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Abstract We prove that for a Frobenius extension, if a module over the extension ring is Gorenstein projective,

then its underlying module over the base ring is Gorenstein projective; the converse holds if the Frobenius

extension is either left-Gorenstein or separable (e.g., the integral group ring extension Z ⊂ ZG). Moreover, for

the Frobenius extension R ⊂ A = R[x]/(x2), we show that: a graded A-module is Gorenstein projective in

GrMod(A), if and only if its ungraded A-module is Gorenstein projective, if and only if its underlying R-module

is Gorenstein projective. It immediately follows that an R-complex is Gorenstein projective if and only if all its

items are Gorenstein projective R-modules.
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1 Introduction

A module M is said to be Gorenstein projective (see [7]) if there exists a totally acyclic complex of

projective modules P := · · · → P1 → P0 → P−1 → · · · such that M = Ker(P0 → P−1). The study of

Gorenstein projective modules plays an important role in some areas such as representation theory of Artin

algebras, the theory of stable and singularity categories, and cohomology theory of commutative rings.

Especially, for finitely generated Gorenstein projective modules, there are several different terminologies

in the literature, such as modules of G-dimension zero, maximal Cohen-Macaulay modules and totally

reflexive modules.

For a given ring R, it is important to find a “well-behaved” extension ring A in the sense that some

useful information can transfer between R and A. In this paper, we intend to study relations of Goren-

stein projective modules along Frobenius extensions of rings. The theory of Frobenius extensions was

developed by Kasch [15] as a generalization of Frobenius algebras, and was further studied by Nakayama

and Tsuzuku [19] and Morita [18]. A classical example of Frobenius extension is the integral group ring

extension Z ⊂ ZG for a finite group G. Other examples include Hopf subalgebras (see [22]), finite exten-

sions of enveloping algebras of Lie super-algebras (see [3]) and enveloping algebras of Lie coloralgebras

(see [9]). We refer to a lecture due to Kadison [14].
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We are partly inspired by an observation of Buchweitz [4, Subsection 8.2]: for a finite group G, a

ZG-module, or equivalently an integral representation of G, is maximal Cohen-Macaulay over ZG if and

only if the underlying Z-module is maximal Cohen-Macaulay, or equivalently, the underlying Z-module is

free. In [5], Chen introduced a generalization of Frobenius extension, called the totally reflexive extension

of rings, and proved that totally reflexive modules transfer along such extension. However, is this true for

not necessarily finitely generated Gorenstein projective modules? As it is pointed out at the end of [5],

a different argument is needed.

The first main result gives a partial answer to the above question (see Theorems 2.5 and 2.11).

Theorem A. Let R ⊂ A be a Frobenius extension, and M be a left A-module. If M is Gorenstein

projective in Mod(A), then the underlying R-module M is Gorenstein projective; the converse holds if

R ⊂ A is either a left-Gorenstein or a separable Frobenius extension.

We remark that Z ⊂ ZG is both a left-Gorenstein and a separable Frobenius extension, so Buchweitz’s

observation is true for not necessarily finitely generated Gorenstein projective modules. In order to prove

Theorem 2.5, we need a fact that over a left-Gorenstein ring, (GP,W) is a cotorsion pair (see [2]). We

use GP to denote the class of Gorenstein projective modules, and use W to denote the class of modules

with finite projective dimension. However, we further show in Theorem 2.7 that the cotorsion pair

(GP,W) is cogenerated by a set. This result generalizes [12, Theorem 8.3] from Iwanaga-Gorenstein

rings to left-Gorenstein rings. It seems to be of particular interest, since this will induce a cofibrantly

generated model structure on the category of modules by applying Hovey’s correspondence (see [12,

Theorem 2.2]), such that the associated homotopy category is exactly the stable category GP.

The second inspirational example of this paper is the ring extension

R ⊂ A = R[x]/(x2).

One can also view A as a graded ring with a copy of R (generated by 1) in degree 0 and a copy of R

(generated by x) in degree 1. In Theorem 3.2, we show the following result.

Theorem B. A graded A-module is Gorenstein projective in GrMod(A), if and only if its ungraded

module is Gorenstein projective in Mod(A), if and only if its underlying module is Gorenstein projective

in Mod(R).

For the graded ringA = R[x]/(x2), there is an observation that the category GrMod(A) is automatically

isomorphic to the category Ch(R) of R-complexes (see for example [11]). So a Gorenstein projective

graded A-module is precisely the Gorenstein projective R-complex introduced by Enochs and Garćıa

Rozas [6]. It is immediate that (see Corollary 3.3): an R-complex is Gorenstein projective if and only if all

its items are Gorenstein projective R-modules (see also [25, Theorem 1]). This generalizes [6, Theorem 4.5]

and [17, Theorem 3.1] by removing the conditions that the base ring R is Iwanaga-Gorenstein and is right

coherent and left perfect, respectively.

