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Abstract This paper is concerned with the stability of non-monotone traveling waves for a discrete diffusion

equation with monostable convolution type nonlinearity. By using the anti-weighted energy method and nonlin-

ear Halanay’s inequality, we prove that all noncritical traveling waves (waves with speeds c > c∗, c∗ is minimal

speed) are time-exponentially stable, when the initial perturbations around the waves are small. As a corollary

of our stability result, we immediately obtain the uniqueness of the traveling waves.
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1 Introduction

In population biology, lattice differential equations can be used to study the spatial spread of a species

over a patchy environment. The simplest lattice differential equation model (see [2, 22, 23]) describing

population growth and spread may take the form

∂un(t)

∂t
= d[un+1(t)− 2un(t) + un−1(t)] + f(un(t)), t > 0, n ∈ Z, (1.1)

where un(t) represents the population density at site n and time t, d > 0 denotes the diffusion rate, and

f(un) is the growth function.

Because of the influence of maturation period and the random walk of individuals in space, time delay

and global interaction have to be taken into account. In 2003, Weng et al. [26] derived a delayed lattice

differential equation with global interaction

∂un(t)

∂t
= d[un+1(t)− 2un(t) + un−1(t)]− un(t) +

∑
i∈Z

K(i)g(un−i(t− τ)), (1.2)
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where t > 0 and n ∈ Z. In this model, un(t) represents the matured population density at site n and

time t, −un(t) denotes the death,
∑

i∈Z K(i)g(un−i(t − τ)) involves an infinite summation accounting

for the non-local interaction, g(·) is the birth rate function of population density which interacts with

neighbors by the non-negative weighted function K, and τ > 0 is the maturation delay (the time required

for a newborn to become matured).

Recently, a continuum version of the above lattice differential equation (1.2) has been considered by

Guo and Lin [9], i.e.,

∂u(t, x)

∂t
= D2[u](t, x)− u(t, x) +

∑
i∈Z

K(i)g(u(t− τ, x− i)), t > 0, x ∈ R, (1.3)

where τ > 0, and

D2[u](t, x) = d[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)].

Equation (1.3) can also model the matured population dynamics of a single species with nonzero matu-

ration delay. Here, u(t, x) represents the density of the matured population at the time t and location x.

The other terms in (1.3) have the same meaning as those in (1.2). Guo and Lin [9] constructed three

different types of entire solutions of (1.3) under bistable and monotone increasing conditions on g(u).

The spatially discrete diffusion equations like (1.1)–(1.3) have been widely studied recently (see [3, 8,

10–13,18] and the references cited therein). One of the important issues of those equations is the traveling

wave solution (in short, traveling wave), since the traveling wave can describe spatial spread or invasion

of the species in population dynamics. Mathematically, a traveling wave of (1.2) (or (1.3)) is a special

translation invariant solution of the form un(t) = ϕ(ξ), ξ = n + ct (or u(t, x) = ϕ(ξ), ξ = x + ct), and

ϕ is the wave profile that propagates through the one dimensional spatial domain at a constant velocity

c > 0. Moreover, if ϕ(ξ) is monotone in ξ ∈ R, then it is called a traveling wavefront.

It is easy to see that the wave profile equation of (1.3) is the same as the lattice differential equa-

tion (1.2), i.e.,

cϕ′(ξ)−D2[ϕ](ξ) + ϕ(ξ) =
∑
i∈Z

K(i)g(ϕ(ξ − cτ − i)), (1.4)

where ′ = d
dξ , D2[ϕ](ξ) = d[ϕ(ξ + 1)− 2ϕ(ξ) + ϕ(ξ − 1)]. From the study of traveling waves of evolution

equations, we can see that if the properties, such as existence, monotonicity and uniqueness, of traveling

waves of (1.2) are obtained, then these properties also hold for (1.3). This is because the acquisition

of these properties depends only on the wave profile equation (1.4). To the best of our knowledge, the

traveling waves of (1.2) are well-investigated. When (1.2) is bistable, Ma and Zou [19] have proved

the existence, uniqueness, global asymptotic stability and propagation failure of traveling wavefronts.

When (1.2) is monostable, Weng et al. [26] established the existence of monotone traveling waves with

speeds c > c∗, and showed that the minimal wave speed c∗ is also the asymptotic speed of propagation.

Later, Ma et al. [17] obtained the existence of traveling wavefront of (1.2) with speed c = c∗ and the

uniqueness of traveling wavefront with speed c > c∗ under some extra assumption that the traveling

wavefronts decay exponentially at −∞, i.e.,

lim sup
ξ→−∞

ϕ(ξ)e−λ1(c)ξ < +∞, (1.5)

where λ1(c) is the smallest positive solution of the characteristic equation P(c, λ) = 0 (see (2.2)). Aguerrea

et al. [1] proved the uniqueness of traveling waves of (1.2) by adapting the uniqueness theorem developed

by Diekmann and Kaper [5]. The condition (1.5) is not assumed in their proof. In [8], Guo and Lin

studied the equation (1.2) without delay (τ = 0) and with short range interaction, i.e., K(i) = 0 for all

|i| > p with p = 3, and investigated the asymptotic behavior, monotonicity and uniqueness of traveling

wavefronts without the assumption (1.5).

We should point out that in the above work (see [8,17,26]), the monotonicity of the birth rate function g

is needed. When the function g is not monotone, the problem on the existence, uniqueness of traveling

waves of (1.2) has also been solved (see [6, 7, 28]). In [6], Fang et al. proved the existence of traveling
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waves of (1.2) for c > c∗ by Schauder’s fixed point theorem. The existing traveling waves in [6] may

be non-monotone and oscillatory around positive equilibrium of (1.2). Furthermore, Fang et al. [7]

established the uniqueness of traveling waves of (1.2) for c > c∗ without assuming that the wave profile

is monotone. In [28], Yu obtained the uniqueness of traveling waves of (1.2) for c = c∗. But, to the

best of our knowledge, when the function g is not monotone, the stability of traveling waves of (1.2) and

(1.3) is still unknown. Hence, we try to make our efforts to tackle this problem. We should remark that

the study of stability of traveling waves depends not only on the wave profile equation (1.4), but also on

the equations (1.2) and (1.3). In this paper, we are devoted to studying the stability of traveling waves

(monotone or non-monotone) of (1.3) when g is not monotone. We leave the stability of traveling waves

of (1.2) for future study. To this end, we assume the kernel function K satisfies

K(i) = K(−i) > 0,
∑
i∈Z

K(i) = 1 and
∑
i∈Z

K(i)e−λi < ∞

for any λ > 0, and the birth rate function g : [0,∞) → [0,∞) satisfies the following hypotheses:

(G1) g(0) = 0, g(u+) = u+ for some positive constant u+, g(u) > u for u ∈ (0, u+), g
′(0) > 1 and

g′(u+) < 1;

(G2) g(u) > 0 has only one positive local maximum at the point u∗ ∈ (0, u+), and g(u) is increasing

on [0, u∗] and decreasing on [u∗,+∞);

(G3) g ∈ C2[0,∞) and |g′(u)| 6 g′(0) for u ∈ [0,∞).

