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Abstract In this paper, we investigate Markovian backward stochastic differential equations (BSDEs) with

the generator and the terminal value that depend on the solutions of stochastic differential equations with rank-

based drift coefficients. We study regularity properties of the solutions of this kind of BSDEs and establish

their connection with semi-linear backward parabolic partial differential equations in simplex with Neumann

boundary condition. As an application, we study the European option pricing problem with capital size based

stock prices.
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1 Introduction

Linear backward stochastic differential equations (BSDEs for short) were introduced by Bismut [3] in

1973, while the general BSDEs were introduced and studied by Pardoux and Peng [27] in 1990. The

solutions of BSDEs consist of a pair of adapted processes (Y, Z) taking values in R× Rn and satisfying

−dY (t) = f(t, Y (t), Z(t))dt− Z(t) · dW (t), Y (T ) = ξ,

where W (t) is an n-dimensional Brownian motion, f is a function on [0,∞) × R × Rn, and ξ is an FT -

measurable random variable. Here, {Ft, t > 0} is the minimal augmented filtration generated by W . In

BSDEs, ξ is called terminal value and the function f is called generator. In [10], El Karoui et al. used

BSDEs to determine the price of a contingent claim ξ > 0 of maturity T , which is a contract that pays

an amount of ξ at time T . They showed the problem is well-posed, i.e., there exist a unique price and a

unique hedging portfolio. The interest in BSDEs also comes from its connections with partial differential

equations (PDEs for short). Pardoux [26] and Pardoux and Peng [28] studied Markovian BSDEs and

gave a Feynman-Kac representation for the solutions to some nonlinear parabolic partial differential
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equations. For more information and applications on BSDEs, the interested readers are referred to Chen

and Epstein [5], Cvitanic and Ma [8], Pardoux and Zhang [29] and the references therein.

Recently, systems of rank-based stochastic differential equations (rank-based SDEs for short), also

called competing Brownian particles, have received lots of attention, where the drift and diffusion coeffi-

cients of each component are determined by its rank in the system. Rank-based SDEs are introduced by

Karatzas and Fernholz [20] as a model in stochastic portfolio theory for analyzing portfolio behavior and

equity market structure. It can be used to model capital distribution in financial market. The importance

of rank-based models stems from the fact that they match the data of capital distribution curve. In [2],

Bass and Pardoux showed that SDEs with piecewise constant coefficients have a weak solution, which

is unique in law. Recently, Shkolnikov [32] obtained the existence and uniqueness of weak solution for

SDEs driven by independent identically distributed Lévy processes with rank-based coefficients. In [11],

Fernholz et al. established the existence and pathwise uniqueness of strong solution for two-dimensional

SDEs with rank-based coefficients. It is extended to finite and countably infinite systems in [15]. For

ranked particles from SDEs with rank-based coefficients, the collisions are symmetric, i.e., if two adjacent

particles collide, they are pushed apart and the push, which is the local time of the collision, is split

evenly between them. Karatzas et al. [21] and Sarantsev [30] studied systems of Brownian particles with

asymmetric collisions. In these systems, the local time of collision between two particles can be split

unevenly between them and the parameters of the collisions are decided by the ranks of the particles

involved in the collisions. For more information on competing Brownian particles and their applications,

the readers are referred to Chatterjee and Pal [4], Ichiba et al. [16], Jourdain and Reygner [18] and

Karatzas and Sarantsev [22].

In this paper, we use BSDEs method to study the European option pricing problem under the scenario

that the prices of stocks depend on their market capital size, i.e., the coefficients of the price processes

are rank-based. This is motivated by the fact that stock price of a company with large capital asset

tends to move differently than that of a company with small capital asset, and thus it is reasonable to

model stock prices using SDEs with rank-based coefficients. The outline of the paper is as follows. In

Section 2, we introduce SDEs with rank-based coefficients. We thus study Markovian BSDEs in which

the generator and terminal value depend on the solutions from SDEs with rank-based drift coefficients

in Section 3. More specifically, we study the following Markov type BSDEs:

Y t,x̃(s) = g(X̃t,x̃(T )) +

∫ T

s

f(r,Xt,x̃(r), Y t,x̃(r), Zt,x̃(r))dr −
∫ T

s

Zt,x̃(r) · dW (r), (1.1)

where X̃t,x̃(s) := (Xt,x̃
(1)(s), . . . , X

t,x̃
(n)(s)) with X

t,x̃
(1)(s) > Xt,x̃

(2)(s) > · · · > Xt,x̃
(n)(s) are the ranked particles

from the solution of the following SDEs with rank-based drift coefficient:

Xt,x̃
i (s) = x̃i +

∫ s∨t

t

n∑
j=1

bj1{Xt,x̃
i (r)=Xt,x̃

(j)
(r)}dr +Wi(s ∨ t)−Wi(t), i = 1, . . . , n.

We further assume that there is a function h(t, x̃, y, z) so that

f(t, x, y, z) = h(t, x̃, y, z̄),

where

x̃ = (x̃1, . . . , x̃n) = (x(1), . . . , x(n)) ∈ Γn

and

z̄j :=
n∑

i=1

zi1{xi=x(j)}.

This allows us to give an equivalent form of BSDEs (1.1). Under this assumption, in Section 4, we

establish a nonlinear Feynman-Kac formula which shows that u(t, x̃) := Y t,x̃(t) obtained from BSDEs
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(1.1) is the unique viscosity solution of the following nonlinear PDEs with Neumann boundary condition:
∂u

∂t
(t, x̃) = −Lu(t, x̃)− h(t, x̃, u(t, x̃),∇u(t, x̃)), t ∈ [0, T ], x̃ ∈ Πn,

u(T, x̃) = g(x), x̃ ∈ Γn,
∂u

∂x̃i+1
(t, x̃) =

∂u

∂x̃i
(t, x̃), t ∈ [0, T ), x̃ ∈ Fi, i = 1, . . . , n− 1.

Here, Πn := {x̃ ∈ Rn : x̃1 > x̃2 > · · · > x̃n}, L = 1
2

∑n
i=1

∂2

∂x̃2
i
+
∑n

i=1 bi
∂

∂x̃i
and

Fi := {x̃ ∈ ∂Πn : x̃1 > x̃2 > · · · > x̃i = x̃i+1 > · · · > x̃n}, Γn := Πn ∪
( n−1∪

i=1

Fi

)
. (1.2)

Observe that the simplex Πn is unbounded with Lipschitz boundary. In Section 5, we study European

option pricing in which the drift coefficients of stock prices processes are rank-based and show that there

exists a unique hedging portfolio and unique price which is the unique viscosity solution of nonlinear PDEs

with Neumann boundary condition. In this case, the generator of the wealth process is not continuous

with respect to the ranked price processes (or price processes). Finally, we study BSDEs associated with

ordered Brownian particles but with asymmetric collisions in Section 6.

We end the introduction with some notational conventions. Denote by Rn the n-dimensional Euclidean

space with Euclidean norm | · |. The Euclidean inner product between two vectors x, y ∈ Rn will be

denoted by x · y. Let (R+)
n be the set of n-dimensional vectors whose components are all positive.

Let Rn×n be the Hilbert space of all n × n matrices with the inner product ⟨A,B⟩ := Tr[ABtr] for

every A,B ∈ Rn×n, where, the superscript tr denotes the transpose of vectors or matrices while Tr(A)

denotes the trace of a matrix A. Denote by S(n) the set of n × n symmetric matrix and In the n × n

identity matrix. For a subset D of Rn, denote the interior of D by int(D) and the Euclidean boundary

of D by ∂D. Denote by C([0, T ] × Rn;R) the set of continuous functions u(t, x) : [0, T ] × Rn → R and

C1,2([0, T )×Γn;R) the set of functions u(t, x) : [0, T )×Γn → R such that u(t, x) is first order continuously

differentiable in t and second order continuously differentiable in x. For u ∈ C([0, T ]×Rn;R), denote by

D̄2,+
u (t, x) the parabolic superset of u at (t, x), i.e., D̄2,+

u (t, x) is the set of triple (p, q, A) ∈ R×Rn×S(n)
such that for (s, y) ∈ [0, T ]× Rn,

u(s, y) 6 u(t, x) + p(s− t) + q · (y − x) +
1

2
(y − x)tr ·A(y − x) + o(|s− t|+ |y − x|2).

Here, the notation o(δ) means a quantity f(δ) such that limδ→0 f(δ)/δ = 0. Similarly, denote by D̄2,−
u (t, x)

the parabolic subset of u at (t, x), i.e., D̄2,−
u (t, x) is the set of triple (p, q, A) ∈ R× Rn × S(n) such that

for (s, y) ∈ [0, T ]× Rn,

u(s, y) > u(t, x) + p(s− t) + q · (y − x) +
1

2
(y − x)tr ·A(y − x) + o(|s− t|+ |y − x|2).

Denote by C([0, T ];Rn) the set of continuous functions u : [0, T ] → Rn. C([0, T ];Rn) is a Banach space

with the norm

∥u∥L∞([0,T ]) := max
06t6T

|u(t)|.

We will use C and c to denote positive constants whose values may change from line to line. For

a, b ∈ R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. We use ⟨X,Y ⟩ to denote the quadratic covariation

process of two continuous semimartingales X and Y .

2 SDEs with rank-based coefficients

In this section, we give a brief introduction of rank-based stochastic differential equations. Let (Ω,F ,P)
be a complete probability space on which defines a standard n-dimensional Brownian motion W =
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(W1,W2, . . . ,Wn). Denote by {FW
t } the minimal argument filtration generated by {W (t)} so FW

0 con-

tains all the P-null subsets of FW
∞ . Fix T > 0, for n ∈ N and p > 1. We introduce the following spaces

of random variables or stochastic processes:

• Lp(FW
T ;Rn): the space of Rn-valued, FW

T -measurable random variables ξ such that E[|ξ|p] < +∞.

• Mp([0, T ];Rn): the space of n-dimensional progressively measurable processes {φt, 0 6 t 6 T} such

that E[
∫ T

0
|φt|pdt] < +∞.

• Sp([0, T ];Rn): the space of n-dimensional progressively measurable processes {φt, 0 6 t 6 T} such

that E[sup06t6T |φt|p] < +∞.

Consider the following system of SDEs:

dXi(t) =
n∑

j=1

bj1{Xi(t)=X(j)(t)}dt+
n∑

j=1

σj1{Xi(t)=X(j)(t)}dWi(t), i = 1, . . . , n, (2.1)

where bj , j = 1, . . . , n, are real constants; σj , j = 1, . . . , n, are strictly positive real constants and

X(1)(t) > X(2)(t) > · · · > X(n)(t) (2.2)

are the ordered particles for (X1(t), . . . , Xn(t)). Ties are resolved by resorting to the lowest index. For

example, we set

X(i)(t) = Xi(t), i = 1, . . . , n whenever X1(t) = · · · = Xn(t).

In addition, let the initial condition be deterministic and satisfy X(0) = (X1(0), X2(0), . . . , Xn(0)) ∈ Πn.

We call the processes Xi, i = 1, . . . , n, named particles and X(j), j = 1, . . . , n, ranked particles.

Definition 2.1. (i) A finite sequence (a1, . . . , an) is called concave, if for every three consecutive

elements ai, ai+1 and ai+2, we have

ai+1 > 1

2
(ai + ai+2), i = 1, . . . , n− 2.

(ii) A triple collision at time t occurs if there exists a rank j ∈ {2, . . . , n− 1} so that

X(j−1)(t) = X(j)(t) = X(j+1)(t).

Theorem 2.2. Suppose the sequence (0, σ2
1 , . . . , σ

2
n, 0) is concave. Then with probability one, there are

no triple collisions at any time t > 0 and there exists a unique strong solution of (2.1) defined for all

t > 0.

Proof. It is proved in [15, Theorem 2] that if (0, σ2
1 , . . . , σ

2
n, 0) is concave, the strong existence and

pathwise uniqueness of (2.1) hold until the first time of a triple collision. In [31, Theorem 1.4], Sarantsev

showed that there are a.s. no triple collisions if and only if (0, σ2
1 , . . . , σ

2
n, 0) is concave. Therefore, the

proof is completed.

Under the condition of Theorem 2.2, the ranked process (X(1)(t), X(2)(t), . . . , X(n)(t)) takes values

in Γn (see (1.2)), a proper subset of Πn.