The paper is organized as follows. In Section 2, we introduce the notion of left-Gorenstein Frobenius

extensions, and it is shown that over left-Gorenstein rings, (GP,W) is a cotorsion pair cogenerated by a

set. We study the separable Frobenius extensions. Then, Theorem A is proved. In Section 3, we focus

on Gorenstein projective graded R[x]/(x2)-modules, and we prove the result in Theorem B.

2 Gorenstein projective modules over Frobenius extensions

Throughout the paper, all rings are associative with a unit. Homomorphisms of rings are required to

send the unit to the unit. Let R be a ring. A left R-module M is sometimes written as RM . For two left

R-modules M and N , denote by HomR(M,N) the abelian group consisting of left R-homomorphisms

between them. A right R-module M is sometimes written as MR. We identify right R-modules with left

Rop-modules, where Rop is the opposite ring of R. For two right R-modules M and N , the abelian group

of right R-homomorphisms is denoted by HomRop(M,N). We denote by Mod(R) the category of left

R-modules, and Mod(Rop) the category of right R-modules. Let S be another ring. An R-S-bimoduleM

is written as RMS .
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We always denote a ring extension ι : R ↩→ A by R ⊂ A. The natural bimodule RAR is given by

rar′ := ι(r) · a · ι(r′). Similarly, we consider RA and RAA, etc. For a ring extension R ⊂ A, there is

a restricted functor Res : Mod(A) → Mod(R) sends AM to RM , given by rm := ι(r)m. The structure

map ι is usually suppressed. In the opposite direction, there are functors

T = A⊗R − : Mod(R) → Mod(A)

and

H = HomR(A,−) : Mod(R) → Mod(A).

It is clear that (T,Res) and (Res,H) are adjoint pairs.

2.1 Frobenius extensions

We refer to [14, Definition 1.1 and Theorem 1.2] for the definition of Frobenius extensions.

Definition 2.1. A ring extension R ⊂ A is a Frobenius extension, which provided that one of the

following equivalent conditions holds:

(1) The functors T = A⊗R − and H = HomR(A,−) are naturally equivalent.

(2) RA is finite generated projective and AAR
∼= (RAA)

∗ = HomR(RAA, R).

(3) AR is finite generated projective and RAA
∼= (AAR)

∗ = HomRop(AAR, R).

(4) There exist an R-R-homomorphism τ : A→ R and the elements xi and yi in A, such that for any

a ∈ A, one has
∑

i xiτ(yia) = a and
∑

i τ(axi)yi = a.

Lemma 2.2. Let R ⊂ A be a Frobenius extension of rings, and M be a left A-module. If AM is

Gorenstein projective, then the underlying left R-module RM is also Gorenstein projective.

Proof. Let M be a Gorenstein projective left A-module. There exists a totally acyclic complex, i.e.,

an acyclic complex of projective A-modules

P := · · · → P1 → P0 → P−1 → · · ·

with HomA(P , P ) being an acyclic complex for each projective A-module P , such that

M = Ker(P0 → P−1).

Note that each Pi is a projective left R-module. Then by restricting P one gets an acyclic complex of

projective R-modules.

Let Q be a projective left R-module. It follows from isomorphisms HomR(A,Q) ∼= A ⊗R Q that

HomR(A,Q) is a projective left A-modules. Then the complex HomA(P ,HomR(A,Q)) is acyclic. More-

over, there are isomorphisms

HomR(P , Q) ∼= HomR(A⊗A P , Q) ∼= HomA(P ,HomR(A,Q)).

This implies that the complex HomR(P , Q) is acyclic, and hence the underlying R-module M is Goren-

stein projective.

Lemma 2.3. Let R ⊂ A be a Frobenius extension of rings, and M be a left A-module. If the underlying

module RM is Gorenstein projective, then the following hold:

(1) For any projective A-module P and any i > 0, ExtiA(M,P ) = 0.

(2) A⊗R M is a Gorenstein projective left A-module.

Proof. (1) For any left A-module M and any left R-module N , there are isomorphisms

HomA(M,A⊗R N) ∼= HomA(M,HomR(A,N)) ∼= HomR(A⊗A M,N) ∼= HomR(M,N).

Moreover, by replacing AM with an A-projective resolution P• of M and observing that P• is also an

R-projective resolution of RM , we have an isomorphism of cohomology ExtiA(M,A⊗RN) ∼= ExtiR(M,N)

for any i > 0.
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Let P be a projective left A-module. There is a split epimorphism θ : A⊗RP → P of A-modules given

by θ(a ⊗R x) = ax for any a ∈ A and x ∈ P , and then P is a direct summand of A ⊗R P . Since P is

projective as a left R-module, and RM is Gorenstein projective by assumption, we have

ExtiA(M,A⊗R P ) ∼= ExtiR(M,P ) = 0,

and then ExtiA(M,P ) = 0 as desired.