Remark 1.1. Hypothesis (G1) means that (1.3) has two constant equilibria u = 0 and u = u+. In

addition, 0 is unstable and u+ is stable. Hence, (1.3) is a monostable system. Hypothesis (G2) implies

that g(u) is not monotone for u ∈ [0, u+].

The stability of traveling waves for various evolution equations has been extensively studied. We refer

the readers to [14, 18, 20, 21, 24, 25, 27, 29]. In particular, Tian et al. [25] and Yang et al. [27] have

considered the stability of traveling waves of (1.3) when K(0) = 1 and K(i) = 0 for all i ̸= 0, i.e.,

∂u(t, x)

∂t
= D2[u](t, x)− u(t, x) + g(u(t− τ, x)). (1.6)

Under the assumption that g(u) is not monotone on the interval [0, u+], Yang et al. [27] proved the

stability of traveling waves of (1.6) with noncritical speed c > c∗ by the technical weighted energy

method. Meanwhile, Tian et al. [25] established the stability of traveling waves of (1.6) with critical

speed c = c∗ by the same method as in [27] but with some new flavors.

It should be pointed out that the technical weighted energy method in [27] for the local equation

(1.6) cannot be perfectly applied to the nonlocal equation (1.3), since the nonlocal term yields some

gaps in the L2-energy estimates, which cause us to need to take the wave speed c large enough. More

recently, Huang et al. [14] adopted the so-called anti-weighted energy method (see [4]) and the nonlinear

Halanay’s inequality (see [15]) to prove the stability of all non-critical traveling waves for a nonlocal

dispersion equation with time-delay. Inspired by [14], in this paper, we still take the anti-weighted energy

method to prove the stability of traveling waves of (1.3) with noncritical speed c > c∗. More specifically,

we first introduce a suitable transform function (an anti-weight) to switch the original equation to a new

equation, and then give the a priori energy estimates for the solutions of this new equation. We leave the

stability of traveling waves of (1.3) with critical speed c = c∗ for the future study.

The rest of this paper is organized as follows. In Section 2, we first show the existence of traveling waves

of (1.3) with a general non-monotone function g(u), and then state the stability theorem. In Section 3, we

first reformulate the original equation to the perturbed equation around the given non-critical traveling

wave. Then we give the corresponding stability theorem for the new equation. Finally, by taking the

anti-weighted energy method and the nonlinear Halanay’s inequality, we establish the desired a priori

estimates. Based on the stability theorem, in Section 4, we prove the uniqueness of those monotone or

non-monotone traveling waves.
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2 Traveling waves and stability theorem

In this section, we first give the existence of traveling waves of (1.3), and then state the main result on

the stability of traveling waves.

Throughout this paper, we assume that (1.3) satisfies the initial data

u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ R. (2.1)

The characteristic function for (1.4) with respect to the trivial equilibrium 0 can be represented by

P(c, λ) = cλ− d(eλ + e−λ − 2) + 1− g′(0)G(λ), (2.2)

where

G(λ) =
∑
i∈Z

K(i)e−λ(i+cτ) < ∞.

The following lemma gives some properties on the characteristic equation P(c, λ) = 0.

Lemma 2.1. Assume that g′(0) > 1. Then there exist λ∗ > 0 and c∗ > 0 such that

P(c∗, λ∗) = 0 and
∂

∂λ
P(c∗, λ)

∣∣∣∣
λ=λ∗

= 0.

Furthermore, if c > c∗, then P(c, λ) = 0 has two distinct positive real roots λ1(c) and λ2(c) with λ1(c) <

λ∗ < λ2(c), and P(c, λ) > 0 for λ ∈ (λ1(c), λ2(c)).

When g(u) is increasing on [0, u+], the existence of a traveling wavefront has been established in [17,26]

by applying sub-super solutions, monotone iteration technique and a limiting argument.

Lemma 2.2. Assume that (G1) holds, g(u) is increasing on [0, u+] and g′(0)u − g(u) 6 Nu1+ν for

all u ∈ (0, u+), some N > 0 and some ν ∈ (0, 1]. Let c∗ > 0 be defined as in Lemma 2.1. Then for

each c > c∗, (1.3) admits a strictly increasing traveling wave u(x, t) = ϕ(x + ct) satisfying ϕ(−∞) = 0

and ϕ(+∞) = u+, while for any 0 < c < c∗, (1.3) has no traveling wave ϕ(x+ ct) connecting 0 and u+.

Moreover, when c > c∗,

lim
ξ→−∞

ϕ(ξ)e−λ1(c)ξ = 1, lim
ξ→−∞

ϕ′(ξ)e−λ1(c)ξ = λ1(c),

where λ1(c) > 0 is the smallest solution to the equation P(c, λ) = 0.

When g(u) is not monotone on [0, u+], the existence of traveling waves can also be obtained by using

the idea of auxiliary equations and Schauder’s fixed point theorem (see [6, 16]).

Theorem 2.3. Assume that (G1)–(G3) hold. Then for every c > c∗, (1.3) admits a traveling wave

u(t, x) = ϕ(x+ ct) satisfying ϕ(−∞) = 0 and 0 < lim infξ→+∞ ϕ(ξ) 6 lim supξ→+∞ ϕ(ξ) 6 u∗
+ for some

positive constant u∗
+ > u+.

Before stating our main result, let us make the following notation. Throughout the paper, C > 0

always denotes a generic constant, while Ci > 0 (i = 0, 1, 2, . . .) represents a specific constant. Let I be

an interval, typically I = R. L2(I) is the space of the square integrable defined on I, and Hk(I) (k > 0) is

the Sobolev space of the L2-functions f(x) defined on the interval I whose derivatives di

dxi f (i = 1, . . . , k)

also belong to L2(I). Let T > 0 be a number and B be a Banach space. We denote by C([0, T ];B)
the space of the B-valued continuous functions on [0, T ] and by L2([0, T ]; B) the space of the B-valued
L2-functions on [0, T ].

For the technical reason, in what follows, we shall assume that

(G4) K(i) = 0 for |i| > m for some m ∈ N.
Define a weight function related to such a number λ > 0,

w(x) = e−2λx for λ ∈ (λ1, λ2).

