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1 Introduction

This is the second paper of our series on the Selberg-Delange method for short intervals (see [1]). The
method was initially introduced by Selberg [19] to study the distribution of integers having a given
number of prime factors, and subsequently further developed by Delange [2,3]. Roughly speaking, it
applies to evaluating mean values of arithmetic functions whose associated Dirichlet series are close to
complex powers of the Riemann (-function. An excellent exposition of the theory and applications can be
found in [20, Chapters I1.5 and I1.6]. Recently, Cui and Wu [1] generalized this method to short interval
when the power is positive real. In this paper we shall consider the complex power case which cannot
be plainly treated with the method in [1]. Our aim is two-fold. First, we establish a quite general mean
value result of arithmetic functions over short intervals, which generalizes and improves the main result
of [1]. Second, we provide four arithmetic applications of our mean value result on:

e Distribution of integers having a given number of prime factors in short intervals.

e Deshouillers-Dress-Tenenbaum arcsin law on divisors in short intervals.

e Divisor problem for 74(n) in short intervals.

e Mean values of 1/7;(n) over short intervals.
We shall proceed along the same line of argument as in [1]. Its origin can be found in [20, Chapters I1.5
and I1.6].
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1.1 Statement of main results

Let f(n) be an arithmetic function and let its Dirichlet series be defined by

F(s):=_ fln)n~*. (1.1)

Let ze C,weC,a>0,d>20 A>0, B>0 C>0and M > 0 be some constants. A Dirichlet
series F(s) defined as in (1.1) is said to be of type P(z,w, o, d, A, B, C, M) if the following conditions are
verified:

(a) for any € > 0, we have

|f(n)| < Mn®, n>1, (1.2)

where the implied constant depends only on ¢;
(b) we have

D)7 < M(o—-1)"%, o>1;
n=1
(c) the Dirichlet series
G(s; 2, w) = F(s)C(s)*C(25) " (1.3)

can be analytically continued to a holomorphic function in (some open set containing) o >
region, G(s; z, w) satisfies the bound

% and, in this

1G(s; 2, w)| < M(|r| + 1) 0= log(|7] + 1) (1.4)

uniformly for |z| < B and |w| < C, where in the sequel we implicitly define the real numbers o and 7 by
the relation s = o + it and choose the principal value of the complex logarithm.
Our first aim of this paper is to establish, under the previous assumptions, an asymptotic formula of

> fn) (1.5)

r<n<z+z?

with the error term as good as that for the prime number theorem (PNT) and 6 € (0,1] as small as
possible. In view of the zero-free region of Vinogradov for ((s) (see [20, p.161]), which gives the best
known error estimate for the PNT, it seems rather difficult to prove such a result. One of our principal
tools is Huxley’s estimation on the zero density of the Riemann (-function. We denote by N(o,T) the
number of zeros of ((s) in the region Res > o and |Sms| < T. It is well known that there are two
constants ¢ and 71 such that

N(o,T) < T*3=7) (log T)" (1.6)
for % <o <1land T > 2. Huxley [7] showed that
12

wZE and n=9 (1.7)

are admissible. The zero density hypothesis is stated as

P =2. (1.8)

Combining (1.7) with the explicit formula (see [20, p.177]), Huxley [7] derived his well-known prime

1—72, 1] and y = z?, the asymptotic formula

Y
E 1~ 1.
log x (1.9)

Tr<p<T+Y

number theorem in short intervals: for any 6 € (
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holds as © — co. Motohashi [13] proved the following result for the Mobius function p(n) corresponding
to (1.9): for any 6 > 1—72 and y = 2, the inequality

ST ) = oy) (1.10)

r<n<z+y

holds as © — oo. Independently, Ramachandra [14] obtained a better result

S uln) <ae ﬁ (1.11)

r<n<z+y

for each A > 0. Their methods are similar. Our approach is a generalization and refinement of Moto-
hashi’s method (see [13]). The first key point of this method is to construct a contour .#r (see Section 2
below for its precise definition) in the critical strip such that for any ¢ > 0 we have

(17 +1) 75079 < [¢(s)] < (7] + 1)) (1.12)

for s € .#r. The second key point is a very good bound for the density of “small value points” (i.e.,
satisfying (2.6) below), which was established by adapting Montgomery’s new method to study the zero-
densities of the Riemann (-function and of the Dirichlet L-functions (see [12]). With these two nice
ideas and Huxley’s zero density estimation, we establish a general asymptotic formula for the summatory
function (1.5) (see Theorem 1.1 below). It is worth to point out that Theorem 1.1 allows us to unify the
treatment of (1.9) and (1.10); indeed the latter is a particular case of the former.

In order to state our main result, it is necessary to introduce some more notation. From [20, Theo-
rem 11.5.1], the function') Z(s;z) := {(s — 1){(s)}* (2 € C) is holomorphic in the disc |s — 1| < 1, and
admits, in the same disc, the Taylor series expansion

i%(z s—1)7

|
=0 I

where the «,(z)’s are entire functions of z satisfying the estimate

%‘j(f)<<3,e (1+e), j>0, |2 <B (1.13)

for all B > 0 and € > 0. Under our hypothesis, the function G(s; z, w)((2s)* Z(s; z) is holomorphic in the
disc |s — 1| < £ and

1G(s52,w)((25)" Z(s; 2)| <a,B,c6e M (1.14)
for |s —1| < % —¢, 2| < B and |w| < C. Thus for |s — 1| < 3, we can write
G(s;2,w)((28)" Z(s; 2) de zw)(s — 1)F, (1.15)
where ,
2;( )ae a 83523)4(28)1”) () (1.16)

The main result of this paper is as follows.
Theorem 1.1. Letz€eC,weC,a>0,0>20,A>0,B>0,C >0 and M >0 be some constants.
Suppose that the Dirichlet series defined as in (1.1) is of type P(z,w,«,0, A, B,C,M). Then for any
€ >0, we have

N
S fn) = y(logm)z-l{ S MEY) o R, y>>} (1.17)
—

r<n<x+y 0 (log Z‘)

