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1 Introduction

This is the second paper of our series on the Selberg-Delange method for short intervals (see [1]). The

method was initially introduced by Selberg [19] to study the distribution of integers having a given

number of prime factors, and subsequently further developed by Delange [2, 3]. Roughly speaking, it

applies to evaluating mean values of arithmetic functions whose associated Dirichlet series are close to

complex powers of the Riemann ζ-function. An excellent exposition of the theory and applications can be

found in [20, Chapters II.5 and II.6]. Recently, Cui and Wu [1] generalized this method to short interval

when the power is positive real. In this paper we shall consider the complex power case which cannot

be plainly treated with the method in [1]. Our aim is two-fold. First, we establish a quite general mean

value result of arithmetic functions over short intervals, which generalizes and improves the main result

of [1]. Second, we provide four arithmetic applications of our mean value result on:

• Distribution of integers having a given number of prime factors in short intervals.

• Deshouillers-Dress-Tenenbaum arcsin law on divisors in short intervals.

• Divisor problem for τk(n) in short intervals.

• Mean values of 1/τk(n) over short intervals.

We shall proceed along the same line of argument as in [1]. Its origin can be found in [20, Chapters II.5

and II.6].
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1.1 Statement of main results

Let f(n) be an arithmetic function and let its Dirichlet series be defined by

F(s) :=

∞∑
n=1

f(n)n−s. (1.1)

Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0 and M > 0 be some constants. A Dirichlet

series F(s) defined as in (1.1) is said to be of type P(z, w, α, δ, A,B,C,M) if the following conditions are

verified:

(a) for any ε > 0, we have

|f(n)| ≪ε Mnε, n > 1, (1.2)

where the implied constant depends only on ε;

(b) we have
∞∑
n=1

|f(n)|n−σ 6M(σ − 1)−α, σ > 1;

(c) the Dirichlet series

G(s; z, w) := F(s)ζ(s)−zζ(2s)−w (1.3)

can be analytically continued to a holomorphic function in (some open set containing) σ > 1
2 and, in this

region, G(s; z, w) satisfies the bound

|G(s; z, w)| 6M(|τ |+ 1)max{δ(1−σ),0} logA(|τ |+ 1) (1.4)

uniformly for |z| 6 B and |w| 6 C, where in the sequel we implicitly define the real numbers σ and τ by

the relation s = σ + iτ and choose the principal value of the complex logarithm.

Our first aim of this paper is to establish, under the previous assumptions, an asymptotic formula of∑
x<n6x+xθ

f(n) (1.5)

with the error term as good as that for the prime number theorem (PNT) and θ ∈ (0, 1] as small as

possible. In view of the zero-free region of Vinogradov for ζ(s) (see [20, p. 161]), which gives the best

known error estimate for the PNT, it seems rather difficult to prove such a result. One of our principal

tools is Huxley’s estimation on the zero density of the Riemann ζ-function. We denote by N(σ, T ) the

number of zeros of ζ(s) in the region ℜe s > σ and |ℑms| 6 T . It is well known that there are two

constants ψ and η such that

N(σ, T ) ≪ Tψ(1−σ)(log T )η (1.6)

for 1
2 6 σ 6 1 and T > 2. Huxley [7] showed that

ψ =
12

5
and η = 9 (1.7)

are admissible. The zero density hypothesis is stated as

ψ = 2. (1.8)

Combining (1.7) with the explicit formula (see [20, p. 177]), Huxley [7] derived his well-known prime

number theorem in short intervals: for any θ ∈ ( 7
12 , 1] and y = xθ, the asymptotic formula∑

x<p6x+y
1 ∼ y

log x
(1.9)
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holds as x→ ∞. Motohashi [13] proved the following result for the Möbius function µ(n) corresponding

to (1.9): for any θ > 7
12 and y = xθ, the inequality∑

x<n6x+y
µ(n) = o(y) (1.10)

holds as x→ ∞. Independently, Ramachandra [14] obtained a better result∑
x<n6x+y

µ(n) ≪A,θ
y

(log x)A
(1.11)

for each A > 0. Their methods are similar. Our approach is a generalization and refinement of Moto-

hashi’s method (see [13]). The first key point of this method is to construct a contour MT (see Section 2

below for its precise definition) in the critical strip such that for any ε > 0 we have

(|τ |+ 1)−ε(1−σ) ≪ε |ζ(s)| ≪ε (|τ |+ 1)ε(1−σ) (1.12)

for s ∈ MT . The second key point is a very good bound for the density of “small value points” (i.e.,

satisfying (2.6) below), which was established by adapting Montgomery’s new method to study the zero-

densities of the Riemann ζ-function and of the Dirichlet L-functions (see [12]). With these two nice

ideas and Huxley’s zero density estimation, we establish a general asymptotic formula for the summatory

function (1.5) (see Theorem 1.1 below). It is worth to point out that Theorem 1.1 allows us to unify the

treatment of (1.9) and (1.10); indeed the latter is a particular case of the former.

In order to state our main result, it is necessary to introduce some more notation. From [20, Theo-

rem II.5.1], the function1) Z(s; z) := {(s − 1)ζ(s)}z (z ∈ C) is holomorphic in the disc |s − 1| < 1, and

admits, in the same disc, the Taylor series expansion

Z(s; z) =
∞∑
j=0

γj(z)

j!
(s− 1)j ,

where the γj(z)’s are entire functions of z satisfying the estimate

γj(z)

j!
≪B,ε (1 + ε)j , j > 0, |z| 6 B (1.13)

for all B > 0 and ε > 0. Under our hypothesis, the function G(s; z, w)ζ(2s)wZ(s; z) is holomorphic in the

disc |s− 1| < 1
2 and

|G(s; z, w)ζ(2s)wZ(s; z)| ≪A,B,C,δ,ε M (1.14)

for |s− 1| 6 1
2 − ε, |z| 6 B and |w| 6 C. Thus for |s− 1| < 1

2 , we can write

G(s; z, w)ζ(2s)wZ(s; z) =
∞∑
ℓ=0

gℓ(z, w)(s− 1)ℓ, (1.15)

where

gℓ(z, w) :=
1

ℓ!

ℓ∑
j=0

(
ℓ

j

)
∂ℓ−j(G(s; z, w)ζ(2s)w)

∂sℓ−j

∣∣∣∣
s=1

γj(z). (1.16)

The main result of this paper is as follows.

Theorem 1.1. Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0 and M > 0 be some constants.

Suppose that the Dirichlet series defined as in (1.1) is of type P(z, w, α, δ,A,B,C,M). Then for any

ε > 0, we have ∑
x<n6x+y

f(n) = y(log x)z−1

{ N∑
ℓ=0

λℓ(z, w)

(log x)ℓ
+O(MRN (x, y))

}
(1.17)

1) In [20], Z(s; z) is defined as s−1{(s− 1)ζ(s)}z but obviously the argument of the proof there works for our Z(s; z).
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uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C, where

λℓ(z, w) := gℓ(z, w)/Γ(z − ℓ)

and

RN (x, y) :=
(c1N + 1)N+1

(log x)N+1 + ec2(log x)1/3(log2 x)
−1/3

(1.18)

for some constants c1 > 0 and c2 > 0 depending only on B, C, δ and ε. The implied constant in the

O-term depends only on A,B,C, α, δ and ε. In particular ψ = 12
5 is admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero density constant ψ

of ζ(s) and δ in (1.4) (for which we can take δ = 0 in most applications). Its independence from the

power z of ζ(s) in the representation of F(s) seems interesting. Theorem 1.1 generalizes and improves

[1, Theorem 1] to the case of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1, for any ε > 0, we have∑
x<n6x+y

f(n) = y(log x)z−1

{
λ0(z, w) +O

(
M

log x

)}
(1.19)

uniformly for x > 2, x1−1/(ψ+δ)+ε 6 y 6 x, |z| 6 B and |w| 6 C, where

λ0(z, w) :=
G(1; z, w)ζ(2)w

Γ(z)

and the implied constant in the O-term depends only on A,B,C, α, δ and ε. Note that ψ = 12
5 is admis-

sible.