Now we state the stability theorem for (1.3) with a general non-monotone function g(u).
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Theorem 2.4 (Stability of traveling waves). Assume that (G1)–(G4) hold. For any given trav-

eling wave ϕ(x + ct) with c > c∗ to (1.3), whether it is monotone or non-monotone, suppose that

U0(s, x) := u0(s, x)− ϕ(x+ cs) ∈ C([−τ, 0];C(R)),
√
wU0(s, x) ∈ C([−τ, 0];H1(R))∩L2([−τ, 0];H1(R)),

and limx→+∞ U0(s, x) =: U0,∞(s) ∈ C[−τ, 0] exists uniformly with respect to s ∈ [−τ, 0], and

max
s∈[−τ,0]

∥U0(s)∥2C + ∥
√
wU0(0)∥2H1 +

∫ 0

−τ

∥
√
wU0(s)∥2H1ds 6 δ20

for some positive number δ0. Then the solution u(t, x) of (1.3) and (2.1) uniquely and globally exists in

time, and satisfies

u(t, x)− ϕ(x+ ct) ∈ Cunif [−τ,∞),
√
w[u(t, x)− ϕ(x+ ct)] ∈ C([−τ,∞);H1(R)) ∩ L2([−τ,∞);H1(R))

and

sup
x∈R

|u(t, x)− ϕ(x+ ct)| 6 Ce−µt, t > 0,

for some constant µ > 0, where Cunif [−τ, T ] for 0 < T 6 ∞, is defined by

Cunif [−τ, T ] =
{
U(t, x) ∈ C([−τ, T ]× R) such that lim

x→+∞
U(t, x) exists uniformly in t ∈ [−τ, T ]

}
.

Corollary 2.5 (Uniqueness of traveling waves). Assume that (G1)–(G4) hold. Then, for any traveling

waves ϕ(x+ ct) of (1.3), whether they are monotone or non-monotone, with the same speed c > c∗ and

the same exponential decay at ξ → −∞ :

ϕ(ξ) = O(1)e−λ|ξ| as ξ → −∞,

they are unique up to translation.

3 Stability of traveling waves

This section is devoted to the proof of stability of those monotone or non-monotone non-critical traveling

waves of (1.3) when g is non-monotone.

3.1 Reformulation of the problem

Let ϕ(x+ ct) = ϕ(ξ) be a given traveling wave with speed c > c∗, and

U(t, ξ) := u(t, x)− ϕ(x+ ct) = u(t, ξ − ct)− ϕ(ξ),

U0(s, ξ) := u0(s, x)− ϕ(x+ cs).

Then, from (1.3) and (1.4), we can see that U(t, ξ) satisfies

∂U

∂t
+ c

∂U

∂ξ
−D2[U ] + U −

m∑
i=−m

K(i)g′(ϕ(ξ − cτ − i))U(t− τ, ξ − cτ − i)

=

m∑
i=−m

K(i)Q(U(t− τ, ξ − cτ − i)), (t, ξ) ∈ R+ × R,

U(s, ξ) = U0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

(3.1)

where

Q(U) := g(ϕ+ U)− g(ϕ)− g′(ϕ)U,
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with ϕ = ϕ(ξ − cτ − i) and U = U(t− τ, ξ − cτ − i). By Taylor’s expansion formula, we know

|Q(U)| 6 C|U |2, (3.2)

for some positive constant C.

Let 0 6 T 6 ∞. We define the solution space for (3.1) as follows:

X(−τ, T ) = {U |U(t, ξ) ∈ C([−τ, T ];C(R)) ∩ Cunif [−τ, T ],
√
wU ∈ C([−τ, T ];H1(R)),

and
√
wU ∈ L2([−τ, T ];H1(R))},

equipped with the norm

MU (T )
2 = sup

t∈[−τ,T ]

(∥U(t)∥2C + ∥
√
wU(t)∥2H1) +

∫ T

−τ

∥
√
wU(s)∥2H1ds.

Particularly, when T = ∞, we denote the solution space by X(−τ,∞) and the norm of the solution space

by MU (∞).

Now we state the stability result for the perturbed equation (3.1), which automatically implies Theo-

rem 2.4.

Theorem 3.1 (Stability). Assume that (G1)–(G4) hold. For any given traveling wave ϕ(x+ct) = ϕ(ξ)

with c > c∗, suppose that U0(s, ξ) ∈ X(−τ, 0) is small enough, namely, there exists a constant δ0 > 0

such that MU (0) 6 δ0. Then the solution U(t, ξ) of (3.1) uniquely and globally exists in X(−τ,∞) and

satisfies

sup
ξ∈R

|U(t)| 6 Ce−µt, t > 0

for some constant µ > 0.

The global existence of U(t, ξ) can be obtained by the continuity extension method (see [20,21]), if we

get the following local existence result and the a priori estimate.

Proposition 3.2 (Local existence). Assume that (G1)–(G4) hold. For any given traveling wave ϕ(x

+ ct) = ϕ(ξ) with c > c∗, suppose U0(s, ξ) ∈ X(−τ, 0), and MU (0) 6 δ1 for a given positive constant

δ1 > 0. Then there exists a small t0 = t0(δ1) > 0 such that the local solution U(t, ξ) of (3.1) uniquely

exists for t ∈ [−τ, t0], and satisfies U(t, ξ) ∈ X(−τ, t0) and MU (t0) 6 C1MU (0) for some constant C1 > 1.

Proof. The proof for the local existence of the solution is standard, since it can be proved by the

well-known iteration technique. We just sketch the proof as follows.

Let U (0)(t, ξ) := U0(t, ξ) ∈ X(−τ, 0) ⊆ X(−τ, t0). Then we define the iteration U (n+1) = F(U (n)) for

n > 0 by
∂U (n+1)

∂t
+ c

∂U (n+1)

∂ξ
+ (2d+ 1)U (n+1)(t, ξ)

= dU (n+1)(t, ξ + 1) + dU (n+1)(t, ξ − 1) + P (U (n)(t− τ, ξ − cτ)), (t, ξ) ∈ R+ × R,
U (n+1)(s, ξ) = U0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

(3.3)

where

P (U (n)(t− τ, ξ − cτ)) :=
m∑

i=−m

K(i)(g(ϕ+ U (n))− g(ϕ)),

with ϕ = ϕ(ξ − cτ) and U (n) = U (n)(t− τ, ξ − cτ). By Taylor’s expansion formula, we obtain

|P (U (n)(t− τ, ξ − cτ))| 6 g′(0)
m∑

i=−m

K(i)|U (n)(t− τ, ξ − cτ − i)|. (3.4)
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The solution of (3.3) can be written in the form

U (n+1)(t, ξ) = e−(2d+1)tU0(0, ξ − ct) + e−(2d+1)t

∫ t

0

e(2d+1)s[dU (n+1)(s, ξ + 1 + c(s− t))

+ dU (n+1)(s, ξ − 1 + c(s− t)) + P (U (n)(s− τ, ξ + c(s− t− τ)))]ds. (3.5)

Combining (3.4) and (3.5), one has

∥U (n+1)(t)∥C 6 e−(2d+1)t∥U0(0)∥C + 2d

∫ t

0

e−(2d+1)(t−s)∥U (n+1)(s)∥Cds

+ C

∫ t

0

e−(2d+1)(t−s)∥U (n)(s− τ)∥Cds

6 ∥U0(0)∥C + Ct0 sup
t∈[−τ,t0]

∥U (n)(t)∥C + 2d

∫ t

0

∥U (n+1)(s)∥Cds.

