0922E−08 4.00

Algorithm 1 Adaptive algorithm for the mixed finite element method (2.1)

Given a parameter 0 < ϑ < 1 and an initial mesh T0. Set m := 0.

1. SOLVE: Solve the mixed finite element method (2.1) on Tm for the discrete solution (σm, um) ∈ Σm × Vm.

2. ESTIMATE: Compute the error indicator η2(σm, Tm) piecewise.

3. MARK: Mark a set Sm ⊂ Tm with minimal cardinality by Dörfler marking such that

η2(σm,Sm) > ϑη2(σm, Tm).

4. REFINE: Refine each triangle K with at least one edge in Sm by the newest vertex bisection to get Tm+1.

5. Set m := m+ 1 and go to Step 1.

(a) Initial mesh (b) #dofs = 198,098, θ = 0.1, λ = 10

(c) #dofs = 129,624, θ = 0.2, λ = 10 (d) #dofs = 138,323, θ = 0.2, λ = 10,000

Figure 1 Meshes generated in Algorithm 1 with different θ and λ for Example 2

Next, we use the a posteriori error estimator η(σh, Th) to design an adaptive mixed finite element

method, i.e., Algorithm 1. The approximate block factorization preconditioner with the generalized

minimal residual method (GMRES, see [20]) is adopted in the SOLVE part of Algorithm 1, which is

verified to be highly efficient and robust even on adaptive meshes by our numerical examples.

Now we construct a problem with singularity in the solution to test Algorithm 1. Set L-shaped domain
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Figure 2 Errors ∥σ − σh∥A and η(σh, Th) vs. #dofs in ln-ln scale for Example 2 with λ = 10
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Figure 3 Errors ∥σ − σh∥A and η(σh, Th) vs. #dofs in ln-ln scale for Example 2 with λ = 10,000
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Figure 4 The rotated L-shaped domain with the initial mesh

Ω = (−1, 1)× (−1, 1)\[0, 1)× (−1, 0]. Let

Φ1(θ) =

(
((z + 2)(λ+ µ) + 4µ

)
sin(zθ)− z(λ+ µ) sin((z − 2)θ)

z(λ+ µ)
(
cos(zθ)− cos((z − 2)θ))

)
,
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Table 3 Numerical errors for Example 3 with k = 3 on uniform meshes

h ∥σ − σh∥A order η(σh, Th) order η(σh, Th)/∥σ − σh∥A√
2/2 6.6585E−03 − 4.5431E−04 − 6.82E−02

√
2/22 4.7264E−03 0.4944 3.2749E−04 0.4722 6.93E−02

√
2/23 3.2966E−03 0.5198 2.3212E−04 0.4966 7.04E−02

√
2/24 2.2791E−03 0.5325 1.6180E−04 0.5207 7.10E−02

√
2/25 1.5689E−03 0.5387 1.1182E−04 0.5330 7.13E−02

√
2/26 1.0777E−03 0.5418 7.6957E−05 0.5390 7.14E−02

√
2/27 7.3957E−04 0.5432 5.2859E−05 0.5419 7.15E−02

Table 4 Numerical errors for Example 3 with k = 4 on uniform meshes

h ∥σ − σh∥A order η(σh, Th) order η(σh, Th)/∥σ − σh∥A√
2/2 5.3787E−03 − 8.4604E−04 − 1.57E−01

√
2/22 3.7715E−03 0.5121 6.0103E−04 0.4933 1.59E−01

√
2/23 2.6141E−03 0.5288 4.2105E−04 0.5134 1.61E−01

√
2/24 1.8017E−03 0.5370 2.9171E−04 0.5294 1.62E−01

√
2/25 1.2383E−03 0.5409 2.0101E−04 0.5373 1.62E−01

√
2/26 8.5005E−04 0.5428 1.3814E−04 0.5411 1.63E−01

Table 5 Numerical errors for Example 3 with k = 5 on uniform meshes

h ∥σ − σh∥A order η(σh, Th) order η(σh, Th)/∥σ − σh∥A√
2/2 4.5148E−03 − 1.2961E−03 − 2.87E−01

√
2/22 3.1444E−03 0.5219 9.1388E−04 0.5041 2.91E−01

√
2/23 2.1721E−03 0.5337 6.3609E−04 0.5228 2.93E−01

√
2/24 1.4946E−03 0.5393 4.3929E−04 0.5341 2.94E−01

√
2/25 1.0265E−03 0.5420 3.0223E−04 0.5395 2.94E−01

Φ2(θ) =

(
z(λ+ µ)(cos((z − 2)θ)− cos(zθ))

−((2− z)(λ+ µ) + 4µ) sin(zθ)− z(λ+ µ) sin((z − 2)θ)

)
,

Φ(θ) = (z(λ+ µ) sin((z − 2)ω) + ((2− z)(λ+ µ) + 4µ) sin(zω))Φ1(θ)

− z(λ+ µ)(cos((z − 2)ω)− cos(zω))Φ2(θ),

where z ∈ (0, 1) is a real root of (λ+3µ)2 sin2(zω) = (λ+µ)2z2 sin2 ω with ω = 3π/2. The exact singular

solution in polar coordinates is taken as (see [24, Subsection 4.6])

u(r, θ) =
1

(λ+ µ)2
(r2 cos2 θ − 1)(r2 sin2 θ − 1)rzΦ(θ).