1) In [20], Z(s; z) is defined as s~1{(s — 1)¢(s)}* but obviously the argument of the proof there works for our Z(s; z).
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uniformly for x >3, '~V W+0te <oy <o N >0, |2| < B and |w| < C, where
Me(z,w) == go(z,w)/T(z — L)

and
(1N + 1)N+1

RN(xv y) = (log x)N'i‘l + eCQ(lOg z)l/g(logz 1)71/3

(1.18)

for some constants ¢; > 0 and co > 0 depending only on B, C, § and €. The implied constant in the
O-term depends only on A, B,C,«,d and . In particular ¥ = % 18 admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero density constant
of {(s) and § in (1.4) (for which we can take 6 = 0 in most applications). Its independence from the
power z of ((s) in the representation of F(s) seems interesting. Theorem 1.1 generalizes and improves
[1, Theorem 1] to the case of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.2.  Under the conditions of Theorem 1.1, for any € > 0, we have

> fn) :y(logz)“{Ao(z,w)+0( M )} (1.19)

log x
r<n<e+y

uniformly for x > 2, x'=YW+0te <oy x|zl < B and |w| < C, where

g(L;2,w)¢(2)"”
A =
O(va) F(Z)
and the implied constant in the O-term depends only on A, B,C,«,d and . Note that ¢ = 1?)2 is admis-
sible.
Taking f(n) = u(n) in Theorem 1.1, we have z = —1, w = 0 and G(s;z,w) = 1,5 =0, ¢ = %,
A(—1,£) = 0 for all integers ¢ > 0. Thus we can choose N = [¢(logz)'/3(log, ) ~*/3] with some small

constant ¢/ > 0 to obtain an improvement of Motohashi’s result (1.10): for any 6 > -

15, We have

Z ,U/(n) < ye_C(Ing)l/S(Ing z)~1/3
rz<n<x+y

uniformly for 2 > 2 and z? < y < , where ¢ > 0 is a constant depending on 6.
1.2 Integers having a fixed number of prime factors

Denote by w(n) (resp. €(n)) the number of distinct (resp. all) prime factors of n. For each positive
integer k > 1, consider

me(z) = {n <2 :w(n) =k}, (1.20)
Ni(z) :={n<z:Qn) =k}. (1.21)
In 1909, Landau [11] proved by induction that for each fized positive integer k, the following asymptotic
formulas: ( it
r (logyz)®~
N ~ —
(@), Ni(w) logz (k—1)! "~ v

hold, where log, denotes the ¢-fold iterated logarithm. However, if we allow k to grow with x, the method
by induction will become too technical (see [16,17]). In [19], Selberg proposed a new and very elegant
approach to attack this problem—identifying mj,(2) with the coefficient of 2* in the expression } <o 2w(n)
and then applying Cauchy’s integral formula. Through a detailed study of the sum over z, he proved
that for any fixed constant B > 0 the asymptotic formula

o) o)) o
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holds uniformly for z > 3 and 1 < k < Blog, =, where

e [}

and the implied constant depends only on B. In the same fashion, Selberg [19] also proved that for any
5 € (0,2), the asymptotic formula

S = O RICS) N

holds uniformly for z > 3 and 1 < k < (2 — §) log, =, where

T )

and the implied constant depends only on §.
As the first application of Theorem 1.1, we shall generalize Selberg’s results (1.22) and (1.24) to the
short interval case.

Theorem 1.3. Let B > 0 and € > 0. There exist positive constants c; = ¢1(B, &) and ca = ca(B,¢)
such that we have

N
m(z +y) — mi(x) = 1on { Z; Pj&’fé{goffjx) +O0p. ( ﬂog]j,x) Ry (z, y)) } (1.26)

uniformly for x >3, 217 V/%te <y <z and 1 < k < Blog, x, where P (X) is a polynomial of degree at
most k —1 and Ry (z,y) is defined as in (1.18). Here the implied constant depends on B and e only. In
particular, we have

Pox(X) = Z )‘(M)(O)Xf.

£'m!
mt+f=k—1

Moreover, under the same conditions, we have

(@ +y) — m(z) = lozz (1‘()22_”7)1’;!_1 {A(lig; i) + o(@) } (1.27)

In particular ) = % is admissible in both assertions (1.26) and (1.27).

Theorem 1.4. Let e > 0 be an arbitrarily small positive number. There exist absolute positive con-
stants ¢; and co such that we have

Qjk Ing z (logy )"
N, Ni( L + 0 ——R 1.28
k(z +y) — Ni( logx{z (log.z)] Be| o Ln(@y) (1.28)
uniformly for x > 3, 2'=V¥* <y < x and 1 < k < logy x, where Q;.x(X) is a polynomial of degree at
most k—1 and Ry (z,y) is defined as in (1.18). Here, the implied constant depends on B and € only. In
particular, we have

y(m (0) ¢
mtf=k—1

Moreover, under the same conditions, we have

s ni- U o)) o

In particular ¢ = 12 is admissible in both assertions (1.28) and (1.29).
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Remark 1.5. Kétai [9] applied Ramachandra’s theorem (see [14]) to obtain
y (logy)*!

me(z +y) —me(z) = {1+ 0(1)}logxm

uniformly for any k < log, = + c.+/log, x, where ¢, — oo sufficiently slowly, and y > x'~1/¥*¢. Clearly,
Theorem 1.3 improves Katai’s result in two directions: get a more precise asymptotic formula and extend
domain of k.

Taking k = 1, we obtain Huxley’s well-known prime number theorem in short intervals (see (1.9)).

1.3 The Deshouillers-Dress-Tenenbaum arcsin law on divisors

For each positive integer n, denote by 7(n) the number of divisors of n and define the random variable D,,
which takes the value (logd)/logn, as d runs through the set of the 7(n) divisors of n, with the uniform
probability 1/7(n). The distribution function F,, of D,, is given by

1
F,(t) = Prob(D,, <t) = — Z 1, 0<t<l.
d|n,d<n?

It is clear that the sequence {F),},>1 does not converge pointwisely on [0, 1]. However, Deshouillers et
al. [4] (see also [20, Theorem I1.6.7]) proved that its Cesaro mean converges uniformly to the arcsin law.
More precisely, they showed that the asymptotic formula

fZF arcsm\[+0<

n<r

o)

holds uniformly for > 2 and 0 < ¢ < 1, and that the error term is optimal. Recently, Cui and Wu [1,
Theorem 2] established a short 1nterva1 version of this result: for € > 0, we have

1 2 1
- F,(t)=— i t+ O 1.30
yTQ;ﬂ ®) warcsm\[—i_ 5(\/logx> (1.30)

uniformly for 0 < ¢t < 1, # > 2 and 2%%/77t¢ < y < &, where the implied constant depends only on ¢.
Our third application of Theorem 1.1 is to improve the exponent in (1.30).