Applying Gronwall’s inequality, we get

∥U (n+1)(t)∥C 6
(
∥U0(0)∥C + Ct0 sup

t∈[−τ,t0]

∥U (n)(t)∥C
)
e2dt0 , t ∈ [0, t0]. (3.6)

Notice that U (n)(t, ξ) ∈ Cunif [−τ, t0], namely, limξ→∞U (n)(t, ξ) =: U
(n)
∞ (t) ∈ C[−τ, t0]. We are going

to prove U (n+1)(t, ξ) ∈ Cunif [−τ, t0]. We rewrite the solution of (3.3) as

U (n+1)(t, ξ) = e−tU0(0, ξ − ct) + e−t

∫ t

0

es[dU (n+1)(s, ξ + 1 + c(s− t))

− 2dU (n+1)(s, ξ + c(s− t)) + dU (n+1)(s, ξ − 1 + c(s− t))

+ P (U (n)(s− τ, ξ + c(s− t− τ)))]ds.

It is clear that

lim
ξ→∞

U (n+1)(t, ξ) = e−t lim
ξ→∞

U0(0, ξ − ct) + e−t

∫ t

0

es lim
ξ→∞

P (U (n)(s− τ, ξ + c(s− t− τ)))ds

= U0,∞(0)e−t +

∫ t

0

e−(t−s)P (U (n)
∞ (s− τ))ds

=: U (n+1)
∞ (t), uniformly with respect to t ∈ [−τ, t0].

We further prove that U (n+1)(t, ξ) is uniformly convergent as ξ → ∞. In fact,

lim
ξ→∞

sup
06t6t0

|U (n+1)(t, ξ)− U (n+1)
∞ (t)|

= lim
ξ→∞

sup
06t6t0

∣∣∣∣ ∫ t

0

e−(t−s)[P (U (n)(s− τ, ξ + c(s− t− τ)))− P (U (n)
∞ (s− τ))]ds

∣∣∣∣
6 lim

ξ→∞
sup

06t6t0

∫ t

0

sup
s∈[0,t0]

(e−(t−s)|P (U (n)(s− τ, ξ + c(s− t− τ)))− P (U (n)
∞ (s− τ))|)ds

6 C lim
ξ→∞

sup
06t6t0

∫ t

0

sup
s∈[0,t0]

(e−(t−s)|U (n)(s− τ, ξ + c(s− t− τ))− U (n)
∞ (s− τ)|)ds

= C sup
06t6t0

∫ t

0

lim
ξ→∞

sup
s∈[0,t0]

(e−(t−s)|U (n)(s− τ, ξ + c(s− t− τ))− U (n)
∞ (s− τ)|)ds

= 0.

Here, we used the uniform convergence of

lim
ξ→∞

sup
t∈[0,t0]

|U (n)(t, ξ)− U (n)
∞ (t)| = 0.
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Next, we shall show the regular energy estimates for U (n+1)(t, ξ). First of all, we introduce the

transformation

V (n+1)(t, ξ) =
√
w(ξ)U (n+1)(t, ξ) = e−λξU (n+1)(t, ξ).

Substituting U (n+1)(t, ξ) = eλξV (n+1)(t, ξ) to (3.3), we derive the following equation for V (n+1)(t, ξ):

∂V (n+1)

∂t
+ c

∂V (n+1)

∂ξ
+ (cλ+ 2d+ 1)V (n+1)(t, ξ)

= deλV (n+1)(t, ξ + 1) + de−λV (n+1)(t, ξ − 1)

+ e−λξP (U (n)(t− τ, ξ − cτ)), (t, ξ) ∈ R+ × R,
V (n+1)(s, ξ) =

√
w(ξ)U0(s, ξ) =: V0(s, ξ), s ∈ [−τ, 0], ξ ∈ R.

(3.7)

Multiplying (3.7) by V (n+1)(t, ξ), we have{
1

2
(V (n+1))2(t, ξ)

}
t

+

{
c

2
(V (n+1))2(t, ξ)

}
ξ

+ [cλ+ 2d+ 1](v(n+1))2(t, ξ)

= deλV (n+1)(t, ξ)V (n+1)(t, ξ + 1) + de−λV (n+1)(t, ξ)V (n+1)(t, ξ − 1)

+ e−λξV (n+1)(t, ξ)P (U (n)(t− τ, ξ − cτ)). (3.8)

Integrating (3.8) over R × [0, t] with respect to ξ and t, and noting the vanishing term at far fields, we

have {
c

2
(V (n+1))2(t, ξ)

} ∣∣∣∣∞
ξ=−∞

= 0,

because V (n+1)(t, ξ) =
√
w(ξ)U (n+1)(t, ξ) ∈ H1(R). Thus, we obtain

∥V (n+1)(t)∥2L2 +

∫ t

0

∫
R
[2cλ+ 4d+ 2](V (n+1))2(s, ξ)dξds

= ∥V (n+1)
0 (0)∥2L2 + 2deλ

∫ t

0

∫
R
V (n+1)(s, ξ)V (n+1)(s, ξ + 1)dξds

+ 2de−λ

∫ t

0

∫
R
V (n+1)(s, ξ)V (n+1)(s, ξ − 1)dξds

+ 2

∫ t

0

∫
R
e−λξV (n+1)(s, ξ)P (U (n)(s− τ, ξ − cτ))dξds. (3.9)

By the Cauchy-Schwarz inequality, one has∣∣∣∣ ∫ t

0

∫
R
V (n+1)(s, ξ)V (n+1)(s, ξ ± 1)dξds

∣∣∣∣
6 1

2

∫ t

0

∫
R
(V (n+1))2(s, ξ)dξds+

1

2

∫ t

0

∫
R
(V (n+1))2(s, ξ ± 1)dξds

=

∫ t

0

∫
R
(V (n+1))2(s, ξ)dξds. (3.10)

Applying (3.10) to (3.9), we get

∥V (n+1)(t)∥2L2 +

∫ t

0

∫
R
[2cλ− 2d(eλ + e−λ − 2) + 2](V (n+1))2(s, ξ)dξds

6 ∥V (n+1)
0 (0)∥2L2 + 2

∫ t

0

∫
R
e−λξV (n+1)(s, ξ)P (U (n)(s− τ, ξ − cτ))dξds. (3.11)

From (3.4) and by using the Cauchy-Schwarz inequality, the right-hand side of (3.11) can be estimated by∣∣∣∣2∫ t