It can be computed that z = 0.561586549334359 for λ = 10, and z = 0.544505718203590 for λ = 10,000.

We also take k = 3 and µ = 1.

Some meshes generated by Algorithm 1 for different bulk parameter ϑ and Lamé constant λ are shown

in Figure 1, where #dofs is the number of degrees of freedom. The adaptive Algorithm 1 captures the

singularity of the exact solution on the corner (0, 0) very well. The histories of the adaptive Algorithm 1

for ϑ = 0.1, ϑ = 0.2 and λ = 10, λ = 10,000 are presented in Figures 2 and 3. We can see from Figures 2

and 3 that the convergence rates of errors ∥σ − σh∥A and η(σh, Th) are both O((#dofs)−2) no matter

λ = 10 or λ = 10,000, which demonstrates the theoretical results. For uniform grid, #(dofs)−2 ∼= h4, this

means that the errors ∥σ − σh∥A and η(σh, Th) converge with an optimal rate.



990 Chen L et al. Sci China Math June 2018 Vol. 61 No. 6

−2

3.02.5 3.5 4.0 4.5 5.0 5.5 6.0 6.5

−3

−4

−5

−6

−7

−8

−9

−10

−11

Figure 5 Errors ∥σ − σh∥A vs. #dofs in log10-log10 scale for Example 3 with ϑ = 0.1
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Figure 6 Errors η(σh, Th) vs. #dofs in log10-log10 scale for Example 3 with ϑ = 0.1

The third example considers the L-shape benchmark problem with general boundary conditions testified

in [16, Subsection 5.3] on the rotated L-shaped domain with the initial mesh as depicted in Figure 4. We

impose the Neumann boundary condition on the boundary x2 = y2 and the Dirichlet boundary condition

on the rest boundary of Ω. The exact solution in the polar coordinates is given as follows:(
ur(r, θ)

uθ(r, θ)

)
=
rα

2µ

(
−(α+ 1) cos((α+ 1)θ) + (C2 − α− 1)C1 cos((α− 1)θ)

(α+ 1) sin((α+ 1)θ) + (C2 + α− 1)C1 sin((α− 1)θ)

)
.

The constants are C1 := − cos((α + 1)ω)/ cos((α − 1)ω) and C2 := −2(λ + 2µ)/(λ + µ), where α =

0.544483736782 is the positive solution of α sin(2ω) + sin(2ωα) = 0 for ω = 3π/4. The Lamé parameters

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

with the elasticity modulus E = 105 and the Poisson ratio ν = 0.4999. The volume force f(x, y) and the

Neumann boundary data vanish, and the Dirichlet boundary condition is taken from the exact solution.

It is easy to check that u ∈ Hs(Ω;R2) for any s < 1 + α. The numerical errors for k = 3, 4, 5 on uniform

meshes are listed in Tables 3–5, from which we observe that both the convergence rates of ∥σ − σh∥A
and η(σh, Th) are almost O(hα) indicated by the regularity of the exact solution u. Hence adopting higher

order finite elements on the uniform meshes does not lead to higher convergence rates, because of the

singularity of u.
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Then we test the a posteriori error estimator η(σh, Th) on the adaptive meshes. The histories of

Algorithm 1 for k = 3, 4, 5 and ϑ = 0.1 are presented in Figures 5 and 6, which mean that the convergence

rates of errors ∥σ − σh∥A and η(σh, Th) are both optimal, i.e., O((#dofs)−(k+1)/2).
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33 Larson M G, Målqvist A. A posteriori error estimates for mixed finite element approximations of elliptic problems.

Numer Math, 2008, 108: 487–500

34 Lonsing M, Verfürth R. A posteriori error estimators for mixed finite element methods in linear elasticity. Numer

Math, 2004, 97: 757–778

35 Lovadina C, Stenberg R. Energy norm a posteriori error estimates for mixed finite element methods. Math Comp,

2006, 75: 1659–1674

36 Morgan J, Scott R. A nodal basis for C1 piecewise polynomials of degree n > 5. Math Comp, 1975, 29: 736–740

37 Shi Z C, Wang M. Finite Element Methods. Beijing: Science Press, 2013

38 Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513–538

https://doi.org/10.1007/s10915-010-9373-2
https://doi.org/10.1137/S0036142994276992
https://doi.org/10.4208/jcm.1412-m2014-0071
https://doi.org/10.4208/jcm.1412-m2014-0071
https://doi.org/10.1137/130945272
https://arxiv.org/abs/1406.7457, 2014
https://arxiv.org/abs/1406.7457, 2014
https://doi.org/10.1007/s11425-014-4953-5
https://doi.org/10.1142/S0218202516500408
https://doi.org/10.1007/s00211-007-0121-y
https://doi.org/10.1007/s00211-004-0519-8
https://doi.org/10.1007/s00211-004-0519-8
https://doi.org/10.1090/S0025-5718-06-01872-2
https://doi.org/10.1007/BF01397550

	Introduction
	Notation and preliminaries
	A posteriori error estimation for stress
	Stability result
	Orthogonality
	Upper bound
	Lower bound

	A posteriori error estimation for mixed boundary problems
	A posteriori error estimation for displacement
	Numerical experiments