Theorem 1.6.  For any € > 0, the asymptotic formula (1.30) holds uniformly for 0 < ¢t <1, z > 2
and 1924 Ly < x, where the implied constant depends on € only.

For comparison, we have 62 =0.805--- and %—Z =0.791---
1.4 Divisor problem for 74,(n) on short intervals

As usual, denote by Ay (z) the error term in the asymptotic formula for the k-dimension divisor problem

Dy (z) := Z Tr(n) = 2Py (logx) + Ag(z),
n<x
where Pj,_1(t) is a polynomial of degree k — 1 with leading coefficient 1/(k — 1)!. The best known result
for Ag(x) for k > 4 is as follows:
Ay(z) < 2?(logx)®,  Ap(z) pe 2%+, E>5 (1.31)

with&k:%f%( <8), 0 = 22, 010 = 35, 011 = 15, Ok = 455 (12 < k < 25), O = 555 (26 <k
< 50), O, = k oo (51 < k < 57) and 6 = 7k 24 (k > 58), where ¢ is an arbitrarily small positive
number (see [5, ( 3)] for k = 4 and [8, Theorem 12 3] for k > 5.) In 2006, Garaev et al. [5] considered
the divisor problem for 74(n) in short intervals and proved that

PN E éy(logff)?’{l + O<<\/5bg:c>2/3>}

r<n<xr+y y
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5/2

for x > 3 and #'/?logz < y < x'/? (logz)°/%. They also emphasized that for no other dimension k # 4

short interval results are known for the sum over 74(n) that are sharper than what is immediate from
the (“long interval”) asymptotics for Dy (z) (see [5, Remark]). The next theorem gives such a result for
all integers k > 7.

Theorem 1.7. Let k > 7 be a positive integer and € > 0 be an arbitrarily small positive number. Then
there is a positive constant ¢ depending on k and £ such that the asymptotic formula

Z Tk(’n) — kafl(IOg :L‘){l + Ok,s(e_c(logx)l/B(logQ 3:)71/3>}

z<n<x+y

holds uniformly for x > 2 and x'~Y/¥*¢ <y < x, where Qi_1(t) is a polynomial of degree k — 1 with
leading coefficient 1/(k — 1)! and the implied constant depends only on k and . In particular ¢ = 1—52 is
admissible.

It is interesting to note that the exponent (1.31) tends to 1 as k — oo, and that the length of short
intervals in Theorem 1.7 is independent of k.

1.5 The mean value of 1/7(n) on short intervals

Recently, Sedunova [18] considered mean values of the following arithmetic functions over short intervals:
(n)~L, o(n)/7(n) and r(n)~!, where

Tr(n) == Zrk_l(d), o(n) = Zd, r(n) == |{(n1,n2) € Z* : n] + n3 = n}|.

d|n d|n

In particular, she proved that for any fixed integer N > 0 the asymptotic formula

L _ v [y e 1
Z Tr(n) o \/@{ ; (log z)" + OkJV((]ng)NJFl)} (1.32)

r<n<z+y

holds uniformly for z > 3 and 3(21k+5)/(36k+5) glog )" y < x, where the ay(k) are some constants
depending on k (see [18, Theorem 1]).
The fourth application of Theorem 1.1 is the following result.

Theorem 1.8.  For any € > 0, the asymptotic formula (1.32) holds uniformly for x > 2 and /12 te
y < x, where the implied constant depends only on k, N and €.

géiig tends to % decreasingly as k — oo, Theorem 1.8 improves Sedunova’s (1.32) for all k. Tt

is worth to note that our exponent is independent of k. Clearly, the other results in [18, Theorems 2-7]
can also be improved by Theorem 1.1 or its method of proof.

Since

2 Motohashi’s method

This section is devoted to depicting Motohashi’s method (see [13]). His original presentation is rather
sketchy. Some key estimations (see Lemma 2.1 and Proposition 2.4 below) are outlined without many
details. Here, we would give a complete and detailed presentation for the sake of readers’ convenience
and the importance of this method.

2.1 Hooley-Huxley-Motohashi’s contour .# 1

Let € be an arbitrarily small positive constant and let Ty = To(e) be a large constant depending on &
only and is to be determined from the inequality 1 — ér < 1 — &, where for T' > Tj, we put

57 := Co(log T)~2/3(log, T) /3, (2.1)
where C is a suitable positive constant such that

(log |7])~2/3(log, 7)) ™/* < [¢(s)| < (log|7[)?/3(log, |7])*/? (2.2)
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for o > 1— 10067 and 1 < |7| < 1007 (see [20, p.162]).
For T > Ty, write

1
Jr = {(2 — 5T) logT] and Ky := [T(logT)™]. (2.3)
For each pair of integers (j, k) with 0 < j < Jr and |k| < Kr, we define
Ajp={s=0c+ir:0; <o <041 and 7 <7 < Tpy1}, (2.4)

where )
0j =3 +j(logT)™' and 74 :=klogT. (2.5)

We divide A;  into two classes (W) and (Y") as follows:
e 0; <1—e: Then Aj; € (W) if Aj contains at least one zero of ((s), and A;; € (Y) otherwise;
ol—e<0; <1—08p: Ajp € (W) if and only if 3 at least one s € A 5, such that

1
[C(s)Mn; (s)] < 5 (2.6)
with
A’ := a fixed large integer,
Ny = (4(10g T’ 30 K
7 o8 0'24(7j—r.'_1;>1,a1}é\7'|§4T s ’ (2.7)
M,(s) := Z wn)n™?
nx
and Aj, € (Y) if and only if for all s € Aj g,
1
IC(s)Mn, (s)] = 5 (2.8)
For each k, we define
max j, if 35 such that A, € (W),
jp = Aeiny” B i € (W)
0, otherwise.
Put
@/ = U U Aj,lm
OSES KT 0 <k (2 9)

@0:

U U 2w
OSEkS KT jr<j<ir
Clearly, 2 consists of A;  of type (Y') only.