Denote by Λj,j+1(t), j = 1, . . . , n − 1, the semimartingale local time at the origin over the time

interval [0, t] for Gj(·) = X(j)(·)−X(j+1)(·), j = 1, . . . , n− 1, i.e.,

Λj,j+1(t) := Gj(t)−Gj(0)−
∫ t

0

1{Gs>0}dGs.

Set Λ0,1(·) = Λn,n+1(·) ≡ 0.We know from [1] that the ranked particles have the following representation:

for j = 1, . . . , n,

dX(j)(t) = bjdt+ σjdβj(t) +
1

2
(dΛj,j+1(t)− dΛj−1,j(t)), t > 0,
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where

βj(·) :=
n∑

i=1

∫ ·

0

1{Xi(t)=X(j)(t)}dWi(t). (2.3)

Note that (β1(t), . . . , βn(t)) is a standard n-dimensional Brownian motion. The process of ranked particles

is a (normally) reflected Brownian motion (RBM for short) in the Weyl chamber

W := {(x1, . . . , xn) ∈ Rn : x1 > · · · > xn}

with reflection matrix

R :=



1
2 0 0 · · · 0 0

−1
2

1
2 0 · · · 0 0

0 − 1
2

1
2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − 1
2

1
2

0 0 0 · · · 0 −1
2


,

i.e., the process (X(1), . . . , X(n)) behaves like an n-dimensional Brownian motion with constant drift and

covariance matrix in the interior of the wedge W, and is normally reflected on the faces {xi = xi+1},
i = 1, . . . , n−1, of W. The directions of reflection are specified by the columns of the reflection matrix R.

Occasionally, it will be more convenient to consider the following process of spacings (or gaps), instead

of the process of the ranked particles (X(1), . . . , X(n)),

G := (X(1) −X(2), . . . , X(n−1) −X(n)),

where, for j = 1, . . . , n− 1 and t > 0,

dGj(t) = (bj − bj+1)dt+ σjdβj(t)− σj+1dβj+1(t)−
1

2
(dΛj−1,j(t) + dΛj+1,j+2(t)) + dΛj,j+1(t).

The process G is a obliquely reflected Brownian motion in the (n − 1)-dimensional non-negative or-

thant (R+)
n−1 with the reflection matrix

R :=



1 −1
2 0 · · · 0 0

− 1
2 1 − 1

2 · · · 0 0

0 −1
2 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 − 1
2

0 0 0 · · · − 1
2 1


.

We refer the readers to [9] and the survey [33] on semimartingale reflected Brownian motions.

Remark 2.3. As in [21, 31], if we start from ranked particles {X(j)(t)}nj=1, we can define the corre-

sponding named particles {Xi(t)}ni=1 such that

max
16i6n

Xi(t) = X(1)(t) > · · · > X(n)(t) > min
16i6n

Xi(t).

Since the main motivation of our paper is to study European option pricing with rank-based stock prices

and the stock prices are more easily observed and commonly used in the real stock market, we first study

named particles, which corresponds to the stock price processes. Then switch to ranked particles.
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Next, we study the continuous dependence on the initial conditions by the strong solution of (2.1).

For this purpose, we consider a different system in which the diffusion coefficients are 1. For every

(t, x̃) ∈ [0, T ]× Γn and i = 1, . . . , n, let {Xt,x̃
i (s), s > 0} be the solution to the following SDEs:

Xt,x̃
i (s) = x̃i +

n∑
j=1

∫ s∨t

t

bj1{Xt,x̃
i (r)=Xt,x̃

(j)
(r)}dr +Wi(s ∨ t)−Wi(t). (2.4)

Since {bj} are bounded, it is easy to check that there exists a constant C depending on (p, T, {bj})
such that

E
[

sup
06s6T

|Xt,x̃
i (s)|p

]
6 C(1 + |x̃|p), i = 1, . . . , n. (2.5)

Moreover, we have the following theorem.

Theorem 2.4 (See [25, Corollary 13]). For every p > 1, there exists a constant C depending on

(p, n, {bj}) such that for every x̃, x̃′ ∈ Γn and t, t′ ∈ [0, T ], we have

E[|Xt,x̃
i (s)−Xt′,x̃′

i (s)|p] 6 C(|x̃− x̃′|p + |t− t′|p/2), s ∈ [0, T ], i = 1, . . . , n. (2.6)

Before we derive the corresponding properties for ranked particles X(j), j = 1, . . . , n, we need the

following lemma.

Lemma 2.5. For two real number sequences (x1, . . . , xn) and (x′1, . . . , x
′
n) and k = 1, . . . , n, let yk

and y′k be the k-largest number in the two sequences, respectively. Then

|yk − y′k| 6 max
16i6n

|xi − x′i|, k = 1, . . . , n. (2.7)

Proof. Suppose y1 = xi and y
′
1 = x′j . If i = j, then y1−y′1 = xi−x′i. If i ̸= j, without loss of generality,

assume that y1 > y′1, then

0 6 y1 − y′1 = xi − x′j 6 xi − x′i.

So (2.7) holds for k = 1. Similarly, (2.7) is true for k = n.

For 1 < k < n, note that yk = max16i1<···<ik6n{min(xi1 , . . . , xik)}. Thus we have by (2.7) for k = 1

and k = n that

|yk − y′k| =
∣∣∣ max
16i1<···<ik6n

{min(xi1 , . . . , xik)} − max
16i1<···<ik6n

{min(x′i1 , . . . , x
′
ik
)}
∣∣∣

6 max
16i1<···<ik6n

|{min(xi1 , . . . , xik)} − {min(x′i1 , . . . , x
′
ik
)}|

6 max
16i1<···<ik6n

max
i=i1,...,ik

|xi − x′i|

6 max
16i6n

|xi − x′i|.

This completes the proof.

Theorem 2.6. For every p > 1, there exist positive constants C1 and C2 depending on (p, T, n, {bj})
and (p, n, {bj}), respectively, so that for every x̃, x̃′ ∈ Γn and t, t′ ∈ [0, T ], we have

E
[

sup
06s6T

|Xt,x̃
(j) (s)|

p
]
6 C1(1 + |x̃|p), j = 1, . . . , n, (2.8)

and

E[|Xt,x̃
(j) (s)−Xt′,x̃′

(j) (s)|p] 6 C2(|x̃− x̃′|p + |t− t′|p/2), s ∈ [0, T ], j = 1, . . . , n. (2.9)

Proof. By the definition of Xt,x̃
(j) (s) and (2.5), we have

E
[

sup
06s6T

|Xt,x̃
(j) (s)|

p
]
6 E

[ n∑
i=1

sup
06s6T

|Xt,x̃
i (s)|p

]
6 C1(1 + |x̃|p).
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Similarly, by Lemma 2.5 and Theorem 2.4, we have

E[|Xt,x̃
(j) (s)−Xt′,x̃′

(j) (s)|p] 6 E

[ n∑
i=1

|Xt,x̃
i (s)−Xt′,x̃′

i (s)|p
]
6 C2(|x̃− x̃′|p + |t− t′|p/2).

This completes the proof.

3 BSDEs with rank-based data

Denote the ranked particles defined in Section 2 by X̃t,x̃(s) := (Xt,x̃
(1)(s), . . . , X

t,x̃
(n)(s)). By Theorem 2.2,

we know that the ranked particles live on Γn := Πn ∪ (
∪n−1

i=1 Fi), a proper subset of Πn. Moreover, it

follows from [21, Theorem 5] that∑
i̸=j

∫ ∞

t

1{Xt,x̃
i (r)=Xt,x̃

j (r)}dr = 0 a.s. (3.1)

For (t, x̃) ∈ [0, T ]× Γn, consider the following BSDEs with s running from t to T :

Y t,x̃(s) = g(X̃t,x̃(T )) +

∫ T

s

f(r,Xt,x̃(r), Y t,x̃(r), Zt,x̃(r))dr −
∫ T

s

Zt,x̃(r) · dW (r), (3.2)

where f : [0, T ]× Rn × R× Rn → R and g : Γn → R are two measurable functions.

Consider the following conditions on f and g:

(H1) f(t, x, y, z) is jointly continuous on [0, T ]×Rn×R×Rn and uniformly continuous in x, and there

exists a constant c > 0 so that

|f(t, x, y, z)− f(t, x, y′, z′)| 6 c(|y − y′|+ |z − z′|), (3.3)

and

|f(t, x, 0, 0)| 6 c(1 + |x|). (3.4)

Furthermore, there exists a function h : [0, T ] × Γn × R × Rn → R such that for every t ∈ [0, T ],

x = (x1, . . . , xn) ∈ Rn with its projection x̃ = (x̃1, . . . , x̃n) = (x(1), . . . , x(n)) ∈ Γn,

f(t, x, y, z) = h(t, x̃, y, z̄), where z̄j :=
n∑

i=1

zi1{xi=x(j)}. (3.5)

(H2) There exists a constant c so that

|g(x̃)− g(x̃′)| 6 c|x̃− x̃′| for x̃, x̃′ ∈ Γn (3.6)

and

|g(x̃)| 6 c(1 + |x̃|) for x̃ ∈ Γn. (3.7)

Remark 3.1. From the relation (3.5) between f and h and (3.3) and (3.4), we obtain that h : [0, T ]×
Γn × R× Rn → R is jointly continuous and linear growth with x̃. Furthermore, h is Lipshitz continuous

in (y, z̄), and uniformly continuous in x̃.

Remark 3.2. Typical solutions (Yt, Zt) of BSDEs are of the form Yt = u(t,Xt) and Zt = ∇xu(t,Xt)

for some suitable deterministic function u(t, x). Based on the relation between x and z = ∇xu(t, x), if

we want to consider a function h on Πn and symmetrically extend it to Rn, we need to change the order

of the subscripts of z at the same time, i.e., to change z̄ to z. Thus, (3.5) is a natural assumption.

It follows from [27, Theorem 4.1] that BSDEs (3.2) have a unique solution (Y t,x̃, Zt,x̃) ∈ S2([t, T ];R)
×M2([t, T ];Rn). Moreover, (3.2) can be rewritten as

Y t,x̃(s) = g(X̃t,x̃(T )) +

∫ T

s

h(r, X̃t,x̃(r), Y t,x̃(r), Z̄t,x̃(r))dr −
∫ T

s

Z̄t,x̃(r) · dβ(r), (3.8)
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where for i = 1, . . . , n,

Z̄t,x̃
j (r) :=

n∑
i=1

Zt,x̃
i (r)1{Xt,x̃

i (r)=Xt,x̃
(j)

(r)}

and

βj(t) :=

n∑
i=1

∫ t

0

1{Xt,x̃
i (r)=Xt,x̃

(j)
(r)}dWi(r), (3.9)

which is a Brownian motion on Rn. Clearly, Z̄t,x̃(s) = (Z̄t,x̃
1 (s), . . . , Z̄t,x̃

n (s)) ∈M2([t, T ];Rn).

Theorem 3.3. Suppose (H1) and (H2) hold. Let W (t) be Brownian motion on Rn and let β(t) be

defined by (3.9). There exists a unique pair of the solution (Y, Z̄) ∈ S2([t, T ];R)×M2([t, T ];Rn) for (3.8).

Proof. It remains to show the solutions to (3.8) are unique. For simplicity, we omit the superscript (t, x).

Suppose (Y, Z̄) and (Y ′, Z̄ ′) are the solutions of (3.8), from the above proof we know that (Y, Z) and

(Y ′, Z ′) are the solutions of (3.2), where,

Zi(r) :=

n∑
j=1

Z̄j(r)1{Xi(r)=X(j)(r)}, i = 1, . . . , n,

and

Z ′
i(r) :=

n∑
j=1

Z̄ ′
j(r)1{Xi(r)=X(j)(r)}, i = 1, . . . , n.

Since (3.2) has a unique solution, i.e.,

E

[ ∫ T

t

|Y (s)− Y ′(s)|2ds
]
+ E

[ ∫ T

t

|Z(s)− Z ′(s)|2ds
]
= 0,

we have

E

[ ∫ T

t

|Y (s)− Y ′(s)|2ds
]
+ E

[ ∫ T

t

|Z̄(s)− Z̄ ′(s)|2ds
]
= 0.

This proves that (3.8) has a unique solution too.

Remark 3.4. The existence and uniqueness of BSDEs (3.2) follow from the classical results on BSDEs.

However, the equivalence between BSDEs (3.2) and BSDEs (3.8) allows us to connect the solution of

BSDEs (3.2) with parabolic PDEs in simplex Πn with Neumann boundary condition, which is different

from the classical results.

