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1 Introduction

Let D and Ω be two simply-connected subdomains of the complex plane C and u a map from D to Ω.

Two Wirtinger derivatives ∂wu and ∂̄wu of u are defined by

∂wu = uw =
1

2

(
∂u

∂x
− i

∂u

∂y

)
and ∂̄wu = uw̄ =

1

2

(
∂u

∂x
+ i

∂u

∂y

)
,

respectively, wherein w = x+ iy. We write

|∇u| = |uw|+ |uw̄|, l(∇u) = ||uw| − |uw̄||, and Ju = |uw|2 − |uw̄|2.

1.1 The ᾱ-Poisson equation and the integral representation theorem

The weighted Laplacian operator is defined by

Lρ = 4∂wρ∂̄w,

where ρ is a continuously differentiable function in a proper domain D ⊂ C. The weighted Laplacian

operator Lρ and its adjoint operator Lρ = 4∂̄wρ∂w were first systematically studied by Garabedian [12].

If the weight function ρ is chosen to be (1−|w|2)−α in the unit disk D, we call L(1−|w|2)−α the standard

weighted Laplacian operator and denote it by Lα for simplicity, where α is a real number with α > −1.

Note that whenever α is nonzero, the differential operator Lα has a singular or degenerate behavior on
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the boundary T = ∂D. The standard weight functions (1 − |w|2)−α’s are closely related to the study of

weighted Bergman spaces of the unit disk D. (See the monograph [14] by Hedenmalm et al.)

If a function u in C2(D) satisfies the ᾱ-Poisson equation

−Lαu = 0,

we call it an ᾱ-harmonic mapping. If α is taken by 0, then we have Lα = ∆, where ∆ is the classical

Laplacian operator. In this case, ᾱ-harmonic mappings are just Euclidean harmonic mappings. One can

refer to [9] or [10] for basic theories of Euclidean harmonic mappings. Several recent papers [3, 6–8, 26,

28,29] have attracted much attention on ᾱ-harmonic mappings in the unit disk D.
Write

Pα
r (θ) =

1

2π

(1− |w|2)α+1

(1− w̄)α+1(1− w)
, w = reiθ, (1.1)

and we call it the ᾱ-Poisson kernel. In the special case wherein α is 0, P 0
r (θ) is the classical Poisson

kernel

Pr(θ) =
1

2π

1− |w|2

|1− w|2
, w = reiθ.

The integral representation given by the Poisson kernel of a Euclidean harmonic mapping plays a vital

role in the theory of harmonic mappings and its applications [10]. Olofsson and Wittsten [29] used power

series to represent the ᾱ-Poisson kernel and generalized the classical integral representation theorem to

the case of ᾱ-harmonic mappings. They presented the following theorem.

Theorem A (See [29]). If u ∈ C2(D) is a solution of PDE −Lαu = 0 satisfying the condition that

u(reiθ) tends to a function f ∈ L1(T) as r tends to 1, then for every w ∈ D,

u(w) = Pα
r ∗ f(eiθ) = 1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
f(z)dφ,

where z = eiφ and φ ∈ [0, 2π).

The associated Dirichlet boundary value problem of the ᾱ-Poisson equation is the following problem:{
−Lαv = g in D,
v = f on T,

where g ∈ C(D), f ∈ L1(T), and the boundary condition is to be understood as u(reiθ) → f in L1(T)
when r → 1.

For the case wherein the boundary function f vanishes, Behm [3] solved the above Dirichlet boundary

value problem of the ᾱ-Poisson equation. Utilizing the generalized Green’s theorem [20, pp. 148–150],

Chen and Kalaj [8] combined the representation theorem given by Olofsson and Wittsten [29] with the

one given by Behm [3]. They obtained the following theorem.

Theorem B (See [8]). Let g be continuous in the unit disk D such that (1−|z|2)α+1g belongs to L1(D),
wherein α > −1. If v ∈ C2(D) is a solution of the PDE −Lαv = g satisfying the condition that v(reiθ)

tends to a function f ∈ L1(T) as r tends to 1, then for every w ∈ D we have

v(w) = u(w) +Gα[g](w),

where

u(w) =
1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
f(z)dθ, Gα[g](w) =

∫
D
Gα(z, w)g(z)dxdy,

and the Green function Gα(z, w) of the adjoint Laplacian operator Lα is given by

Gα(z, w) =
(1− z̄w)αh ◦ q

2π
, with z ̸= w, (1.2)

h(r) =
1

2

∫ 1−r2

0

tα

1− t
dt, q = q(z, w) =

∣∣∣∣ z − w

1− w̄z

∣∣∣∣.
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1.2 (K,K′)-quasiconformal ᾱ-harmonic mapping

A sense-preserving homeomorphism u from D to Ω is (K,K ′)-quasiconformal if it satisfies the following

conditions:

(1) u is absolutely continuous on the lines in D and

(2) there exist two constants K > 1 and K ′ > 0 such that

|∇u|2 6 KJu +K ′.