Hooley-Huzxley-Motohashi’s contour 1 is symmetric about the real axis (see [6,13]). Its upper part
is the path in % consisting of horizontal and vertical line segments whose distances away from &’ are,
respectively, dy, and d,, given by

2, if 0 <1—c¢,

2.10
(logT)™, ifl—e<o<1—0dr (2.10)

dp :=logy, T, d,:= {

(see Figure 1).

2.2 Lower and upper bounds of {(s) on .Zr

In this subsection, we give bounds to {(s) on .#r. The next two lemmas are essentially due to Motohashi
[13, p. 478, lines 21-28]. For completeness we shall provide proofs.
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0] % 0j Ojt1 l1-¢ 1—-6r1 b ©

Figure 1 Upper part of the contour .Zp

Lemma 2.1.  Under the previous notation, we have

1—e2

1—52
e~ e <« |¢(s)] < elosT) (2.11)

for s € My witho <1—¢, ors (with 1 —e < 0 <1 —¢c+ &%) on the horizontal segments in My that
intersect the vertical line Res =1 —e. Here, the implied constant depends only on €.

Proof.  Let s = o 4 it satisfy the conditions in this lemma. Without loss of generality, we can suppose
that 7 > Ty(e). Let us consider the four circles €, €a, €3 and €4, all centered at sg = log, 7 + i, with
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radii

ri:=logyT—1—m, re:=logy,7—0, r3:=logy,T—0+ %52, Ty = logQT—a—i—&:z7
respectively. Here, > 0 is a parameter to be chosen later. We note that these four circles pass through
the points 1 4+ n+ir, o +ir, 0 — 12 4+ ir and o — & + ir, respectively.
Clearly, ((s) # 0 in a region containing the disc |s — sg| < r4. Thus we can unambiguously define
log ¢(s) in this region. We fix a branch of the logarithm throughout the remaining discussion.
Let M; denote the maximum of |log{(s)| on %; relative to this branch. By using Hadamard’s three
circle theorem and the fact that s = o + it is on %, we have

[log ((s)] < My < M|~ Mg, (2.12)

where

_log(ra/r1)  log(1+(1+n—0)/(logyT—1—1))
log(ra/r) — log(1+ (1471 -0+ 4e2)/(logy T — 1 — 1))

l+n—0o 1
= ————+0((lo .
i AR (LR

On taking n =0 — % — &% — m (n > 1&2, since 0 > § +£?), we have

a=1-¢*>—e"4+0((logy7)"). (2.13)

On the circle €, we have

o0

M; < max E
Res>1+n 5

n=

A(n)

nslogn

=1 1
< § < (2.14)
2

n=

where A(n) is the von Mangoldt function.

In order to bound Ms, we shall apply the Borel-Carathéodory theorem to the function log ((s) on the
circles €3 and %;. On the circle %}, it is well known that Re (log ((s)) = log|¢(s)| < log 7. Hence, the
Borel-Carathéodory theorem gives

273 T4+ 173

M3 <

max lo s+ ——=
T4 — T3 |s—so|<Ta g|C( )l T4 — T3

2(logy T — 0 + Le?
< (g2 . 2 )
55

< (logy 7) log 7. (2.15)

|log ((s0)]

2log, T — 20 + Le2
5 log T + 82 ) 2
e
2

|log (2 + iT)]

From (2.12)—(2.15), we deduce that

llog ¢(s)] < (17")~*(logy T log 7)* < (logy Tlog 7)== =" < (log 7)'~=".

This leads to the required estimates. L
Lemma 2.2.  Under the previous notation, we have
400000 (Jog T) ™ < [¢(s)] < T =90 (1og T)* (2.16)

fors e My withl —e <o; <o <ojq1. Here, the implied constants are absolute. In particular, we have
T—H00VEI=9) (log T) ™ < [¢(s)| < TMOVE( =73 (log T)* (2.17)

fors € Mr withl —e < oj; <o <ojy1. All the implied constants are absolute.
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Proof.  According to [15, p. 98], we have

1
IC(s)] < 710009 (10g 7)2/3, 5<o<l T2 (2.18)
This immediately implies the upper bound of (2.16) and
1—0; / 5 1/2 400(1—0,)3/2 3
N; = (A (logT) max \C(s)|) < TH000=7)" (Jog T)3. (2.19)
1<|r|<AT

Next, we consider the lower bound. Let s € .#r with 1 —¢ < 0; < ¢ < 0j41. Then there is an
integer k such that s € A ;. According to the definition of .#r, this A; ; must be in (Y) and (2.8) holds
for all s of this A; ;. On the other hand, (2.19) allows us to deduce that for 0; < o < 741,

)3/2

My, (s)] < > 0™ < (1—0))7'N; ™% < 74007 (1og T)*.

’I’LSNJ

Combining this with (2.8) immediately yields [((s)] > (2|Mp,(s)))~" > T—400(1=0)*"* (]og T)~* for
s€ My withl—e<o; <o <0ojq1.

Finally, we note (2.17) is a simple consequence of (2.16) since 1 —e < 0; = (1—0;)1/2 < \/e. O
Proposition 2.3.  Under the previous notation, we have
TA0VEA=9) (Jog T) ™4 < |¢(s)] < T*OOVE=9) (log T')* (2.20)

for all s € M1, where the implied constants depend only on €.

Proof.  Let s € .#7. Then there is a j such that 0; < o < oj41. We consider the three possibilities.

e The case of 1 — e < ¢;. The inequality (2.20) follows immediately from (2.17) of Lemma 2.2.

e The case of 0; < 0 < 1 —¢. In this case, the first part of Lemma 2.1 shows that (2.20) holds again
since \/2(1 — o) = &%/2 > (logT) = for T > Ty(e).

o The case of 0; <1 —¢ < 0. In this case, s must be on the horizontal segment in .#r, because the
vertical segment keeps the distance €? from the line Res = o; and 0; < 0 < 0;41. Thus we can apply
the second part of Lemma 2.1 to get (2.20) as before. O

2.3 Montgomery’s method and Huxley’s zero-density estimation

In [12], Montgomery developed a new method for studying zero-densities of the Riemann (-function and
of the Dirichlet L-functions. Subsequently by modifying this method, Huxley [7] established his zero-
density estimation (1.7) (see (2.21) below). In [13], Motohashi noted that Montgomery’s method can be
adapted to estimate the density of “small value points” (characterized by (2.6)). The estimation (2.22)
below is due to Motohashi [13, (5)].