(2) Let P := · · · → P1 → P0 → P−1 → · · · be a totally acyclic complex of projective R-modules such

that RM = Ker(P0 → P−1). It is easy to see that A⊗RP is an acyclic complex of projective A-modules,

and

A⊗R M = Ker(A⊗R P0 → A⊗R P−1).

Moreover, for any projective A-module P , the complex

HomA(A⊗R P , P ) ∼= HomR(P , P )

is acyclic. So A⊗R M is a Gorenstein projective left A-module.

2.2 Left-Gorenstein Frobenius extensions

Following [2, Theorem VII2.5], a ring Λ is called left-Gorenstein provided the category Mod(Λ) of left

Λ-modules is a Gorenstein category. This is equivalent to the condition that the global Gorenstein

projective dimension of Λ is finite. By [7, Theorem 10.2.14], each Iwanaga-Gorenstein ring (i.e., two-

sided noetherian ring with left and right self-injective dimension) is left-Gorenstein. The converse is not

true in general. For example, let Sn = S[x1, x2, . . . , xn] be the polynomial ring in n indeterminates over

a non-noetherian hereditary ring S. Let Ri = Si−1 ⊗ Si−1 be the trivial extension of Si−1 by Si−1 for

i > 1 (set S0 = S). Then Ri is a left-Gorenstein ring for every i > 1, whereas Ri is non-noetherian, and

hence is not an Iwanaga-Gorenstein ring.

Definition 2.4. Let R ⊂ A be a Frobenius extension. Then R ⊂ A is called a left-Gorenstein Frobenius

extension provided in addition that A is left-Gorenstein.

Theorem 2.5. Let R ⊂ A be a left-Gorenstein Frobenius extension of rings, and M be a left A-

module. Then M is a Gorenstein projective left A-module if and only if the underlying left R-module M

is Gorenstein projective.

Proof. By Lemma 2.2, it suffices to prove that when the underlying module RM is Gorenstein projec-

tive, M is a Gorenstein projective left A-module.

Note that over a left-Gorenstein ring A, a moduleM is Gorenstein projective if and only if ExtiA(M,N)

= 0 for any module N of finite projective dimension and any i > 0 (see [2] or Theorem 2.7 below). Assume

that N is an A-module with projective dimension n. Then there is an exact sequence

0 → K → P → N → 0

of A-modules, where P is projective andK is of projective dimension n−1. By induction on the projective

dimension of modules, it is deduced from Lemma 2.3(1) that

ExtiA(M,N) ∼= Exti+1
A (M,K) = 0.

The assertion follows.

For a finite group G, it is easy to see that the integral group ring ZG is Iwanaga-Gorenstein, since

there is an exact sequence

0 → ZG→ QG→ Q/ZG→ 0

of left or right ZG-modules, where QG = HomZ(ZG,Q) is an injective ZG-module, and similarly Q/ZG
is injective.
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Corollary 2.6. Let G be a finite group, andM be a left ZG-module. ThenM is a Gorenstein projective

left ZG-module if and only if the underlying left Z-module M is Gorenstein projective.

Recall that a pair of classes (X ,Y) of modules is a cotorsion pair provided that X = ⊥Y and Y = X⊥,

where
⊥Y = {X | Ext1(X,Y ) = 0, ∀Y ∈ Y}

and

X⊥ = {Y | Ext1(X,Y ) = 0, ∀X ∈ X}.

The cotorsion pair (X ,Y) is said to be cogenerated by a set S if S⊥ = Y. Over an Iwanaga-Gorenstein

ring A, it follows from [12, Theorem 8.3] that (GP,W) is a cotorsion pair cogenerated by a set, where GP is

the class of Gorenstein projective modules, and W is the class of modules with finite projective dimension.

It follows from [2] that over a left-Gorenstein ring, (GP ,W) is a cotorsion pair. We have more in

the next result, which also generalizes the known one in [12, Theorem 8.3] from Iwanaga-Gorenstein

rings to left-Gorenstein rings. It seems to be of particular interest, since by Hovey’s correspondence [12,

Theorem 2.2] between cotorsion pairs and model structures, we get a cofibrantly generated Gorenstein

projective model structure on the category of modules. Moreover, the homotopy category associated with

the model structure is exactly the stable category GP.

Theorem 2.7. Let A be a left-Gorenstein ring. The cotorsion pair (GP,W) is cogenerated by a set.