Taking f(n) = µ(n) in Theorem 1.1, we have z = −1, w = 0 and G(s; z, w) ≡ 1, δ = 0, ψ = 12
5 ,

λ(−1, ℓ) = 0 for all integers ℓ > 0. Thus we can choose N = [c′(log x)1/3(log2 x)
−4/3] with some small

constant c′ > 0 to obtain an improvement of Motohashi’s result (1.10): for any θ > 7
12 , we have∑

x<n6x+y
µ(n) ≪ y e−c(log x)

1/3(log2 x)
−1/3

uniformly for x > 2 and xθ 6 y 6 x, where c > 0 is a constant depending on θ.

1.2 Integers having a fixed number of prime factors

Denote by ω(n) (resp. Ω(n)) the number of distinct (resp. all) prime factors of n. For each positive

integer k > 1, consider

πk(x) := |{n 6 x : ω(n) = k}|, (1.20)

Nk(x) := |{n 6 x : Ω(n) = k}|. (1.21)

In 1909, Landau [11] proved by induction that for each fixed positive integer k, the following asymptotic

formulas:

πk(x), Nk(x) ∼
x

log x

(log2 x)
k−1

(k − 1)!
, x→ ∞

hold, where logℓ denotes the ℓ-fold iterated logarithm. However, if we allow k to grow with x, the method

by induction will become too technical (see [16, 17]). In [19], Selberg proposed a new and very elegant

approach to attack this problem—identifying πk(x) with the coefficient of zk in the expression
∑
n6x z

ω(n)

and then applying Cauchy’s integral formula. Through a detailed study of the sum over z, he proved

that for any fixed constant B > 0 the asymptotic formula

πk(x) =
x

log x

(log2 x)
k−1

(k − 1)!

{
λ

(
k − 1

log2 x

)
+OB

(
k

(log2 x)
2

)}
(1.22)
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holds uniformly for x > 3 and 1 6 k 6 B log2 x, where

λ(z) :=
1

Γ(z + 1)

∏
p

(
1 +

z

p− 1

)(
1− 1

p

)z
(1.23)

and the implied constant depends only on B. In the same fashion, Selberg [19] also proved that for any

δ ∈ (0, 2), the asymptotic formula

Nk(x) =
x

log x

(log2 x)
k−1

(k − 1)!

{
ν

(
k − 1

log2 x

)
+Oδ

(
k

(log2 x)
2

)}
(1.24)

holds uniformly for x > 3 and 1 6 k 6 (2− δ) log2 x, where

ν(z) :=
1

Γ(z + 1)

∏
p

(
1− z

p

)−1(
1− 1

p

)z
(1.25)

and the implied constant depends only on δ.

As the first application of Theorem 1.1, we shall generalize Selberg’s results (1.22) and (1.24) to the

short interval case.

Theorem 1.3. Let B > 0 and ε > 0. There exist positive constants c1 = c1(B, ε) and c2 = c2(B, ε)

such that we have

πk(x+ y)− πk(x) =
y

log x

{ N∑
j=0

Pj,k(log2 x)

(log x)j
+OB,ε

(
(log2 x)

k

k!
RN (x, y)

)}
(1.26)

uniformly for x > 3, x1−1/ψ+ε 6 y 6 x and 1 6 k 6 B log2 x, where Pj,k(X) is a polynomial of degree at

most k − 1 and RN (x, y) is defined as in (1.18). Here the implied constant depends on B and ε only. In

particular, we have

P0,k(X) =
∑

m+ℓ=k−1

λ(m)(0)

ℓ!m!
Xℓ.

Moreover, under the same conditions, we have

πk(x+ y)− πk(x) =
y

log x

(log2 x)
k−1

(k − 1)!

{
λ

(
k − 1

log2 x

)
+O

(
k

(log2 x)
2

)}
. (1.27)

In particular ψ = 12
5 is admissible in both assertions (1.26) and (1.27).

Theorem 1.4. Let ε > 0 be an arbitrarily small positive number. There exist absolute positive con-

stants c1 and c2 such that we have

Nk(x+ y)−Nk(x) =
y

log x

{ N∑
j=0

Qj,k(log2 x)

(log x)j
+OB,ε

(
(log2 x)

k

k!
RN (x, y)

)}
(1.28)

uniformly for x > 3, x1−1/ψ+ε 6 y 6 x and 1 6 k 6 log2 x, where Qj,k(X) is a polynomial of degree at

most k− 1 and RN (x, y) is defined as in (1.18). Here, the implied constant depends on B and ε only. In

particular, we have

Q0,k(X) =
∑

m+ℓ=k−1

ν(m)(0)

ℓ!m!
Xℓ.

Moreover, under the same conditions, we have

Nk(x+ y)−Nk(x) =
y

log x

(log2 x)
k−1

(k − 1)!

{
ν

(
k − 1

log2 x

)
+O

(
k

(log2 x)
2

)}
. (1.29)

In particular ψ = 12
5 is admissible in both assertions (1.28) and (1.29).



452 Cui Z et al. Sci China Math March 2019 Vol. 62 No. 3

Remark 1.5. Kátai [9] applied Ramachandra’s theorem (see [14]) to obtain

πk(x+ y)− πk(x) = {1 + o(1)} y

log x

(log2)
k−1

(k − 1)!

uniformly for any k 6 log2 x+ cx
√
log2 x, where cx → ∞ sufficiently slowly, and y > x1−1/ψ+ε. Clearly,

Theorem 1.3 improves Kátai’s result in two directions: get a more precise asymptotic formula and extend

domain of k.

Taking k = 1, we obtain Huxley’s well-known prime number theorem in short intervals (see (1.9)).

1.3 The Deshouillers-Dress-Tenenbaum arcsin law on divisors

For each positive integer n, denote by τ(n) the number of divisors of n and define the random variable Dn

which takes the value (log d)/ log n, as d runs through the set of the τ(n) divisors of n, with the uniform

probability 1/τ(n). The distribution function Fn of Dn is given by

Fn(t) = Prob(Dn 6 t) =
1

τ(n)

∑
d |n, d6nt

1, 0 6 t 6 1.

It is clear that the sequence {Fn}n>1 does not converge pointwisely on [0, 1]. However, Deshouillers et

al. [4] (see also [20, Theorem II.6.7]) proved that its Cesàro mean converges uniformly to the arcsin law.

More precisely, they showed that the asymptotic formula

1

x

∑
n6x

Fn(t) =
2

π
arcsin

√
t+O

(
1√
log x

)
holds uniformly for x > 2 and 0 6 t 6 1, and that the error term is optimal. Recently, Cui and Wu [1,

Theorem 2] established a short interval version of this result: for ε > 0, we have

1

y

∑
x<n6x+y

Fn(t) =
2

π
arcsin

√
t+Oε

(
1√
log x

)
(1.30)

uniformly for 0 6 t 6 1, x > 2 and x62/77+ε 6 y 6 x, where the implied constant depends only on ε.

Our third application of Theorem 1.1 is to improve the exponent in (1.30).

Theorem 1.6. For any ε > 0, the asymptotic formula (1.30) holds uniformly for 0 6 t 6 1, x > 2

and x19/24+ε 6 y 6 x, where the implied constant depends on ε only.

For comparison, we have 62
77 = 0.805 · · · and 19

24 = 0.791 · · · .

