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the conjectured LYZ Orlicz centroid inequality for star bodies.
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1 Introduction and preliminaries

The centroid body operator is one of the central notions in convex geometry which rooted back at least

to Dupin (see also [28]). The classical affine isoperimetric inequality that relates the volume of a convex

body with that of its centroid body was conjectured by Blaschke (see also [10,28,37,46]) and established in

a landmark work of Petty [36]. Since Petty “reinterpreted” and made critical use of Busemann’s random

simplex inequality (see [3]) in establishing his inequality, Petty’s theorem is known as the Busemann-Petty

centroid inequality (see [10,37]).

In [25], Lutwak et al. extended the notion of centroid body to the Lp analogues of centroid body, and

established the Lp analogues of centroid inequality. An alternative proof of the Lp centroid inequality was

provided by Campi and Gronchi [4]. The Lp Busemann-Petty centroid inequality became a central focus in

the Lp Brunn-Minkowski theory and its dual (see [10,23,24,37] for more references). Furthermore, the Lp

centroid bodies quickly became objects of interest in asymptotic geometric analysis (see [8, 9, 20, 31–34])

and the theory of stable distributions (see [30]). The literature is large and continues to grow (see, for

example, [5, 7, 14,26,29,38,42]). For more references, see [2, 19,39–41,47–49].

Recently, as an extension of the Lp Brunn-Minkowski theory, the Orlicz Brunn-Minkowski theory

emerged in three landmark works by Haberl et al. [15] and Lutwak et al. [27, 28]. This extension is

motivated by asymmetric concepts within the Lp Brunn-Minkowski theory developed by Haberl and
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Schuster [16, 17], Haberl et al. [18], Ludwig and Reitzner [22] and Ludwig [21]. The new Orlicz Brunn-

Minkowski theory has attracted considerable interest (see, for example, [1, 6, 11, 43, 44, 50]). See [12, 45]

for its dual theory.

In [28], Lutwak et al. introduced the concept of Orlicz centroid body that is a natural extension

of the centroid body and its Lp extension. The fundamental result in [28] is the Orlicz Busemann-

Petty centroid inequalities for convex bodies. After that, many works have been done for inequalities

and reverse inequalities (see [6,35,46]). Among those, Zhu [46] developed an important tool—the Steiner

symmetrization for star bodies. By applying his new tool, Zhu settled the conjectured LYZ Orlicz centroid

inequality. Zhu [46] also solved the equality condition for the case where ϕ is strictly convex. It is the

aim of this paper to extend the method used by Zhu [46] and to study the equality condition for the

Orlicz centroid inequality without the condition that ϕ is strictly convex.

In order to keep the paper self-contained, we first collect notation, definitions and basic facts about

convex bodies and star bodies. More detailed theories and references are included in books of Gardner [10],

Gruber [13] and Schneider [37].

Let Rn be the Euclidean space with the usual inner product x · y and standard Euclidean norm |x| for
x, y ∈ Rn. We write e1, . . . , en for the standard unit vector basis of Rn. When we write Rn = Rn−1 ×R,
we always assume that en is associated with the last factor. The unit sphere is denoted by Sn−1. We

will use x, y for vectors in Rn and x′, y′ for vectors in Rn−1.

If K is a Borel subset of Rn and is contained in an i-dimensional affine subspace of Rn but not in any

affine subspace of lower dimension, let |K| denote the i-dimensional Lebesgue measure of K.

For A ∈ GL(n) we write At for the transpose of A, A−t for the inverse of the transpose of A, and |A|
for the absolute value of the determinant of A.

Let K be a convex body (compact convex subset with nonempty interiors) in Rn. Its support function

hK = h(K, ·) : Rn → [0,+∞), is defined by h(K,x) = max{x · y : y ∈ K}. When considering the convex

body K ⊂ Rn−1×R, we usually write h(K;x′, t) rather than h(K; (x′, t)). Let Kn be the set of all convex

bodies, and Kn
o be the set of convex bodies that contain the origin in their interiors.

The Hausdorff distance between two convex bodies K and L is

δ(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|.

If K,L ∈ Kn, and hK and hL are support functions of K and L, respectively, then

hK 6 hL if and only if K ⊂ L.

For c > 0, u ∈ Sn−1,

hcK(u) = chK(u), hK(cu) = chK(u),

where cK = {cx : x ∈ K} . More generally, by the definition of the support function, we have

hK+L(u) = hK(u) + hL(u),

hAK(u) = hK(Atu), for A ∈ GL(n),

where K + L = {x+ y : x ∈ K, y ∈ L} and AK = {Ax : x ∈ K}.
Let K be a convex body in Rn. For u ∈ Sn−1, let Ku be the image of the orthogonal projection of K

onto the hyperplane u⊥. If lu(K, y′) and lu(K, y′) are two concave real functions on Ku such that

K = {y′ + tu : −lu(K, y′) 6 t 6 lu(K, y′), y′ ∈ Ku},

then we call lu(K, y′) the undergraph function of K in the direction u, and lu(K, y′) the overgraph

function, respectively.

Let SuK denote the Steiner symmetral of K with respect to u⊥,

SuK =

{
y′ + tu : |t| 6 lu(K, y′) + lu(K, y′)

2

}
.
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This means

lu(SuK, y′) = lu(SuK, y′) = (lu(K, y′) + lu(K, y′))/2.

Fubini’s theorem yields |SuK| = |K|. If we iterate Steiner symmetrizations of K through a suitable

sequence of unit directions, the successive Steiner symmetrals of K will approach a Euclidean ball in the

Hausdorff topology on compact (in particular, convex) subsets of Rn (see, e.g., [13]).

Let K be a compact star-shaped set (about the origin) in Rn. Its radial function, ρK = ρ(K, ·) : Rn →
[0,+∞), is defined by ρK(x) = max{λ > 0 : λx ∈ K}. If ρ is strictly positive and continuous, then we

call K a star body. Let Sn
o denote the set of star bodies with respect to the origin in Rn.