Proposition 2.4.  Under the previous notation, for j =0,1,..., Jpr we have
{k < Kp: Ajp € (W)} < T3~ (log T)" (2.21)
if 0; <1—¢; in addition,
k< Kr:Ajp € (W)Y < TV700-00)"? (165 )13 2.22
7

ifl—e<o; <1—6p. Here, (¥,n) = (£,9) is admissible.
Proof.  The case of 0; < 1 — ¢ is very simple, because the number of (W) does not exceed the number
of non-trivial zeros of {(s).

Next, we suppose 1 —e < 0; < 1—97.
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Let IC;(T) be a subset of the set {log7 < k < Kr : Aj, € (W)} such that the difference of two
distinct integers of IC;(T') is at least 3A’, where A’ is the large integer specified in (2.7). Obviously,

{(ogT)* <k < Kr: Ajy € (W)} < 3A'IG(T)]-
Therefore, it suffices to show that
I (T)] <. T 00— (log T) '3 (2.23)

for T' > Ty(e), where the implied constant and the constant Ty(¢) depend only on e.
Let M,(s) be defined as in (2.7) and let a, . be the n-th coefficient of the Dirichlet series ((s)My(s).
Then
e =Y p(d). (2.24)
d|n,d<z
By the Mellin inversion formula (see [22, Lemma, p. 151]), we can write

Qo 1 2-+ioco
Y e = — C(w + )My (w + )T (w)y*duw
n 271—1 2_ico
n>1
fory >z >3 and s = o +ir € C with % < o < 1. We take the contour to the line Rew = o — o0 < 0 with
a:=40; —3 2 1 — 4e, and in doing so we pass two simple poles at w = 0 and w = 1 — s. Our equation

becomes
D EEe Y = ((5)My(s) + My (D(1 = )y' = + I(53.2,y),
n>1

where

1 [T ,
I(s;2,y) = o / Cla 4+ i1 + iu) My (o + it + iu)(a — o + iu)y® " du.

Obviously, (2.24) implies that a1, =1, ap, = 0 for 2 <n < z and |ay, | < 7(n) for n > x. With the
classical estimate ., 7(n) < tlogt and a simple partial integration, we obtain

— 00

2 : a”l’L,(L‘ e_n/y
ns

n>y?

< /yoo t_”e_t/yd< > T(n))

2 n<t
o0
< e Yy " logy +y / e*t/ytlff’(log t)dt
y2
< e*y/z

for o > % Inserting it into the preceding relation, we find that

Y Y ey O ) = ()Mo (s) 4 MDD - )y L) (2:29)

z<n<y?

forse(CWith%<U<landy>x>3.
If k € I;(T'), then there is at least an sy := vy + ity € A ;, such that
1
27
where My, (s) = M (s, Nj) is defined as in (2.7). By the definition of IC;(T"), we have

IC(s) M, (si)| < (2.26)
oj <vp <ojp1, (logT)? <ty <T and |y, —tg,| =34 logT, ki # ko.

By the Stirling formula (see [21, p. 151]), we have

tan(2 2 2 3 3
|I‘(S)|me(ﬂ/2)|7|7—01/2{1+0<| an(3)| i |a|” + [0] I lal” + [b] >} (2.27)

7l ks al
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uniformly for a,b € R with a < b, a <o < band |7| > 1, where ¥ := arg s and the implied O-constant is
absolute.

Since [tx] = (logT)?, the Stirling formula allows us to deduce

1
[ML(DT (L~ sy’ ] < (log )y ~*we=(F/2M0l g V2= < (2.28)

forall 3< oz <y < T,

Similarly, using the estimates (o + ity +iu) < T + |u|, My (o + ity +iu) < 217 logz < T, and the
Stirling formula (2.27), we derive that

(2.29)

1
/ [C(a + ity + i) My (a0 + ity + 1u)T (a0 — v + iu)|y® " " du < —
[u|=>A’log T 10

forall 3< oz <y < T,
Taking (s,z) = (sk, N;) in (2.25) and combining with (2.26), (2.28) and (2.29), we easily see that

an N, _ 1
’ Z N o=n/y| > 2 (2.30)
nsk 6
Nj<n<y?
or
A'logT ) 1
' / Cla+ ity + iu) My, (a + it + iu)D (o — v + iu)y® " Hdu| > 8 (2.31)
—A’logT
or both.

Let K}(T) and K/ (T') be the subsets of KC;(T") for which (2.30) and (2.31) hold, respectively. Then
IG5 ()] < |K5(T)| + K (T))- (2.32)
First, we bound |K(T')|. By a dyadic argument, there is a U € [N}, y®] such that

Z .y e /Y
nsk

U<n<2U

> (18logy)~* (2.33)

holds for > [K(T')|(log y)~ ! integers k € K5(T). Let 8’ be the set of corresponding points si. Using [12,
Theorem 8.4] with § = a := 40 — 3 and the bound

2
n
Z T(2U)j ef2n/y <<U’172<7j(logj—v)3672U/y7
U<n<2U

it follows that

2

>

E 4n.Nj —n/y
nsk

sEES! ' U<nL2U
< (U—|—|S’| max |((s)\U“>U1_2”j(logT)?’e_QU/y
1<[71<ar
< U20=9) (1og T)3e~2V/V 4|8/ max I¢(s)|U 20793 (log T)3e=2V/v, (2.34)

1</l <4T
Since U = N, we have
max |¢(s)| U279 (log T)® < A1 (log T) 2.

o>
1<|r|<4T

On the other hand, (2.33) implies that the member on the left-hand side of (2.34) is greater than or
equal to |S'|(18logy)™2 > |S'|(1800logT)~2. Since A’ is a fixed large integer, the last term on the
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right-hand side of (2.34) is smaller than this lower bound. Thus it can be simplified as |S’|(logT)™? <
U2(1=99) (log T)3e2U/¥ for all N; < y < T*° and some U € [N, y?]. Noticing that