Proof. Note that over a left-Gorenstein ring, a module is Gorenstein projective if and only if it is a

syzygy of an acyclic complex of projectives. We denote by acP̃(A) the class of all acyclic complexes of

projective A-modules. For a module M , we use M to denote the complex with M concentrated in degree

zero. The cardinal of a complex

C := · · · → Ci+1 → Ci → Ci−1 → · · ·

is defined to be

|C| =
∣∣∣∣⊕
i∈Z

Ci

∣∣∣∣.
Claim 1. Let ℵ > |A|+ ℵ0 be an infinite cardinal,

P := · · · → P1
∂1→ P0

∂0→ P−1
∂−1→ · · ·

be a complex in acP̃(A). Let C =M be a subcomplex of P , whereM 6 P0 is a submodule with |M | 6 ℵ.
There exists a subcomplex D ∈ acP̃(A), such that |D| 6 ℵ, C 6 D and D/C ∈ acP̃(A).

It follows from the Kaplansky theorem that every projective module is a direct sum of countably

generated projective modules. Then Pn =
⊕

i∈In
Pn,i with each Pn,i countably generated. Let S1

0 =⊕
i∈J0

P0,i, where

J0 = {i ∈ I0 |M ∩ P0,i ̸= 0}.

Then M 6 S1
0 , |S1

0 | 6 ℵ, S1
0 and P0/S

1
0 are projective modules. We can now consider the acyclic complex

· · · // L1
4

∂4 // L1
3

∂3 // L1
2

∂2 // L1
1

∂1 // S1
0

∂0 // ∂0(S1
0) // 0, (S1)

where L1
i is a submodule of Pi of cardinality less than or equal to ℵ such that

∂i(L
1
i ) = Ker(∂i−1 |L1

i−1
)

for all i > 0 (we let L1
0 = S1

0). Now, we can embed ∂0(S
1
0) into a projective submodule S2

−1 6 P−1, such

that |S2
−1| 6 ℵ and P−1/S

2
−1 being a projective module. Then consider the acyclic complex

· · · // L2
3

∂3 // L2
2

∂2 // L2
1

∂1 // L2
0

∂0 // S2
−1

∂−1 // ∂−1(S
2
−1) // 0, (S2)
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where each L2
i is taken as before. If we embed L2

0 into a projective submodule S3
0 of P0 and construct L3

i

as before, we then get a complex which is also acyclic, i.e.,

· · · // L3
2

∂2 // L3
1

∂1 // S3
0

∂0 // S2
−1 + ∂0(S

3
0)

∂−1 // ∂−1(S
2
−1) // 0. (S3)

Now choose a projective submodule S4
1 6 P1 with |S4

1 | 6 ℵ, which contains L3
1, such that P1/S

4
1 is a

projective module. We then get an acyclic complex

· · · // L4
3

∂3 // L4
2

∂2 // S4
1

∂1 // S3
0 + ∂1(S

4
1)

∂0 // S2
−1 + ∂0(S

3
0)

∂−1 // ∂−1(S
2
−1) // 0. (S4)

Now we turn over and get the following acyclic complexes:

· · · // L5
3

∂3 // L5
2

∂2 // L5
1

∂1 // S5
0

∂0 // S2
−1 + ∂0(S

5
0)

∂−1 // ∂−1(S
2
−1) // 0, (S5)

· · · // L6
3

∂3 // L6
2

∂2 // L6
1

∂1 // L6
0

∂0 // S6
−1

∂−1 // ∂−1(S
6
−1) // 0, (S6)

· · · // L7
2

∂2 // L7
1

∂1 // L7
0

∂0 // L7
−1

∂−1 // S7
−2

∂−2 // ∂−2(S
7
−2) // 0, (S7)

· · · // L8
2

∂2 // L8
1

∂1 // L8
0

∂0 // S8
−1

∂−1// S7
−2 + ∂−1(S

8
−1)

∂−2 // ∂−2(S
7
−2) // 0, (S8)

· · · // L9
2

∂2 // L9
1

∂1 // S9
0

∂0 // S8
−1 + ∂0(S

9
0)

∂−1 // S7
−2 + ∂−1(S

8
−1)

∂−2 // ∂−2(S
7
−2) // 0, (S9)

where Sk
i are projective submodules of Pi, such that |Sk

i | 6 ℵ and Pi/S
k
i being projective.

If we continue this zig-zag procedure, we then find the acyclic complexes (Sn) for all n, in such a way

that there are infinitely many n with (Sn)i a projective submodule of Pi for each i ∈ Z. Furthermore, we

have M 6 (Sn)0 and |(Sn)| 6 ℵ0 · ℵ 6 ℵ for any n. Let D be the direct limit of (Sn), n ∈ Z. Then D is

the desired acyclic complex of projective modules.