Let K be a star body, and u ∈ Sn−1. We use lu(K, y′) and lu(K, y′) to denote max{λ : y′ + λu ∈ K}
and max{λ : y′ − λu ∈ K}, respectively. Note that if K is a convex body, they are just the overgraph

and undergraph functions of K.

Let C denote the set of convex functions ϕ : R → [0,∞) such that ϕ(0) = 0 and ϕ(t) + ϕ(−t) ̸= 0 for

t ̸= 0. For a convex function ϕ, the condition “ϕ(0) = 0” means that ϕ is monotone decreasing on (−∞, 0]

and monotone increasing on [0,∞). Then the condition “ϕ(t) + ϕ(−t) ̸= 0 for t ̸= 0” is equivalent to

that ϕ is either strictly monotone decreasing on (−∞, 0] or strictly monotone increasing on [0,∞).

A stronger condition “ϕ(t)ϕ(−t) ̸= 0 for t ̸= 0” can guarantee both strictly monotone decreasing

on (−∞, 0] and strictly monotone increasing on [0,∞). Note that “ϕ(t)ϕ(−t) ̸= 0 for t ̸= 0” means

“ϕ(t) ̸= 0 for t ̸= 0”. Moreover, the condition “ϕ is a strictly convex function” is stronger than both

“ϕ(t) + ϕ(−t) ̸= 0 for t ̸= 0” and “ϕ(t)ϕ(−t) ̸= 0 for t ̸= 0”.

Let K be a star body with respect to the origin in Rn. The corresponding support function of the

Orlicz centroid body ΓϕK for ϕ ∈ C and x ∈ Rn is defined by

hΓϕK(x) = inf

{
λ > 0 :

1

|K|

∫
K

ϕ

(
x · y
λ

)
dy 6 1

}
, (1.1)

where |K| is the volume of K ∈ Sn
o , x ·y denotes the usual inner product of x and y in Rn and integration

is with respect to Lebesgue measure in Rn.

An important special case is when ϕ(t) = |t|p for some p > 1. Then ΓϕK is the Lp centroid body of K,

whose support function is given by

h(ΓpK,x) =
1

|K|

∫
K

|x · y|pdy. (1.2)

In particular, if p = 1, then the body ΓpK is the classical centroid body ΓK of K.

Unlike ΓK, the Orlicz centroid body ΓϕK is not translation invariant for a general ϕ ∈ C, and may

not be o-symmetric, while [28] showed the Orlicz centroid body operator retains continuity in Hausdorff

metric and GL(n) covariance. The property of GL(n) covariance can be formulated as

ΓϕAK = AΓϕK, for A ∈ GL(n), K ∈ Sn
o , ϕ ∈ C. (1.3)

Lutwak et al. [28] obtained the following Orlicz Busemann-Petty centroid inequality.

Theorem A. If ϕ ∈ C and K is a convex body in Rn that contains the origin in its interior, then the

volume ratio

|ΓϕK|/|K|

is minimized if and only if K is an ellipsoid centered at the origin.

Lutwak et al. [28] posed the following open problem.

LYZ Conjecture. If ϕ ∈ C and K is a star body in Rn that contains the origin in its interior, then

the volume ratio

|ΓϕK|/|K| (1.4)

is minimized if and only if K is an ellipsoid centered at the origin.
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Zhu [46] extended the Orlicz Busemann-Petty centroid inequalities from convex to star bodies and

solved the equality condition for the case that ϕ is strictly convex.

Theorem B. If ϕ ∈ C and K is a star body with respect to the origin, then the volume ratio

|ΓϕK|/|K|

is minimized when K is an ellipsoid centered at the origin. If ϕ is a strictly convex function, then

ellipsoids centered at the origin are the only minimizers.

Motivated by ideas of Lutwak et al. [28] and Zhu [46], we confirm the conjectured LYZ Orlicz centroid

inequality and solve the equality condition for star bodies in S̃n
o without the condition of ϕ’s strict

convexity.

If K is a star body that is not convex, then there exist P1, P2 ∈ K such that the segment P1P2 does

not completely lie in K. Set u =
−−−→
P1P2/|

−−−→
P1P2|. Let UK be the set of all of these u about K, and let

K ′ = Ku be the image of the projection of K onto u⊥. By Lemma 3.6, for every u ∈ UK , and y′ ∈ u⊥,

there exist x′
1, x

′
2 ∈ u⊥ and λ1, λ2 satisfying that

λ1 = h(ΓϕK,x′
1, 1) = lu0(ΓϕK, y′) + x′

1 · y′ (1.5)

and

λ2 = h(ΓϕK,x′
2,−1) = lu0

(ΓϕK, y′) + x′
2 · y′. (1.6)

A star body K which is not convex is called a Φ-star body if there exist u0 ∈ UK , y′0 ∈ K ′ such that

there are at least three points in (y′0 +Ru0) ∩ ∂K, and l̄u0(K, y′0) (or lu0
(K, y′0)) /∈ [s1(y

′
0), s2(y

′
0)]. Here,

s1(y
′) and s2(y

′) are, respectively, the left and right monotone points (see the note of Lemma 2.3) of

fy′(s) =
2λ1

λ1 + λ2
ϕ

(
x′
1 · y′ + s

λ1

)
+

2λ2

λ1 + λ2
ϕ

(
x′
2 · y′ − s

λ2

)
, (1.7)

for some x′
1, x

′
2 ∈ u⊥ and λ1, λ2 which satisfy (1.5) and (1.6). Let S̃n

o denote the union of Kn
o and the set

of all Φ-star bodies.

We show that for any ϕ ∈ C, Orlicz Busemann-Petty centroid inequality holds for K ∈ S̃n
o with its

equality condition. This solves the uniqueness of the volume ratio |ΓϕK|/|K| for arbitrary ϕ ∈ C and

confirms the LYZ conjecture for star bodies in S̃n
o . Our main work can be described as follows.