1.4 Divisor problem for τk(n) on short intervals

As usual, denote by ∆k(x) the error term in the asymptotic formula for the k-dimension divisor problem

Dk(x) :=
∑
n6x

τk(n) = xPk−1(log x) + ∆k(x),

where Pk−1(t) is a polynomial of degree k − 1 with leading coefficient 1/(k − 1)!. The best known result

for ∆k(x) for k > 4 is as follows:

∆4(x) ≪ x1/2(log x)5, ∆k(x) ≪k,ε x
θk+ε, k > 5 (1.31)

with θk = 3
4 − 1

k (5 6 k 6 8), θ9 = 35
54 , θ10 = 41

60 , θ11 = 7
10 , θk = k−1

k+2 (12 6 k 6 25), θk = k−1
k+4 (26 6 k

6 50), θk = 31k−98
32k (51 6 k 6 57) and θk = 7k−34

7k (k > 58), where ε is an arbitrarily small positive

number (see [5, (1.3)] for k = 4 and [8, Theorem 12.3] for k > 5.) In 2006, Garaev et al. [5] considered

the divisor problem for τ4(n) in short intervals and proved that

∑
x<n6x+y

τ4(n) =
1

6
y(log x)3

{
1 +O

((√
x log x

y

)2/3)}
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for x > 3 and x1/2 log x 6 y 6 x1/2(log x)5/2. They also emphasized that for no other dimension k ̸= 4

short interval results are known for the sum over τk(n) that are sharper than what is immediate from

the (“long interval”) asymptotics for Dk(x) (see [5, Remark]). The next theorem gives such a result for

all integers k > 7.

Theorem 1.7. Let k > 7 be a positive integer and ε > 0 be an arbitrarily small positive number. Then

there is a positive constant c depending on k and ε such that the asymptotic formula∑
x<n6x+y

τk(n) = yQk−1(log x){1 +Ok,ε(e
−c(log x)1/3(log2 x)

−1/3

)}

holds uniformly for x > 2 and x1−1/ψ+ε 6 y 6 x, where Qk−1(t) is a polynomial of degree k − 1 with

leading coefficient 1/(k − 1)! and the implied constant depends only on k and ε. In particular ψ = 12
5 is

admissible.

It is interesting to note that the exponent (1.31) tends to 1 as k → ∞, and that the length of short

intervals in Theorem 1.7 is independent of k.

1.5 The mean value of 1/τk(n) on short intervals

Recently, Sedunova [18] considered mean values of the following arithmetic functions over short intervals:

τk(n)
−1, σ(n)/τ(n) and r(n)−1, where

τk(n) :=
∑
d |n

τk−1(d), σ(n) :=
∑
d |n

d, r(n) := |{(n1, n2) ∈ Z2 : n21 + n22 = n}|.

In particular, she proved that for any fixed integer N > 0 the asymptotic formula

∑
x<n6x+y

1

τk(n)
=

y√
log x

{ N∑
ℓ=0

aℓ(k)

(log x)ℓ
+Ok,N

(
1

(log x)N+1

)}
(1.32)

holds uniformly for x > 3 and x(21k+5)/(36k+5)e(log x)
0.1 6 y 6 x, where the aℓ(k) are some constants

depending on k (see [18, Theorem 1]).

The fourth application of Theorem 1.1 is the following result.

Theorem 1.8. For any ε > 0, the asymptotic formula (1.32) holds uniformly for x > 2 and x7/12+ε 6
y 6 x, where the implied constant depends only on k, N and ε.

Since 21k+5
36k+5 tends to 7

12 decreasingly as k → ∞, Theorem 1.8 improves Sedunova’s (1.32) for all k. It

is worth to note that our exponent is independent of k. Clearly, the other results in [18, Theorems 2–7]

can also be improved by Theorem 1.1 or its method of proof.

2 Motohashi’s method

This section is devoted to depicting Motohashi’s method (see [13]). His original presentation is rather

sketchy. Some key estimations (see Lemma 2.1 and Proposition 2.4 below) are outlined without many

details. Here, we would give a complete and detailed presentation for the sake of readers’ convenience

and the importance of this method.

2.1 Hooley-Huxley-Motohashi’s contour M T

Let ε be an arbitrarily small positive constant and let T0 = T0(ε) be a large constant depending on ε

only and is to be determined from the inequality 1− δT 6 1− ε, where for T > T0, we put

δT := C0(log T )
−2/3(log2 T )

−1/3, (2.1)

where C0 is a suitable positive constant such that

(log |τ |)−2/3(log2 |τ |)−1/3 ≪ |ζ(s)| ≪ (log |τ |)2/3(log2 |τ |)1/3 (2.2)
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for σ > 1− 100δT and 1 6 |τ | 6 100T (see [20, p. 162]).

For T > T0, write

JT :=

[(
1

2
− δT

)
log T

]
and KT := [T (log T )−1]. (2.3)

For each pair of integers (j, k) with 0 6 j 6 JT and |k| 6 KT , we define

∆j,k := {s = σ + iτ : σj 6 σ < σj+1 and τk 6 τ < τk+1}, (2.4)

where

σj :=
1

2
+ j(log T )−1 and τk := k log T. (2.5)

We divide ∆j,k into two classes (W ) and (Y ) as follows:

• σj 6 1− ε: Then ∆j,k ∈ (W ) if ∆j,k contains at least one zero of ζ(s), and ∆j,k ∈ (Y ) otherwise;

• 1− ε < σj 6 1− δT : ∆j,k ∈ (W ) if and only if ∃ at least one s ∈ ∆j,k such that

|ζ(s)MNj (s)| <
1

2
(2.6)

with 

A′ := a fixed large integer,

Nj :=
(
A′(log T )5 max

σ>4σj−3, 16|τ |64T
|ζ(s)|

)1/2(1−σj)

,

Mx(s) :=
∑
n6x

µ(n)n−s

(2.7)

and ∆j,k ∈ (Y ) if and only if for all s ∈ ∆j,k,

|ζ(s)MNj (s)| >
1

2
· (2.8)

For each k, we define

jk :=

 max
∆j,k∈(W )

j, if ∃ j such that ∆j,k ∈ (W ),

0, otherwise.

Put
D ′ :=

∪
06k6KT

∪
06j6jk

∆j,k,

D0 :=
∪

06k6KT

∪
jk<j6jT

∆j,k.
(2.9)

Clearly, D0 consists of ∆j,k of type (Y ) only.

Hooley-Huxley-Motohashi’s contour MT is symmetric about the real axis (see [6, 13]). Its upper part

is the path in D0 consisting of horizontal and vertical line segments whose distances away from D ′ are,

respectively, dh and dv, given by

dh := log2 T, dv :=

{
ε2, if σ 6 1− ε,

(log T )−1, if 1− ε < σ < 1− δT
(2.10)

(see Figure 1).

2.2 Lower and upper bounds of ζ(s) on M T

In this subsection, we give bounds to ζ(s) on MT . The next two lemmas are essentially due to Motohashi

[13, p. 478, lines 21–28]. For completeness we shall provide proofs.
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Figure 1 Upper part of the contour MT

Lemma 2.1. Under the previous notation, we have

e−(log T )1−ε2

≪ |ζ(s)| ≪ e(log T )1−ε2

(2.11)

for s ∈ MT with σ 6 1 − ε, or s (with 1 − ε < σ 6 1 − ε + ε2) on the horizontal segments in MT that

intersect the vertical line ℜe s = 1− ε. Here, the implied constant depends only on ε.