Claim 2. Let ℵ > |A|+ℵ0 be an infinite cardinal, and M be a Gorenstein projective A-module. Then

for any submodule K 6 M with |K| 6 ℵ, there exists a submodule N of M , such that K 6 N , N and

M/N are Gorenstein projective modules, and |N | 6 ℵ.
There exists an acyclic complex

P := · · · → P1 → P0 → P−1 → · · ·

of projective A-modules, such that M = Ker(P0 → P−1). By the above argument, for complex C = K,

there is an acyclic subcomplex

D := · · · → D1 → D0 → D−1 → · · ·

of projective A-modules, such that |D| 6 ℵ, C 6 D and D/C ∈ acP̃(A). Thus, N = Ker(D0 → D−1)

is the desired submodule of M .

Claim 3. (GP,W) is a cotorsion pair cogenerated by a set.

Let M ∈ GP. By transfinite induction we can find a continuous chain of submodules of M , say

{Mα;α < λ}, for some ordinal number λ such that M =
∪

α<λMα; M0 and Mα+1/Mα are in GP, and

|M0| 6 ℵ, |Mα+1/Mα| 6 ℵ for any α < λ. But since GP is closed under extensions and direct limits,

in fact each Mα belongs to GP, and so every module in GP is the direct union of a continuous chain of

submodules in GP with cardinality less than or equal to ℵ. Note that GP is a Kaplansky class (see [8,10]),

or equivalently, a deconstructible class (see [23]).

Thus, if we let S be a representative set of modules M ∈ GP with |M | 6 ℵ, then a module N ∈ GP⊥

if and only if Ext1A(M,N) = 0 for any M ∈ S, i.e., (GP,GP⊥) is cogenerated by the set S (see, e.g., [7,

Theorem 7.3.4]). The equality GP⊥ = W follows by a standard argument, so we omit it. This completes

the proof.
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2.3 Separable Frobenius extensions

The separable algebra enjoys some of the attractive properties of semisimple algebras. The separability

of rings and algebras has been concerned by many authors. We refer to [20, Charpter 10] and [14,

Subsection 2.4] for separable rings (algebras).

Definition 2.8. A ring extension R ⊂ A is separable provided that the multiplication map φ : A⊗R

A → A (a ⊗R b → ab) is a split epimorphism of A-bimodules. If R ⊂ A is simultaneously a Frobenius

extension and a separable extension, then it is called a separable Frobenius extension.

Note that for any left A-module M , there is a natural map θ : A⊗RM →M given by θ(a⊗Rm) = am

for any a ∈ A and m ∈ M . It is easy to check that θ is surjective, and as an R-homomorphism it is

split. However, in general θ is not split as an A-homomorphism. The following is analogous to the results

in [20] for separable algebras over commutative rings.

Lemma 2.9. The following are equivalent:

(1) R ⊂ A is a separable extension.

(2) For any A-bimodule M , θ : A⊗R M →M is a split epimorphism of A-bimodules.

(3) There exists an element e ∈ A⊗R A, such that φ(e) = 1A and ae = ea for any a ∈ A.

Proof. (1) is a special case of (2) by letting M = A. Now assume (1) holds. For an A-bimodule M , we

have the following diagram:

(A⊗R A)⊗A M
φ⊗idM //

µ

��

A⊗A M

π

��
A⊗R M

θ // M,

where π is a natural isomorphism, and µ is the composition

(A⊗R A)⊗A M −→ A⊗R (A⊗A M)
idA⊗π−→ A⊗R M.

An easy calculation shows that the diagram commutes. Let ψ : A→ A⊗R A be a homomorphism of A-

bimodules such that φψ = idA. If we define χ = µ(ψ⊗ idM )π−1, then χ is an A-bimodule homomorphism

such that θχ = idM . Hence, the epimorphism of A-bimodules θ : A⊗R M →M is split.

It remains to prove the equivalence of (1) and (3). If φ : A⊗RA→ A is split, then e = ψ(1A) ∈ A⊗RA,

such that φ(e) = φ(ψ(1A)) = 1A, and ae = ψ(a1A) = ψ(1Aa) = ea for any a ∈ A. Conversely, if there is

an element e ∈ A⊗R A satisfying (3), and ψ : A→ A⊗R A is defined by ψ(a) = ae, then

φψ(a) = φ(ae) = aφ(e) = a.

Moreover,

ψ(ab) = (ab)e = a(be) = aψ(b)

and

ψ(ab) = a(be) = a(eb) = (ae)b = ψ(a)b,

i.e., ψ is an A-bimodule homomorphism. Thus, R ⊂ A is separable.

Example 2.10. (1) For a finite group G, Z ⊂ ZG is a separable Frobenius extension. Indeed, let

e =
1

|G|
∑
g∈G

g ⊗Z g
−1 ∈ ZG⊗Z ZG,

where |G| is the order of G. It is direct to check that e satisfies Condition (3) of the above lemma.