Next, we establish regularity properties of the solutions of BSDEs (3.2). Note that we extend the

definitions of Xt,x̃(s), Y t,x̃(s) and Zt,x̃(s) to every (s, t) ∈ [0, T ] by setting Xt,x̃(s) = Xt,x̃(s∨ t), Y t,x̃(s)

= Y t,x̃(s ∨ t), and Zt,x̃(s) = 0 for s < t. Based on Theorems 2.4 and 2.6, by classical estimation for

BSDEs (see [10, Proposition 4.1]), we have the following theorem.

Theorem 3.5. Suppose (H1) and (H2) hold, and p > 2. There exists a constant C depending on

(p, T, n, {bj}) such that for every x̃, x̃′ ∈ Γn and t, t′ ∈ [0, T ], we have

E
[

sup
06s6T

|Y t,x̃(s)|p
]
6 C(1 + |x̃|p), (3.10)

and

E
[

sup
06s6T

|Y t,x̃(s)− Y t′,x̃′
(s)|p

]
→ 0 as t′ → t, x̃′ → x̃. (3.11)

Define

u(t, x̃) := Y t,x̃(t), (t, x̃) ∈ [0, T ]× Γn. (3.12)

(3.11) shows that (s, t, x̃) → Y t,x̃(s) is mean-square continuous. Since Y t,x̃(t) is deterministic, this implies

that u(t, x̃) is jointly continuous in (t, x̃).
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Next, consider the following semi-linear backward parabolic PDEs with Neumann boundary condition:
∂u

∂t
(t, x̃) = −Lu(t, x̃)− h(t, x̃, u(t, x̃),∇u(t, x̃)), t ∈ [0, T ], x̃ ∈ Πn,

u(T, x̃) = g(x̃), x̃ ∈ Γn,
∂u

∂x̃i+1
(t, x̃) =

∂u

∂x̃i
(t, x̃), t ∈ [0, T ), x̃ ∈ Fi, i = 1, . . . , n− 1,

(3.13)

where

L =
1

2

n∑
i=1

∂2

∂x̃2i
+

n∑
i=1

bi
∂

∂x̃i
. (3.14)

Theorem 3.6. Suppose PDEs (3.13) has a solution u(t, x̃) ∈ C1,2([0, T ]×Γn;R) and there exist some

c, p > 0 such that

|∇u(t, x̃)| 6 c(1 + |x̃|p).

Then the solution of (3.13) is unique.

Proof. Let u(t, x̃) be a solution of (3.13) in C1,2([0, T ]× Γn;R) with |∇u(t, x̃)| 6 c(1 + |x̃|p). We have

by Itô’s formula and (3.1),

du(s, X̃t,x̃(s)) =
∂u

∂s
(s, X̃t,x̃(s))ds+

n∑
i=1

∂u

∂x̃i
(s, X̃t,x̃(s))dXt,x̃

(i) (s)

+
1

2

n∑
i=1

n∑
j=1

∂u

∂x̃i
(s, X̃t,x̃(s))

∂u

∂x̃j
(s, X̃t,x̃(s))d⟨Xt,x̃

(i) , X
t,x̃
(j) ⟩s

=
∂u

∂s
(s, X̃t,x̃(s))ds+

n∑
i=1

bi
∂u

∂x̃i
(s, X̃t,x̃(s))ds+

1

2

n∑
i=1

∂2u

∂x̃2i
(s, X̃t,x̃(s))ds

+

n∑
i=1

∂u

∂x̃i
(s, X̃t,x̃(s))dβi(s)−

1

2

n∑
i=1

∂u

∂x̃i
(s, X̃t,x̃(s))dΛi−1,i(s)

+
1

2

n∑
i=1

∂u

∂x̃i
(s, X̃t,x̃(s))dΛi,i+1(s)

= −h(s, X̃t,x̃(s), u(s, X̃t,x̃(s)),∇u(s, X̃t,x̃(s)))ds+
n∑

i=1

∂u

∂x̃i
(s,Xt,x̃(s))dβi(s).

Let Y t,x̃(s) = u(s, X̃t,x̃(s)) and Z̄t,x̃(s) = (∇u)(s, X̃t,x̃(s)). Set

Zt,x̃
j (s) :=

n∑
i=1

Z̄t,x̃
i (s)1{Xi(s)=X(j)(s)} =

n∑
i=1

∂u

∂x̃i
(s,Xt,x̃(s))1{Xi(s)=X(j)(s)}.

Note that Y ∈ S2([0, T ];R) and Z̄ ∈M2([0, T ];Rn) in view of Theorem 2.6. Then

dY t,x̃(s) = −h(s, X̃t,x̃(s), Y t,x̃(s), Z̄t,x̃(s))ds+ Z̄t,x̃(s) · dβ(s)
= −f(s,Xt,x̃(s), Y t,x̃(s), Zt,x̃(s))ds+ Zt,x̃(s) · dW (s), (3.15)

and

Y t,x̃(T ) = u(T, X̃t,x̃(T )) = g(X̃t,x̃(T )).

Hence, (Y t,x̃(s), Zt,x̃(s)) is the solution of BSDEs (3.2) and (3.12) holds. The uniqueness of the solution

to (3.13) follows from the uniqueness of the solution of BSDEs (3.2).
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4 Connection with PDEs

In this section, we will study nonlinear Feynman-Kac formula which shows that u(t, x̃) defined in (3.12)

is the unique viscosity solution of the following PDEs:
∂u

∂t
(t, x̃) = −Lu(t, x̃)− h(t, x̃, u(t, x̃),∇u(t, x̃)), t ∈ [0, T ], x̃ ∈ Πn,

u(T, x̃) = g(x̃), x̃ ∈ Γn,
∂u

∂x̃i+1
(t, x̃) =

∂u

∂x̃i
(t, x̃), t ∈ [0, T ), x̃ ∈ Fi, i = 1, . . . , n− 1.

(4.1)

First, we recall the definition of a viscosity solution of PDEs.

Definition 4.1. (i) A function u ∈ C([0, T ]× Γn;R) is said to be a viscosity subsolution of (4.1) if

u(T, x̃) 6 g(x̃) for x̃ ∈ Γn,

and whenever φ ∈ C1,2([0, T )× Γn;R) and (t, x̃) ∈ [0, T )× Γn is a local minimum of φ− u, we have

−∂φ
∂t

(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃)) 6 0 if x̃ ∈ Πn

and (
∂φ

∂x̃i+1
(t, x̃)− ∂φ

∂x̃i
(t, x̃)

)
∧
(
− ∂φ

∂t
(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃))

)
6 0

if x̃ ∈ Fi for some i = 1, . . . , n− 1.

(ii) A function u ∈ C([0, T ]× Γn;R) is said to be a viscosity supersolution of (4.1) if

u(T, x̃) > g(x̃) for x̃ ∈ Γn,

and whenever φ ∈ C1,2([0, T )× Γn;R) and (t, x̃) ∈ [0, T )× Γn is a local maximum of φ− u, we have

−∂φ
∂t

(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃)) > 0 if x̃ ∈ Πn

and (
∂φ

∂x̃i+1
(t, x̃)− ∂φ

∂x̃i
(t, x̃)

)
∨
(
− ∂φ

∂t
(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃))

)
> 0

if x̃ ∈ Fi for some i = 1, . . . , n− 1.

(iii) A function u ∈ C([0, T ]× Γn;R) is said to be a viscosity solution of (4.1) if it is both a viscosity

subsolution and supersolution.

For more information on viscosity solutions, see Crandall et al. [7].

4.1 Existence of viscosity solution

Theorem 4.2. Suppose (H1) and (H2) hold. The function u defined by (3.12) is a viscosity solution

of (4.1).

Proof. We only show that u is a viscosity subsolution of (4.1). A similar argument will show that it is

also a supersolution. First, obviously, u(T, x̃) = g(x̃). From the uniqueness of the solution to BSDEs (3.2),

we have

Y t,x̃(s) = Y s,X̃t,x̃(s)(s) = u(s, X̃t,x̃(s)), for t 6 s 6 T.

Let φ ∈ C1,2([0, T ) × Γn;R) and (t, x̃) ∈ [0, T ) × Γn be a local minimum of φ − u. Without loss of

generality, assume that φ(t, x̃) = u(t, x̃).

First, we consider the case x̃ ∈ Πn. Suppose that

−∂φ
∂t

(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃)) > 0.
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Let 0 < α 6 T − t be such that A := {y : |y − x̃| 6 α} ⊂ Πn and for all t 6 s 6 t+ α, y ∈ A,

−∂φ
∂s

(s, y)− Lφ(s, y)− h(s, y, u(s, y),∇φ(s, y)) > 0.

Define τ := inf{s > t : |X̃t,x̃(s)− x̃| > α} ∧ (t+ α).

Note that

(Y ′(s), Z̄ ′(s)) := (Y t,x̃(s ∧ τ),1[t,τ ]Z̄
t,x̃(s)), t 6 s 6 t+ α,

is the solution of BSDEs

Y ′(s) = u(τ, X̃t,x̃(τ)) +

∫ τ

s∧τ

1[t,τ ](r)h(r, X̃
t,x̃(r), u(r, X̃t,x̃(r)), Z̄ ′(r))dr −

∫ τ

s∧τ

Z̄ ′(r) · dβ(r)

= u(τ, X̃t,x̃(τ)) +

∫ t+α

s

1[t,τ ](r)h(r, X̃
t,x̃(r), u(r, X̃t,x̃(r)), Z̄ ′(r))dr −

∫ t+α

s

Z̄ ′(r) · dβ(r).

Using Itô’s formula to φ(s, X̃t,x̃(s)), we have

dφ(s, X̃t,x̃(s)) =
∂φ

∂s
(s, X̃t,x̃(s))ds+

n∑
i=1

∂φ

∂x̃i
(s, X̃t,x̃(s))dXt,x̃

(i) (s)

+
1

2

n∑
i=1

n∑
j=1

∂φ

∂x̃i
(s, X̃t,x̃(s))

∂φ

∂x̃j
(s, X̃t,x̃(s))d⟨Xt,x̃

(i) , X
t,x̃
(j) ⟩s

=
∂φ

∂s
(s, X̃t,x̃(s))ds+

n∑
i=1

bi
∂φ

∂x̃i
(s, X̃t,x̃(s))ds+

1

2

n∑
i=1

∂2φ

∂x̃2i
(s, X̃t,x̃(s))ds

+
n∑

i=1

∂φ

∂x̃i
(s, X̃t,x̃(s))dβi(s)−

1

2

n∑
i=1

∂φ

∂x̃i
(s, X̃t,x̃(s))dΛi−1,i(s)

+
1

2

n∑
i=1

∂φ

∂x̃i
(s, X̃t,x̃(s))dΛi,i+1(s).

Integrating from s ∧ τ to τ , we have

φ(τ, X̃t,x̃(τ))− φ(s ∧ τ, X̃t,x̃(s ∧ τ))

=

∫ τ

s∧τ

[
∂φ

∂r
(r, X̃t,x̃(r)) + Lφ(r, X̃t,x̃(r))

]
dr +

n∑
i=1

∫ τ

s∧τ

∂φ

∂x̃i
(r, X̃t,x̃(r))dβi(r).

Therefore,

(Y ′′(s), Z ′′(s)) := (φ(s ∧ τ, X̃t,x̃(s ∧ τ)),1[t,τ ](s)∇φ(s, X̃t,x̃(s))), t 6 s 6 t+ α

is the solution of BSDEs

Y ′′(s) = φ(τ, X̃t,x̃(τ))−
∫ t+α

s

1[t,τ ](r)

(
∂φ

∂r
+ Lφ

)
(r, X̃t,x̃(r))dr −

∫ t+α

s

Z ′′(r) · dβ(r).

Define

Ŷ (r) := Y ′′(r)− Y ′(r), Ẑ(r) := Z ′′(r)− Z̄ ′(r),

ĥ(r) := −
(
∂φ

∂r
+ Lφ

)
(r, X̃t,x̃(r))− h(r, X̃t,x̃(r), u(r, X̃t,x̃(r)), Z ′′(r)),

and

a(r) := h(r, X̃t,x̃(r), u(r, X̃t,x̃(r)), Z ′′(r))− h(r, X̃t,x̃(r), u(r, X̃t,x̃(r)), Z̄ ′(r)).