If K ′ = 0, then u is said to be a K-quasiconformal mapping. For basic theories of quasiconformal

mappings, one can see the monograph [1].

If an ᾱ-harmonic mapping is also a (K,K ′)-quasiconformal mapping, then it is called a (K,K ′)-

quasiconformal ᾱ-harmonic mapping. Particularly, if α = 0, we call it a (K,K ′)-quasiconformal harmonic

mapping. One can see the papers [4, 5, 7, 11, 18, 21, 32] for recent progress on (K,K ′)-quasiconformal

mappings.

1.3 Lipschitz continuity for certain classes of mappings

A mapping u : D → Ω is said to be in Lipβ if there exist a constant Lβ and an exponent β ∈ (0, 1] such

that for all z and w in D, we have

|u(z)− u(w)| 6 Lβ |z − w|β .

Such mappings are also called β-Hölder continuous. In a special case wherein β is 1, the mapping is called

Lipschitz continuous. The constants Lβ and L1 are called a Hölder constant and a Lipschitz constant,

respectively.

Morrey [25] obtained a local Hölder continuity for K-quasiconformal mappings in the plane and showed

that the exponent β = 1/K is optimal (see [2, pp. 80–83]). After simplifying and improving the result

given by Morrey [25], Nirenberg [27] developed a rather complete theory for second-order elliptic equations

with two variables. Finn and Serrin [11] and Simon [32] showed that (K,K ′)-quasiconformal mappings

are locally Hölder continuous. Kalaj and Mateljević [18] obtained a sufficient condition for the global

Hölder continuity of (K,K ′)-quasiconformal mappings.

The class of K-quasiconformal harmonic mappings of the unit disk D onto itself was first studied by

Martio [23]. After Pavlović [31] presented the bi-Lipschitz characteristic and an explicit Lipschitz con-

stant in K for all K-quasiconformal harmonic mappings of D onto itself, recent studies [15–19, 22, 24,

30] improved and generalized the results obtained by Pavlović [31]. Lipschitz continuity for (K,K ′)-

quasiconformal mappings satisfying certain second-order differential inequalities has been studied in

papers [4, 5, 18, 21]. Summarizing the results in [4, 18], we can obtain the Lipschitz continuity of a

(K,K ′)-quasiconformal mapping u between two smooth Jordan domains satisfying the partial differen-

tial inequality

|∆u| 6 A|∇u|2 +B, (1.3)

where the two constants A and B satisfy that A > 0 and B > 0, respectively.

1.4 Statement of the main result

In this paper, we aim to study the Lipschitz continuity of ᾱ-harmonic mappings. Example 2.1 says that

it is proper to assume that α > 0 when we consider the Lipschitz continuity of ᾱ-harmonic mappings.

We note that a mapping need not be ᾱ-harmonic to satisfy the partial differential inequality (1.3) (see

Example 2.2 in Section 2).

Let VD→Ω[g] denote the family of solutions of v : D → Ω ∈ C2(D) of the ᾱ-Poisson equation{
−Lαv = g in D,
v = f on T,
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where g ∈ C(D), f is the limit of v(reiθ) as r tends to 1−, and v is a sense-preserving diffeomorphism.

We provide the boundary characterizations of a Lipschitz continuous ᾱ-harmonic mapping as follows:

Theorem 1.1. Assume that v ∈ VD→Ω[g]. If f is absolutely continuous on the unit circle T satisfying

that f ′ ∈ L∞(T) and the integral

1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

is bounded (here z = eiθ). Then v is Lipschitz continuous on the unit disk D when α > 0. Particularly,

if α = 0, the boundedness of the above integral is equivalent to the boundedness of the Hilbert transform

of f ′; herein, f ′ = [f(eiθ)]′θ.