S’ > |K5(T)|(log T) ™,

we obtain
(KT < y2(1=93) (log T')® (2.35)
for all N; <y < T,
Next, we bound [K7(T')|. Let uy € [~A"logT, A'log T such that

|C(sk) M, (s),)] = e (Ca it + i) Mo, (o ity + i),

where s}, := o +1it}, and ¢}, := t; + ui. Thus from (2.31) we deduce that

A’ logT |
— < ’ / + ity + IU)MN (Oé + ity + 1u)f‘(a — v + iu)yakaerdu
Al logT
A’ logT
YR [C(s%) M, (s7,) |/ I'(a — vg + iu)|du.
A’ logT

Since I'(s) has a simple pole at s = 0 and |a — vg| > (logT) ™!, we can derive, via (2.27), that

A'logT
/ IT(a — v +iu)|du < logT
—A’logT

and thus
1< y™ 7| My,(s})] max [((s)|logT,
oc>a
1<|7]<8T
or equivalently

My, (si)] > 5=~ max [((s)]logT)
1</ <8T

Hence, there is a V' € [1, N;] such that
-1 )
>y max [C(s)l) (logT)”

—s,
> u(n)n max

V<n{2V 1<‘T|<8T

holds for > |K(T)|(log T) " integers k € K (T). Let 8" be the corresponding set of points s}.. We note
til < 2T and [t} —t, | > |tr, —th,|—|ug, —ug,| > A"log T. Using [12, Theorem 8.4] with 6 = a = 40, —3
and the bound
T ViR T,
V<n<2v

it follows that

Sl > umyn

< <V+ ‘S”‘ En>a§ |C(S)|V4O'j—3)v7—80']‘

s, €S8 1 V<ng2V 1<|7|<8T
< VD) LIS max () VA0, (2.36)
1<[rI<8T
Take y such that
3
y2(=e) :A'N;.‘“*"-")( max IC(s)I) (log T)*. (2.37)
o>a

1<|7|<8T
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The left-hand side of (2.36) is greater than or equal to

S// 2(o;—a) -2 1 T —4
5"y max  [((s)])  (logT)"".

1<|r|<8T

Hence, (2.36) can be simplified as

|S//|y2(oj—a)( max K(S)') (IOgT)—4<<Nj8(1_UJ).

o>
1<|r|<8T

With [S”| > |K}(T)|(log T)~", we deduce that

2
8170'7’ —0;
K (T)| < N3O o020 ’)( max |<(8)|> (log T)°. (2.38)
1<|7|<8T

On combining (2.32), (2.35), (2.38) and (2.37), it follows that |K;(T)| < N;lo/?’)(l_(’j)(logTP. Now the
required inequality follows from (2.19). This completes the proof. O

3 Proof of Theorem 1.1

We shall conserve the notation of Section 2. First we prove a lemma.

Lemma 3.1. Letz€eC,weC,a>0,0>20,A>20, B>0,C >0 and M > 0 be some constants.
Suppose that the Dirichlet series

F(s):=)_ flnn~
n=1
is of type P(z,w,,d, A, B,C, M). Then there is an absolute positive constant D such that we have
.F(S) < MDBT(IOOB\/E+6)(170')(1ogT)A+4B (31)

for all s € M1, where the implied constant depends only on €.

Proof.  Since we have chosen the principal value of complex logarithm, we can write
[C(8)7] = [¢(s)MFe Bmm D arsc(s) e8| ()7 (32)

for all s € C such that ((s) # 0.
Invoking Proposition 2.3, we see that there is a suitable absolute constant D such that

C()*| < DBT'OBVEL=) (1og T)*P (3.3)

for all s € .47, where the implied constant depends only on ¢.
Finally, the required bound (3.1) follows from (3.3), the hypothesis (1.4) and the trivial bound |{(2s)|
=1 for s € M. O

Now we are ready to prove Theorem 1.1.
Since the Dirichlet series F(s) is of type P(z,w, «,d, A, B,C, M), we can apply [20, Corollary 11.2.2.1]
with the choice of parameters 0, = 1, « = a and o = 0 to write

Y )= 1/:”, F(s)stJrOE(MxHE),

2771 T’ T
r<n<x+y

where b =14 1/logz, eV'°8% < T < x is a parameter to be chosen later and 7’ = K7 logT ~ T.
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Denote by I'p the path formed from the circle |s — 1| = r := 1/(2log z) excluding the point s =1 —r,
together with the segment [1 — dr, 1 — 7] traced out twice with respective arguments +m and —m. By the
residue theorem, the path [b —iT",b + iT"] is deformed into

Tp Ul —6p —iT',1—6p +iT' ] Ul — 6p +iT", b +iT").

In view of (2.2) and the hypothesis (c), the function F(s) is analytic and admits the estimate in the
interior of this contour

F(s) < MDCTmax{6(1=0),0} (1o T)A+E (3.4)
where the implied constant and the constant D are absolute. The integral over the horizontal segments

[1—6p 1T, b+iT"] is

b+iT’ s s C A+B b

+ — MD% (logT

/ ]:(S) (1‘ y) L ds < ( 0g ) / Tmax{(?(lfo'),o}xado.
1—3r +iT” s 1 1-67

1 o—1
X X
< MD®Z(logT A+B(/ () do + 1)
T( ) 1_6T T6
< MD® %(log T)A+B-1,

Thus

Y fmy=1+0 <MDC$1;6), (3.5)

rz<n<x+y
where the implied constant depends on € only and

[= Flg@tyw =

= ds.
2mi TrU[1=87 —iT", 1—81+iT"] s

Let .47 be the Motohashi contour defined as in Section 2. Consider the two symmetric simply con-
nected regions bounded by .#7, the segment [1 — 7 —iT’, 1 — d7 + iT’] and the two line segments
[0jo+1 + dv,1 — 7] with respective arguments +7 and —7 measured from the real axis on the right of
1 — 6p. It is clear that F(s) is analytic in these two simply connected regions. Denote by I'f. the path
joining (the two end-points of) I'r with the two line segments [0, 4+1 +dy, 1 —d7] of the symmetric regions.
Thanks to the residue theorem, we can write

I=0+1, (3.6)

with
1 S _ S 1 S _ .8
I = el — T g Fleltw =

271 Jrs, s 21 J gy s

ds.