Theorem 1.1. Let ϕ ∈ C and K be a star body with respect to the origin. Then the volume ratio

|ΓϕK|/|K|

is minimized when K is an ellipsoid centered at the origin. If K ∈ S̃n
o , then ellipsoids centered at the

origin are the only minimizers.

In the case that ϕ is strictly convex, it follows from Lemma 2.2 that s1(y
′
0) = s2(y

′
0) for (1.7). It is

true that l̄u0(K, y′0) (or lu0
(K, y′0)) /∈ [s1(y

′
0), s2(y

′
0)], so every non-convex body is Φ-star body. In this

sense, our result is a generalization of Zhu’s result (see Theorem B).

Our proof of the LYZ conjecture is based on the methods used by Lutwak et al. [28] and Zhu [46] and

Steiner symmetrization. The novel idea of the proof is to reduce the problem to show that if K ∈ S̃n
o

and is not convex, then the volume ratio is not minimized. This can be shown by Steiner symmetrization

of ΓϕK with its identity condition. To show the LYZ conjecture for any ϕ ∈ C, we will study the

monotonicity and integral inequality of ϕ which will be strictly used in showing Steiner symmetrization

of ΓϕK. After establishing Steiner symmetrization of Orlicz centroid bodies in Section 3, we prove the

LYZ Orlicz centroid inequality for star bodies in S̃n
o in the last section.

2 Properties of convex function ϕ ∈ C

Let C denote the set of convex functions ϕ : R → [0,∞) such that ϕ(0) = 0 and ϕ(t) + ϕ(−t) ̸= 0 for

t ̸= 0. For any ϕ ∈ C, we have the following lemma (see [46]).



Wu D H et al. Sci China Math July 2018 Vol. 61 No. 7 1277

Lemma 2.1. Let ϕ ∈ C. For real ai > 0, bi, ci > 0 (i = 1, 2), let sm = min{− b1
a1
, b2
a2
}, sM =

max{− b1
a1
, b2
a2
} and

f(s) = c1ϕ(a1s+ b1) + c2ϕ(−a2s+ b2).

Then there exists an s0 ∈ [sm, sM ] such that f(s) is monotone decreasing on (−∞, s0] and monotone

increasing on [s0,∞).

Lemma 2.2. Let ϕ ∈ C. For real ai > 0, bi, ci > 0 (i = 1, 2), let sm = min{− b1
a1
, b2
a2
}, sM =

max{− b1
a1
, b2
a2
} and let

f(s) = c1ϕ(a1s+ b1) + c2ϕ(−a2s+ b2).

Then, we have either

(I) there exists a unique s0 such that f(s) is strictly monotone decreasing on (−∞, s0] and strictly

monotone increasing on [s0,∞); or

(II) there exist s1, s2 ∈ [sm, sM ] with s1 < s2 such that f(s) is strictly monotone decreasing on (−∞, s1],

strictly monotone increasing on [s2,∞) and f(s) = const. for all s ∈ [s1, s2].

Proof. Since (I) is the special case s1 = s2 in (II), it suffices to show (II). For ϕ(s) ∈ C, without loss of
generality, let ϕ(s) be strictly monotone decreasing on (−∞, 0] and monotone increasing on [0,∞). Let

f1(s) = c1ϕ(a1s+ b1), f2(s) = c2ϕ(−a2s+ b2). Obviously, f1 and f2 are convex, by the convexity of ϕ.

By the monotone property of ϕ, f1 is strictly monotone decreasing on (−∞,− b1
a1
] and monotone

increasing on [− b1
a1
,∞), f2 is monotone decreasing on (−∞, b2

a2
] and strictly monotone increasing on

[ b2a2
,∞). Thus, f = f1+f2 is strictly monotone decreasing on (−∞, sm] and strictly monotone increasing

on [sM ,∞, ).

Next, we consider the monotone property of f on [sm, sM ]. By the convexity of f1 and f2, f is convex

on [sm, sM ].

Let us recall the differentiability of 1-dimensional convex functions (see, e.g., [37, Theorem 1.5.4]).

If f : R → R is convex, then on the interior of the domain of f the right derivative f ′
r and the left

derivative f ′
l exist and are monotonically increasing functions. Furthermore, f ′

l 6 f ′
r, and with the

exception of at most countably many points, f ′
l = f ′

r holds and hence f is differentiable.

If there does not exist s1, s2 ∈ [sm, sM ], such that f(s) = const. for s ∈ [s1, s2], then there exists a

unique s0 such that f(s) is strictly monotone decreasing on (−∞, s0] and strictly monotone increasing

on [s0,∞). Indeed, if there does not exist s1, s2 ∈ [sm, sM ], such that f(s) = const. for s ∈ [s1, s2], then

it follows from the monotonically increasing property of f ′
l and f ′

r that there exists at most one point

where f ′
l = f ′

r = 0. Therefore, there exists a unique s0 such that f(s) is strictly monotone decreasing

on (−∞, s0] and strictly monotone increasing on [s0,∞), which is (I).

If there exist s1, s2 ∈ [sm, sM ] such that f(s) = const. for s ∈ [s1, s2], then choose the maximal

interval [s1, s2] such that the above holds.

First, we claim that if f(s) = const. for s ∈ [s1, s2], then f1 and f2 are linear functions and f ′
1 = −f ′

2

on [s1, s2]. In fact, if f1 is not a linear function, the convexity of f1 implies that f1 is strictly convex

on [s1, s2]. Then f2 = f − f1 = const. − f1 is strictly concave on [s1, s2], which obviously leads to a

contradiction. We may assume f1 = ks + b1, f2 = k′s + b2. Since f1 + f2 = f , we have k′ = −k. Now,

we prove that f is strictly monotone on [sm, s1] and [s2, sM ]. Suppose that there exists another maximal

interval [s3, s4] ⊂ [sm, sM ] such that f(s) = const.′ for s ∈ [s3, s4]. Without loss of generalization, assume

s3 > s2. Since f1 and f2 are convex then the (left) derivatives of f1 and f2 are monotonically increasing,

namely for s ∈ [s3, s4], f
′
1l > k, f ′

2l > −k. Then f ′
1l = −f ′

2l is impossible on [s3, s4]. Therefore, there

exists [s1, s2] ⊂ [sm, sM ] such that f(s) = const. for s ∈ [s1, s2].