Utilizing the above theorem, we obtain the main result of this paper.

Theorem 1.2. Assume that v ∈ VD→Ω[g] with the representation v(w) = u(w) +Gα[g](w). If α > 0,

then the following conditions are equivalent:

(a) v is a (K,K ′)-quasiconformal mapping and |∂u∂r | 6 L on D, and L is a constant.

(b) v is Lipschitz continuous with the Euclidean metric.

(c) u is Lipschitz continuous with the Euclidean metric.

(d) f is absolutely continuous on T, f ′ ∈ L∞(T) and the following integral

1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

is bounded; herein, z = eiθ.

We note that the above theorem gives a boundary characterizations of (K,K ′)-quasiconformal ᾱ-

harmonic mappings, which is a kind of generalization of the result given by Pavlović [31].

2 Two auxiliary examples

The following example shows that it is necessary to assume that α > 0 when considering the Lipschitz

continuity of ᾱ-harmonic mappings.

Example 2.1. Let f(eit) = eit + se−i2t, where 0 6 s 6 1/4 and let u(w) be the ᾱ-harmonic mapping

of the unit disk D with the boundary function f . Then

u(w) = w + s
1− (1 + (α+ 1)|w|2)(1− |w|2)1+α

w2

and

|∇u| → +∞, |w| → 1−

when −1 < α < 0, which implies that u is not Lipschitz.

Proof. Note that [f(eit)]′t = −(sin t+ 2s sin 2t) + i(cos t− 2s cos 2t). Let ψ(t) = arg{[f(eit)]′t}. Then

tan′ ψ(t) =
1− 8s2 + 2s cos 3t

(2s sin 2t+ sin t)2
, t ∈ [0, 2π).

Because −1 6 cos 3t 6 1, it implies

1− 8s2 + 2s cos 3t > s2(1/s+ 2)(1/s− 4).

Hence, tan′ ψ(t) > 0 if 0 6 s 6 1/4, i.e., f(T) is a convex Jordan curve.

Using Theorem A and the series expansion

1

(1− x)m
= 1 +mx+

m(m+ 1)

2!
x2 + · · ·+ m(m+ 1) · · · (m+ k − 1)

k!
xk + · · · ,
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we have

u(w) = w + s(1− |w|2)1+α

[ ∞∑
k=0

(α+ 1)(k+2)

(k + 2)!
|w|2k

]
w̄2

= w + s
1− (1 + (α+ 1)|w|2)(1− |w|2)1+α

w2
.

Differentiating u(w) in w̄ and w, we obtain

uw̄ = s(α+ 1)(α+ 2)w̄(1− |w|2)α (2.1)

and

uw = 1 +
s(1− |w|2)α[2 + 2α|w|2 + α(α+ 1)|w|4]− 2s

w3
. (2.2)

Thus, it follows that

|∇u| > |uw̄| =
s(α+ 1)(α+ 2)|w|

(1− |w|2)−α
→ ∞, |w| → 1−,

when the condition −1 < α < 0 is assumed.

Next, we show that there exist some ᾱ-harmonic mappings which do not satisfy the inequality (1.3).

Example 2.2. Let f(eit) = eit + se−i2t where 0 6 s 6 1/4 and let u(w) be the ᾱ-harmonic mapping

of the unit disk D with the boundary function f . Then for 0 < α < 1, u does not satisfy the differential

inequality

|∆u| 6 A|∇u|2 +B,

where A and B are two non-negative constants. Furthermore, ∇u is bounded; therefore, u is Lipschitz

continuous in D.

Proof. When α is strictly between zero and one, we have

|∆u| = |4uww̄| =
∣∣∣∣− 4αw̄

1− |w|2
uw̄

∣∣∣∣ = 4sα(α+ 1)(α+ 2)|w|2

(1− |w|2)1−α
→ ∞

as |w| → 1−, and

|∇u| = |uw|+ |uw̄| → 1− 2s,

as |w| → 1−. Thus, we see that there exists an ᾱ-harmonic mapping that does not satisfy the differential

inequality

|∆u| 6 A|∇u|2 +B,

where A and B are two non-negative constants.

Moreover, when |w| → 0, it implies

uw = 1− α(α+ 1)(α+ 2)s

3
w̄3 + o(|w|3).

Together with the relations (2.1) and (2.2), this shows that ∇u is bounded; thus, u is Lipschitz

continuous.