A. Evaluation of 1.
According to our hypothesis, G(s; k,w)((28)"” Z(s; k) is holomorphic and O(M) in the disc |s — 1] <
1_ .3

5 — €° =: ¢; the Cauchy integral formula implies that

ge(k,w) < Mc™, €20, |2/<B, |w|<C, (3.7)

where g¢(k,w) is defined as in (1.16). From this and (1.15), we deduce that for any integer N > 0 and
s —1] < 3 — €2,

N

G(s;k,w)C(28) Z(s; k) = Zgg(/@w)(s 1)+ O(M(|s —1]/c)NTh).
£=0
Thus we have N
I = 295(57 U))Mg(.l?, y) + O(MC_NEN(xa y))’ (38)

£=0



Cui Z et al. Sci China Math  March 2019 Vol. 62 No.3 463

where

(8 . 1)€7z (x + y)s —a°

M, =—

ds,

E'N(x’y) ;:/ (3_1)N+1—zm |d8|
r: s
Firstly, we evaluate My(z,y). Using the formula
s _ .8 Tty
(@+y) -z _ / ps—1 gy (3.9)
S xr

and [20, Corollary I1.5.2.1], we write

T4y 1
Mg(x,y):/ <2m/r (s—l)f—zts—lds)dt
@ 7

where we have used the following inequality:
47701 + |2 — €)) <p (@l + 1), €20, |2/ <B.

The constant ¢; and the implied constant depend at most on B. Besides, for |z| < B, we have

T+y Yy
/ (logt)*~'~*dt = / log” ' (x + t)dt
T 0

— y(log x)z—l—f{1 +0p ( (+ ”y) }

zlogx

Inserting this into the preceding formula, we obtain

C1 t
Moz, y) = yaogx)zw{ml_@ 105 (F(Z(f 0. )} (3.10)

for ¢ > 0 and |z| < B.
Next, we estimate En(z,y). In view of the trivial inequality

w < yx® 1, (3.11)

which follows from (3.9) immediately, we deduce that

1-1/logx
E 1— N+1-Rez, o0—1 d Y
N(wvy) < /1/2—0—52 ( U) €T yao + (logx)N+27§Rez
Y > N+1—-Rez —t
< W(/l t e dt+ 1) (312)
N+1
N +1
1 Rez—1[ €1
< y(log ) <10g$

uniformly for z > y > 2, N > 0 and |z| < B, where the constant ¢; > 0 and the implied constant depends
only on B.
Inserting (3.10) and (3.12) into (3.8) and using (3.7), we find that

N

= ytiogay { - 358D 4 OnEi() ), (3.13)

2~ (log )’
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where

Y s OXe_1(z,w)] (1N 4+ 1)NFL (01N+ 1>N+1
5 MELE

Ex
~(@.y) (log )¢ xoT/2 log =

B. Evaluation of I.

Let .4} be the union of those vertical line segments of .#7 whose real part is equal to % + €2 (ie.,
corresponding to those k such that ji, = 0) and A} := Ar \ A}. Denote by I} and I} the contribution
of M} and A} to I, respectively. Using the trivial inequality

pl/2+e”
7l +1°

(r+y)° —

< s €My

and Lemma 3.1, we can deduce

Il < MDB$1/2+€2T(6+1OOB\/E)(1/2_52)(lOgT)A+4B+1
& Mgl/2+0/(2¢+28)+ve
& Mzl=Y/W+d)+ve (3.14)

with the value of T given by (3.16) below and ¢ > 2
Next, we bound I5. In view of (3.11), we can write that

By Foptl<y Y[ )~ ds], (315)

T 0<G<Jr 0<k<KT A (5, ’“)
J kE(W)

where .#r(j, k) is the vertical line segment of .Zj around A;; and the horizontal line segments with
0 < 0 +dy. Clearly, the length of .#7(j,k) is < logT. Thus with the help of Lemma 3.1, it is easy to
see that
|]:(S) ‘mcrfl |d8| < MDB (log T)A+4B+1T(§+1OOB\/E)(170_]»7dv)xd_j+dvfl
AMr(jk)
for all 0 < k < Kp. Inserting it into (3.15) and using Proposition 2.4, we can deduce, with the notation
Jro :=[(5 —€)log T}, that I} < MDPy(log T)A+4B+18tn (1) + I3 ), where

Ié/ = Z T((SJrlOOB\/E)(l*G'j7dv)$0'j+d\,71 . T’L[J(l*O'J)
7 0<j<Jr0
Iéc—i- — Z T(§+1OOB\/§)(170']'7dv)$a'j+dvfl . TlOO\/g(lfo'j).
Jro<j<JIr
Taking
T = (1=v€)/(+5+100B/¢) (3.16)

and in view of (2.10), it is easy to check that

(-0, Y _
I3, < Z (/T HHI0BVEY=(1-03) o0 v < 2= == Joga < 27
0<i<Ir.0

and
Ié/’[ < Z (z/T6+1OO(B+1) ) (1—0j) < 672c2(logz) 1/3(log, x)~1/3
Jro<ji<Jr

Inserting it into the preceding estimate for I}, we conclude that

[ < Myec2(og)!/*(logy ) ™/* (3.17)
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Now from (3.5), (3.6), (3.13), (3.14) and (3.17), we deduce that

N
Ae(
> s =stosn SN 0, )}
r<n<z+y £=0 &
uniformly for z > 3, 2=/ W+0+e <y <. N >0, |2| < B and |w| < C, where

yNila/\p Gl (aN A\ (N v
(log )¢ log = ec2(log z)1/3(log, x)~1/3

for some constants ¢; > 0 and ¢z > 0 depending only on B, C, § and ¢.

It remains to prove that the first term on the right-hand side can be absorbed by the third. In View
of (1.14), the Cauchy formula allows us to write g,(z,w) <4 p.cs M3’ for |2| < B, |[w| < C and ¢ >
Combining this with the Stirling formula, we easily derive A\¢(z,w) <4 p,c,s M(9/€)¢ for |z| < B, |w| < C
and £ > 1. This implies that

N+1 N+1
Y A1 (2, w)| Yy M(eyN +1)
Z logx <<A,B,C,§ M; <<A,B,C,5,E 802(10ga:)1/3(10g2 z)—1/3
holds uniformly for z > 3, z' =/ (¥+0)+e <y <o) N >0, |2| < B and |w| < C. This completes the proof.