Next, for any s0 ∈ [s1, s2], we have f(s0) = min{f(s) : s ∈ R}. In fact, it is a corollary of the

uniqueness of the maximal choice of [s1, s2]. The condition that f(s) = const. for s ∈ [s1, s2] implies

that f ′(s) = 0 for s ∈ [s1, s2]. Since f ′
l is increasing, the uniqueness of the interval [s1, s2] indicates that

f ′
l (s) < 0 on s ∈ (−∞, s1] and f ′

l (s) > 0 on s ∈ (s2,∞].

Thus, we have proved that if there exist s1, s2 ∈ [sm, sM ] such that f(s) = const. for s ∈ [s1, s2],

then (II) holds.
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The following lemma is a direct corollary of Lemma 2.2.

Lemma 2.3. Under the condition of Lemma 2.2, there exist s1, s2 ∈ [sm, sM ] with s1 6 s2 such

that f(s) is strictly monotone decreasing on (−∞, s1], strictly monotone increasing on [s2,∞) and f(s) =

const. for all s ∈ [s1, s2].

Note that for convex function f in Lemma 2.3, s1 and s2 uniquely exist, and are called the left monotone

point and right one of f , respectively.

Lemma 2.4. (I) Let f(s) be strictly monotone decreasing on (−∞, s0] and strictly monotone increasing

on [s0,∞). If E ⊂ R is compact, then∫
E

f(s)ds >
∫ s0+δ+s0

s0−δ−s0

f(s)ds,

where δ+s0 = |E ∩ [s0,∞)|, δ−s0 = |E ∩ (−∞, s0]|. If there exists an s′0 not in E and |E ∩ (−∞, s′0]| > 0,

|E ∩ [s′0,∞)| > 0, then equality cannot hold.

(II) Suppose that f(s) is strictly monotone decreasing on (−∞, s1], strictly monotone increasing on

[s2,∞) and f(s) = const. for s ∈ [s1, s2]. Let E ⊂ R be compact and δ+si = |E ∩ [si,∞)|, δ−si =

|E ∩ (−∞, si]|, i = 1, 2, and let s− = mins∈E{s} and s+ = maxs∈E{s}. Then, we have∫
E

f(s)ds >
∫ s1+δ+s1

s1−δ−s1

f(s)ds, (2.1)

∫
E

f(s)ds >
∫ s2+δ+s2

s2−δ−s2

f(s)ds. (2.2)

If there exists an s′0 ∈ [s−, s+] but not in E and |E ∩ (−∞, s′0]| > 0, |E ∩ [s′0,∞)| > 0, then the equality

in (2.1) holds if and only if s′0 ∈ [s1, s2], [s−, s1] ⊂ E and s+ 6 s2; the equality in (2.2) holds if and only

if s′0 ∈ [s1, s2], [s2, s+] ⊂ E and s− > s1.

Therefore, if there exists an s′0 ∈ [s−, s+] but not in E and |E ∩ (−∞, s′0]| > 0, |E ∩ [s′0,∞)| > 0, then

both equalities hold only when E ⊂ [s1, s2].

Proof. We only need to prove (II). In fact, (I) is a corollary of (II) when s1 = s2.

To prove the first inequality (2.1) in (II), it suffices to show that∫
E∩(−∞,s1]

f(s)ds >
∫ s1

s1−δ−s1

f(s)ds, (2.3)

∫
E∩[s1,∞)

f(s)ds >
∫ s1+δ+s1

s1

f(s)ds. (2.4)

Since E is compact, we have E ∩ (−∞, s1] and E ∩ [s1,∞) are compact, and s− = mins∈E{s} > −∞
and s+ = maxs∈E{s} < ∞.

Now, we show (2.3).

Suppose that [s−, s1] ⊂ E. Then s− = s1 − δ−s1 . Hence, E ∩ (−∞, s1] = E ∩ [s−, s1] = [s−, s1] =

[s1 − δ−s1 , s1]. Thus, the equality in (2.3) holds.

Suppose that (s−, s1) \ E is a non-empty open set in R, which is a union of at most countably many

open intervals {Ui}∞i=1, Ui ∩ Uj = ∅ for i ̸= j and i, j = 1, 2, . . . ,∞.

Let Ui = (sil, s
i
r) and si+1

r 6 sil, i = 1, 2, . . . ,∞. We may assume that (s−, s
1
r) \ (

∪∞
i=1 Ui) is a non-zero

1-dimensional Lebesgue measurable set. Otherwise, the Lebesgue measurable set (s−, s
1
r) \ (

∪∞
i=1 Ui) is

measure zero. Then ∫
E∩(−∞,s1]

f(s)ds =

∫
(s−,s1r)\(

∪∞
i=1 Ui)

f(s)ds+

∫
(s1r,s1)

f(s)ds

=

∫
(s1r,s1)

f(s)ds =

∫ s1

s1−δ−s1

f(s)ds,
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which is the equality of (2.3). We may also assume that |
∪∞

i=1 Ui| > 0. Otherwise, |
∪∞

i=1 Ui| = 0, then∫
E∩(−∞,s1]

f(s)ds =

∫
(s−,s1)\(

∪∞
i=1 Ui)

f(s)ds =

∫
(s−,s1)\(

∪∞
i=1 Ui)

f(s)ds+

∫
∪∞

i=1 Ui

f(s)ds

=

∫ s1

s−

f(s)ds =

∫ s1

s1−δ−s1

f(s)ds,

as required.