0

∫
R
e−λξV (n+1)(s, ξ)P (U (n)(s− τ, ξ − cτ))dξds

∣∣∣∣
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6 2g′(0)

∫ t

0

∫
R

m∑
i=−m

K(i)e−λξ|U (n)(s− τ, ξ − cτ − i)||V (n+1)(s, ξ)|dξds

= 2g′(0)

∫ t

0

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)e−λ(ξ−cτ−i)|U (n)(s− τ, ξ − cτ − i)||V (n+1)(s, ξ)|dξds

= 2g′(0)

∫ t

0

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)|V (n)(s− τ, ξ − cτ − i)||V (n+1)(s, ξ)|dξds

6 g′(0)

∫ t

0

∫
R
G(λ)(V (n+1))2(s, ξ)dξds

+ g′(0)

∫ t

0

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)(V (n))2(s− τ, ξ − cτ − i)dξds

= g′(0)

∫ t

0

∫
R
G(λ)(V (n+1))2(s, ξ)dξds+ g′(0)

∫ t−τ

−τ

∫
R
G(λ)(V (n))2(s, ξ)dξds

6 g′(0)

∫ t

0

∫
R
G(λ)(V (n+1))2(s, ξ)dξds+ g′(0)

∫ t

0

∫
R
G(λ)(V (n))2(s, ξ)dξds

+ g′(0)

∫ 0

−τ

∫
R
G(λ)(V

(n)
0 )2(s, ξ)dξds. (3.12)

Substituting (3.12) into (3.11), we have

∥V (n+1)(t)∥2L2 + µ0

∫ t

0

∥V (n+1)(s)∥2L2ds

6 ∥V (n+1)
0 (0)∥2L2 + g′(0)G(λ)

∫ t

0

∥V (n)(s)∥2L2ds+ g′(0)G(λ)

∫ 0

−τ

∥V (n)
0 (s)∥2L2ds,

where

µ0 := 2[cλ− d(eλ + e−λ − 2) + 1]− g′(0)G(λ) > g′(0)G(λ) > 0.

Namely,

∥V (n+1)(t)∥2L2 +

∫ t

0

∥V (n+1)(s)∥2L2ds

6 C

(
∥V0(0)∥2L2 +

∫ t

0

∥V (n)(s)∥2L2ds+

∫ 0

−τ

∥V0(s)∥2L2ds

)
. (3.13)

Similarly, differentiating (3.7) with respect to ξ and multiplying it by V
(n+1)
ξ (t, ξ), and integrating the

resultant equation over R× [0, t] with respect to ξ and t, we can prove

∥V (n+1)
ξ (t)∥2L2 +

∫ t

0

∥V (n+1)
ξ (s)∥2L2ds

6 C

(
∥V0,ξ(0)∥2L2 +

∫ t

0

∥V (n)
ξ (s)∥2L2ds+

∫ 0

−τ

∥V0,ξ(s)∥2L2ds

)
. (3.14)

Combining (3.13) and (3.14), we further have

∥V (n+1)(t)∥2H1 +

∫ t

0

∥V (n+1)(s)∥2H1ds

6 C

(
∥V0(0)∥2H1 +

∫ t

0

∥V (n)(s)∥2H1ds+

∫ 0

−τ

∥V0(s)∥2H1ds

)
,

namely,

∥
√
wU (n+1)(t)∥2H1 +

∫ t

0

∥
√
wU (n+1)(s)∥2H1ds
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6 C

(
∥
√
wU0(0)∥2H1 +

∫ t

0

∥
√
wU (n)(s)∥2H1ds+

∫ 0

−τ

∥
√
wU0(s)∥2H1ds

)
. (3.15)

Combining (3.6) and (3.15), we get

MU(n+1)(t0) 6 C

(
max

s∈[−τ,0]
∥U0(s)∥2C + ∥

√
wU0(0)∥2H1 +

∫ 0

−τ

∥
√
wU0(s)∥2H1ds

)
+ Ct0MU(n)(t0).

Thus, we can prove that U (n+1) = F(U (n)) defined in (3.3) maps from X(−τ, t0) to X(−τ, t0) and leads

to a contraction mapping in X(−τ, t0) by providing 0 < t0 ≪ 1 and

max
s∈[−τ,0]

∥U0(s)∥2C + ∥
√
wU0(0)∥2H1 +

∫ 0

−τ

∥
√
wU0(s)∥2H1ds ≪ 1.

Hence, by applying the Banach fixed point theorem, we can prove local existence of the solution in

X(−τ, t0). Since the convergence limn→∞ U (n)(t, ξ) = U(t, ξ) is uniform for (t, ξ) ∈ [0, t0] × R, and

U (n)(t, ξ) ∈ Cunif [0, t0], we can also guarantee U(t, ξ) ∈ Cunif [0, t0].

Proposition 3.3 (A priori estimates). Assume that (G1)–(G4) hold. For any given traveling wave

ϕ(x + ct) = ϕ(ξ) with c > c∗, let U(t, ξ) ∈ X(−τ, T ) be a local solution of (3.1) for a given constant

T > 0. Then there exist positive constants δ2 > 0, C2 > 1 and µ > 0 independent of T and U(t, ξ) such

that, when MU (T ) 6 δ2,

∥U(t)∥2C + ∥
√
wU(t)∥2H1 +

∫ t

0

e−2µ(t−s)∥
√
wU(s)∥2H1ds 6 C2e

−2µtMU (0)
2, (3.16)

for t ∈ [0, T ].

The proof for the a priori estimates of the solution in the designed solution space X(−τ, T ) is technical

and plays a crucial role in this paper. We leave this for the next section.

Proof of Theorem 3.1. Choose

δ1 = max{
√
C2C1MU (0), δ2}, δ0 = max

{
δ2
C1

,
δ2√
C2C1

}
,

where δ2 and C2 are two positive constants given in Proposition 3.3, and C1 is a positive constant

given in Proposition 3.2. It follows from Proposition 3.2 that there exists t0 = t0(δ1) > 0 such that

U(t, ξ) ∈ X(−τ, t0). By the selection of δ0 and δ1, we can see that MU (t0) 6 δ2. Then by Proposition 3.3,

we can obtain the exponential decay estimate (3.16) for t ∈ [0, t0]. Next, we consider (3.1) with the new

initial data U(s, ξ) for s ∈ [t0 − τ, t0]. Again, by Proposition 3.2, we can prove that the solution to the

new Cauchy problem (3.1) exists for time t in [t0, 2t0], which means the time interval of the solution

has been extended to [−τ, 2t0], namely, U(t, ξ) ∈ X(−τ, 2t0). Furthermore, by using Proposition 3.3, we

can establish the exponential decay estimate (3.16) for t ∈ [0, 2t0]. Repeating this procedure, we can

prove global existence of the solution U(t, ξ) ∈ X(−τ,∞) with the exponential decay estimate (3.16) for

t ∈ [0,∞]. For details, we refer the reader to [15,20]. The proof is completed.