3 Boundary conditions for Lipschitz continuity of ᾱ-harmonic mappings

Lemma 3.1. Suppose u(w) is a C1 function with a domain Ω ⊂ C and let w = reiφ. Then uφ and rur
are bounded if and only if wuw and w̄uw̄ are bounded.
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Proof. Let w = reiφ. Then

uφ = uwwφ + uw̄w̄φ = i(wuw − w̄uw̄)

and

rur = r(uwwr + uw̄w̄r) = wuw + w̄uw̄.

Thus, the following identity

|wuw|2 + |w̄uw̄|2 =
|uφ|2 + |rur|2

2

implies Lemma 3.1.

Lemma 3.2. Let f be absolutely continuous on the unit circle T such that f ′ ∈ L∞(T). If u is an

ᾱ-harmonic mapping with the boundary function f , then uφ(w) ∈ L∞(D), where w = reiφ. Moreover,

uφ(w) is also ᾱ-harmonic.

Proof. From Theorem A, we have

u(w) =
1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
f(z)dθ,

where z = eiθ with θ ∈ [0, 2π). Thus we observe the following:

uφ(re
iφ) = − 1

π

∫
T

∂

∂θ

(
(1− r2)α+1

(1− rei(θ−φ))α+1(1− re−i(θ−φ))

)
f(eiθ)dθ

= − 1

2π

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
f(z) |T +

1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
df(eiθ)

=
1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
[f(eiθ)]′θdθ = Pα

r ∗ d

dθ
f(eiθ).

We use the continuity of f on T to obtain the third equality above. Putting these equalities together

show that uφ is also ᾱ-harmonic.

Olofsson and Wittsten [29] showed that

1

2π

∫ π

−π

|Pα
r (θ)|dθ = Γ(α+ 1)/Γ(α/2 + 1)2,

where Γ(s) =
∫∞
0
ts−1e−tdt is the standard Gamma function for a positive s. Therefore, uφ is bounded

on D if f ′ is bounded, where f ′ = d
dθf(e

iθ).

Olofsson and Wittsten [29, Lemma 2.3] used the Parseval formula to obtain the following lemma.

Lemma A (See [29]). Let α be a positive real number. Then, whenever 0 6 r < 1 is satisfied, so is

the inequality
1

2π

∫
T

(1− r2)α

|1− reiθ|α+1
dθ 6 Γ(α)

Γ(α+1
2 )2

,

where Γ is the Gamma function given by Γ(s) =
∫∞
0
ts−1e−tdt.

Lemma 3.3. Let f be absolutely continuous on the unit circle T such that f ′ ∈ L∞(T). Assume that u

is an ᾱ-harmonic mapping with the boundary function f . If there exists a constant Mα such that∣∣∣∣ 1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

∣∣∣∣ 6Mα (3.1)

wherein z = eiθ, then rur(w) ∈ L∞(D) and w = reiφ.

Proof. A direct calculation gives the identities

uw =
1

2π

∫
T

(
(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)

)
w

f(z)dθ



Chen X D Sci China Math October 2019 Vol. 62 No. 10 1941

=
1

2π

∫
T

(1− |w|2)α[z̄ − (α+ 1)w̄ + αz̄|w|2]
(1− zw̄)α+1(1− z̄w)2

f(z)dθ

=
1

2π

∫
T

(1− |w|2)α[1− zw̄ − αw̄(z − w)]

zα(z̄ − w̄)α+1(z − w)2
f(z)dθ (3.2)

and

uw̄ =
1

2π

∫
T

(
(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)

)
w̄

f(z)dθ

=
1

2π

∫
T

(α+ 1)(1− |w|2)α(z − w)

(1− zw̄)α+2(1− z̄w)
f(z)dθ

=
1

2π

∫
T

(α+ 1)(1− |w|2)α(1− z̄w)

zα(z̄ − w̄)α+2(z − w)
f(z)dθ. (3.3)

Hence, the identities (3.2) and (3.3) imply that we have

rur = wuw + w̄uw̄

=
1

2π

∫
T
(1− |w|2)α

[
(α+ 1)z̄w̄

zα(z̄ − w̄)α+2

− α|w|2

zα(z̄ − w̄)α+1(z − w)
+

wz

zα(z̄ − w̄)α(z − w)2

]
f(z)dθ. (3.4)