Since
∪∞

i=1 Ui and (s−, s
1
r) \ (

∪∞
i=1 Ui) are 1-dimensional non-zero Lebesgue measurable sets, without

loss of generalization, we assume |s1r − s1l | > 0 and |s1l − s2r| > 0. Then f(s) > f(s + (s1r − s1l )) for

s ∈ (s2r, s
1
l ) by the monotonicity of f . Furthermore, for k = 1, 2, . . . ,∞, f(s) > f(s+

∑k
i=1(s

i
r − si1)) for

s ∈ (sk+1
r , skl ). Therefore,∫

E∩(−∞,s1]

f(s)ds

= lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

k∑
i=1

∫ sil

si+1
r

f(s)ds+

∫ s1

s1r

f(s)ds

= lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

k∑
i=2

∫ sil

si+1
r

f(s)ds+

(∫ s1l

s2r

f(s)ds+

∫ s1

s1r

f(s)ds

)

> lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

k∑
i=2

∫ sil

si+1
r

f(s)ds+

(∫ s1l

s2r

f(s+ (s1r − s1l ))ds+

∫ s1

s1r

f(s)ds

)

= lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

k∑
i=2

∫ sil

si+1
r

f(s)ds+

∫ s1

s2r+(s1r−s1l )

f(s)ds

> lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

k∑
i=3

∫ sil

si+1
r

f(s)ds+

∫ s1

s3r+(s2r−s2l )+(s1r−s1l )

f(s)ds

> lim
k→∞

∫ sk+1
l

s−

f(s)ds+ lim
k→∞

∫ s1

sk+1
r +

∑k
i=1(s

i
r−sil)

f(s)ds

> lim
k→∞

∫ sk+1
l

s−

f

(
s+

k+1∑
i=1

(sir − sil)

)
ds+ lim

k→∞

∫ s1

sk+1
r +

∑k
i=1(s

i
r−sil)

f(s)ds

>
∫ s1

s−+
∑∞

i=1(s
i
r−sil)

f(s)ds =

∫ s1

s1−δ−s1

f(s)ds.

This proves (2.3).

The equality in (2.3) holds if and only if |(s−, s1)\E| = 0, i.e., if x ∈ (s−, s1) then x ∈ E a.e. However,

since E is compact, the equality in (2.3) holds if and only if (s−, s1) ⊂ E.

Similar to the proof of (2.3), we can obtain (2.4).

For s+ 6 s2, we have∫
E∩[s1,∞)

f(s)ds =

∫
E∩[s1,s2]

f(s)ds = const.|E ∩ [s1, s2]|

=

∫
(s1,s1+δ+s1 )

f(s)ds =

∫ s1+δ+s1

s1

f(s)ds.

Hence, the equality in (2.4) holds.

We assume s+ > s2. If [s1, s+] ⊂ E, then s+ = s1 + δ+s1 . Hence, the equality in (2.4) holds. Suppose

that (s1, s+)\E is a non-empty open set in R, which is a union of at most countably many open intervals

{Ui}∞i=1, Ui ∩ Uj = ∅ for i ̸= j, i, j = 1, 2, . . . ,∞.
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Let Ui = (sil, s
i
r) and sir 6 si+1

l , i = 1, 2, . . . ,∞. Assume that |
∪∞

i=1 Ui| > 0. Indeed, if |
∪∞

i=1 Ui| = 0,

then the equality of (2.4) holds. Without loss of generalization, let |(s1l , s1r)| > 0. Furthermore, either

|(s1l , s+) \ (
∪∞

i=1 Ui)| = 0 or |(s2, s+) \ (
∪∞

i=1 Ui)| = 0 implies that the equality of (2.4) holds. Thus, we

may also assume that (max{s1l , s2}, s+) \ (
∪∞

i=1 Ui) is a non-zero Lebesgue measurable set.

Since (max{s1l , s2}, s+) \ (
∪∞

i=1 Ui) is a non-zero Lebesgue measurable set, there exists a non-empty

open set (sjr, s
j+1
l ) ⊂ E, such that (sjr, s

j+1
l ) ⊂ (max{s1l , s2}, s+). Hence, by the monotonicity of f , we

have f(s) > f(s−
∑j

i=1(s
i
r−sil)) for (s

j
r, s

j+1
l ). Moreover, for k = 1, . . . , j−1, f(s) > f(s−

∑k
i=1(s

i
r−s1i ))

for s ∈ (skr , s
k+1
l ); for k = j, j + 1, . . . ,∞, f(s) > f(s−

∑k
i=1(s

i
r − s1i )) for s ∈ (skr , s

k+1
l ). Therefore,

∫
E∩(s1,∞]

f(s)ds =

∫ s1l

s1

f(s)ds+ lim
k→∞

k∑
i=1

∫ si+1
l

sir

f(s)ds+ lim
k→∞

∫ s+

sk+1
r

f(s)ds

>
∫ sjl+

∑j−1
i=1 (s

i
r−sil)

s1

f(s)ds+ lim
k→∞

k∑
i=j

∫ si+1
l

sir

f(s)ds+ lim
k→∞

∫ s+

sk+1
r

f(s)ds

> lim
k→∞

∫ sk+1
l +

∑k
i=1(s

i
r−sil)

s1

f(s)ds+ lim
k→∞

∫ s+

sk+1
r

f(s)ds

> lim
k→∞

∫ sk+1
l +

∑k
i=1(s

i
r−sil)

s1

f(s)ds+ lim
k→∞

∫ s+

sk+1
r

f

(
s+

k+1∑
i=1

(sir − sil)

)
ds

>
∫ s1+

∑∞
i=1(s

i
r−sil)

s1

f(s)ds =

∫ s1+δ+s1

s1

f(s)ds.

Therefore, the inequality (2.4) is proved.

The equality in (2.4) holds if and only if |(s2, s+)\E| = 0, i.e., if x ∈ (s2, s+) then x ∈ E a.e.. However,

since E is compact, the equality in (2.4) holds if and only if (s2, s+) ⊂ E.

If there exists an s′0 ∈ [s−, s+]\E and |E ∩ (−∞, s′0]| > 0, |E ∩ [s′0,∞)| > 0, then the equality in (2.1)

holds if and only if s′0 ∈ [s1, s2], [s−, s1] ⊂ E and s+ 6 s2.

The same argument in the proof of (2.1) can be used to show (2.2) with its equality condition.