Note that a(r) 6 C|Z ′′(r) − Z̄ ′(r)| for some constant C > 0. So there exists a bounded FW
t -adapted

process b(r) such that

a(r) = b(r) · (Z ′′(r)− Z̄ ′(r)).
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Therefore,

Ŷ (s) = φ(τ, X̃t,x̃(τ))− u(τ, X̃t,x̃(τ)) +

∫ τ

s∧τ

(ĥ(r) + b(r) · Ẑ(r))dr −
∫ τ

s∧τ

Ẑ(r) · dβ(r).

Let {M(s), s > t} be the unique solution of

dM(s) = b(s)M(s) · dβ(s) with M(t) = 1;

i.e.,

M(s) = exp

(∫ s

t

b(r) · dβ(r)− 1

2

∫ s

t

|b(r)|2dr
)
> 0 for s > t.

By applying Itô’s formula to Ŷ (s)M(s), one can easily verify that

φ(t, x̃)− u(t, x̃) = Ŷ (t) = E

[
Ŷ (τ)M(τ) +

∫ τ

t

ĥ(r)M(r)dr

∣∣∣∣Ft

]
> 0.

This contracts the assumption that φ(t, x̃) = u(t, x̃).

It remains to prove the case that x̃ ∈ Fi, i = 1, . . . , n− 1. Suppose

∂φ

∂x̃i+1
(t, x̃)− ∂φ

∂x̃i
(t, x̃) > 0 and − ∂φ

∂t
(t, x̃)− Lφ(t, x̃)− h(t, x̃, u(t, x̃),∇φ(t, x̃)) > 0.

Let 0 < α 6 T − t be such that

inf
t6s6t+α,|y−x̃|6α

(
∂φ

∂yi+1
(s, y)− ∂φ

∂yi
(s, y)

)
> 0,

and

inf
t6s6t+α,|y−x̃|6α

(
− ∂φ

∂s
(s, y)− Lφ(s, y)− h(s, y, u(s, y),∇φ(s, y))

)
> 0.

Define τ := inf{s > t : |X̃t,x̃(s)− x̃| > α} ∧ inf{s > t : X̃t,x̃(s) ∈ Fj , j ̸= i} ∧ (t+ α).

First, note that

(Y ′(s), Z̄ ′(s)) := (Y t,x̃(s ∧ τ),1[t,τ ]Z̄
t,x̃(s)), t 6 s 6 t+ α

is the solution of BSDEs

Y ′(s) = u(τ, X̃t,x̃(τ)) +

∫ τ

s∧τ

1[t,τ ](r)h(r, X̃
t,x̃(r), u(r, X̃t,x̃(r)), Z̄ ′(r))dr −

∫ τ

s∧τ

Z̄ ′(r) · dβ(r)

= u(τ, X̃t,x̃(τ)) +

∫ t+α

s

1[t,τ ](r)h(r, X̃
t,x̃(r), u(r, X̃t,x̃(r)), Z̄ ′(r))dr −

∫ t+α

s

Z̄ ′(r) · dβ(r).

By Itô’s formula, we have

(Y ′′(s), Z ′′(s)) := (φ(s ∧ τ, X̃t,x̃(s ∧ τ)),1[t,τ ](s)∇φ(s, X̃t,x̃(s))), t 6 s 6 t+ α

satisfies

dY ′′(s) = −1

2

(
∂φ

∂x̃i+1
(s, X̃t,x̃(s))− ∂φ

∂x̃i
(s, X̃t,x̃(s))

)
dΛi,i+1(s)

+

(
∂φ

∂s
+ Lφ

)
(s, X̃t,x̃(s))ds+ Z ′′(s) · dβ(s).

Therefore, we can use the same notation and method as in the case x̃ ∈ Πn to obtain that

φ(t, x̃)− u(t, x̃) = Ŷ (t)

= E

[(
Ŷ (τ)M(τ) +

∫ τ

t

ĥ(r)M(r)dr

) ∣∣∣∣Ft

]
+

1

2
E

[ ∫ τ

t

M(r)

[
∂φ

∂x̃i+1
(r, X̃t,x̃(r))− ∂φ

∂x̃i
(r, X̃t,x̃(r))

]
dΛi,i+1(r)

∣∣∣∣Ft

]
> 0.

This contradiction completes the proof of the theorem.
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4.2 Uniqueness of viscosity solution

For the uniqueness of viscosity solution, we need the following condition on h:

(H3) For all R > 0, there exists a positive function ηR(·) on [0,+∞) with limr→0 ηR(r) = ηR(0) = 0

such that

|h(t, x̃, y, z)− h(t, x̃′, y, z)| 6 ηR(|x̃− x̃′|(1 + |z|))

for |x̃|, |x̃′|, |y| 6 R, t ∈ [0, T ], z ∈ Rn.

Theorem 4.3. Suppose (H1)–(H3) hold. There exists at most one viscosity solution u of (4.1) such that

lim
|x̃|→+∞

|u(t, x̃)|e−A log2 |x̃| = 0 uniformly in t ∈ [0, T ] (4.2)

for some A > 0.

Suppose u and v are viscosity subsolution and viscosity supersolution of (4.1), respectively. Since

both u and v are continuous, we only need to prove that

u(t, x̃) 6 v(t, x̃) on (0, T )×Πn.

First, we prove two lemmas that will be used in the proof of Theorem 4.3. See Appendix A for a

detailed proof.

Lemma 4.4. Suppose u and v are viscosity subsolution and viscosity supersolution of (4.1), respec-

tively. Then the function w := u− v is a viscosity subsolution of the following equation:
∂w

∂t
(t, x̃) = −Lw(t, x̃)− c(|w|+ |∇w|)(t, x̃), (t, x̃) ∈ [0, T )×Πn,

w(T, x̃) = 0, x̃ ∈ Πn,
(4.3)

where c is the Lipschitz constant of F in (y, z).

Lemma 4.5. For every A > 0, there exists C1 > 0 such that the function

Ψ(t, x̃) = exp[(C1(T − t) +A)ψ(x̃)]

satisfies

−∂Ψ
∂t

(t, x̃)− LΨ(t, x̃)− cΨ(t, x̃)− c|∇Ψ(t, x̃)| > 0, on [t1, T ]×Πα,

where, ψ(x̃) = [log(
√
|x̃|2 + 1) + 1]2 and t1 = (T −A/C1)

+.

Proof of Theorem 4.3. Suppose u and v are viscosity subsolution and viscosity supersolution of (4.1),

respectively and define w := u− v. From (4.2) we obtain that

lim
|x̃|→+∞

|w(t, x̃)|e−A[log(
√

|x̃|2+1)+1]2 = 0

uniformly for t ∈ [0, T ] and for some A > 0. This implies that for |x̃| large enough and every β > 0,

|w(t, x̃)| < βΨ(t, x̃).

Thus, M := max[t1,T ]×Πn(w − βΨ)(t, x̃)ec(t−T ) is achieved at some point (t0, x̃0) for any β > 0.

We claim that M 6 0 for any β > 0.

When t0 = T , since

w(T, x̃) = u(T, x̃)− v(T, x̃) 6 0, x̃ ∈ Γn,

we have

w(t, x̃)− βΨ(t, x̃) 6 0 on [t1, T ]×Πn,

i.e., M 6 0.
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When t0 < T , suppose that M = ρ > 0. Then

w(t0, x̃0) = ρec(T−t0) + βΨ(t0, x̃0) > 0.

Define

ϕ(t, x̃) := βΨ(t, x̃) + (w − βΨ)(t0, x̃0)e
c(t0−t).

From the definition of (t0, x̃0), we deduce that

w(t, x̃)− βΨ(t, x̃) 6 (w − βΨ)(t0, x̃0)e
c(t0−t),

i.e., w − ϕ attains a global maximum at (t0, x̃0) and ϕ(t0, x̃0) = w(t0, x̃0) > 0. Since w is a viscosity

subsolution of (4.3), we have

−∂ϕ
∂t

(t0, x̃0)− Lϕ(t0, x̃0)− c(w(t0, x̃0) + |∇ϕ(t0, x̃0)|) 6 0.

The left-hand side of the above inequality is equal to

β

(
− ∂Ψ

∂t
(t0, x̃0)− LΨ(t0, x̃0)− c(Ψ(t0, x̃0) + |∇Ψ(t0, x̃0)|)

)
.

This leads to a contradiction in view of Lemma 4.5. Hence, M 6 0 in the case t0 < T. Therefore, we

have proved the claim M 6 0 for anyβ > 0. Since β > 0 is arbitrary, we have

w(t, x̃) 6 0 on [t1, T ]×Πn.

Applying the same argument for [t2, t1], where, t2 = (t1 − A/C1)
+ and if t2 > 0, then repeat on [t3, t2],

where t3 = (t2 −A/C1)
+. Finally, we have w(t, x̃) 6 0 on (0, T )×Πn.

Corollary 4.6. Suppose (H1)–(H3) hold. Then u(t, x̃) := Y t,x̃(t) is the unique viscosity solution

of (4.1) in the class of viscosity solutions which satisfy (4.2) for some A > 0.

Proof. By Theorem 3.5, we know that u(t, x̃) has at most polynomial growth at infinity so it satis-

fies (4.2), therefore, it follows from Theorems 4.2 and 4.3 that u(t, x̃) is the unique viscosity solution

of (4.1) in the class of viscosity solutions which satisfy (4.2) for some A > 0.

5 European option pricing

In this section, we study European option pricing problem. First, we fix some notation that will be used

in this section. Define

(Πn)+ := {x̃ ∈ Πn : x̃1 > x̃2 > · · · > x̃n > 0},

and similarly for (Γn)+, F+
i , i = 1, . . . , n− 1.

Let us consider a financial market M that consists of one bond and n stocks. Fix p̃ = (p0, p̃1, . . . , p̃n)

∈ R+ × (Γn)+ and T > 0, let the prices P t,p̃
0 (s), P t,p̃(s) = {P t,p̃

i (s)}ni=1 of these financial instruments

evolve according to the following equations:
P t,p̃
0 (s) = p0 +

∫ s∨t

t

P t,p̃
0 (u)r(u)du,

P t,p̃
i (s) = p̃i +

∫ s∨t

t

P t,p̃
i (u)

( n∑
j=1

1{P t,p̃
i (u)=P t,p̃

(j)
(u)}δjdu+ dWi(u)

)
, i = 1, . . . , n.

(5.1)

Here, r(s) (the interest rate) is assumed to be a bounded deterministic function, and δj , j = 1, . . . , n are

real numbers. By Hölder’s inequality and Burkholder-Davis-Gundy’s inequality, there exists a constant C

depending on (T, {δi}, q) such that for q > 2 and i = 1, . . . , n,

E
[

sup
06s6T

|P t,p̃
i (s)|q

]
6 C(1 + |p̃|q).
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Define Xt,x̃
i (s) := logP t,p̃

i (s), i = 1, . . . , n. By Itô’s formula, we obtain for i = 1, . . . , n,
dXt,x̃

i (s) =
n∑

j=1

1{Xt,x̃
i (s)=Xt,x̃

(j)
(s)}

(
δj −

1

2

)
ds+ dWi(s), s > t,

Xt,x̃
i (s) = x̃i = log p̃i, s 6 t.

(5.2)

From the existence and uniqueness of the strong solution of (5.2) we know that (5.1) has a unique strong

solution. The ranked log-price processes satisfy the following equations (see [1]): for s > t,

dXt,x̃
(j) (s) =

(
δj −

1

2

)
ds+ dβj(s) +

1

2
(dΛj,j+1(s)− dΛj−1,j(s)), j = 1, . . . , n,

where, Λj,j+1(s), j = 1, . . . , n − 1 are the local times accumulated at the origin by the non-negative

semimartingales

Gj(·) := Xt,x̃
(j) (·)−Xt,x̃

(j+1)(·), j = 1, . . . , n− 1,

over the time interval [0, s], Λ0,1(·) = Λn,n+1(·) ≡ 0, and

βj(·) :=
n∑

i=1

∫ ·

0

1{Xt,x̃
i (s)=Xt,x̃

(j)
(s)}dWi(s), j = 1, . . . , n.

Therefore, the ranked price processes satisfy the following equations:

dP t,p̃
(j) (s) = P t,p̃

(j) (s)

[
δjds+ dβj(s) +

1

2
(dΛj,j+1(s)− dΛj−1,j(s))

]
, i = 1, . . . , n,

and there exists a constant C depending on (T, {δi}, n, q) such that for q > 2 and j = 1, . . . , n,

E
[

sup
06s6T

|P t,p̃
(j) (s)|

q
]
6 C(1 + |p̃|q).