3.2 A priori estimates

In this subsection, we first prove the time-exponential decay of U(t, ξ) at ξ = +∞.

Lemma 3.4. There exist a large number x0 ≫ 1 (independent of t) and a number µ1 > 0, such that

∥U(t)∥L∞[x0,+∞) 6 Ce−µ1t∥U0∥L∞([−τ,0]×R), t > 0. (3.17)
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Proof. Since U(t, ξ) ∈ X(−τ, T ), by the definition of Cunif [0, T ], we can see that limξ→+∞U(t, ξ) exists

uniformly with respect to t ∈ [0, T ]. Let us go back to the original equations (1.3), (2.1) and (1.4), and

denote

U(t, x) = u(t, x)− ϕ(x+ ct).

Namely, U(t, x) = U(t, ξ) and satisfies

∂U
∂t

−D2[U ] + U −
m∑

i=−m

K(i)g′(ϕ(x+ c(t− τ)− i))U(t− τ, x− i)

=

m∑
i=−m

K(i)Q(U(t− τ, x− i)), (t, x) ∈ R+ × R,

U(s, x) = U0(s, x), s ∈ [−τ, 0], x ∈ R.

(3.18)

Denote z(t) := U(t,+∞) = U(t,+∞) and z0(s) := U0(s,+∞) for s ∈ [−τ, 0]. Since U(t, ξ) ∈ Cunif [0, T ],
limξ→+∞ U(t, ξ) = limx→+∞ U(t, x) = z(t) is uniformly with respect to t ∈ [0, T ]. Thus, by taking

x → +∞ to (3.18), we have {
z′(t) + z(t)− g′(u+)z(t− τ) = Q(z(t− τ)),

z(s) = z0(s), s ∈ [−τ, 0].

Applying the nonlinear Halanay’s inequality given in [15], we get

|z(t)| 6 C∥z0∥L∞(−τ,0)e
−µ1t, t > 0 (3.19)

for some 0 < µ1 < 1.

It is easy to see that (3.18) is equivalent to

{
etU

}
t
= etD2[U ] + et

m∑
i=−m

K(i)g′(ϕ(x+ c(t− τ)− i))U(t− τ, x− i)

+ et
m∑

i=−m

K(i)Q(U(t− τ, x− i)). (3.20)

Integrating (3.20) with respect to t over [0, t], we obtain

U(t, x) = e−tU0(0, x) +

∫ t

0

e−(t−s)D2[U ](s, x)ds

+

∫ t

0

e−(t−s)
m∑

i=−m

K(i)g′(ϕ(x+ c(s− τ)− i))U(s− τ, x− i)ds

+

∫ t

0

e−(t−s)
m∑

i=−m

K(i)Q(U(s− τ, x− i))ds.

Thus, for 0 < µ1 < 1, we further have

eµ1tU(t, x) = e−(1−µ1)tU0(0, x) + e−(1−µ1)t

∫ t

0

esD2[U ](s, x)ds

+ e−(1−µ1)t

∫ t

0

es
m∑

i=−m

K(i)g′(ϕ(x+ c(s− τ)− i))U(s− τ, x− i)ds

+ e−(1−µ1)t

∫ t

0

es
m∑

i=−m

K(i)Q(U(s− τ, x− i))ds. (3.21)
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Taking the limits to (3.21) as x → +∞, and noting all these limits are uniformly in t, and applying the

fact |Q(z)| 6 Cz2 and the decay estimate (3.19) for z(t), we get

lim
x→+∞

eµ1tU(t, x) = e−(1−µ1)t

[
z0(0) +

∫ t

0

esg′(u+)z(s− τ)ds+

∫ t

0

esQ(z(s− τ))ds

]
6 Ce−(1−µ1)t

[
|z0(0)|+

∫ t

0

es|z(s− τ)|ds+
∫ t

0

es|z(s− τ)|2ds
]

6 Ce−(1−µ1)t

[
|z0(0)|+

∫ t

0

ese−µ2(s−τ)ds+

∫ t

0

ese−2µ2(s−τ)ds

]
6 C, uniformly in t.

Therefore, there exists a number x0 ≫ 1 independent of t, such that when x > x0, one has

sup
x∈[x0,+∞)

|U(t, x)| 6 Ce−µ1t∥U0∥L∞([−τ,0]×R), t > 0. (3.22)

Again, notice that U(t, ξ) = U(t, x) and ξ = x + ct > x > x0 for x > x0 and t > 0, and then (3.22)

immediately implies

sup
ξ∈[x0,+∞)

|U(t, ξ)| 6 Ce−µ1t∥U0∥L∞([−τ,0]×R), t > 0.

The proof is completed.

In order to establish the a priori estimate (3.16), we adopt a new transformed energy method, which

is different from the standard weighted energy method by multiplying (3.1) by w(ξ)U(t, ξ). We first

shift U(t, ξ) to U(t, ξ + x0) by the constant x0 given in Lemma 3.4, and then introduce the following

transformation:

V (t, ξ) =
√
w(ξ)U(t, ξ + x0) = e−λξU(t, ξ + x0),

where e−λξ → +∞ as ξ → −∞, and e−λξ → 0 as ξ → +∞. Substituting U = w−1/2V to (3.1) yields

∂V

∂t
+ c

∂V

∂ξ
+ (cλ+ 2d+ 1)V (t, ξ)− deλV (t, ξ + 1)− de−λV (t, ξ − 1)

−
m∑

i=−m

K(i)g′(ϕ(ξ − cτ − i+ x0))e
−λ(i+cτ)V (t− τ, ξ − cτ − i)

=
m∑

i=−m

K(i)
√
w(ξ)Q(U(t− τ, ξ − cτ − i+ x0)), (t, ξ) ∈ R+ × R,

V (s, ξ) =
√

w(ξ)U0(s, ξ + x0) =: V0(s, ξ), s ∈ [−τ, 0], ξ ∈ R.

(3.23)

Now we are going to prove the a priori estimate (3.16) by the following several lemmas.

Lemma 3.5. It holds that

1

2

d

dt
∥V (t)∥2L2 + µ2∥V (t)∥2L2 + C3[∥V (t)∥2L2 − ∥V (t− τ)∥2L2 ] 6 R(t), (3.24)

where

C3 :=
1

2
g′(0)G(λ) > 0,

µ2 := cλ− d(eλ + e−λ − 2) + 1− g′(0)G(λ) > 0, (see Lemma 2.1),

R(t) :=

∫
R
V (t, ξ)

m∑
i=−m

K(i)
√
w(ξ)Q(U(t− τ, ξ − cτ − i+ x0))dξ.