Since we have that
(α+ 1)z̄w̄

zα(z̄ − w̄)α+2
=

1

izα

[
w̄

(z̄ − w̄)α+1

]
θ

and
wz

zα(z̄ − w̄)α(z − w)2
− α|w|2

zα(z̄ − w̄)α+1(z − w)
= −1

i

[
w

(z − w)(1− zw̄)α+1

]
θ

,

it follows from the equation (3.4) that

rur =
1

2πi

∫
T

[
w̄(1− |w|2)α

(z̄ − w̄)α+1

]
θ

f(z)

zα
dθ − 1

2πi

∫
T

[
w(1− |w|2)α

(z − w)(1− zw̄)α

]
θ

f(z)dθ

=
1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − zw̄)/i

|z − w|2
[f(eiθ)]′θdθ +

α

2π

∫
T

zw̄(1− |w|2)α

(1− zw̄)α+1
f(z)dθ.

As the assumption that f is absolutely continuous on the unit circle T implies that f ∈ L∞(T), Lemma A

gives that there is a constant Nα such that∣∣∣∣ α2π
∫
T

zw̄(1− |w|2)α

(1− zw̄)α+1
f(z)dθ

∣∣∣∣ 6 Nα. (3.5)

Thus, by the assumption (3.1) and the inequality (3.5), we obtain the following inequality

|rur| 6Mα +Nα

for non-negative α.

Remark 3.1. We note that if α = 0 in Lemma 3.3, then rur is the conjugate function of uφ. Thus,

rur is bounded if and only if the Hilbert transformation H[f ′] of the boundary function f ′ is bounded

(see, for example, [13, Chapter III]).

We will require an estimate of the definite integral given in Lemma B. The estimate below is given by

Behm [3, Lemma 2].

Lemma B (See [3]). Assume that α > −1 and that r satisfies 0 6 r < 1. Define p(s) by

p(s) =

∫ s

0

tα

1− t
dt.
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Then the function p(s) satisfies the estimate

p(s) 6 Cαs
α+1(1− log(1− s)),

where Cα is a constant depending only on α.

Kalaj and Pavlović [19] used the Parseval formula to prove the following lemma.

Lemma C (See [19]). If z ∈ D, and

I(z) =
1

2π

∫∫
D

(1− |z|2)(1− |ξ|2)
|ξ||1− z̄ξ|4

dτdη,

then
1

2
6 I(z) 6 2

3
,

wherein, ξ = τ+iη. Both inequalities are sharp. Moreover, the function z → I(z) is radial and decreasing

for |z| ∈ (0, 1).

Lemma 3.4. Let g be a bounded, continuous function on the unit disk D. Assume that Gα[g] is the

Green potential of g given by

Gα[g](w) =

∫∫
D
Gα(z, w)g(z)dxdy.

Then Gα[g]w and Gα[g]w̄ are both bounded in the unit disk D when α is non-negative.

Proof. By Lemma B, we have the following equation:

2π|(Gα)w| =
∣∣∣∣− αz̄(1− z̄w)α−1h ◦ q + 1

2

(1− |z|2)α+1(1− |w|2)α

(1− zw̄)α(1− z̄w)(z − w)

∣∣∣∣
6 |α|Cα|1− w̄z|α−1

(
1−

∣∣∣∣ z − w

1− w̄z

∣∣∣∣2)α+1(
1− log

∣∣∣∣ z − w

1− zw̄

∣∣∣∣2)
+

(1− |z|2)α+1(1− |w|2)α

2|1− zw̄|α+1|z − w|
.

A similar calculation gives the inequality

2π|(Gα)w̄| 6
(1− |z|2)α+1(1− |w|2)α

2|1− zw̄|α+1|z − w|
.

We write

I1 =

∫∫
D

(1− |z|2)α+1(1− |w|2)α

2|1− zw̄|α+1|z − w|
dxdy

and

I2 =

∫∫
D
|1− w̄z|α−1

(
1−

∣∣∣∣ z − w

1− w̄z

∣∣∣∣2)α+1(
1− log

∣∣∣∣ z − w

1− zw̄

∣∣∣∣2)dxdy.
Let ξ = φ(z) = (w − z)/(1 − w̄z). Then, for each w ∈ D, φ(z) is a conformal mapping of D onto itself

satisfying the following four identities:

z =
w − ξ

1− w̄ξ
, 1− |z|2 =

(1− |w|2)(1− |ξ|2)
|1− w̄ξ|2

,

1− w̄z =
1− |w|2

1− w̄ξ
, dz = − 1− |w|2

(1− w̄ξ)2
dξ.