Suppose that an economic agent will start with an initial endowment y > 0 and try to allocate his

wealth into the bond and stocks, whose actions cannot affect market prices and decides to invest πi(s)

amount of money in the i-th stock at time s. Thus the amount invested in the bond will be Y (s) −∑n
i=1 πi(s), where Y is the wealth process. Of course, his decisions can only be based on the current

information {FW
t }; i.e., the process π = (π1, . . . , πn) is predictable. A European contingent claim ξ

settled at time T is an FW
T -measurable random variable. It can be thought of as a contract which pays ξ

at maturity T . The arbitrage-free pricing of a positive contingent claim is based on the following principle:

if we start with the price of the claim as initial endowment and invest in the bond and n stocks, the value

of the portfolio at time T must match ξ. We now give a formal definition. We follow the presentation of

Harrison and Pliska [13] and Karatzas and Shreve [23].

Definition 5.1. Let ξ be a positive contingent claim.

(i) A self-financing trading strategy is a pair of (Y, π), where Y is the wealth process and π =

(π1, . . . , πn) is the portfolio process, such that (Y, π) satisfy the equation

Y (s) = Y (0) +

∫ s

0

n∑
i=1

πi(u)
dPi(u)

Pi(u)
+

∫ s

0

(
Y (u)−

n∑
i=1

πi(u)

)
dP0(u)

P0(u)
.

The strategy is called feasible if a.s. Y (s) > 0 for every s ∈ [0, T ].

(ii) A hedging strategy against ξ is a feasible self-financing strategy (Y, π) such that Y (T ) = ξ. We

denote by H(ξ) the set of hedging strategies against ξ. If H(ξ) is nonempty, ξ is called hedgeable.

(iii) The fair price of ξ at time 0 is the smallest initial endowment needed to hedge ξ, i.e.,

Y (0) = inf{y > 0 : there exists (Y, π) ∈ H(ξ) such that Y (0) = y}.
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In this context, the wealth process satisfies the following equations:
dY t,p̃(s) =

(
Y t,p̃(s)r(s) +

n∑
i=1

πi(s)
n∑

j=1

1{P t,p̃
i (s)=P t,p̃

(j)
(s)}(δj − r(s))

)
ds+

n∑
i=1

πi(s)dWi(s),

Y (t) = y,

(5.3)

where, the real number y > 0 represents the initial endowment. From the definition of βj , j = 1, . . . , n,

we have

dY t,p̃(s) =

(
Y t,p̃(s)r(s) +

n∑
i=1

πi(s)

n∑
j=1

1{P t,p̃
i (s)=P t,p̃

(j)
(s)}(δj − r(s))

)
ds

+
n∑

i=1

πi(s)
n∑

j=1

1{P t,p̃
i (s)=P t,p̃

(j)
(s)}dβj(s)

=

(
Y t,p̃(s)r(s) +

n∑
j=1

(δj − r(s))
n∑

i=1

πi(s)1{P t,p̃
i (s)=P t,p̃

(j)
(s)}

)
ds

+

n∑
j=1

( n∑
i=1

πi(s)1{P t,p̃
i (s)=P t,p̃

(j)
(s)}

)
dβj(s).

Define

π̄j(s) :=
n∑

i=1

πi(s)1{P t,p̃
i (s)=P t,p̃

(j)
(s)}, j = 1, . . . , n.

Then BSDEs (5.3) are equivalent to

dY t,p̃(s) =

(
Y t,p̃(s)r(s) +

n∑
j=1

(δj − r(s))π̄j(s)

)
ds+

n∑
j=1

π̄j(s)dβj(s). (5.4)

Consider a contingent claim ξ = g(P t,p̃
0 (T ), P̃ t,p̃(T )), where P̃ t,p̃(T ) = (P t,p̃

(1) (T ), . . . , P
t,p̃
(n)(T )) and a

Lipschitz continuous function g : R+ × (Γn)+ → R+ satisfying

|g(p0, p̃)− g(p′0, p̃
′)| 6 c(|p0 − p′0|+ |p̃− p̃′|) for p0, p

′
0 ∈ R+, p̃, p̃′ ∈ (Γn)+ (5.5)

and

|g(p0, p̃)| 6 c(1 + |p0|+ |p̃|) for p0 ∈ R+, p̃ ∈ (Γn)+. (5.6)

It is easy to check that BSDEs (5.3) admit a unique solution (Y t,p̃, π). Moreover, it follows from The-

orem 3.3 that BSDE (5.4) has a unique solution (Y t,p̃, π̄). Define u(t, p̃) := Y t,p̃(t), (t, p̃) ∈ [0, T ]

× R+ × (Γn)+.

Theorem 5.2. Suppose (5.5) and (5.6) hold. We have u(t, p̃) ∈ C([0, T ]× R+ × (Γn)+;R).
To prove this theorem, we need a stronger property of solutions of rank-based SDEs than (2.6). Thus,

we first prepare a lemma on approximation of the solution of SDEs. Our proof borrows some idea from

Kaneko and Nakao [19], with necessary modifications. See Appendix A for a detailed proof.

Lemma 5.3. Let b0(x) be an Rn-valued, Borel measurable, bounded function defined on Rn. Fix T > 0

and (t, x) ∈ [0, T ]× Rn. Suppose SDEs

Xt,x(s) = x+

∫ s∨t

t

b0(X
t,x(u))du+W (s ∨ t)−W (t) (5.7)

has a strong solution and the pathwise uniqueness holds. Suppose also that there exists a sequence of

Rn-valued, uniformly bounded, Lipshictz continuous functions bm(x) such that limm→+∞ bm(x) = b0(x)

almost everywhere on Rn with respect to the Lebesgue measure. Denote by Xt,x,m the unique strong

solution of (5.7) but with bm in place of b0. Then for each q > 1 and any compact subset K of Rn,

lim
m→+∞

sup
06t6T

sup
x∈K

E
[

sup
06s6T

|Xt,x,m(s)−Xt,x(s)|q
]
= 0. (5.8)
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Proof of Theorem 5.1. For i = 1, . . . , n and x ∈ Rn, define bi(x) :=
∑n

j=1 1{xi=x(j)}(δj − 1
2 ). Let

bmi : Rn → R be a sequence of Borel measurable, uniformly bounded, smooth functions with compact

support which approximate bi almost everywhere with respect to the Lebesgue measure. From [2], we

know that the uniqueness in law holds for SDEs (5.2) and [15] constructed a strong solution for SDEs (5.2),

therefore, by [6, Theorem 3.2], we have that the pathwise uniqueness holds for SDEs (5.2). Therefore, by

Lemma 5.3, we have for i = 1, . . . , n, and q > 1,

lim
m→+∞

sup
06t6T

sup
x̃∈K2

E
[

sup
06s6T

|Xt,x̃,m
i (s)−Xt,x̃

i (s)|q
]
= 0,

where K2 is any compact subset of Γn and Xt,x̃,m
i is the unique solution of

Xt,x̃,m
i (s) = x̃i +

∫ s∨t

t

bmi (Xt,x̃,m
i (u))du+

∫ s∨t

t

dWi(u).

Therefore, by Lemma 2.5, we have, for 0 6 s 6 T ,

lim
m→+∞

sup
06t6T

sup
x̃∈K2

E[|Xt,x̃,m
(j) (s)−Xt,x̃

(j) (s)|
q] 6 lim

m→+∞
sup

06t6T
sup
x̃∈K2

n∑
i=1

E[|Xt,x̃,m
i (s)−Xt,x̃

i (s)|q] = 0.

Define P t,p̃,m
i (s) := eX

t,x̃,m
i (s), where p̃ = (p̃1, . . . , p̃n) and p̃i = ex̃i , i = 1, . . . , n. Denote by Xt,x̃,m

(j) (s)

and P t,p̃,m
(j) (s) the corresponding ordered particles. For any compact subset K2 of Γn, denote by K̄2 its

projection in (Γn)+ through mapping: p̃i = ex̃i , i = 1, . . . , n. For 0 6 s 6 T , j = 1, . . . , n, and any

compact subset K = K1 × K̄2 in R+ × (Γn)+, we have

lim
m→+∞

sup
06t6T

sup
p̃∈K

E[|P t,p̃,m
(j) (s)− P t,p̃

(j) (s)|
2]

= lim
m→+∞

sup
06t6T

sup
x̃∈K2

E[|eX
t,x̃,m
(j)

(s) − e
Xt,x̃

(j)
(s)|2]

6 lim
m→+∞

sup
06t6T

sup
x̃∈K2

E[|P t,p̃,m
(j) (s) + P t,p̃

(j) (s)|
2|Xt,x̃,m

(j) (s)−Xt,x̃
(j) (s)|

2]

6 lim
m→+∞

sup
06t6T

sup
x̃∈K2

C(E[|Xt,x̃,m
(j) (s)−Xt,x̃

(j) (s)|
4])

1
2

= 0.

Similarly, we have, for 0 6 s 6 T ,

lim
m→+∞

sup
06t6T

sup
p̃∈K

E[|P t,p̃,m
i (s)− P t,p̃

i (s)|2] = 0.

Denote by (Y t,p̃,m(s), πm(s)) the unique solution of the following BSDEs:
dY t,p̃,m(s) =

[
Y t,p̃,m(s)r(s) +

n∑
i=1

πm
i (s)

(
bmi (P t,p̃,m(s)) +

1

2
− r(s)

)]
ds+

n∑
i=1

πm
i (s)dWi(s),

Y t,p̃,m(T ) = g(P t,p̃
0 (T ), P̃ t,p̃,m(T )).

By [10, Section 5], for α > 2, there exists a constant C depending on (T, r(s), {δj}) such that

E
[

sup
06s6T

|Y t,p̃(s)− Y t,p̃,m(s)|2
]

6 CE[(g(P t,p̃
0 (T ), P̃ t,p̃(T ))− g(P t,p̃

0 (T ), P̃ t,p̃,m(T )))2]

+
n∑

i=1

CE

[(∫ T

t

πm
i (s)[bi(P

t,p̃(s))− bmi (P t,p̃,m(s))]ds

)2]
6 CE[(g(P t,p̃

0 (T ), P̃ t,p̃(T ))− g(P t,p̃
0 (T ), P̃ t,p̃,m(T )))2]
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+

n∑
i=1

CE

[ ∫ T

t

|πm
i (s)|2ds

∫ T

t

|bi(P t,p̃(s))− bmi (P t,p̃,m(s))|2ds
]

6 CE[(g(P t,p̃
0 (T ), P̃ t,p̃(T ))− g(P t,p̃

0 (T ), P̃ t,p̃,m(T )))2]

+C
n∑

i=1

(
E

[(∫ T

t

|πm
i (s)|2ds

)α
2
]) 2

α
(
E

[ ∫ T

t

|bi(P t,p̃(s))− bmi (P t,p̃,m(s))|
2α

α−2 dt

])α−2
α

6 CE[(P̃ t,p̃(T )− P̃ t,p̃,m(T ))2]

+C(1 + |p̃|2)
n∑

i=1

(
E

[ ∫ T

t

|bi(P t,p̃(s))− bmi (P t,p̃,m(s))|
2α

α−2 dt

])α−2
α

.

Therefore,

lim
m→+∞

sup
06t6T

sup
p̃∈K

E
[

sup
06s6T

|Y t,p̃(s)− Y t,p̃,m(s)|2
]

6 C lim
m→+∞

sup
06t6T

sup
p̃∈K

E[(P̃ t,p̃(T )− P̃ t,p̃,m(T ))2]

+C
n∑

i=1

lim
m→+∞

sup
06t6T

sup
p̃∈K

(
E

[ ∫ T

t

|bi(P t,p̃(s))− bmi (P t,p̃,m(s))|
2α

α−2 dt

])α−2
α

=: C lim
m→+∞

sup
06t6T

sup
p̃∈K

I1 + C
n∑

i=1

lim
m→+∞

sup
06t6T

sup
p̃∈K

(Ii2)
α−2
α .

First,

lim
m→+∞

sup
06t6T

sup
p̃∈K

I1 6 lim
m→+∞

sup
06t6T

sup
p̃∈K

E

[ n∑
j=1

|P t,p̃
(j) (T )− P t,p̃,m

(j) (T )|2
]
= 0.