Proof. Let s = σ + iτ satisfy the conditions in this lemma. Without loss of generality, we can suppose

that τ > T0(ε). Let us consider the four circles C1, C2, C3 and C4, all centered at s0 = log2 τ + iτ , with
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radii

r1 := log2 τ − 1− η, r2 := log2 τ − σ, r3 := log2 τ − σ +
1

2
ε2, r4 := log2 τ − σ + ε2,

respectively. Here, η > 0 is a parameter to be chosen later. We note that these four circles pass through

the points 1 + η + iτ , σ + iτ , σ − 1
2ε

2 + iτ and σ − ε2 + iτ , respectively.

Clearly, ζ(s) ̸= 0 in a region containing the disc |s − s0| 6 r4. Thus we can unambiguously define

log ζ(s) in this region. We fix a branch of the logarithm throughout the remaining discussion.

Let Mi denote the maximum of | log ζ(s)| on Ci relative to this branch. By using Hadamard’s three

circle theorem and the fact that s = σ + iτ is on C2, we have

| log ζ(s)| 6M2 6M1−a
1 Ma

3 , (2.12)

where

a =
log(r2/r1)

log(r3/r1)
=

log(1 + (1 + η − σ)/(log2 τ − 1− η))

log(1 + (1 + η − σ + 1
2ε

2)/(log2 τ − 1− η))

=
1 + η − σ

1 + η − σ + 1
2ε

2
+O((log2 τ)

−1).

On taking η = σ − 1
2 − 1

2ε
2 − ε3

2(1+ε3) (η > 1
4ε

2, since σ > 1
2 + ε2), we have

a = 1− ε2 − ε5 +O((log2 τ)
−1). (2.13)

On the circle C1, we have

M1 6 max
ℜes>1+η

∞∑
n=2

∣∣∣∣ Λ(n)

ns log n

∣∣∣∣ 6 ∞∑
n=2

1

n1+η
≪ 1

η
, (2.14)

where Λ(n) is the von Mangoldt function.

In order to bound M3, we shall apply the Borel-Carathéodory theorem to the function log ζ(s) on the

circles C3 and C4. On the circle C4, it is well known that ℜe (log ζ(s)) = log |ζ(s)| ≪ log τ. Hence, the

Borel-Carathéodory theorem gives

M3 6 2r3
r4 − r3

max
|s−s0|6r4

log |ζ(s)|+ r4 + r3
r4 − r3

| log ζ(s0)|

≪
2(log2 τ − σ + 1

2ε
2)

1
2ε

2
log τ +

2 log2 τ − 2σ + 1
2ε

2

1
2ε

2
| log ζ(2 + iτ)|

≪ (log2 τ) log τ. (2.15)

From (2.12)–(2.15), we deduce that

| log ζ(s)| ≪ (η−1)1−a(log2 τ log τ)
a ≪ε (log2 τ log τ)

1−ε2−ε5 6 (log τ)1−ε
2

.

This leads to the required estimates.

Lemma 2.2. Under the previous notation, we have

T−400(1−σj)
3/2

(log T )−4 ≪ |ζ(s)| ≪ T 100(1−σj)
3/2

(log T )4 (2.16)

for s ∈ MT with 1− ε < σj 6 σ < σj+1. Here, the implied constants are absolute. In particular, we have

T−400
√
ε(1−σj)(log T )−4 ≪ |ζ(s)| ≪ T 100

√
ε(1−σj)(log T )4 (2.17)

for s ∈ MT with 1− ε < σj 6 σ < σj+1. All the implied constants are absolute.
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Proof. According to [15, p. 98], we have

|ζ(s)| ≪ τ100(1−σ)
3/2

(log τ)2/3,
1

2
6 σ 6 1, τ > 2. (2.18)

This immediately implies the upper bound of (2.16) and

N
1−σj

j =
(
A′(log T )5 max

σ>4σj−3
16|τ |64T

|ζ(s)|
)1/2

≪ T 400(1−σj)
3/2

(log T )3. (2.19)

Next, we consider the lower bound. Let s ∈ MT with 1 − ε < σj 6 σ < σj+1. Then there is an

integer k such that s ∈ ∆j,k. According to the definition of MT , this ∆j,k must be in (Y ) and (2.8) holds

for all s of this ∆j,k. On the other hand, (2.19) allows us to deduce that for σj 6 σ < σj+1,

|MNj (s)| 6
∑
n6Nj

n−σj ≪ (1− σj)
−1N

1−σj

j ≪ T 400(1−σj)
3/2

(log T )4.

Combining this with (2.8) immediately yields |ζ(s)| > (2|MNj (s)|)−1 ≫ T−400(1−σj)
3/2

(log T )−4 for

s ∈ MT with 1− ε < σj 6 σ < σj+1.

Finally, we note (2.17) is a simple consequence of (2.16) since 1− ε < σj ⇒ (1− σj)
1/2 6 √

ε.

Proposition 2.3. Under the previous notation, we have

T−400
√
ε(1−σ)(log T )−4 ≪ |ζ(s)| ≪ T 400

√
ε(1−σ)(log T )4 (2.20)

for all s ∈ MT , where the implied constants depend only on ε.

Proof. Let s ∈ MT . Then there is a j such that σj 6 σ < σj+1. We consider the three possibilities.

• The case of 1− ε < σj . The inequality (2.20) follows immediately from (2.17) of Lemma 2.2.

• The case of σj 6 σ 6 1− ε. In this case, the first part of Lemma 2.1 shows that (2.20) holds again

since
√
ε(1− σ) > ε3/2 > (log T )−ε

2

for T > T0(ε).

• The case of σj 6 1 − ε < σ. In this case, s must be on the horizontal segment in MT , because the

vertical segment keeps the distance ε2 from the line ℜe s = σj and σj < σ < σj+1. Thus we can apply

the second part of Lemma 2.1 to get (2.20) as before.

2.3 Montgomery’s method and Huxley’s zero-density estimation

In [12], Montgomery developed a new method for studying zero-densities of the Riemann ζ-function and

of the Dirichlet L-functions. Subsequently by modifying this method, Huxley [7] established his zero-

density estimation (1.7) (see (2.21) below). In [13], Motohashi noted that Montgomery’s method can be

adapted to estimate the density of “small value points” (characterized by (2.6)). The estimation (2.22)

below is due to Motohashi [13, (5)].

Proposition 2.4. Under the previous notation, for j = 0, 1, . . . , JT we have

|{k 6 KT : ∆j,k ∈ (W )}| ≪ Tψ(1−σj)(log T )η (2.21)

if σj 6 1− ε; in addition,

|{k 6 KT : ∆j,k ∈ (W )}| ≪ T 170(1−σj)
3/2

(log T )13 (2.22)

if 1− ε 6 σj 6 1− δT . Here, (ψ, η) = ( 125 , 9) is admissible.

Proof. The case of σj 6 1− ε is very simple, because the number of (W ) does not exceed the number

of non-trivial zeros of ζ(s).

Next, we suppose 1− ε 6 σj 6 1− δT .
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Let Kj(T ) be a subset of the set {log T 6 k 6 KT : ∆j,k ∈ (W )} such that the difference of two

distinct integers of Kj(T ) is at least 3A′, where A′ is the large integer specified in (2.7). Obviously,

|{(log T )2 6 k 6 KT : ∆j,k ∈ (W )}| 6 3A′|Kj(T )|.

Therefore, it suffices to show that

|Kj(T )| ≪ε T
170(1−σj)

3/2

(log T )13 (2.23)

for T > T0(ε), where the implied constant and the constant T0(ε) depend only on ε.

Let Mx(s) be defined as in (2.7) and let an,x be the n-th coefficient of the Dirichlet series ζ(s)Mx(s).