(2) (See [14, Example 2.7]) Let F be a field and set A = M4(F ). Let R be the subalgebra of A with

F -basis consisting of the idempotents and matrix units e1 = e11 + e44, e2 = e22 + e33, e21, e31, e41, e42,

e43. Then R ⊂ A is a separable Frobenius extension.
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If R ⊂ A is a separable extension, it follows from the above argument that as left A-modules, M is a

direct summand of A⊗R M . The following is immediate from Lemmas 2.2 and 2.3(2).

Theorem 2.11. Let R ⊂ A be a separable Frobenius extension, and M be a left A-module. Then M

is a Gorenstein projective A-module if and only if the underlying R-module M is Gorenstein projective.

We note that the relationship between Gorenstein projective modules over ring extensions is considered

in other conditions, for example, in [13] for excellent extensions of rings, and in [16] for cross product of

Hopf algebras.

3 Gorenstein projective graded R[x]/(x2)-modules

Throughout this section, R is an arbitrary ring, and A = R[x]/(x2) is the quotient of the polynomial

ring, where x is a variable which is supposed to commute with all the elements of R.

Lemma 3.1. The extension of rings R ⊂ A is a Frobenius extension.

Proof. It is clear that AR is a finitely generated projective module. There is an R-A-homomorphism

φ : A→ HomRop(AAR, R)

given by

φ(r0 + r1x)(s0 + s1x) = r0s0 + r0s1 + r1s0

for any r0 + r1x and s0 + s1x in A, and a homorphism ψ : HomRop(AAR, R) → A, which maps any

f ∈ HomRop(AAR, R) to an element f(x) + (f(1) − f(x))x in A. It is direct to check that φψ = id and

ψφ = id. The assertion follows.

One can view A as a graded ring with a copy of R (generated by 1) in degree 0 and a copy of R

(generated by x) in degree 1, and 0 otherwise. A graded A-module M is an A-module with a additive

subgroup decomposition M =
⊕

i∈ZM
i, such that AiM j ⊂ M i+j for all i and j. Consider graded

A-modules M and N . An A-linear map f : M → N has degree d if f(M i) ⊂ N i+d. The set of all

degree d maps from M to N is denoted by HomA(M,N)d. We define HomGr(M,N) := HomA(M,N)0.

The category GrMod(A) consists of graded left A-modules and the morphisms are taken to be the graded

morphism of degree zero. Note that by forgetting the grading on a module, there is naturally a functor

GrMod(A) → Mod(A).

There is an observation that the category GrMod(A) is isomorphic to the category Ch(R) of R-

complexes, where M =
⊕

i∈ZM
i corresponds to the cochain complex · · · →M i−1 →M i →M i+1 → · · ·

of R-modules, with the differential corresponding to multiplication by x (see for example [11]). It is clear

that the isomorphism of categories between GrMod(A) and Ch(R) automatically preserves projectives.

Let C be an abelian category with enough projectives. An object M ∈ C is said to be Gorenstein

projective if it is a syzygy of a totally acyclic complex of projectives. The notion of Gorenstein projective

complexes is introduced by Enochs and Garćıa Rozas [6, Definition 4.1] as Gorenstein projective objects

in Ch(R). We call the Gorenstein projective objects in GrMod(A) to be Gorenstein projective graded

A-modules.

Observation. Let M =
⊕

i∈ZM
i ∈ GrMod(A). Then M is a Gorenstein projective graded A-module

if and only if · · · →M i−1 →M i →M i+1 → · · · is a Gorenstein projective R-complex.

The main result of this section is stated as follows.

Theorem 3.2. Let M ∈ GrMod(A) be a graded A-module. The following are equivalent:

(1) M is Gorenstein projective in GrMod(A).

(2) M is Gorenstein projective in Mod(A).

(3) M is Gorenstein projective in Mod(R).

The next result is immediate, which generalizes [6, Theorem 4.5] by removing the prerequisite that the

base ring is Iwanaga-Gorenstein, and generalizes [17, Theorem 3.1] by removing the condition that the

base ring is right coherent and left perfect (see also [25, Theorem 1]).
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Corollary 3.3. Let M be an R-complex. Then M is Gorenstein projective in Ch(R) if and only if

each item M i is Gorenstein projective in Mod(R).

There is a result due to Gillespie and Hovey [11, Proposition 3.8]: every dg-projective complex over R

is a Gorenstein projective A-module, and the converse holds if R is left and right noetherian and of finite

global dimension. It is well known that the projective dimension of a Gorenstein projective module is

either zero or infinity (see for example [7, Proposition 10.2.3]). If R is a ring of finite global dimension, then

dg-projective R-complex and Gorenstein projective R-complex coincide. So the assumption of noetherian

ring in [11, Proposition 3.8] is not needed.