Let m0 be a fixed positive integer. It holds that

Ii2 6 CE

[ ∫ T

t

|bi(P t,p̃(s))− bm0
i (P t,p̃(s))|

2α
α−2 ds

]
+ CE

[ ∫ T

0

|bm0
i (P t,p̃(s))− bm0

i (P t,p̃,m(s))|
2α

α−2 ds

]
+ CE

[ ∫ T

t

|bm0
i (P t,p̃,m(s))− bmi (P t,p̃,m(s))|

2α
α−2 ds

]
=: C(J i

1 + J i
2 + J i

3).

Let w(x) be a decreasing Lipschitz continuous function on [0,+∞) such that w(0) = 1 and w(x) = 0 for

x > 1. Then for R > 0, by Theorem 2.4 in Chapter 2 of [24],

J i
3 6 CE

[ ∫ T

t

(
1− w

(
|Xt,x,m(s)|

R

))
ds

]
+ E

[ ∫ T

t

w

(
|Xt,x,m(s)|

R

)
|bm0

i (P t,x,m(s))− bmi (P t,x,m(s))|
2α

α−2 ds

]
6 CE

[ ∫ T

0

(
1− w

(
|Xt,x(s)|

R

))
ds

]
+

n∑
i=1

CE

[ ∫ T

0

|Xt,x
i (s)−Xt,x,m

i (s)|ds
]

+ CT
1
2

(∫
B(0,R)

|bm0
i (ey1 , . . . , eyn)− bmi (ey1 , . . . , eyn)|

4α
α−2 dy1 . . . dyn

) 1
2

,

where B(0, R) is the ball with center 0 and radius R in Rn. Therefore,

lim
m→+∞

sup
06t6T

sup
p∈K

J i
3

6 sup
06t6T

sup
x∈K2

CE

[ ∫ T

0

(
1− w

(
|Xt,x(s)|

R

))
ds

]
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+C lim
m→+∞

(∫
B(0,R)

|bm0
i (ey1 , . . . , eyn)− bmi (ey1 , . . . , eyn)|

4α
α−2 dy1 . . . dyn

) 1
2

+ lim
m→+∞

sup
06t6T

sup
x∈K2

C
n∑

i=1

E

[ ∫ T

0

|Xt,x
i (s)−Xt,x,m

i (s)|ds
]

6 CE

[ ∫ T

0

(
1− w

(
sup06t6T supx∈K2

|Xt,x(s)|
R

))
ds

]
+C lim

m→+∞

(∫
B(0,R)

|bm0
i (ey1 , . . . , eyn)− bmi (ey1 , . . . , eyn)|

4α
α−2 dy1 . . . dyn

) 1
2

+ lim
m→+∞

sup
06t6T

sup
x∈K2

C
n∑

i=1

E
[

sup
06s6T

|Xt,x,m
i (s)−Xt,x

i (s)|
]

6 CE

[ ∫ T

0

(
1− w

(
sup06t6T supx∈K2

|Xt,x(s)|
R

))
ds

]
+C lim

m→+∞

(∫
B(0,R)

|bm0
i (ey1 , . . . , eyn)− bmi (ey1 , . . . , eyn)|

4α
α−2 dy1 . . . dyn

) 1
2

.

Since bmi converges to bi almost everywhere with respect to the Lebesgue measure, the last expression in

the right-hand side of the above inequality tends to 0 as m0 tends to +∞. Next, let R go to +∞. Then

from the properties of the function w(x) we have

lim
m→+∞

sup
06t6T

sup
p̃∈K

J i
3 = 0.

Similarly, we have limm→+∞ sup06t6T supp̃∈K J
i
1 = 0. Finally,

lim
m→+∞

sup
06t6T

sup
p̃∈K

E[|bm0
i (P t,p̃(s))− bm0

i (P t,p̃,m(s))|
2α

α−2 ]

6 lim
m→+∞

sup
06t6T

sup
p̃∈K

CE[|P t,p̃(s)− P t,p̃,m(s)|
2α

α−2 ] = 0.

Therefore,

lim
m→+∞

sup
06t6T

sup
p̃∈K

(Ii2)
α−2
α 6 C lim

m→+∞

(
sup

06t6T
sup
p̃∈K

J i
1 + sup

06t6T
sup
p̃∈K

J i
2 + sup

06t6T
sup
p̃∈K

J i
3

)α−2
α

= 0.

Therefore, for any compact subset K of R+ × (Γn)+,

lim
m→+∞

sup
06t6T

sup
p̃∈K

E
[

sup
06s6T

|Y t,p̃(s)− Y t,p̃,m(s)|2
]
= 0.

Define um(t, p̃) := Y t,p̃,m(t), (t, p̃) ∈ [0, T ]×R+× (Γn)+, similar to Theorem 3.5, we obtain that um(t, p̃)

is continuous on [0, T ] × R+ × (Γn)+. Since um → u on any compact subset of [0, T ] × R+ × (Γn)+, we

have that u is continuous on [0, T ]× R+ × (Γn)+.

Since BSDE (5.4) is linear, we obtain for t 6 s 6 T ,

Y t,p̃(s) =
1

M(s)
E[g(P t,p̃

0 (T ), P̃ t,p̃(T ))M(T ) | Fs],

where

M(s) = exp

{∫ s

t

[
− r(u)− 1

2

n∑
j=1

(δj − r(u))2
]
du−

n∑
j=1

∫ s

t

(δj − r(u))dβj(u)

}
> 0.

Therefore, there exists a unique hedging strategy (Y t,p̃, π) against g(P t,p̃
0 (T ), P̃ t,p̃(T )) and Y t,p̃(s) is the

fair price of the contingent g(P t,p̃
0 (T ), P̃ t,p̃(T )) at time s. Then similar to Theorems 4.2 and 4.3, the value

of the contingent claim ξ at time s is

Y (s) = u(s, P t,p̃
0 (s), P̃ t,p̃(s)),
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where, u(t, p̃) is the unique viscosity solution of the following parabolic PDEs:
∂u

∂t
(t, p̃) = −L̃u(t, p̃) + r(t)u(t, p̃), t ∈ [0, T ], p̃ ∈ R+ × (Πn)+,

u(T, p̃) = g(p̃), p̃ ∈ R+ × (Γn)+,

p̃i+1
∂u

∂p̃i+1
(t, p̃)− p̃i

∂u

∂p̃i
(t, p̃) = 0, p̃ ∈ F+

i , i = 1, . . . , n− 1,

where

L̃u(t, p̃) = 1

2

n∑
i=1

p̃2i
∂2u

∂p̃2i
(t, p̃) +

n∑
i=0

r(t)p̃i
∂u

∂p̃i
(t, p).

6 BSDEs with Brownian particles with asymmetric collisions

In the previous sections, the ranked particles have symmetric collisions. In this section, we will extend

the previous results to asymmetric collisions case.

6.1 Property of Brownian particles

In this subsection, we will study the continuity dependent on the initial conditions of Brownian particles

with asymmetric collisions. Fix T > 0, for every (t, x̃) ∈ [0, T ] × Γn and i = 1, . . . , n, consider the

following ordered Brownian particles:

Xt,x̃
i (s) =

{
x̃i, 0 6 s < t,

x̃i + bi(s− t) + σi(Wi(s)−Wi(t)) + q−i Λ
i,i+1(s)− q+i Λ

i−1,i(s), t 6 s 6 T.
(6.1)

Here, the drifts b1, . . . , bn are given real numbers; dispersions σ1, . . . , σn are given positive real numbers;

the collision parameters q±1 , . . . , q
±
n are given positive real numbers satisfying

q−i + q+i+1 = 1, i = 1, . . . , n− 1,

and

(q−i−1 + q+i+1)σ
2
i > q−i σ

2
i+1 + q+i σ

2
i−1, i = 2, . . . , n− 1.

In asymmetric case, the local times are split unevenly between the two colliding particles, as if they had

different mass. If we denote by mi the mass of the Xt,x̃
i and mi : mi+1 = q+i+1 : q−i , then the physical

meaning of the collision parameters is that the push (local time of the collision) is split according to

their mass. For i = 1, . . . , n− 1 and s > 0, Λi,i+1(s) denotes the local time accumulated at the origin by

Xt,x̃
i (·)−Xt,x̃

i+1(·) on the interval [0, s]. It is easily to see that if 0 6 s 6 t, Λi,i+1(s) = 0, i = 1, . . . , n− 1.

We set

Λ0,1(·) ≡ Λn,n+1(·) ≡ 0.

In [21, Subsection 2.1], a strong solution Xt,x̃(s) is constructed and is shown to be pathwise unique. In

[31, Theorem 1.9], it is showed that there are no triple collisions at any time s > 0. It will be more

convenient to consider the following process of spacings (or gaps):

Gt,x̃(·) := (Xt,x̃
1 (·)−Xt,x̃

2 (·), . . . , Xt,x̃
n−1(·)−Xt,x̃

n (·)),

which has the following representation: for i = 1, . . . , n− 1,

Gt,x̃
i (s) =


x̃i − x̃i+1, 0 6 s < t,

x̃i − x̃i+1 + (bi − bi+1)(s− t) + σi(Wi(s)−Wi(t))

−σi+1(Wi+1(s)−Wi+1(t))− q+i Λ
i−1,i(s)

+Λi,i+1(s)− q−i+1Λ
i+1,i+2(s), t 6 s 6 T.
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In other words,

G(s) = ξ(s) + (I −Q)Λ(s), (6.2)

where ξ(s) is an (n− 1)-dimensional process whose i-th component is

ξi(s) =


x̃i − x̃i+1, 0 6 s < t,

x̃i − x̃i+1 + (bi − bi+1)(s− t) + σi(Wi(s)−Wi(t))

−σi+1(Wi+1(s)−Wi+1(t)), t 6 s 6 T,

Λ(s) = (Λ1,2(s), . . . ,Λn−1,n(s)),

and

Q :=



0 q−2 0 · · · 0 0

q+2 0 q−3 · · · 0 0

0 q+3 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 q−n−1

0 0 0 · · · q+n−1 0


.

The process G is a semimartingale reflected Brownian motion on [0,∞)n with driving process ξ and

reflection matrix R = I − Q. It is showed in [21] that the spectrum radius of Q is less than 1, by [14,

Theorem 1] (see also [33, Theorem 2.1]), there exists a Lipschitz continuous function ϕ0,T : C([0, T ];Rn−1)

→ C([0, T ];Rn−1) with Lipschitz constant L (depending only on reflection matrix R) such that,

Λ(ω) = ϕ0,T (ξ(ω)), a.s.

From the Skorokhod mapping (see [33, Definition 2.2]), we know that ϕ0,T (f(s)) = 0 for all positive

function f(s) on [0, T ]. Thus,

∥Λ(ω)∥L∞([0,T ]) = ∥ϕ0,T (ξ(ω))∥L∞([0,T ]) 6 C(∥ξ(ω)∥L∞([0,T ]) + 1), a.s.

Theorem 6.1. For every p > 1, there exists a constant C depending on (L, p, T, n, {bi}, {σi}) such

that for every x̃, x̃′ ∈ Γn and t, t′ ∈ [0, T ], we have

E
[

sup
06s6T

|Xt,x̃
i (s)|p

]
6 C(1 + |x̃|p), i = 1, . . . , n, (6.3)

and

E
[

sup
06s6T

|Xt,x̃
i (s)−Xt′,x̃′

i (s)|p
]
6 C(|x̃− x̃′|p + |t− t′|

p
2 ), i = 1, . . . , n. (6.4)

Proof. For any i = 1, . . . , n− 1 and t 6 s 6 T,

|ξi(s)|p = |x̃i − x̃i+1 + (bi − bi+1)(s− t) + σi(Wi(s)−Wi(t))− σi+1(Wi+1(s)−Wi+1(t))|p

6 C(|x̃i − x̃i+1|p + |(bi − bi+1)(s− t)|p + |σi(Wi(s)−Wi(t))|p

+ |σi+1(Wi+1(s)−Wi+1(t))|p).