Then

an,x =
∑

d |n, d6x
µ(d). (2.24)

By the Mellin inversion formula (see [22, Lemma, p. 151]), we can write∑
n>1

an,x
ns

e−n/y =
1

2πi

∫ 2+i∞

2−i∞
ζ(w + s)Mx(w + s)Γ(w)ywdw

for y > x > 3 and s = σ+ iτ ∈ C with 1
2 < σ < 1. We take the contour to the line ℜew = α−σ < 0 with

α := 4σj − 3 > 1− 4ε, and in doing so we pass two simple poles at w = 0 and w = 1− s. Our equation

becomes ∑
n>1

an,x
ns

e−n/y = ζ(s)Mx(s) +Mx(1)Γ(1− s)y1−s + I(s;x, y),

where

I(s;x, y) :=
1

2π

∫ +∞

−∞
ζ(α+ iτ + iu)Mx(α+ iτ + iu)Γ(α− σ + iu)yα−σ+iudu.

Obviously, (2.24) implies that a1,x = 1, an,x = 0 for 2 6 n 6 x and |an,x| 6 τ(n) for n > x. With the

classical estimate
∑
n6t τ(n) ≪ t log t and a simple partial integration, we obtain

∣∣∣∣ ∑
n>y2

an,x
ns

e−n/y
∣∣∣∣ 6 ∫ ∞

y2
t−σe−t/yd

(∑
n6t

τ(n)

)

≪ e−yy2−2σ log y + y−1

∫ ∞

y2
e−t/yt1−σ(log t)dt

≪ e−y/2

for σ > 1
2 . Inserting it into the preceding relation, we find that

e−1/y +
∑

x<n6y2

an,x
ns

e−n/y +O(e−y/2) = ζ(s)Mx(s) +Mx(1)Γ(1− s)y1−s + I(s;x, y) (2.25)

for s ∈ C with 1
2 < σ < 1 and y > x > 3.

If k ∈ Kj(T ), then there is at least an sk := vk + itk ∈ ∆j,k such that

|ζ(sk)MNj (sk)| 6
1

2
, (2.26)

where MNj (s) =M(s,Nj) is defined as in (2.7). By the definition of Kj(T ), we have

σj 6 vk 6 σj+1, (log T )2 6 tk 6 T and |tk1 − tk2 | > 3A′ log T, k1 ̸= k2.

By the Stirling formula (see [21, p. 151]), we have

|Γ(s)| =
√
2π e−(π/2)|τ ||τ |σ−1/2

{
1 +O

( | tan(ϑ2 )|
|τ |

+
|a|2 + |b|2

|τ |2
+

|a|3 + |b|3

|τ |3

)}
(2.27)
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uniformly for a, b ∈ R with a < b, a 6 σ 6 b and |τ | > 1, where ϑ := arg s and the implied O-constant is

absolute.

Since |tk| > (log T )2, the Stirling formula allows us to deduce

|Mx(1)Γ(1− sk)y
1−sk | ≪ (log x)y1−vke−(π/2)|tk||tk|1/2−vk 6 1

10
(2.28)

for all 3 6 x 6 y 6 T 100.

Similarly, using the estimates ζ(α+ itk + iu) ≪ T + |u|, Mx(α+ itk + iu) ≪ x1−α log x ≪ T, and the

Stirling formula (2.27), we derive that∫
|u|>A′ log T

|ζ(α+ itk + iu)Mx(α+ itk + iu)Γ(α− vk + iu)|yα−vkdu 6 1

10
(2.29)

for all 3 6 x 6 y 6 T 100.

Taking (s, x) = (sk, Nj) in (2.25) and combining with (2.26), (2.28) and (2.29), we easily see that∣∣∣∣ ∑
Nj<n6y2

an,Nj

nsk
e−n/y

∣∣∣∣ > 1

6
(2.30)

or ∣∣∣∣ ∫ A′ log T

−A′ log T

ζ(α+ itk + iu)MNj (α+ itk + iu)Γ(α− vk + iu)yα−vk+iudu

∣∣∣∣ > 1

6
(2.31)

or both.

Let K′
j(T ) and K′′

j (T ) be the subsets of Kj(T ) for which (2.30) and (2.31) hold, respectively. Then

|Kj(T )| 6 |K′
j(T )|+ |K′′

j (T )|. (2.32)

First, we bound |K′
j(T )|. By a dyadic argument, there is a U ∈ [Nj , y

2] such that∣∣∣∣ ∑
U<n62U

an,Nj

nsk
e−n/y

∣∣∣∣ > (18 log y)−1 (2.33)

holds for ≫ |K′
j(T )|(log y)−1 integers k ∈ K′

j(T ). Let S ′ be the set of corresponding points sk. Using [12,

Theorem 8.4] with θ = α := 4σj − 3 and the bound

∑
U<n62U

τ(n)2

n2σj
e−2n/y ≪ U1−2σj (log T )3e−2U/y,

it follows that ∑
sk∈S′

∣∣∣∣ ∑
U<n62U

an,Nj

nsk
e−n/y

∣∣∣∣2
≪

(
U + |S ′| max

σ>α
16|τ |64T

|ζ(s)|Uα
)
U1−2σj (log T )3e−2U/y

≪ U2(1−σj)(log T )3e−2U/y + |S ′| max
σ>α

16|τ |64T

|ζ(s)|U−2(1−σj)(log T )3e−2U/y. (2.34)

Since U > Nj , we have

max
σ>α

16|τ |64T

|ζ(s)|U−2(1−σj)(log T )3 6 A′−1(log T )−2.

On the other hand, (2.33) implies that the member on the left-hand side of (2.34) is greater than or

equal to |S ′|(18 log y)−2 > |S ′|(1800 log T )−2. Since A′ is a fixed large integer, the last term on the
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right-hand side of (2.34) is smaller than this lower bound. Thus it can be simplified as |S ′|(log T )−2 ≪
U2(1−σj)(log T )3e−2U/y for all Nj 6 y 6 T 100 and some U ∈ [Nj , y

2]. Noticing that

|S ′| ≫ |K′
j(T )|(log T )−1,

we obtain

|K′
j(T )| ≪ y2(1−σj)(log T )6 (2.35)

for all Nj 6 y 6 T 100.

Next, we bound |K′′
j (T )|. Let uk ∈ [−A′ log T,A′ log T ] such that

|ζ(s′k)MNj (s
′
k)| = max

|u|6A log T
|ζ(α+ itk + iu)MNj (α+ itk + iu)|,

where s′k := α+ it′k and t′k := tk + uk. Thus from (2.31) we deduce that

1

6
6

∣∣∣∣ ∫ A′ log T

−A′ log T

ζ(α+ itk + iu)MNj (α+ itk + iu)Γ(α− vk + iu)yα−vk+iudu

∣∣∣∣
6 yα−vk |ζ(s′k)MNj (s

′
k)|

∫ A′ log T

−A′ log T

|Γ(α− vk + iu)|du.

Since Γ(s) has a simple pole at s = 0 and |α− vk| ≫ (log T )−1, we can derive, via (2.27), that∫ A′ log T

−A′ log T

|Γ(α− vk + iu)|du≪ log T

and thus

1 ≪ yα−σj |MNj (s
′
k)| max

σ>α
16|τ |68T

|ζ(s)| log T,

or equivalently

|MNj (s
′
k)| ≫ yσj−α

(
max
σ>α

16|τ |68T

|ζ(s)| log T
)−1

.