These equations imply that the equation

I1 =

∫∫
D

(1− |w|2)α+1(1− |ξ|2)α+1

2|ξ||1− w̄ξ|α+4
dτdη
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is satisfied. Then, when |w| < 1 and |ξ| < 1, the following inequality

(1− |w|2)(1− |ξ|2)
|1− w̄ξ|

6 4(1− |w|)(1− |ξ|)
(1− |w||ξ|)

6 4, (3.6)

together with Lemma C shows that

I1 6 4α

2

∫∫
D

(1− |w|2)(1− |ξ|2)
|ξ||1− w̄ξ|4

|dξ|2 6 2 · 4α

3
π (3.7)

when α is non-negative.

Similarly, the linear transformation ξ = (w − z)/(1− w̄z) of D onto itself gives

I2 =

∫∫
D

(1− |w|2)α+1(1− |ξ|)α+1

|1− w̄ξ|α+3
(1− log |ξ|2)dτdη.

Thus, for non-negative α, the inequality (3.6) implies that

I2 6 4α
∫∫

D

(1− |w|2)(1− |ξ|2)
|1− w̄ξ|3

(1− log |ξ|2)|dξ|2

=
4α

2

∫ 1

0

[
2
(1− |w|2)(1− |ξ|2)

(1− |w|2|ξ|2)2

∫ 2π

0

(1− |w|2|ξ|2)2

|1− |w||ξ|eiφ|2+1
dφ

]
|ξ|(1− log |ξ|2)d|ξ|.

Furthermore, Lemma A together with the conditions |ξ| < 1 and |w| < 1 gives us the following bound:

I2 6 4απ

Γ(3/2)

∫ 1

0

2
(1− |w|2)(1− |ξ|2)

(1− |w|2|ξ|2)2
|ξ|(1− log |ξ|2)d|ξ|

6 4απ

Γ(3/2)

∫ 1

0

2|ξ|(1− log |ξ|2)d|ξ| = 4α+1π

3Γ(3/2)
. (3.8)

Hence, if g is a continuous and bounded function on the unit disk D, then it follows from (3.7) and (3.8)

that

|(Gα[g])w| 6
(
|α|4α+1Cα

6Γ(3/2)
+

4α

3

)
∥g∥∞, |(Gα[g])w̄| 6

4α

3
∥g∥∞,

where ∥g∥∞ is the essential upper bound of the function g on D. Hence, the proof of Lemma 3.4 is

completed.

Recall Theorem 1.1, as stated in the introduction. This is the last result we need before proving the

main result of this paper in the next section. The proof of Theorem 1.1 is based on the above lemmas.

Proof of Theorem 1.1. Assume that v is a solution of the PDE −Lαv = g satisfying that v(reiθ) tends

to the function f as r tends to 1. Theorem B provides

v(w) =
1

2π

∫
T

(1− |w|2)α+1

(1− zw̄)α+1(1− z̄w)
f(z)dθ +

∫∫
D
Gα(z, w)g(z)dxdy

= u(w) +Gα[g](w),

where u is the ᾱ-harmonic mapping on D with boundary function f and Gα[g] is the Green potential

on D of the function g.

By the assumption that v ∈ C2(D), there exists a positive constant M1 such that |∇v| 6 M1 when

w ∈ D(0, 1/2). When w ∈ D\D(0, 1/2), we obtain from Lemma 3.1 the following inequality:

|∇v| = |vw|+ |vw̄| 6 (|uw|+ |uw̄|) + (|(Gα[g])w|+ |(Gα[g])w̄|)

6 2
√
2(|uφ|+ r|ur|) + (|(Gα[g])w|+ |(Gα[g])w̄|).

Because f ′ ∈ L∞(T), Lemma 3.2 proves that |uφ| is bounded. Furthermore, Lemma 3.3 implies that rur
is also bounded if the integral

1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ
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is bounded. Hence, there exists a constant M2 such that |uφ| + r|ur| 6 M2 for all non-negative α.

Furthermore, Lemma 3.4 says there exists a constant M3 satisfying the condition

|∇Gα[g]| = |(Gα[g])w|+ |(Gα[g])w̄| 6M3

whenever α is non-negative. Hence, we have shown that the condition |∇v| 6 max{M1, 2
√
2M2 +M3},

which implies that v is Lipschitz continuous on D, as desired.