Consequently,

|Xt,x̃
i (s)|p = |x̃i + bi(s− t) + σi(Wi(s)−Wi(t)) + q−i Λ

i,i+1(s)− q+i Λ
i−1,i(s)|p

6 C(|x̃i|p + |bi(s− t)|p + |σi(Wi(s)−Wi(t))|p + |q−i Λ
i,i+1(s)|p + |q+i Λ

i−1,i(s)|p)

6 C
n∑

i=1

sup
t6s6T

(|x̃i|p + |bi(s− t)|p + |σi(Wi(s)−Wi(t))|p + |Λi,i+1(s)|p)

6 C
n∑

i=1

sup
t6s6T

(1 + |x̃i|p + |bi(s− t)|p + |σi(Wi(s)−Wi(t))|p + |ξi(s)|p)



48 Chen Z-Q et al. Sci China Math January 2018 Vol. 61 No. 1

6 C

n∑
i=1

(
1 + |x̃i|p + |bi(T − t)|p + sup

t6s6T
|σi(Wi(s)−Wi(t))|p

)
.

By Burkholder-Davis-Gundy’s inequality, we have

E
[

sup
06s6T

|Xt,x̃
i (s)|p

]
6 C

n∑
i=1

(
1 + |x̃i|p + |bi(T − t)|p + E

[
sup

t6s6T
|σi(Wi(s)−Wi(t))|p

])
6 C(1 + |x̃|p), i = 1, . . . , n.

Next, we prove (6.4). Without loss of generality, assume that t′ < t. For simplicity, denote Xi(s) =

Xt,x̃
i (s) and X ′

i(s) = Xt′,x̃′

i (s). For j = 1, . . . , n − 1 and s > 0, denote by Λ(i,i+1)′(s) the local time

accumulated at the origin by X ′
i(·)−X ′

i+1(·) on the interval [0, s]. It is easy to obtain that for 0 6 s 6 t′,

Λ(i,i+1)′(s) = 0, i = 1, . . . , n− 1. We also set

Λ(0,1)′(·) ≡ Λ(n,n+1)′(·) ≡ 0.

Define

ξ′i(s) :=


x̃′i − x̃′i+1, 0 6 s < t′,

x̃′i − x̃′i+1 + (bi − bi+1)(s− t′) + σi(Wi(s)−Wi(t
′))

−σi+1(Wi+1(s)−Wi+1(t
′)), t′ 6 s 6 T.

Step 1. If s 6 t′, then

|Xi(s)−X ′
i(s)|p = |x̃i − x̃′i|p 6 |x̃− x̃′|p.

Step 2. If t′ < s 6 t, define

η(s) := (x̃′1 − x̃′2, . . . , x̃
′
n−1 − x̃′n), 0 6 s 6 T.

Hence,

|Λ′(s)| 6 sup
t′<s6t

|ϕ0,t(ξ′)(s)|

6 ∥ϕ0,t(ξ′)− ϕ0,t(η)∥L∞([0,t])

6 C sup
06s6t

|ξ′(s)− η(s)|

6 C

n∑
i=1

(
|bi(t− t′)|+ sup

t′6s6t
|σi(Wi(s)−Wi(t

′))|
)
.

Therefore,

|Xi(s)−X ′
i(s)|p = |x̃i − x̃′i − bi(s− t′)− σi(Wi(s)−Wi(t

′))− q−i Λ
(i,i+1)′(s) + q+i Λ

(i−1,i)′(s)|p

6 C

n∑
i=1

sup
t′6s6t

(|x̃i − x̃′i|p + |bi(t− t′)|p + |σi(Wi(s)−Wi(t
′))|p).

By Burkholder-Davis-Gundy’s inequality, we have

E
[

sup
t′<s6t

|Xi(s)−X ′
i(s)|p

]
6 C(|x̃− x̃′|p + |t− t′|

p
2 ).

Step 3. If t < s 6 T ,

Xi(s)−X ′
i(s) = Xi(t)−X ′

i(t) + q−i (Λ
i,i+1(s)− Λi,i+1(t))− q+i (Λ

i−1,i(s)− Λi−1,i(t))

− q−i (Λ
(i,i+1)′(s)− Λ(i,i+1)′(t)) + q+i (Λ

(i−1,i)′(s)− Λ(i−1,i)′(t))

= Xi(t)−X ′
i(t) + q−i (Λ

i,i+1(s)− Λ(i,i+1)′(s))− q−i (Λ
i,i+1(t)− Λ(i,i+1)′(t))
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− q+i (Λ
i−1,i(s)− Λ(i−1,i)′(s)) + q+i (Λ

i−1,i(t)− Λ(i−1,i)′(t)).

Since

sup
t<s6T

|Λi,i+1(s)− Λ(i,i+1)′(s)|

6 ∥Λ− Λ′∥L∞([0,T ])

=
∥∥ϕ0,T (ξ)− ϕ0,T (ξ

′)
∥∥
L∞([0,T ])

6 C sup
06s6T

|ξ(s)− ξ′(s)|

6 C

n∑
i=1

(
|x̃i − x̃′i|+ |bi(t− t′)|+ sup

t′6s6t
|σi(Wi(s)−Wi(t

′))|
)
,

we have

E
[

sup
t<s6T

|Xi(s)−X ′
i(s)|p

]
6 CE

[
|Xi(t)−X ′

i(t)|p +
n−1∑
i=1

sup
t6s6T

|Λi,i+1(s)− Λ(i,i+1)′(s)|p
]

6 CE

[
|Xi(t)−X ′

i(t)|p +
n∑

i=1

(
|x̃i − x̃′i|p + |bi(t− t′)|p + sup

t′6s6t
|σi(Wi(s)−Wi(t

′))|p
)]

6 C(|x̃− x̃′|p + |t− t′|
p
2 ).

This completes the proof.

Remark 6.2. Xt,x̃
i (s) in (6.1) is ranked systems for asymmetric collisions. Sarantsev [31] studied these

systems and showed that named systems also exist until the first time of a triple collision.

6.2 BSDEs with Brownian particles

In this subsection, for each (t, x̃) ∈ [0, T ]× Γn, consider the following BSDEs:

Y t,x̃(s) = g(Xt,x̃(T )) +

∫ T

s

h(r,Xt,x̃(r), Y t,x̃(r), Zt,x̃(r))dr −
∫ T

s

Zt,x̃(r) · dW (r), (6.5)

where, h : [0, T ]× Γn × R× Rn → R and g : Γn → R are measurable functions.

We need the following assumptions on h and g:

(H4) h(t, x̃, y, z) is jointly continuous on [0, T ] × Γn × R × Rn, uniformly continuous in x, and there

exists a constant c so that

|h(t, x̃, y, z)− h(t, x̃, y′, z′)| 6 c(|y − y′|+ |z − z′|), (6.6)

and

|h(t, x̃, 0, 0)| 6 c(1 + |x̃|). (6.7)

(H5) There exists a constant c such that

|g(x̃)− g(x̃′)| 6 c|x̃− x̃′| for x̃, x̃′ ∈ Γn (6.8)

and

|g(x̃)| 6 c(1 + |x̃|) for x̃ ∈ Γn. (6.9)

Theorem 6.3. Suppose (H4) and (H5) hold. Then (6.5) has a unique solution (Y, Z) ∈ S2([t, T ];R)
×M2([t, T ];Rn). Furthermore, for any T > t > 0 and p > 2, there exists a constant C depending on

(L, T, p, n, {bi}, {σi}) such that for any x̃, x̃′ ∈ Γn and any t, t′ ∈ [0, T ], we have

E
[

sup
06s6T

|Y t,x̃(s)|p
]
6 C(1 + |x̃|p), (6.10)
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and

E
[

sup
06s6T

|Y t,x̃(s)− Y t′,x̃′
(s)|p

]
→ 0, as t′ → t, x̃′ → x̃. (6.11)

Proof. Under (H4) and (H5), one can construct the solution (Y, Z) ∈ S2([t, T ];R) ×M2([t, T ];Rn)

of (6.5) in three steps as in [27, 28]. The rest of proof is similar to that of Theorem 3.5 so it is omitted

here.

Define

u(t, x̃) := Y t,x̃(t), (t, x̃) ∈ [0, T ]× Γn, (6.12)

which is a deterministic quantity. (6.11) shows that (s, t, x̃) → Y t,x̃(s) is mean-square continuous.

Since Y t,x̃(t) is deterministic, we obtain that u(t, x̃) is continuous with (t, x̃). Consider the following

semi-linear backward parabolic PDEs with Cauchy condition and Neumann boundary condition:
∂u

∂t
(t, x̃) = −Lu(t, x̃)− h(t, x̃, u(t, x̃), (∇φ)(t, x̃)σ), t ∈ [0, T ], x̃ ∈ Πn,

u(T, x̃) = g(x̃), x̃ ∈ Γn,

q+i+1

∂u

∂x̃i+1
(t, x̃) = q−i

∂u

∂x̃i
(t, x̃), t ∈ [0, T ), x̃ ∈ Fi, i = 1, . . . , n− 1,

(6.13)

where,

L =
1

2

n∑
i=1

σ2
i

∂2

∂x̃2i
+

n∑
i=1

bi
∂

∂x̃i
, (6.14)

and σ is a diagonal matrix with diagonal elements σ1, . . . , σn.

Similar to Theorem 3.6, we have the following result.

Theorem 6.4. Suppose PDEs (6.13) have a solution u(t, x̃) ∈ C1,2([0, T ]×Γn;R) and there exist some

c, p > 0 such that

|∇u(t, x̃)| 6 c(1 + |x̃|p) for t > 0 and x̃ ∈ Γn.

Then the solution of (6.13) is unique.

6.3 Connection with PDEs

To study the viscosity solution of PDEs (6.13), we need another assumption on h.

(H6) For all R > 0, there exists a positive function ηR(·) tending to 0 at 0+ such that

|h(t, x̃, y, z)− h(t, x̃′, y, z)| 6 ηR(|x̃− x̃′|(1 + |z|)),

if |x̃|, |x̃′|, |y| 6 R, t ∈ [0, T ], z ∈ Rn.

Theorem 6.5. Suppose (H4)–(H6) hold. Then the function u(t, x̃) defined by (6.12) is the unique

viscosity solution of (6.13) such that

lim
|x̃|→+∞

|u(t, x̃)|e−A log2 |x̃| = 0, (6.15)

uniformly for t ∈ [0, T ], for some A > 0.

Proof. The proof of existence and uniqueness of the viscosity solution is similar to that of Theo-

rems 4.2 and 4.3. Therefore, it is omitted here. It follows from Theorem 6.3 that u(t, x) has at most

polynomial growth at infinity. Thus, u(t, x̃) defined by (6.12) is the unique viscosity solution of (6.13) that

satisfies (6.15).
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Appendix A

Proof of Lemma 4.4. Observe that

w(T, x̃) = u(T, x̃)− v(T, x̃) 6 0.

Let φ ∈ C1,2([0, T ) × Πn;R) and (t0, x̃0) ∈ [0, T ) × Πn be a maximum point of w − φ. Modifying φ if

necessary, we may assume without loss of generality that (t0, x̃0) ∈ [0, T )×Πn is a strict global maximum

point of w − φ. Define

ψε(t, x̃, ỹ) := u(t, x̃)− v(t, ỹ)− φ(t, x̃)− (x̃− ỹ)2

ε2
,

where ε is a positive parameter that will be later taken to approach 0. Choose R > 0 large enough and

define

Πn,R := BR ∩Πn

so that (t0, x̃0) ∈ [0, T ) × Πn,R, where BR is the open ball in Rn centered at origin with radius R. Let

(tε, x̃ε, ỹε) be a global maximum point of ψε(t, x̃, ỹ) on [0, T ] × Πn,R. Then by [7, Proposition 3.7], we

have

(i) (tε, x̃ε, ỹε) → (t0, x̃0, x̃0) as ε→ 0;

(ii) ε−2|x̃ε − ỹε|2 is bounded and tends to zero as ε→ 0.

Now for each fixed ε > 0, it follows from [7, Theorem 8.3] that for any δ > 0, there exist (Xδ, Yδ)

∈ S(n)× S(n) and cδ ∈ R so that(
cδ +

∂φ

∂t
(tε, x̃ε), pε +∇φ(tε, x̃ε), Xδ

)
∈ D̄2,+

u (tε, x̃ε),

(cδ, pε, Yδ) ∈ D̄2,−
v (tε, ỹε),

and (
Xδ 0

0 −Yδ

)
6 A+ δA2,

where,

pε =
2(x̃ε − ỹε)

ε2
, A =

(
D2φ(tε, x̃ε) +

2
ε2 − 2

ε2

− 2
ε2

2
ε2

)
,

and D̄2,+
u (t, x̃) (resp. D̄2,−

v (t, ỹ)) is the parabolic superset (resp. parabolic subset) of u (resp. v) at (t, x̃)

(resp. (t, ỹ)). For γ = 1 + 4δ
ε2 ,

A+ δA2 =

(
D2φ 0

0 0

)
+

2

ε2

(
I −I
−I I

)
+ δM(ε),

where

M(ε) =

(
(D2φ)2 + 4

ε2D
2φ − 2

ε2D
2φ

− 2
ε2D

2φ 0

)
+

8

ε4

(
I −I
−I I

)
.