3 Steiner symmetrization of Orlicz centroid bodies

Now, we establish a sharp Steiner symmetrization of Orlicz centroid bodies for star bodies, which is

critical in the proof of our main theorem. To get the sharp Steiner symmetrization, the following lemma

(see [46]) is needed.

Lemma 3.1. Let K be a nonempty compact set. Then K is a star body if and only if for each u ∈ Sn−1,

all the points of {tu : 0 6 t < ρK(u)} are interior points of K.

From the strictly monotone property of ϕ∗ =
∫ 1

0
ϕ(ts)dsn, we have the following useful lemma (see [28]).

Lemma 3.2. Let ϕ ∈ C and K ∈ Sn
o , x0 ∈ Rn. Then

1

|K|

∫
K

ϕ

(
x0 · y
λ0

)
dy = 1,

if and only if

hΓϕK(x0) = λ0.

The following result for star bodies was proved in [46]. The version for convex bodies was proved

in [28].

Lemma 3.3. Let K ∈ Sn
o , ϕ ∈ C. Then for u ∈ Sn−1 and x′

1, x
′
2 ∈ u⊥,

h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2, 1

)
6 1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1),
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h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2,−1

)
6 1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1).

Now, we prove a critical lemma.

Lemma 3.4. Let K be a Φ-star body, ϕ ∈ C. Then there exist u ∈ Sn−1 and x′
1, x

′
2 ∈ u⊥,

h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2, 1

)
<

1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1), (3.1)

h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2,−1

)
<

1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1). (3.2)

Proof. From (1.3), we may assume, without loss of generality, that |K| = |SuK| = 1.

Since K is a star body, and is not convex, we can choose P1 and P2 to be two interior points of K

such that P1P2 does not completely lie in K. To see this, choose P3 and P4 to be two boundary points

of K such that P3P4 does not completely lie in K, i.e., there exists Q ∈ P3P4 but not in K. Since K is a

compact set, there exists an open ball B(Q, rQ) centered at Q of radius rQ such that B(Q, rQ) ∩K = ∅.
Using Lemma 3.1, we may choose two interior points P1 ∈ OP3, P2 ∈ OP4 such that P1P2∩B(Q, rQ) ̸= ∅.

Let u = (P1 − P2)/|P1 − P2|, and let K ′ = Ku be the image of the projection of K onto u⊥. For any

y′ ∈ K ′, we write δy′(u) = δy′ = |K ∩ (y′ +Ru)| for one-dimensional Lebesgue measure of K ∩ (y′ +Ru).
Let x′

1, x
′
2 ∈ u⊥, x′

0 = 1
2x

′
1 +

1
2x

′
2, and let λ1, λ2 ∈ R+, λ0 = 1

2λ1 +
1
2λ2 ∈ R+. For y′ ∈ K ′, s ∈ R, we

consider the function

fy′(s) =
λ1

λ0
ϕ

(
x′
1 · y′ + s

λ1

)
+

λ2

λ0
ϕ

(
x′
2 · y′ − s

λ2

)
. (3.3)

By the convexity of ϕ, we have that fy′(s) is convex, and there exits an s0(y
′) such that f(s) is monotone

decreasing on (−∞, s0(y
′)] and monotone increasing on [s0(y

′),∞). Thus, from Lemma 2.4, we get∫
K∩(y′+Ru)

fy′(s)ds >
∫ s0(y

′)+δ+
s0(y′)

s0(y′)−δ−
s0(y′)

fy′(s)ds, (3.4)

where δ+s0(y′) = |K ∩ (s0(y
′) + R+u)| and δ−s0(y′) = |K ∩ (s0(y

′) + R+u)|.
To obtain the strict inequalities of our result, we need consider the strictly monotone property of (3.4).

Now, we consider the strictly monotone property of fy′ . It follows from Lemma 2.2 that either (i) that

there exists a unique s0(y
′) ∈ R with |s0(y′)| < ∞ such that fy′(s) is strictly monotone decreasing on

(−∞, s0(y
′)] and strictly monotone increasing on [s0(y

′),∞); or (ii) that there exist s1(y
′), s2(y

′) ∈ R with

s1(y
′) < s2(y

′) and |si(y′)| < ∞, i = 1, 2 such that fy′(s) is strictly monotone decreasing on (−∞, s1(y
′)],

strictly monotone increasing on [s2(y
′),∞) and fy′(s) = const. for all s ∈ [s1(y

′), s2(y
′)]. Thus, according

to the strictly monotone property of fy′ , Lemmas 2.2 and 2.4 indicate that we should distinguish two

cases.

(i) For all y′ ∈ K ′, fy′(s) satisfies the following condition: there exists a unique s0(y
′) ∈ R with

|s0(y′)| < ∞ such that fy′(s) is strictly monotone decreasing on (−∞, s0(y
′)] and strictly monotone

increasing on [s0(y
′),∞).

Using Lemma 2.4, we obtain∫
K∩(y′+Ru)

fy′(s)ds >
∫ s0(y

′)+δ+
s0(y′)

s0(y′)−δ−
s0(y′)

fy′(s)ds. (3.5)

Since P1 and P2 are two interior points of K, choose two open balls B(Pi, ri), i = 1, 2 centered at Pi of

radius ri such that B(Pi, ri) ⊂ K. Since P1P2 does not completely lie in K, and since K is compact, we

can choose P ∈ P1P2 but not in K and B(P, r) centered at P of radius r such that B(P, r) ∩ K = ∅.
Moreover, we can require that (B(P, r))u ⊂ (B(Pi, ri))u. Let Pu be the image of the projection of P to u⊥.

For y′ ∈ (B(P, r/2))u, we can choose s′0(y
′) = y′ + (P − Pu) not in K such that |K ∩ (−∞, s′0(y

′)]| > 0,
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|K ∩ [s′0(y
′),∞)| > 0. Thus, by applying Lemma 2.4, we get that the equality in (3.5) cannot hold for

y′ ∈ (B(P, r/2))u.