In particular, if g vanishes, then we obtain the following corollary.

Corollary 3.1. Assume that u ∈ C2(D) is an ᾱ-harmonic mapping of the unit disk D satisfying that

u(reiθ) tends to the function f as r tends to 1, where f is absolutely continuous on the unit circle T. If f

satisfies that f ′ ∈ L∞(T) and the integral

1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

is bounded, where z = eiθ, then u is Lipschitz continuous on the unit disk D when α is at least zero.

4 Proof of Theorem 1.2

In this section, we will give the proof of main result of this paper, which gives four equivalent conditions

for the solutions of the ᾱ-Poisson equation with a nonhomogeneous term to be Lipschitz continuous.

Theorem 1.2. Assume that v ∈ VD→Ω[g] with the representation v(w) = u(w) +Gα[g](w). Then the

following conditions are equivalent:

(a) v is a (K,K ′)-quasiconformal mapping and |∂u∂r | 6 L on D, where L is a constant.

(b) v is Lipschitz continuous with the Euclidean metric.

(c) u is Lipschitz continuous with the Euclidean metric.

(d) f is absolutely continuous on T, f ′ ∈ L∞(T) and the following integral

1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

is bounded, where z = eiθ.

Proof. We first prove that (a) ⇒ (b) holds. By the assumption that v is (K,K ′)-quasiconformal, we

have the inequality

|∇v|2 6 KJv +K ′,

where Jv is the Jacobian of v. Thus, it follows that the inequality

|∇v| 6 Kl(∇v) +
√
K ′ 6 K|vr|+

√
K ′

is established. Furthermore, Lemmas 3.1 and 3.4 together imply

|vr| 6 |ur|+ |(Gα[g])r| 6 L+ (|(Gα[g])w|+ |(Gα[g])w̄|) 6 L+MG,

where MG = ( |α|4
α+1Cα

6Γ(3/2) + 4α+1

6 )∥g∥∞. Hence,

|∇v| 6 K(L+MG) +
√
K ′

is satisfied, which implies that v is Lipschitz continuous in the Euclidean metric on D.
By the assumption that v is Lipschitz continuous in the Euclidean metric, there exists a constant Mv

satisfying

|∇v| 6Mv.
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Thus, the relation |∇Gα[g]| 6MG together with the representation u = v−Gα[g] imply that the relations

|∇u| 6 |∇v|+ |∇Gα[g]| 6Mv +MG

hold. Hence, u is also Lipschitz continuous in the Euclidean metric on D. Thus we have completed the

proof of (b) ⇒ (c).

Since u is Lipschitz continuous in the Euclidean metric on D, there exists a constant Mu satisfying

|∇u| 6Mu.

Utilizing Lemma 3.1, we obtain ∣∣∣∣∂u∂r
∣∣∣∣ 6 |∇u| 6Mu.

Furthermore, we have the inequality

|∇v|2 6 Jv + 2(Mu +MG)
2.

Thus, v is (1, 2(Mu +MG)
2)-quasiconformal on D. Therefore, we have established (c) ⇒ (a).

Theorem 1.1 says that (d) ⇒ (b) holds.

Assume that v is Lipschitz continuous in the Euclidean metric on D, and hence it is Lipschitz continuous

on T; thus, f and f ′ ∈ L∞(T). Furthermore, from the proof of Lemma 3.3, we have∣∣∣∣ 1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

∣∣∣∣ 6 |rur|+
∣∣∣∣ α2π

∫
T

zw̄(1− |w|2)α

(1− zw̄)α+1
f(z)dθ

∣∣∣∣.
Lemma A with the inequality |ur| 6 |vr|+ |(Gα[g])r| 6 (|∇v|+ |∇Gα[g]|) gives∣∣∣∣ 1

2π

∫
T

(1− |w|2)α

(1− zw̄)α
(wz̄ − w̄z)/i

|z − w|2
[f(eiθ)]′θdθ

∣∣∣∣ 6 (Mv +MG) + α
Γ(α)

Γ(α+1
2 )2

∥f∥∞.

Thus, the proof of (b) ⇒ (d) is completed.

Remark 4.1. When α is zero and f(T) is a convex Jordan curve, Theorem 1.2 with the Radó-Choquet-

Kneser theorem is the version of Theorem 3.2 of [21].
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