Since u and v are viscosity subsolution and supersolution, respectively, we have

−cδ −
∂φ

∂t
(tε, x̃ε)− b · (pε +∇φ(tε, x̃ε))−

1

2
Tr(Xδ)− h(tε, x̃ε, u(tε, x̃ε), pε +∇φ(tε, x̃ε)) 6 0,

and

−cδ − b · pε −
1

2
Tr(Yδ)− h(tε, ỹε, v(tε, ỹε), pε) > 0,
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where b = (b1, . . . , bn). Thus,

0 6 ∂φ

∂t
(tε, x̃ε) + b · ∇φ(tε, x̃ε) +

1

2
Tr(Xδ)−

1

2
Tr(Yδ)

+ h(tε, x̃ε, u(tε, x̃ε), pε +∇φ(tε, x̃ε))− h(tε, ỹε, v(tε, ỹε), pε).

First,
1

2
Tr(Xδ)−

1

2
Tr(Yδ) 6

1

2
Tr(D2φ(tε, x̃ε)) +

δ

2
Rε,

where,

Rε =

((
In

In

)
,M(ε)

(
In

In

))
.

Finally,

h(tε, x̃ε, u(tε, x̃ε), pε +∇φ(tε, x̃ε))− h(tε, ỹε, v(tε, ỹε), pε)

= h(tε, x̃ε, u(tε, x̃ε), pε +∇φ(tε, x̃ε))− h(tε, x̃ε, v(tε, ỹε), pε)

+h(tε, x̃ε, v(tε, ỹε), pε)− h(tε, ỹε, v(tε, ỹε), pε)

6 η(|x̃ε − ỹε|(1 + |pε|)) + c|u(tε, x̃ε)− v(tε, ỹε)|+ c|∇φ(tε, x̃ε)|,

where η is the modulus ηR that appeared in (H3) for R large enough. By first letting δ → 0 and then

ε→ 0, we obtain

−∂φ
∂t

(t0, x̃0)− b · ∇φ(t0, x̃0)−
1

2
Tr(D2φ(t0, x̃0))− c|w(t0, x̃0)| − c|∇φ(t0, x̃0)| 6 0.

This completes the proof.

Proof of Lemma 4.5. It is easy to check that

|∇ψ(x̃)| = 2

∣∣∣∣(log(√|x̃|2 + 1) + 1)
1√

|x̃|2 + 1

x̃√
|x̃|2 + 1

∣∣∣∣ 6 2(ψ(x̃))1/2√
|x̃|2 + 1

and

|D2ψ(x̃)| =
∣∣∣∣ 2x̃

|x̃|2 + 1

x̃

|x̃|2 + 1
− 2(ψ(x̃))1/2

x̃

(|x̃|2 + 1)3/2
x̃√

|x̃|2 + 1

+ 2(ψ(x̃))1/2
1√

|x̃|2 + 1

1

(|x̃|2 + 1)
3
2

∣∣∣∣
6 2

|x̃|2 + 1
+ 2(ψ(x̃))1/2

1

|x̃|2 + 1
+ 2(ψ(x̃))1/2

1

|x̃|2 + 1

6 6ψ(x̃)

|x̃|2 + 1
.

Based on these estimates, we have for t ∈ [t1, T ],

|∇Ψ(t, x̃)| 6 (C1(T − t) +A)Ψ(t, x̃)|∇ψ(x̃)| 6 4AΨ(t, x̃)ψ(x̃),

and

|D2Ψ(t, x̃)| 6 4A(4A+ 3)Ψ(t, x̃)ψ(x̃).

Therefore, for some constant C, independent of C1,

−∂Ψ
∂t

(t, x̃)− LΨ(t, x̃)− cΨ(t, x̃)− c|∇Ψ(t, x̃)|

> Ψ(t, x̃)[C1ψ(x̃)−ACψ(x̃)−A2Cψ(x̃)− c− cACψ(x̃)].
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Since ψ(x̃) > 1, we can choose the constant C1 large enough such that the right-hand side of the inequality

is positive.

Proof of Lemma 5.3. Suppose the conclusion of the lemma is not true. Then there exist a positive

constant ε and a subsequence of m (still denoted by m), a sequence {tm} contained in [0, T ] and a

sequence {xm} contained in some compact subset of Rn such that

inf
m

E
[

sup
06s6T

|Xtm,xm,m(s)−Xtm,xm(s)|q
]
> ε.

Without loss of generality, we may assume that {tm} converges to t in [0, T ] and {xm} converges to x

in Rn.

First, since b0 and bm are uniformly bounded, we have that there exists a constant C depending

on (T,K) such that for 0 6 r1 < r2 6 T ,

sup
06t6T

sup
x∈K

E
[

sup
r16u1,u26r2

|Xt,x(u2)−Xt,x(u1)|4
]
6 C|r2 − r1|2,

and

sup
m

sup
06t6T

sup
x∈K

E
[

sup
r16u1,u26r2

|Xt,x,m(u2)−Xt,x,m(u1)|4
]
6 C|r2 − r1|2.

Then the family of the processes {Xtm,xm(s), Xtm,xm,m(s),W (s)}+∞
m=1 is tight (see [17, Theorems 1.4.2

and 1.4.3]). Therefore, there exist some probability space (Ω̂, F̂ , P̂) and a sequence of continuous stochastic

processes {X̂m(s), Ŷm(s), Ŵm(s)}+∞
m=0 on it which enjoy the following properties:

(i) The probability law of {X̂m, Ŷm, Ŵm} coincides with the law of {Xtm,xm , Xtm,xm,m,W} for each

m = 1, 2, . . .

(ii) There exists a subsequence (mj)j>1 such that {X̂mj , Ŷmj , Ŵmj} converges to {X̂0, Ŷ0, Ŵ0} uni-

formly on every finite time interval a.s.

Without loss of generality, we write tmj = tm, xmj = xm, X̂mj = X̂m, Ŷmj = Ŷm and Ŵmj = Ŵm. By

virtue of uniformly integrability, we have

ε 6 lim inf
m→+∞

E
[

sup
06s6T

|Xtm,xm,m(s)−Xtm,xm(s)|q
]

= lim inf
m→+∞

Ê
[

sup
06s6T

|X̂m(s)− Ŷm(s)|q
]

= Ê
[

sup
06s6T

|X̂0(s)− Ŷ0(s)|q
]
. (A.1)

On the other hand, because of the coincidence (i) of probability law, we have for m = 1, 2, . . . ,

X̂m(s) = xm +

∫ s∨tm

tm

b0(X̂m(u))du+ Ŵm(s ∨ tm)− Ŵm(tm),

and

Ŷm(s) = xm +

∫ s∨tm

tm

bm(Ŷm(u))du+ Ŵm(s ∨ tm)− Ŵm(tm).

Now we are going to take the limit m → +∞ in the above two equations. First, we deal with the drift

term. If s = t, clearly,
∫ s∨t

t
b0(X̂0(u))du = 0. Since

lim
m→+∞

∣∣∣∣ ∫ s∨tm

tm

b0(X̂m(u))du

∣∣∣∣ 6 C lim
m→+∞

|t ∨ tm − tm| = 0,

we thus have in this case

lim
m→+∞

Ê

[∣∣∣∣ ∫ s∨tm

tm

b0(X̂m(u))du−
∫ s∨t

t

b0(X̂0(u))du

∣∣∣∣] = 0.
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If s < t, then
∫ s∨t

t
b0(X̂0(u))du = 0. Since limm→+∞ tm = t, there exists a sufficiently large M ∈ N such

that for every m >M , s 6 tm. Thus,
∫ s∨tm
tm

b0(X̂m(u))du = 0. Therefore,

lim
m→+∞

Ê

[∣∣∣∣ ∫ s∨tm

tm

b0(X̂m(u))du−
∫ s∨t

t

b0(X̂0(u))du

∣∣∣∣] = 0.

If s > t, from limm→+∞ tm = t, we know that there exists a sufficiently large M ∈ N such that for every

m >M , s > tm. Fixing m0, we have

Ê

[∣∣∣∣ ∫ s

tm

b0(X̂m(u))du−
∫ s

t

b0(X̂0(u))du

∣∣∣∣]
= Ê

[∣∣∣∣ ∫ s

0

[1[tm,s](u)b0(X̂m(u))− 1[t,s](u)b0(X̂0(u))]du

∣∣∣∣]
6 Ê

[∣∣∣∣ ∫ s

0

[1[tm,s](u)b0(X̂m(u))− 1[tm,s](u)bm0(X̂m(u))]du

∣∣∣∣]
+Ê

[∣∣∣∣ ∫ s

0

[1[tm,s](u)bm0(X̂m(u))− 1[tm,s](u)bm0(X̂0(u))]du

∣∣∣∣]
+Ê

[∣∣∣∣ ∫ s

0

[1[tm,s](u)bm0(X̂0(u))− 1[t,s](u)bm0(X̂0(u))]du

∣∣∣∣]
+Ê

[∣∣∣∣ ∫ s

0

[1[t,s](u)bm0(X̂0(u))− 1[t,s](u)b0(X̂0(u))]du

∣∣∣∣]
6 Ê

[ ∫ s

tm

|b0(X̂m(u))− bm0(X̂m(u))|du
]
+ Ê

[ ∫ s

0

|bm0(X̂m(u))− bm0(X̂0(u))|du
]

+Ê

[ ∫ s

0

|bm0(X̂0(u))||1[tm,s](u)− 1[t,s](u)|du
]
+ Ê

[ ∫ s

t

|bm0(X̂0(u))− b0(X̂0(u))|du
]

=: I1 + I2 + I3 + I4.

Let w(x) be a continuous function defined on Rn such that w(0) = 1 and w(x) = 0 for |x|2 > 1. Then

for R > 0, by [24, Theorem II.2.4], we have

I1 6 CÊ

[ ∫ s

tm

[
1− w

(
X̂m(u)

R

)]
du

]
+ Ê

[ ∫ s

tm

w

(
X̂m(u)

R

)
|b0(X̂m(u))− bm0(X̂m(u))|du

]
6 CÊ

[ ∫ s

tm

[
1− w

(
X̂m(u)

R

)]
du

]
+ C

(∫
B(0,R)

|b0(y)− bm0(y)|n+1dy

) 1
n+1

,

where, B(0, R) is the ball with center 0 and radius R in Rn. Therefore,

lim
m→+∞

I1 6 CÊ

[ ∫ s

0

[
1− w

(
X̂0(u)

R

)]
du

]
+ C

(∫
B(0,R)

|b0(y)− bm0(y)|n+1dy

) 1
n+1

.

First letting m0 tend to +∞ and then R go to +∞, we have limm→+∞ I1 = 0. Similarly, we have

limm→+∞ I4 = 0. From the convergence of X̂m to X̂0, the continuity of bm0
and dominated convergence

theorem, we have limm→+∞ I2 = 0. Finally,

lim
m→+∞

I3 6 lim
m→+∞

C|tm − t| = 0.

Therefore, if s > t, we also have

lim
m→+∞

Ê

[∣∣∣∣ ∫ s∨tm

tm

b0(X̂m(u))du−
∫ s∨t

t

b0(X̂0(u))du

∣∣∣∣] = 0.

Similarly, we have

lim
m→+∞

Ê

[∣∣∣∣ ∫ s∨tm

tm

bm(Ŷm(u))du−
∫ s∨t

t

b0(Ŷ0(u))du

∣∣∣∣] = 0.
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On the other hand, it follows from [12, Lemma 5.2] that

Ŵm(s ∨ tm)− Ŵm(tm) → Ŵ0(s ∨ t)− Ŵ0(t)

in probability. Therefore, we have that both X̂0 and Ŷ0 are the solutions of

X(s) = x+

∫ s∨t

t

b0(X(u))du+ Ŵ0(s ∨ t)− Ŵ0(t).

From the pathwise uniqueness of solutions for the above SDEs, we must have X̂0(s) = Ŷ0(s) almost surely

for 0 6 s 6 T. This contradicts (A.1) and the proof is completed.
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