Let

I =
λ1

λ0

∫
K

ϕ

(
(x′

1, 1) · y
λ1

)
dy +

λ2

λ0

∫
K

ϕ

(
(x′

1,−1) · y
λ2

)
dy.

By applying (3.5), we have

I =

∫
K′

∫
K∩(y′+Ru)

λ1

λ0
ϕ

(
x′
1 · y′ + s

λ1

)
+

λ2

λ0
ϕ

(
x′
2 · y′ − s

λ2

)
dy′ds

>

∫
K′

∫ s0(y
′)+δ+

s0(y′)

s0(y′)−δ−
s0(y′)

λ1

λ0
ϕ

(
x′
1 · y′ + s

λ1

)
+

λ2

λ0
ϕ

(
x′
2 · y′ − s

λ2

)
dy′ds

=

∫
K′

∫ s0(y
′)+δ+

s0(y′)

s0(y′)−δ−
s0(y′)

λ1

λ0
ϕ

(
x′
1 · y′ + s

λ1

)
dy′ds

+

∫
K′

∫ s0(y
′)+δ+

s0(y′)

s0(y′)−δ−
s0(y′)

λ2

λ0
ϕ

(
x′
2 · y′ − s

λ2

)
dy′ds. (3.6)

Note that the inequality in (3.6) is strict. The reason is that there exists a non-zero (n− 1)-dimensional

Lebesgue measurable set (B(P, r/2))u such that for all y′ ∈ (B(P, r/2))u, the equality in (3.5) cannot hold.

Let my′ be the midpoint of [s0(y
′) − δ−s0(y′), s0(y

′) + δ+s0(y′)], and let δs0(y′) = δ+s0(y′) + δ−s0(y′). Since

s0(y
′)−δ−s0(y′) = my′− 1

2δs0(y′), s0(y
′)+δ+s0(y′) = my′+ 1

2δs0(y′), we make the change of variables s = my′+t

for the first integral of the last equation in (3.6), and make the change of variables s = my′ − t for the

second one. Then using the convexity of ϕ we have

I >

∫
K′

∫ 1
2 δs0(y′)

− 1
2 δs0(y′)

λ1

λ0
ϕ

(
x′
1 · y′ + t+my′

λ1

)
dy′dt

+

∫
K′

∫ 1
2 δs0(y′)

− 1
2 δs0(y′)

λ2

λ0
ϕ

(
x′
2 · y′ + t−my′

λ2

)
dy′dt

=

∫
SuK

[
λ1

λ0
ϕ

(
x′
1 · y′ + t+my′

λ1

)
+

λ2

λ0
ϕ

(
x′
2 · y′ + t−my′

λ2

)]
dy′dt

> 2

∫
SuK

ϕ

( x′
1+x′

2

2 · y′ + t
λ1+λ2

2

)
dy′dt. (3.7)

Therefore, it follows from (3.6) and (3.7) that

λ1

λ0

∫
K

ϕ

(
(x′

1, 1) · y
λ1

)
dy +

λ2

λ0

∫
K

ϕ

(
(x′

1,−1) · y
λ2

)
dy

> 2

∫
SuK

ϕ

(
(x′

0, 1) · y
λ0

)
dy. (3.8)

Choose

λ1 = h(ΓϕK;x′
1, 1) and λ2 = h(ΓϕK;x′

1,−1).

Recall that |K| = 1, it follows from Lemma 3.2 that∫
K

ϕ

(
(x′

1, 1) · y
λ1

)
dy = 1 and

∫
K

ϕ

(
(x′

1,−1) · y
λ2

)
dy = 1.

Hence, from (3.8), we obtain ∫
SuK

ϕ

(
(x′

0, 1) · y
λ0

)
dy < 1.
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By the definition of the Orlicz centroid body, we conclude

h(Γϕ(SuK);x′
0, 1) < λ0,

which is (3.1).

Note that if we put s = my′ + t for the first integral of the last equation in (3.6), and put s = my′ − t

for the second one, the same manner implies (3.2), as required.

(ii) There exists y′ ∈ K ′, such that fy′(s) satisfies that there exist s1(y
′), s2(y

′) ∈ R with s1(y
′) < s2(y

′)

and |si(y′)| < ∞, i = 1, 2 such that fy′(s) is strictly monotone decreasing on (−∞, s1(y
′)], strictly

monotone increasing on [s2(y
′),∞) and fy′(s) = const. for all s ∈ [s1(y

′), s2(y
′)].

By Lemma 2.4, for those y′ satisfying the above condition we have that∫
K∩(y′+Ru)

fy′(s)ds >
∫ s1(y

′)+δ+
s1(y′)

s1(y′)−δ−
s1(y′)

fy′(s)ds =: A1, (3.9)

∫
K∩(y′+Ru)

fy′(s)ds >
∫ s2(y

′)+δ+
s2(y′)

s2(y′)−δ−
s2(y′)

fy′(s)ds =: A2. (3.10)

If there exists y′0 such that A1 ̸= A2, without loss of generalization, let A1 < A2, then∫
K∩(y′

0+Ru)
fy′

0
(s)ds >

∫ s1(y
′
0)+δ+

s1(y′
0)

s1(y′
0)−δ−

s1(y′
0)

fy′
0
(s)ds. (3.11)

Hence, there exists B(y′0, ry′
0
), such that for all y′ ∈ B(y′0, ry′

0
), (3.11) holds. Together with the same

argument of (i), we have (3.1) and (3.2).

Otherwise, for all y′, A1 = A2. From our assumption there exists y′0 ∈ K ′ such that there are at least

three points in (y′0 + Ru) ∩ ∂K and l̄(K, y′0) or l(K, y′0) /∈ [s1(y
′
0), s2(y

′
0)]. Lemma 2.4 implies that the

equality of (3.9) or (3.10) cannot hold. Therefore, the same method implies that (3.1) and (3.2) hold for

xi ∈ u⊥, i = 1, 2.

Combining Lemma 3.3 and Lemma 3.4, we have the following corollary.