Hence, there is a V ∈ [1, Nj ] such that∣∣∣∣ ∑
V <n62V

µ(n)n−s
′
k

∣∣∣∣ ≫ yσj−α
(

max
σ>α

16|τ |68T

|ζ(s)|
)−1

(log T )−2

holds for ≫ |K′′
j (T )|(log T )−1 integers k ∈ K′′

j (T ). Let S ′′ be the corresponding set of points s′k. We note

|t′k| 6 2T and |t′k1 −t
′
k2
| > |tk1 −tk2 |−|uk1 −uk2 | > A′ log T. Using [12, Theorem 8.4] with θ = α = 4σj−3

and the bound ∑
V <n62V

n−2α ≪ V 1−2α ≪ V 7−8σj ,

it follows that ∑
s′k∈S′′

∣∣∣∣ ∑
V <n62V

µ(n)n−s
′
k

∣∣∣∣2 ≪
(
V + |S ′′| max

σ>α
16|τ |68T

|ζ(s)|V 4σj−3
)
V 7−8σj

≪ V 8(1−σj) + |S ′′| max
σ>α

16|τ |68T

|ζ(s)|V 4(1−σj). (2.36)

Take y such that

y2(σj−α) = A′N
4(1−σj)
j

(
max
σ>α

16|τ |68T

|ζ(s)|
)3

(log T )4. (2.37)
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The left-hand side of (2.36) is greater than or equal to

|S ′′|y2(σj−α)
(

max
σ>α

16|τ |68T

|ζ(s)|
)−2

(log T )−4.

Hence, (2.36) can be simplified as

|S ′′|y2(σj−α)
(

max
σ>α

16|τ |68T

|ζ(s)|
)−2

(log T )−4 ≪ N
8(1−σj)
j .

With |S ′′| ≫ |K′′
j (T )|(log T )−1, we deduce that

|K′′
j (T )| ≪ N

8(1−σj)
j y2(α−σj)

(
max
σ>α

16|τ |68T

|ζ(s)|
)2

(log T )5. (2.38)

On combining (2.32), (2.35), (2.38) and (2.37), it follows that |Kj(T )| ≪ N
(10/3)(1−σj)
j (log T )3. Now the

required inequality follows from (2.19). This completes the proof.

3 Proof of Theorem 1.1

We shall conserve the notation of Section 2. First we prove a lemma.

Lemma 3.1. Let z ∈ C, w ∈ C, α > 0, δ > 0, A > 0, B > 0, C > 0 and M > 0 be some constants.

Suppose that the Dirichlet series

F(s) :=
∞∑
n=1

f(n)n−s

is of type P(z, w, α, δ,A,B,C,M). Then there is an absolute positive constant D such that we have

F(s) ≪MDBT (100B
√
ε+δ)(1−σ)(log T )A+4B (3.1)

for all s ∈ MT , where the implied constant depends only on ε.

Proof. Since we have chosen the principal value of complex logarithm, we can write

|ζ(s)z| = |ζ(s)|ℜeze−(ℑmmz) arg ζ(s) 6 eπB |ζ(s)|ℜez (3.2)

for all s ∈ C such that ζ(s) ̸= 0.

Invoking Proposition 2.3, we see that there is a suitable absolute constant D such that

|ζ(s)z| ≪ε D
BT 100B

√
ε(1−σ)(log T )4B (3.3)

for all s ∈ MT , where the implied constant depends only on ε.

Finally, the required bound (3.1) follows from (3.3), the hypothesis (1.4) and the trivial bound |ζ(2s)|
≍ 1 for s ∈ MT .

Now we are ready to prove Theorem 1.1.

Since the Dirichlet series F(s) is of type P(z, w, α, δ,A,B,C,M), we can apply [20, Corollary II.2.2.1]

with the choice of parameters σa = 1, α = α and σ = 0 to write

∑
x<n6x+y

f(n) =
1

2πi

∫ b+iT ′

b−iT ′
F(s)

(x+ y)s − xs

s
ds+Oε

(
M
x1+ε

T

)
,

where b = 1 + 1/ log x, e
√
log x 6 T 6 x is a parameter to be chosen later and T ′ = KT log T ∼ T .
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Denote by ΓT the path formed from the circle |s− 1| = r := 1/(2 log x) excluding the point s = 1− r,

together with the segment [1− δT , 1− r] traced out twice with respective arguments +π and −π. By the

residue theorem, the path [b− iT ′, b+ iT ′] is deformed into

ΓT ∪ [1− δT − iT ′, 1− δT + iT ′] ∪ [1− δT ± iT ′, b± iT ′].

In view of (2.2) and the hypothesis (c), the function F(s) is analytic and admits the estimate in the

interior of this contour

F(s) ≪MDCTmax{δ(1−σ), 0}(log T )A+B , (3.4)

where the implied constant and the constant D are absolute. The integral over the horizontal segments

[1− δT ± iT ′, b± iT ′] is∫ b±iT ′

1−δT±iT ′
F(s)

(x+ y)s − xs

s
ds≪ MDC(log T )A+B

T

∫ b

1−δT
Tmax{δ(1−σ),0}xσdσ

≪MDC x

T
(log T )A+B

(∫ 1

1−δT

(
x

T δ

)σ−1

dσ + 1

)
≪MDC x

T
(log T )A+B−1.

Thus ∑
x<n6x+y

f(n) = I +O

(
MDC x

1+ε

T

)
, (3.5)

where the implied constant depends on ε only and

I :=
1

2πi

∫
ΓT∪[1−δT−iT ′, 1−δT+iT ′]

F(s)
(x+ y)s − xs

s
ds.

Let MT be the Motohashi contour defined as in Section 2. Consider the two symmetric simply con-

nected regions bounded by MT , the segment [1 − δT − iT ′, 1 − δT + iT ′] and the two line segments

[σj0+1 + dv, 1 − δT ] with respective arguments +π and −π measured from the real axis on the right of

1 − δT . It is clear that F(s) is analytic in these two simply connected regions. Denote by Γ∗
T the path

joining (the two end-points of) ΓT with the two line segments [σj0+1+dv, 1−δT ] of the symmetric regions.

Thanks to the residue theorem, we can write

I = I1 + I2, (3.6)

with

I1 :=
1

2πi

∫
Γ∗
T

F(s)
(x+ y)s − xs

s
ds, I2 :=

1

2πi

∫
MT

F(s)
(x+ y)s − xs

s
ds.

A. Evaluation of I1.

According to our hypothesis, G(s;κ,w)ζ(2s)wZ(s;κ) is holomorphic and O(M) in the disc |s − 1| 6
1
2 − ε3 =: c; the Cauchy integral formula implies that

gℓ(κ,w) ≪Mc−ℓ, ℓ > 0, |z| 6 B, |w| 6 C, (3.7)

where gℓ(κ,w) is defined as in (1.16). From this and (1.15), we deduce that for any integer N > 0 and

|s− 1| 6 1
2 − ε2,

G(s;κ,w)ζ(2s)wZ(s;κ) =
N∑
ℓ=0

gℓ(κ,w)(s− 1)ℓ +O(M(|s− 1|/c)N+1).

Thus we have

I1 =
N∑
ℓ=0

gℓ(κ,w)Mℓ(x, y) +O(Mc−NEN (x, y)), (3.8)
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where

Mℓ(x, y) :=
1

2πi

∫
Γ∗
T

(s− 1)ℓ−z
(x+ y)s − xs

s
ds,

EN (x, y) :=

∫
Γ∗
T

∣∣∣∣(s− 1)N+1−z (x+ y)s − xs

s

∣∣∣∣|ds|.
Firstly, we evaluate Mℓ(x, y). Using the formula

(x+ y)s − xs

s
=

∫ x+y

x

ts−1dt (3.9)

and [20, Corollary II.5.2.1], we write

Mℓ(x, y) =

∫ x+y

x

(
1

2πi

∫
Γ∗
T

(s− 1)ℓ−zts−1ds

)
dt

=

∫ x+y

x

(log t)z−1−ℓ
{

1

Γ(κ− ℓ)
+O

(
(c1ℓ+ 1)ℓ

tδT /2

)}
dt,

where we have used the following inequality:

47|z−ℓ|Γ(1 + |z − ℓ|) ≪B (c1ℓ+ 1)ℓ, ℓ > 0, |z| 6 B.