In the rest of this section, we are devoted to proving Theorem 3.2. For any graded A-module M and

d ∈ Z, we define M [d] to be a shift of M , which is equal to M as an ungraded A-module but has grading

M [d]i =M i+d. For any R-module N , we denote by N the graded A-module with N in degree −1 and 0;

the differential corresponding to multiplication by x is exactly the identity of N . The next result is

well-known.

Lemma 3.4. Let N be a graded A-module. Then N is projective in GrMod(A) if and only if N is

projective in Mod(A). If we consider N as an R-complex, then N is projective in Ch(R), and there is a

family of projective R-modules {P i}i∈Z such that

N =
∏
i∈Z

P i[−i].

Lemma 3.5. Let M be a graded A-module. If M is Gorenstein projective in GrMod(A), then the

ungraded module M is Gorenstein projective in Mod(A).

Proof. Let M ∈ GrMod(A). Assume that there is a totally acyclic complexes of projectives

P := · · · → P1 → P0 → P−1 → · · ·

in GrMod(A), such that M = Ker(P0 → P−1). Note that every item Pj =
⊕

i∈Z P
i
j is a projective

module in Mod(A), and then P is also an exact sequence of projective modules in Mod(A).

Let D be a projective left R-module. Then D[−i] is projective in GrMod(A) for any i ∈ Z. Note that

for any N ∈ GrMod(A), we have

HomGr(N,D[−i]) ∼= HomCh(R)(N,D[−i]) ∼= HomR(N
i, D).

Then, the complex

HomGr(P, D[−i]) ∼= HomR(Pi, D)

is acyclic, where

Pi := · · · → P i
1 → P i

0 → P i
−1 → · · · .

Moreover, the complex HomR(P, D) is acyclic for any projective R-module D.

Let Q be a projective left A-module. Then Q is a projective left R-module, and A⊗RQ is a projective

A-module. The canonical epimorphism θ : A⊗RQ→ Q of A-modules is split. Moreover, by the argument

in Lemma 2.3, there is an isomorphism HomA(P, A⊗RQ) ∼= HomR(P, Q). This implies that the complex

HomA(P, A⊗R Q) is acyclic. Hence, HomA(P, Q) is acyclic. It yields that P is a totally acyclic complex

of projective A-modules, and M is Gorenstein projective in Mod(A).

Lemma 3.6. Let M ∈ GrMod(A). If M is Gorenstein projective in Mod(A), then there is an exact

sequence 0 →M → N → L→ 0 in GrMod(A) with N projective and L Gorenstein projective in Mod(A);

moreover, it also remains exact after applying HomGr(−, P ) for any projective module P ∈ GrMod(A).

Proof. We consider the graded A-module M =
⊕

i∈ZM
i as an R-complex with differential δ of de-

gree 1. Since M is Gorenstein projective in Mod(A), each M i is a Gorenstein projective A-module. By

Lemma 2.2, M is a Gorenstein projective R-module, and then M i is also Gorenstein projective for any

i ∈ Z. Then there exists an exact sequence 0 → M i fi

→ Gi → Hi → 0 in Mod(R) with Gi projective
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and Hi Gorenstein projective. Let D be any projective R-module. For any gi :M i → D, there exists an

R-homomorphism hi : Gi → D such that gi = hif i.

Consider the following commutative diagram:

...

��

...

��
M i−1

δ

��

giδ ##H
HH

HH
HH

HH
H

(
fi−1

fiδ

)
// N i−1 = Gi−1 ⊕Gi

(0 hi)
tti i i i i i i i i i

( 0 1
0 0 )

��

D

M i

��
gi

""E
EE

EE
EE

EE
E

(
fi

fi+1δ

)
// N i = Gi ⊕Gi+1

(hi 0)

uuk k k k k k k k k k

��
... D

...

This implies that there exists an exact sequences 0 →M → N → L→ 0 in GrMod(A) with N projective,

such that the induced sequence 0 → HomGr(L,D[−i]) → HomGr(N,D[−i]) → HomGr(M,D[−i]) → 0 is

still exact. Moreover, we have an exact sequence

0 → HomR(L
i, D) → HomR(N

i, D) → HomR(M
i, D) → Ext1R(L

i, D) → 0.

So Ext1R(L
i, D) = 0. Specifically, Ext1R(L

i, Gi) = 0, and then we get the following commutative diagram:

0 // M i // N i //

��

Li //

��

0

0 // M i // Gi // Hi // 0.

By a version of Schanuel’s lemma, we have Li ⊕ Gi = Hi ⊕ N i, and then Li is Gorenstein projective

in Mod(R). So L =
⊕

i∈Z L
i is also a Gorenstein projective R-module.

Let Q be a projective module in Mod(A). Then Ext1A(L,A⊗RQ) ∼= Ext1R(L,Q) = 0. Since Q is a direct

summand of A⊗RQ, Ext1A(L,Q) = 0, and then it yields from the exact sequence 0 →M → N → L→ 0

in Mod(A) that L is a Gorenstein projective A-module.