Corollary 3.5. Let K ∈ Sn
o , ϕ ∈ C. Then for u ∈ Sn−1 and x′

1, x
′
2 ∈ u⊥,

h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2, 1

)
6 1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1),

h

(
Γϕ(SuK);

1

2
x′
1 +

1

2
x′
2,−1

)
6 1

2
h(ΓϕK;x′

1, 1) +
1

2
h(ΓϕK;x′

2,−1).

If K is a Φ-star body, then there exists u ∈ Sn−1 such that either equality cannot hold.

We need the next well-known lemma (see, e.g., [25, 28]).

Lemma 3.6. Let K ∈ Kn
o and u ∈ Sn−1. For y′ ∈ relint (Ku), the overgraph and undergraph functions

of K in direction u are given by

lu(K, y′) = min
x′∈u⊥

{hK(x′, 1)− x′ · y′}

and

lu(K, y′) = min
x′∈u⊥

{hK(x′,−1)− x′ · y′}.

Corollary 3.5 and Lemma 3.6 imply the sharp Steiner symmetrization.

Theorem 3.7. Let K ∈ Sn
o , ϕ ∈ C and u ∈ Sn−1. Then

Γϕ(SuK) ⊂ Su(ΓϕK). (3.12)

If K is a Φ-star body, then there exists u ∈ Sn−1 such that the identity cannot hold.
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Proof. For y′ ∈ relint(ΓϕK)u, Lemma 3.6 implies that there exist x′
1(y

′) and x′
2(y

′) such that

l̄u(Γϕ(K), y′) = hΓϕ(K)(x
′
1, 1)− x′

1 · y′, (3.13)

lu(Γϕ(K), y′) = hΓϕ(K)(x
′
2,−1)− x′

2 · y′. (3.14)

From the definition of Steiner symmetrization, (3.13), (3.14) and Corollary 3.5 and Lemma 3.6, we obtain

l̄u(Su(ΓϕK), y′) =
1

2
l̄u(Γϕ(K), y′) +

1

2
lu(Γϕ(K), y′)

=
1

2
(hΓϕ(K)(x

′
1, 1)− x′

1 · y′) +
1

2
(hΓϕ(K)(x

′
2,−1)− x′

2 · y′)

> hΓϕ(SuK)

(
1

2
x′
1 +

1

2
x′
2, 1

)
−
(
1

2
x′
1 +

1

2
x′
2

)
· y′

> min
x′∈u⊥

{hΓϕ(SuK)(x
′, 1)− x′ · y′}

= l̄u(Γϕ(SuK), y′), (3.15)

and

lu(Su(ΓϕK), y′) =
1

2
l̄u(Γϕ(K), y′) +

1

2
lu(Γϕ(K), y′)

=
1

2
(hΓϕ(K)(x

′
1, 1)− x′

1 · y′) +
1

2
(hΓϕ(K)(x

′
2,−1)− x′

2 · y′)

> hΓϕ(SuK)

(
1

2
x′
1 +

1

2
x′
2,−1

)
−
(
1

2
x′
1 +

1

2
x′
2

)
· y′

> min
x′∈u⊥

{hΓϕ(SuK)(x
′,−1)− x′ · y′}

= lu(Γϕ(SuK), y′). (3.16)

Thus, the inclusion holds.

Assume that K is a Φ-star body. For x′
1, x

′
2 ∈ u⊥ there exists y′0 ∈ K ′ such that there are at least

three points in (y′0 +Ru) ∩ ∂K and l̄(K, y′0) or l(K, y′0) /∈ [s1(y
′
0), s2(y

′
0)]. Corollary 3.5 also implies that

there exists u ∈ Sn−1 such that the equalities in (3.15) and (3.16) cannot hold, then the identity in (3.12)

cannot hold.

4 Proof of the main theorem

We are now in a position to prove the LYZ conjecture for arbitrary ϕ. The core arguments in the proof

is to use the Steiner symmetrization of Orlicz centroid bodies established in Section 3. The inequality

for star bodies was proved by Zhu [46]. Our main purpose is to show the equality condition.

Proof of Theorem 1.1. We first prove that the centered ellipsoids are the minimizers of |ΓϕK|/|K|.
Suppose that there exists K ∈ Sn

o such that |ΓϕK|/|K| < |ΓϕB|/|B|. Since the case of convex bodies

has been considered by Theorem A, we assume that K ∈ Sn
o is not convex. By Theorem 3.7, there exists

u1 ∈ Sn−1, such that |ΓϕSu1K| 6 |ΓϕK|. Then choose a suitable sequence of unit directions {ui}∞i=1 so

that the sequence of convex bodies Ki defined by

Ki = Sui · · ·Su1K

converges to the centered closed ball B̄(rK) with respect to the Hausdorff distance, where rK is the

volume radius of K, namely rK = (|K|/ωn)
1
n .

Since K → B̄(rK) with respect to the Hausdorff distance, we have limi→∞ |ΓϕKi| → |ΓϕB̄(rK)|
(see [28]). Theorem 3.7 implies that

|ΓϕB̄(rK)| 6 · · · 6 |ΓϕKi| 6 · · · 6 |ΓϕK1| 6 |ΓϕK|.
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Since the volume of {Ki}∞i=1 is not changed in Stenier symmetrization, we have

|ΓϕB(rK)|
|B(rK)|

6 · · · 6 |ΓϕK1|
|K1|

6 |ΓϕK|
|K|

.

This leads to a contradiction with the hypothesis |ΓϕK|/|K| < |ΓϕB|/|B|.
Next, we prove the uniqueness of minimizers for ϕ(s) ∈ C.
From the argument of existence of minimizers, if K is a Φ-star body, then there exists a centered closed

ball B̄(rK) such that
|ΓϕB(rK)|
|B(rK)|

<
|ΓϕK|
|K|

.

This means that if K is a Φ-star body, then K is not a minimizer. Hence, the minimizers need to be

convex bodies. By Theorem A, ellipsoids centered at the origin are the only minimizers, as desired.
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