The constant c1 and the implied constant depend at most on B. Besides, for |z| 6 B, we have∫ x+y

x

(log t)z−1−ℓdt =

∫ y

0

logz−1−ℓ(x+ t)dt

= y(log x)z−1−ℓ
{
1 +OB

(
(ℓ+ 1)y

x log x

)}
.

Inserting this into the preceding formula, we obtain

Mℓ(x, y) = y(log x)z−1−ℓ
{

1

Γ(z − ℓ)
+OB

(
(ℓ+ 1)y

Γ(z − ℓ)x log x
+

(c1ℓ+ 1)ℓ

xδT /2

)}
(3.10)

for ℓ > 0 and |z| 6 B.

Next, we estimate EN (x, y). In view of the trivial inequality∣∣∣∣ (x+ y)s − xs

s

∣∣∣∣ ≪ yxσ−1, (3.11)

which follows from (3.9) immediately, we deduce that

EN (x, y) ≪
∫ 1−1/ log x

1/2+ε2
(1− σ)N+1−ℜe zxσ−1ydσ +

y

(log x)N+2−ℜez

≪ y

(log x)N+2−ℜez

(∫ ∞

1

tN+1−ℜeze−tdt+ 1

)
≪ y(log x)ℜez−1

(
c1N + 1

log x

)N+1

(3.12)

uniformly for x > y > 2, N > 0 and |z| 6 B, where the constant c1 > 0 and the implied constant depends

only on B.

Inserting (3.10) and (3.12) into (3.8) and using (3.7), we find that

I1 = y(log x)z−1

{ N∑
ℓ=0

λℓ(z, w)

(log x)ℓ
+OB(E

∗
N (x, y))

}
, (3.13)
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where

E∗
N (x, y) :=

y

x

N+1∑
ℓ=1

ℓ|λℓ−1(z, w)|
(log x)ℓ

+
(c1N + 1)N+1

xδT /2
+M

(
c1N + 1

log x

)N+1

.

B. Evaluation of I2.

Let M ′
T be the union of those vertical line segments of MT whose real part is equal to 1

2 + ε2 (i.e.,

corresponding to those k such that jk = 0) and M ′′
T := MT \M ′

T . Denote by I ′2 and I ′′2 the contribution

of M ′
T and M ′′

T to I2, respectively. Using the trivial inequality∣∣∣∣ (x+ y)s − xs

s

∣∣∣∣ ≪ x1/2+ε
2

|τ |+ 1
, s ∈ M ′

T

and Lemma 3.1, we can deduce

I ′2 ≪MDBx1/2+ε
2

T (δ+100B
√
ε)(1/2−ε2)(log T )A+4B+1

≪Mx1/2+δ/(2ψ+2δ)+
√
ε

≪Mx1−1/(ψ+δ)+
√
ε (3.14)

with the value of T given by (3.16) below and ψ > 2.

Next, we bound I ′′2 . In view of (3.11), we can write that

I ′′2 ≪ y

∫
M ′′

T

|F(s)|xσ−1|ds| ≪ y
∑

06j6JT

∑
06k6KT

∆j,k∈(W )

∫
MT (j,k)

|F(s)|xσ−1|ds|, (3.15)

where MT (j, k) is the vertical line segment of M ′′
T around ∆j,k and the horizontal line segments with

σ 6 σj + dv. Clearly, the length of MT (j, k) is ≪ log T . Thus with the help of Lemma 3.1, it is easy to

see that ∫
MT (j,k)

|F(s)|xσ−1|ds| ≪MDB(log T )A+4B+1T (δ+100B
√
ε)(1−σj−dv)xσj+dv−1

for all 0 6 k 6 KT . Inserting it into (3.15) and using Proposition 2.4, we can deduce, with the notation

JT,0 := [(12 − ε) log T ], that I ′′2 ≪MDBy(log T )A+4B+18+η(I ′′2,∗ + I ′′2,†), where

I ′′2,∗ :=
∑

06j6JT,0

T (δ+100B
√
ε)(1−σj−dv)xσj+dv−1 · Tψ(1−σj),

I ′′2,† :=
∑

JT,0<j6JT
T (δ+100B

√
ε)(1−σj−dv)xσj+dv−1 · T 100

√
ε(1−σj).

Taking

T := x(1−
√
ε)/(ψ+δ+100B

√
ε) (3.16)

and in view of (2.10), it is easy to check that

I ′′2,∗ ≪ xε
2 ∑
06j6JT,0

(x/Tψ+δ+100B
√
ε)−(1−σj) log x≪ xε

2−ε3/2 log x≪ x−ε
2

and

I ′′2,† ≪
∑

JT,0<j6JT
(x/T δ+100(B+1)

√
ε)−(1−σj) ≪ e−2c2(log x)

1/3(log2 x)
−1/3

.

Inserting it into the preceding estimate for I ′′2 , we conclude that

I ′′2 ≪B Mye−c2(log x)
1/3(log2 x)

−1/3

. (3.17)
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Now from (3.5), (3.6), (3.13), (3.14) and (3.17), we deduce that

∑
x<n6x+y

f(n) = y(log x)z−1

{ N∑
ℓ=0

λℓ(z, w)

(log x)ℓ
+OA,B,C,α,δ,ε(R

∗
N (x, y))

}

uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C, where

R∗
N (x, y) :=

y

x

N+1∑
ℓ=1

ℓ|λℓ−1(z, w)|
(log x)ℓ

+M

{(
c1N + 1

log x

)N+1

+
(c1N + 1)N+1

ec2(log x)1/3(log2 x)
−1/3

}
for some constants c1 > 0 and c2 > 0 depending only on B, C, δ and ε.

It remains to prove that the first term on the right-hand side can be absorbed by the third. In view

of (1.14), the Cauchy formula allows us to write gℓ(z, w) ≪A,B,C,δ M3ℓ for |z| 6 B, |w| 6 C and ℓ > 1.

Combining this with the Stirling formula, we easily derive λℓ(z, w) ≪A,B,C,δ M(9/ℓ)ℓ for |z| 6 B, |w| 6 C

and ℓ > 1. This implies that

y

x

N+1∑
ℓ=1

ℓ|λℓ−1(z, w)|
(log x)ℓ

≪A,B,C,δ M
y

x
≪A,B,C,δ,ε

M(c1N + 1)N+1

ec2(log x)1/3(log2 x)
−1/3

holds uniformly for x > 3, x1−1/(ψ+δ)+ε 6 y 6 x, N > 0, |z| 6 B and |w| 6 C. This completes the proof.

4 Proofs of Theorems 1.3 and 1.4

Since the proofs of Theorems 1.3 and 1.4 are very similar, we shall only prove the former. For z ∈ C and

σ > 1, we can write

F1(s; z) :=
∑
n>1

zω(n)n−s =
∏
p

(1 + z(ps − 1)−1)

= ζ(s)zζ(2s)z(1−z)/2G1

(
s; z,

z(1− z)

2

)
,

where

G1

(
s; z,

z(1− z)

2

)
:=

∏
p

(
1 +

z

ps − 1

)(
1− 1

ps

)z(
1− 1

p2s

)z(1−z)/2
.

We expand G1(s; z,
z(1−z)

2 ) into the Dirichlet series

G1

(
s; z,

z(1− z)

2

)
=

∑
n>1

b1z(n)n
−s.

Then b1z(n) is the multiplicative function whose values on prime powers are determined by the identity

1 +
∑
ν>1

b1z(p
ν)ξν =

(
1 +

zξ

1− ξ

)
(1− ξ)z(1− ξ2)z(1−z)/2, |ξ| < 1.