Proof. Multiplying (3.23) by V (t, ξ) and integrating the resultant equation over R with respect to ξ,

we have

1

2

d

dt
∥V (t)∥2L2 +

∫
R
[cλ+ 2d+ 1]V 2(t, ξ)dξ
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− deλ
∫
R
V (t, ξ)V (t, ξ + 1)dξ − de−λ

∫
R
V (t, ξ)V (t, ξ − 1)dξ

−
∫
R
V (t, ξ)

( m∑
i=−m

K(i)g′(ϕ(ξ − cτ − i+ x0))e
−λ(i+cτ)V (t− τ, ξ − cτ − i)

)
dξ

= R(t). (3.25)

By using the Cauchy-Schwarz inequality, one has∣∣∣∣ ∫
R
V (t, ξ)V (t, ξ ± 1)dξ

∣∣∣∣ 6 1

2

(∫
R
V 2(t, ξ)dξ +

∫
R
V 2(t, ξ ± 1)dξ

)
=

∫
R
V 2(t, ξ)dξ. (3.26)

It can be seen from (G3) that |g′(u)| 6 g′(0) for u ∈ [0,∞). Then we can obtain the following estimate:∣∣∣∣ ∫
R
V (t, ξ)

( m∑
i=−m

K(i)g′(ϕ(ξ − cτ − i+ x0))e
−λ(i+cτ)V (t− τ, ξ − cτ − i)

)
dξ

∣∣∣∣
6

∫
R

∣∣∣∣ m∑
i=−m

K(i)g′(ϕ(ξ − cτ − i+ x0))e
−λ(i+cτ)V (t, ξ)V (t− τ, ξ − cτ − i)

∣∣∣∣dξ
6 g′(0)

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)|V (t, ξ)||V (t− τ, ξ − cτ − i)|dξ

6 1

2
g′(0)

∫
R
G(λ)V 2(t, ξ)dξ +

1

2
g′(0)

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)V 2(t− τ, ξ − cτ − i)dξ

=
1

2
g′(0)G(λ)∥V (t)∥2L2 +

1

2
g′(0)

∫
R
G(λ)V 2(t− τ, ξ)dξ

=
1

2
g′(0)G(λ)(∥V (t)∥2L2 + ∥V (t− τ)∥2L2). (3.27)

Substituting (3.26) and (3.27) into (3.25) yields

1

2

d

dt
∥V (t)∥2L2 + [cλ− d(eλ + e−λ − 2) + 1]∥V (t)∥2L2 −

1

2
g′(0)G(λ)(∥V (t)∥2L2 + ∥V (t− τ)∥2L2) 6 R(t),

namely,

1

2

d

dt
∥V (t)∥2L2 + [cλ− d(eλ + e−λ − 2) + 1− g′(0)G(λ)]∥V (t)∥2L2

+
1

2
g′(0)G(λ)(∥V (t)∥2L2 − ∥V (t− τ)∥2L2) 6 R(t),

which immediately implies (3.24). The proof is completed.

Lemma 3.6. There exists 0 < µ < µ2 such that

∥V (t)∥2L2 +

∫ t

0

e−2µ(t−s)∥V (s)∥2L2ds 6 Ce−2µt

(
∥V0(0)∥2L2 +

∫ 0

−τ

∥V0(s)∥2L2ds

)
, (3.28)

provided MU (T ) ≪ 1.

Proof. Multiplying (3.24) by e2µt and integrating the resultant inequality with respect to t over [0, t],

where µ > 0 will be selected later, we have

e2µt∥V (t)∥2L2 + 2(µ2 − µ)

∫ t

0

e2µs∥V (s)∥2L2ds+ 2C3

∫ t

0

e2µs[∥V (s)∥2L2 − ∥V (s− τ)∥2L2 ]ds

6 ∥V0(0)∥2L2 + 2

∫ t

0

e2µsR(s)ds. (3.29)
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Notice that, by the change of variable s− τ → s,∫ t

0

e2µs∥V (s− τ)∥2L2ds =

∫ t−τ

−τ

e2µ(s+τ)∥V (s)∥2L2ds

6
∫ 0

−τ

e2µ(s+τ)∥V0(s)∥2L2ds+

∫ t

0

e2µ(s+τ)∥V (s)∥2L2ds. (3.30)

Substituting (3.30) into (3.29), we get

e2µt∥V (t)∥2L2 + 2[(µ2 − µ) + C3(1− e2µτ )]

∫ t

0

e2µs∥V (s)∥2L2ds

6 ∥V0(0)∥2L2 + 2

∫ t

0

e2µsR(s)ds+ 2C3e
2µτ

∫ 0

−τ

e2µs∥V0(s)∥2L2ds. (3.31)

We choose 0 < µ < µ2 to be small such that

C4 := (µ2 − µ) + C3(1− e2µτ ) > 0.

Then (3.31) becomes

∥V (t)∥2L2 + 2C4

∫ t

0

e−2µ(t−s)∥V (s)∥2L2ds

6 Ce−2µt

(
∥V0(0)∥2L2 +

∫ 0

−τ

e2µs∥V0(s)∥2L2ds

)
+ 2

∫ t

0

e−2µ(t−s)R(s)ds. (3.32)

We now estimate the nonlinear terms involving R(t). Since U(t, ξ) ∈ X(0, T ), namely, U ∈ C(R), one
has

|U(t, ξ + x0)| 6 CMU (T ).

By (3.2), we get

|Q(U(s− τ, ξ − cτ − i+ x0))| 6 CU2(s− τ, ξ − cτ − i+ x0).

Then noting V (t, ξ) =
√
w(ξ)U(t, ξ + x0) = e−λξU(t, ξ + x0) and

V (t, ξ − cτ − i) =
√
w(ξ − cτ − i)U(t, ξ − cτ − i+ x0) = e−λ(ξ−cτ−i)U(t, ξ − cτ − i+ x0),

we can estimate

2

∫ t

0

e−2µ(t−s)R(s)ds

= 2

∫ t

0

e−2µ(t−s)

(∫
R
V (s, ξ)

m∑
i=−m

K(i)
√
w(ξ)Q(U(s− τ, ξ − cτ − i+ x0))dξ

)
ds

6 C

∫ t

0

e−2µ(t−s)

(∫
R
|V (s, ξ)|

m∑
i=−m

K(i)e−λξU2(s− τ, ξ − cτ − i+ x0)dξ

)
ds

= C

∫ t

0

e−2µ(t−s)

∫
R
|V (s, ξ)|

×
( m∑

i=−m

K(i)e−λ(i+cτ)e−λ(ξ−cτ−i)U2(s− τ, ξ − cτ − i+ x0)

)
dξds

= C

∫ t

0

e−2µ(t−s)