4 Proofs of Theorems 1.3 and 1.4

Since the proofs of Theorems 1.3 and 1.4 are very similar, we shall only prove the former. For z € C and
o > 1, we can write

2) =y 2 =T +20° - 1))

n>1 p
_ C(S)zC(QS)Z(l_Z)/2g1 (8; 2, Z(].2—Z))’
where Ny
2l =2)\ z 1\* 1\
g1<s,z,2) '_E[(HPS—l)(l_pS) (1_p25> '

We expand G (s; z, Z(IQ_Z)) into the Dirichlet series

Gi (8; z, Z(12_2)> = biz(n)n”

n>1

Then by,(n) is the multiplicative function whose values on prime powers are determined by the identity

L+ bi(p)e” = (1 + 12—55)(1 —O A=) I g <1
v>1

In particular, by, (p) = b1.(p*) = 0 and the Cauchy integral formula gives
b1z (p")| < M(B)2%, v>3, |2 <B

where

M(B) := sup
|2I<B, €1<1/V2

2 N (1 ey2(1 — e2)21-2)/
(14155 Ju-gra-epon|



466 Cui Z et al. Sci China Math  March 2019 Vol. 62 No.3

From these we deduce that for o > %7

bi.(p M(B 23/2)M[(B 1
ST S < e o < T

p v>1 p V;S

So the Dirichlet series "o | 2¢(™n=% is of type P(z, Z(l %) B,0,0,B,C(B), M(B)), where C(B) is a
positive constant depending on B.
Define g¢(z) by

Fi(s)(s —1)7 = Z(s;2)¢(25)* = 9/2Gy (s;z, 2(12—z)>

:Zgg(z)(sfl)z, ls — 1| < % (4.1)

(=0

Applying Theorem 1.1 to the Dirichlet series 2%(Mn=5 we obtain the following result.
Lemma 4.1. Let B > 0 be a constant. For any € > 0, we have

N
Z L (n) :y(logx)z_l{z /\Z(Z)Z —|—OB,5(MRN($7ZU))} (4.2)

rz<n<x+y £=0 (IOg $)

uniformly for
>3, x>y>a/vre 2| < B, N>=0,

where A(z) := go(2)/T(z — £) and Rn(z,y) is defined as in (1.18). The constants ¢ and ca in Ry(x,y)
and the implied constant depends only on B and €.

Lemma 4.1 improves [10, Theorem 3] in two directions: get a more precise asymptotic formula and
extend the domain z7/12te <y < 22/37¢ to £7/12+e <y < .

The next lemma is a short interval version of the asymptotic formula (13) of [20, Theorem I1.6.3]. We
omit the proof as it is very similar.

Lemma 4.2. Let B> 0 and 0 <8 <1 be two positive constants. For each integer n > 1, let

n) = Z cx(n)z"
k=0

be a holomorphic function for |z| < B. Let N > 0 be a non-negative integer. Suppose that there ezist
N + 1 holomorphic functions ho(z),...,hn(z) for |z| < B and a quantity Ry(x,y) independent of z
such that

S )= y(logw)z-l{z oha(2) +oB,9<RN<x,y>>} (43)

z<n<x+y =0 (log :C)

holds uniformly for x >3, x >y > 2% and |z| < B. Then we have

Y am) =2 {i R; 1 (log, ) —|—OB,0((10gk2'x) Ry (z, y))} (4.4)
j=0

Ty log (log x)7
uniformly for x >3, v >y > 2% and 1 < k < Blog, x, where

(m)
B (0)
O'm!

Rin(X):= Y Xt (4.5)

l+m=k—1

and the implied constants depend only on B and 6.
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If, in addition, we suppose that |hy(z)| < D (|z| < B), then we have

Z cr(n) = 1on (1(()52_@1]; : {ho <log2 x) ( 10%2_33)12) " log; xRo(x,y))}

r<n<zt+y

uniformly for x >3, x >y > 2% and 1 < k < Blog, x. Here, the implied constants depend on B and 0
only.

Now we are ready to finish the proof of Theorem 1.3. According to Lemma 4.1, (4.3) of Lemma 4.2 is
satisfied with the following choices:

a(n) = 2" zhy(z) = N(2), O=1-1/¢ +e,

Me(z) and Ry (x,y) are defined as in Lemma 4.1, and cx(n) is the characteristic function on the set of
integers n such that w(n) = k. Thus (a) is an immediate consequence of this lemma.

5 Proofs of Theorems 1.6 and 1.7

The proof of Theorem 1.6 will be proceeded exactly as in [1]. The only difference is the use of Corollary 1.2
in place of [1, Theorem 1].

Since Zn>1 Te(n)n=° = ((s)* for ¢ > 1, we can apply Theorem 1.1 with z = k, w = 0, G(s; k,0) = 1
and A = § = 0. Taking N = [¢/(logz)'/?(log, #)~%/3] with some small constant ¢’ and noticing that
Ae(k,0) =0 for all £ > k, we obtain the result of Theorem 1.7.

6 Proof of Theorem 1.8

Since the function 75(n) is multiplicative and

k+v—1 1 1
v ——”kz
T(p") = ( > ] u +7)s
we can write, for o > 1,

S =TT () )

n>1

= ((s)F¢(2s)7 " w

K k2

st TS () )62 ()

p

2k3 f2k2 f2k41 ( 1 2k3 + 2k2 + 2k + ].>
gS S35 )

where

3402 .. .
L 2k:+21272+2k+1) as a Dirichlet series

As before, we expand Gs(s; 1,

1 2K + 2K +- 2k + 1
gs (S; X 2 > > ba(n)n ",
n>=1

where bsi(n) is the multiplicative function for which the values on prime powers are determined by the

N k+v-—1 -1 v 1 o\ 2k342k% 42k 1
L4 ba(p”)é (Z( ) > §>(15)k(1g) Ea—
v>0

v>l

identity
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It is easy to see that the right-hand side is an analytic function in [£| < 1 and bsg(p) = bsr(p?) = 0.
Again the Cauchy integral formula yields

1 2342k +2k+1 1
bor (9] <k 272, w23, gg(s;,— )<<k,01, vs 1

k k2

This shows that the Dirichlet series associated to 7;(n) ! is of type

1 23 +2k2+2k+1 1 1 2k3+2k2+2k+1
P(k’ k}2 7%307E7 k‘2 7M(k))7

where M (k) is a positive constant depending on k. Therefore, the required result follows immediately
from Theorem 1.1 with any fixed positive integer V.
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