In particular, b1z(p) = b1z(p
2) = 0 and the Cauchy integral formula gives

|b1z(pν)| 6M(B)2ν/2, ν > 3, |z| 6 B,

where

M(B) := sup
|z|6B, |ξ|61/

√
2

∣∣∣∣(1 + zξ

1− ξ

)
(1− ξ)z(1− ξ2)z(1−z)/2

∣∣∣∣.
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From these we deduce that for σ > 1
3 ,∑

p

∑
ν>1

|b1z(pν)|
pνσ

6
∑
p

∑
ν>3

M(B)

(pσ/
√
2)ν

6
∑
p

23/2M(B)

p2σ(pσ −
√
2)

≪B
1

3σ − 1
·

So the Dirichlet series
∑∞
n=1 z

ω(n)n−s is of type P(z, z(1−z)2 , B, 0, 0, B, C(B),M(B)), where C(B) is a

positive constant depending on B.

Define gℓ(z) by

F1(s)(s− 1)z = Z(s; z)ζ(2s)z(1−z)/2G1

(
s; z,

z(1− z)

2

)
=

∞∑
ℓ=0

gℓ(z)(s− 1)ℓ, |s− 1| < 1

6
. (4.1)

Applying Theorem 1.1 to the Dirichlet series
∑∞
n=1 z

ω(n)n−s, we obtain the following result.

Lemma 4.1. Let B > 0 be a constant. For any ε > 0, we have

∑
x<n6x+y

zω(n) = y(log x)z−1

{ N∑
ℓ=0

λℓ(z)

(log x)ℓ
+OB,ε(MRN (x, y))

}
(4.2)

uniformly for

x > 3, x > y > x1−1/ψ+ε, |z| 6 B, N > 0,

where λℓ(z) := gℓ(z)/Γ(z − ℓ) and RN (x, y) is defined as in (1.18). The constants c1 and c2 in RN (x, y)

and the implied constant depends only on B and ε.

Lemma 4.1 improves [10, Theorem 3] in two directions: get a more precise asymptotic formula and

extend the domain x7/12+ε 6 y 6 x2/3−ε to x7/12+ε 6 y 6 x.

The next lemma is a short interval version of the asymptotic formula (13) of [20, Theorem II.6.3]. We

omit the proof as it is very similar.

Lemma 4.2. Let B > 0 and 0 < θ 6 1 be two positive constants. For each integer n > 1, let

az(n) =
∞∑
k=0

ck(n)z
k

be a holomorphic function for |z| 6 B. Let N > 0 be a non-negative integer. Suppose that there exist

N + 1 holomorphic functions h0(z), . . . , hN (z) for |z| 6 B and a quantity RN (x, y) independent of z

such that ∑
x<n6x+y

az(n) = y(log x)z−1

{ N∑
ℓ=0

zhℓ(z)

(log x)ℓ
+OB,θ(RN (x, y))

}
(4.3)

holds uniformly for x > 3, x > y > xθ and |z| 6 B. Then we have

∑
x<n6x+y

ck(n) =
y

log x

{ N∑
j=0

Rj,k(log2 x)

(log x)j
+OB,θ

(
(log2 x)

k

k!
RN (x, y)

)}
(4.4)

uniformly for x > 3, x > y > xθ and 1 6 k 6 B log2 x, where

Rj,k(X) :=
∑

ℓ+m=k−1

h
(m)
j (0)

ℓ!m!
Xℓ (4.5)

and the implied constants depend only on B and θ.
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If, in addition, we suppose that |h′′0(z)| 6 D (|z| 6 B), then we have

∑
x<n6x+y

ck(n) =
y

log x

(log2 x)
k−1

(k − 1)!

{
h0

(
k − 1

log2 x

)
+OB,θ

(
D(k − 1)

(log2 x)
2
+

log2 x

k
R0(x, y)

)}

uniformly for x > 3, x > y > xθ and 1 6 k 6 B log2 x. Here, the implied constants depend on B and θ

only.

Now we are ready to finish the proof of Theorem 1.3. According to Lemma 4.1, (4.3) of Lemma 4.2 is

satisfied with the following choices:

az(n) = zω(n), zhℓ(z) = λℓ(z), θ = 1− 1/ψ + ε,

λℓ(z) and RN (x, y) are defined as in Lemma 4.1, and ck(n) is the characteristic function on the set of

integers n such that ω(n) = k. Thus (a) is an immediate consequence of this lemma.

5 Proofs of Theorems 1.6 and 1.7

The proof of Theorem 1.6 will be proceeded exactly as in [1]. The only difference is the use of Corollary 1.2

in place of [1, Theorem 1].

Since
∑
n>1 τk(n)n

−s = ζ(s)k for σ > 1, we can apply Theorem 1.1 with z = k, w = 0, G(s; k, 0) ≡ 1

and A = δ = 0. Taking N = [c′(log x)1/3(log2 x)
−4/3] with some small constant c′ and noticing that

λℓ(k, 0) = 0 for all ℓ > k, we obtain the result of Theorem 1.7.

6 Proof of Theorem 1.8

Since the function τk(n) is multiplicative and

τk(p
ν) =

(
k + ν − 1

ν

)
=

1

ν!

ν−1∏
j=0

(k + j),

we can write, for σ > 1,

∑
n>1

τk(n)
−1n−s =

∏
p

(
1 +

∑
ν>1

(
k + ν − 1

ν

)−1

p−νs
)

= ζ(s)
1
k ζ(2s)−

2k3+2k2+2k+1

k2 G3

(
s;

1

k
,−2k3 + 2k2 + 2k + 1

k2

)
,

where

G3(s; z, w) :=
∏
p

(∑
ν>0

(
k + ν − 1

ν

)−1
1

pνs

)(
1− 1

ps

)z(
1− 1

p2s

)w
.

As before, we expand G3(s;
1
k ,−

2k3+2k2+2k+1
k2 ) as a Dirichlet series

G3

(
s;

1

k
,−2k3 + 2k2 + 2k + 1

k2

)
=

∑
n>1

b3k(n)n
−s,

where b3k(n) is the multiplicative function for which the values on prime powers are determined by the

identity

1 +
∑
ν>1

b3k(p
ν)ξν =

(∑
ν>0

(
k + ν − 1

ν

)−1

ξν
)
(1− ξ)

1
k (1− ξ2)−

2k3+2k2+2k+1

k2 .
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It is easy to see that the right-hand side is an analytic function in |ξ| < 1 and b3k(p) = b3k(p
2) = 0.

Again the Cauchy integral formula yields

|b3k(pν)| ≪k 2ν/2, ν > 3, G3

(
s;

1

k
,−2k3 + 2k2 + 2k + 1

k2

)
≪k,σ 1, σ >

1

3
.

This shows that the Dirichlet series associated to τk(n)
−1 is of type

P
(
1

k
,−2k3 + 2k2 + 2k + 1

k2
,
1

k
, 0,

1

k
,
2k3 + 2k2 + 2k + 1

k2
,M(k)

)
,

where M(k) is a positive constant depending on k. Therefore, the required result follows immediately

from Theorem 1.1 with any fixed positive integer N .
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4 Deshouillers J-M, Dress F, Tenenbaum G. Lois de répartition des diviseurs, 1. Acta Arith, 1979, 23: 273–283

5 Garaev M Z, Luca F, Nowak W G. The divisor problem for d4(n) in short intervals. Arch Math, 2006, 86: 60–66

6 Hooley C. On intervals between numbers that are sums of two squares III. J Reine Angew Math, 1974, 267: 207–218

7 Huxley M N. The difference between consecutive primes. Invent Math, 1972, 267: 164–170

8 Ivić A. The Riemann Zeta-Function. New York-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, 1985
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