∫
R
|V (s, ξ)|

×
( m∑

i=−m

K(i)e−λ(i+cτ)V (s− τ, ξ − cτ − i)U(s− τ, ξ − cτ − i+ x0)

)
dξds
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6 CMU (T )

∫ t

0

e−2µ(t−s)

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)|V (s, ξ)||V (s− τ, ξ − cτ − i)|dξds

6 1

2
CMU (T )

∫ t

0

e−2µ(t−s)

∫
R
G(λ)V 2(s, ξ)dξds

+
1

2
CMU (T )

∫ t

0

e−2µ(t−s)

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)V 2(s− τ, ξ − cτ − i)dξds

= CMU (T )

∫ t

0

e−2µ(t−s)

∫
R
G(λ)V 2(s, ξ)dξds

+ CMU (T )

∫ t

0

e−2µ(t−s)

∫
R

m∑
i=−m

K(i)e−λ(i+cτ)V 2(s− τ, ξ)dξds

= CMU (T )G(λ)

∫ t

0

e−2µ(t−s)[∥V (s)∥2L2 + ∥V (s− τ)∥2L2 ]ds

6 CMU (T )

∫ t

0

e−2µ(t−s)(∥V (s)∥2L2 + e2µτ∥V (s)∥2L2)ds

+ CMU (T )

∫ 0

−τ

e−2µ(t−s−τ)∥V0(s)∥2L2ds

6 CMU (T )

∫ t

0

e−2µ(t−s)∥V (s)∥2L2ds+ Ce−2µt

∫ 0

−τ

e2µs∥V0(s)∥2L2ds. (3.33)

Substituting (3.33) into (3.32), we obtain

∥V (t)∥2L2 + [2C4 − CMU (T )]

∫ t

0

e−2µ(t−s)∥V (s)∥2L2ds

6 Ce−2µt

(
∥V0(0)∥2L2 +

∫ 0

−τ

e2µs∥V0(s)∥2L2ds

)
.

Let MU (T ) ≪ 1. Then we immediately get (3.28). The proof is completed.

Next, we establish the estimates for the one order derivatives Vξ(t, ξ) of the solution V (t, ξ).

Lemma 3.7. It holds that

∥Vξ(t)∥2L2 +

∫ t

0

e−2µ(t−s)∥Vξ(s)∥2L2ds 6 Ce−2µt

(
∥V0(0)∥2H1 +

∫ 0

−τ

∥V0(s)∥2H1ds

)
, (3.34)

provided MU (T ) ≪ 1.

Proof. Differentiating (3.23) with respect to ξ and multiplying it by Vξ(t, ξ), then integrating the

resultant equation with respect to ξ and t over R × [0, t] and applying Lemma 3.6, we can similarly

prove (3.34) provided MU (T ) ≪ 1. Thus, we omit the details.

Finally, combining Lemmas 3.6 and 3.7, we can get the following a priori estimates.

Lemma 3.8. It holds that

∥V (t)∥2H1 +

∫ t

0

e−2µ(t−s)∥V (s)∥2H1ds 6 Ce−2µt

(
∥V0(0)∥2H1 +

∫ 0

−τ

∥V0(s)∥2H1ds

)
, (3.35)

namely,

∥
√
wU(t)∥2H1 +

∫ t

0

e−2µ(t−s)∥
√
wU(s)∥2H1ds

6 Ce−2µt

(
∥
√
wU0(0)∥2H1 +

∫ 0

−τ

∥
√
wU0(s)∥2H1ds

)
, (3.36)

provided MU (T ) ≪ 1.
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From (3.35), by Sobolev’s inequality H1(R) ↩→ C(R), we obtain

|V (t, ξ)| 6 C∥V (t)∥H1 6 Cδ0e
−µt.

Noticing that

V (t, ξ) =
√
w(ξ)U(t, ξ + x0) = e−λξU(t, ξ + x0),

and
√
w(ξ) = e−λξ > 1 for ξ ∈ (−∞, 0], we then have

sup
ξ∈(−∞,0]

|U(t, ξ + x0)| 6 Cδ0e
−µt, t > 0.

This derives the following estimate for the unshifted U(t, ξ).

Lemma 3.9. It holds that

∥U(t)∥L∞(−∞,x0] 6 Cδ0e
−µt, t > 0. (3.37)

provided MU (T ) ≪ 1.

Proof of Proposition 3.3. Combining (3.36), (3.37) and (3.17), we immediately prove (3.16), namely

∥U(t)∥2C + ∥
√
wU(t)∥2H1 +

∫ t

0

e−2µ(t−s)∥
√
wU(s)∥2H1ds

6 C2e
−2µt

(
max

s∈[−τ,0]
∥U0(s)∥2C + ∥

√
wU0(0)∥2H1 +

∫ 0

−τ

∥
√
wU0(s)∥2H1ds

)
,

for some positive constant C2, where µ is taken as 0 < µ 6 min{µ1, µ2}. The proof of Proposition 3.3 is

completed.

4 Uniqueness of traveling waves

Proof of Corollary 2.5. Let ϕ1(x+ ct) and ϕ2(x+ ct) be two different traveling waves of (1.3) with the

same speed c > c∗ and the same exponential decay at −∞, i.e.,

ϕ1(ξ) = Ae−λ1|ξ| as ξ → −∞

and

ϕ2(ξ) = Be−λ1|ξ| as ξ → −∞,

for some positive constant A and B, where λ1 = λ1(c) > 0 is defined in Lemma 2.1. We shift ϕ2(x+ ct)

to ϕ2(x+ ct+ ξ0) with some constant shift ξ0 such that

ξ0 =
1

λ1
ln

A

B
.

Then by taking ξ → −∞, we obtain that ξ + ξ0 < 0, and

ϕ2(ξ + ξ0) = Be−λ1|ξ+ξ0| = Beλ1(ξ+ξ0) = Beλ1ξ0e−λ1|ξ| = Ae−λ1|ξ| as ξ → −∞.

Hence, we get

|ϕ2(ξ + ξ0)− ϕ1(ξ)| = O(1)e−α|ξ| for α > λ1 as ξ → −∞,

which implies √
w(ξ)[ϕ2(ξ + ξ0)− ϕ1(ξ)] ∈ C(R) ∩H1(R).

If we take the initial data for (1.3) by

v0(s, x) = ϕ2(x+ cs+ ξ0), x ∈ R, s ∈ [−r, 0],
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then the corresponding solution to (1.3) is

v(t, x) = ϕ2(x+ ct+ ξ0).

By applying Theorem 2.4, we obtain

lim
t→∞

sup
x∈R

|ϕ2(x+ ct+ ξ0)− ϕ1(x+ ct)| = 0,

which means that ϕ2(x+ ct+ ξ0) = ϕ1(x+ ct) for all x ∈ R as t ≫ 1. This proves the uniqueness of the

traveling waves up to a translation.
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