Let P ∈ GrMod(A) be projective. Then P =
∏

i∈Z P
i[−i] for a family of projective R-modules

{P i}i∈Z. Note that for any graded A-module M , HomGr(M,P ) ∼=
∏

i∈Z HomR(M
i, P i). Then, from the

exact sequence

0 →
∏
i∈Z

HomR(L
i, P i) →

∏
i∈Z

HomR(N
i, P i) →

∏
i∈Z

HomR(M
i, P i) → 0,

we deduce the desired exact sequence 0 → HomGr(L,P ) → HomGr(N,P ) → HomGr(M,P ) → 0.

Lemma 3.7. Let M ∈ GrMod(A). If M is Gorenstein projective in Mod(A), then there is an exact

sequence 0 → K → N → M → 0 in GrMod(A), where N is projective and K is Gorenstein projective

in Mod(A). Moreover, it also remains exact after applying HomGr(−, P ) for any projective module

P ∈ GrMod(A).

Proof. Let M =
⊕

i∈ZM
i ∈ GrMod(A), and P be a projective module in GrMod(A). Then P =∏

i∈Z P
i[−i], where P i are projective R-modules. Moreover, HomGr(M,P ) ∼=

∏
i∈Z HomR(M

i, P i).

Since the category GrMod(A) has enough projectives, there exists an exact sequence 0 → K → N →
M → 0 in GrMod(A) with N projective. Considered as an exact sequence in Mod(A), it yields that K is
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Gorenstein projective in Mod(A) since the class of Gorenstein projective modules is closed under taking

kernel of epimorphisms.

Since M i is Gorenstein projective in Mod(A), it follows from Lemma 2.2 that M i is also Gorenstein

projective as an R-module. Then the sequence

0 →
∏
i∈Z

HomR(M
i, P i) →

∏
i∈Z

HomR(N
i, P i) →

∏
i∈Z

HomR(K
i, P i) →

∏
i∈Z

Ext1R(M
i, P i) = 0

is exact. This yields the desired exact sequence

0 → HomGr(M,P ) → HomGr(N,P ) → HomGr(K,P ) → 0.

Proof of Theorem 3.2. (1)⇒(2) is precisely the result of Lemma 3.5. (2)⇒(3) follows from Lemma 2.2

since A = R[x]/(x2) is a Frobenius extension of R.

(2)⇒(1). Let M ∈ GrMod(A), and M be Gorenstein projective in Mod(A). By Lemma 3.7, there is

an exact sequence 0 → K1 → P1 → M → 0 in GrMod(A), where P1 is projective and K1 is Gorenstein

projective in Mod(A), which is also HomGr(−, P )-exact for any projective module P ∈ GrMod(A). Repeat

this procedure, we get a HomGr(−, P )-exact exact sequence · · · → P2 → P1 → M → 0 in GrMod(A)

with Pi projective. Similarly, by applying Lemma 3.6, we have a HomGr(−, P )-exact exact sequence

0 → M → P0 → P−1 → · · · in GrMod(A) with Pi projective. Splice this two sequences together,

and then we obtain a totally acyclic complex of projectives in GrMod(A), such that M is Gorenstein

projective in GrMod(A).

(3)⇒(2). By Lemma 2.3(1), it suffices to construct the right part of the totally acyclic complex of

projective A-modules. Since M is a Gorenstein projective R-module, the argument in Lemma 3.6 works,

i.e., there is an exact sequence 0 → M → P0 → L1 → 0 in GrMod(A), where P0 is projective and L1

is Gorenstein projective in Mod(R). Moreover, the sequence is HomR(−, D)-exact for any projective

R-module D. Let P be any projective A-module. Thus, the above sequence is HomA(−, A ⊗R P )-

exact, and furthermore, HomA(−, P )-exact. Successively, we build a HomA(−, P )-exact exact sequence

0 →M → P0 → P−1 → · · · with Pi being projective A-modules. This completes the proof.

Finally, let us mention recent works on R[x]/(x2)-modules. Note that A = R[x]/(x2) is the ring of dual

numbers over R, and differential R-modules (i.e., modules equipped with an R-endomorphism of square

zero) are just A-modules. Avramov et al. [1] introduced projective, free and flat classes for differential

modules and give some inequalities. These results specialize to basic theorems in commutative algebra

and algebraic topology. Ringel and Zhang [21] investigated representations of quivers over the algebra of

dual numbers; for a hereditary Artin algebra R, a bijective correspondence between the stable category

of finitely generated Gorenstein projective differential R-modules and the category of finitely generated

R-modules is given. Wei [24] showed that for any ring, a differential module is Gorenstein projective if

and only if its underlying module is Gorenstein projective.
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