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1 Introduction

Using the terminology of central extensions, we may construct a family of perfect groups, more precisely

called a CE (central extension) family as follows:

↗ · · · ↘ · · · ↘
↗ · · · ↘ · · · ↘ · · · ↘

Γ̂ → · · · → Γ → · · · → Γ′

↘ · · · ↗ · · · ↗ · · · ↗
↘ · · · ↗ · · · ↗


.

All arrows in the diagram are central extensions of perfect groups. Note that a group Γ is called perfect

if Γ = [Γ,Γ]. A perfect group Γ has a universal central extension, called Γ̂, which is uniquely determined

up to isomorphism (see [18, Section 7, Central extensions]).

Let Γ be a perfect group in this paragraph. If Γ is simple, then there is no nontrivial quotient of Γ.

If the Schur multiplier of Γ is trivial, then there is no nontrivial central extension of Γ. Hence, if Γ is a

simple group with trivial Schur multiplier, then the corresponding CE family is {Γ}, consisting of a single

object. Note that one of the most famous simple groups with trivial Schur multipliers is the Monster

group M, which is known as the largest sporadic finite simple group.

In this note, we provide examples of several simple Kac-Moody groups with trivial Schur multipliers.

Recently, the simplicity of some Kac-Moody groups has been established (see [2,3,16]). Here, we mainly

discuss Kac-Moody groups over certain infinite fields. Then we will discuss their Schur multipliers, and

we will find new examples of simple Kac-Moody groups with trivial Schur multipliers.
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2 Results

Let A = (aij) be an n × n generalized Cartan matrix (GCM), i.e., A is an integer matrix satisfying

(1) aii = 2, (2) aij 6 0 (i ̸= j), (3) aij = 0 ⇔ aji = 0. Using a GCM A, we can construct the associated

Kac-Moody Lie algebra g. A GCM A = (aij) is called indecomposable if there is no permutation τ of

indices such that

Aτ = (aτ(i),τ(j)) =

(
A′ O

O A′′

)
,

where A′ and A′′ are non-trivial square blocks. An indecomposable GCM A is called of finite type if

g is a finite dimensional simple Lie algebra, or the corresponding root system is finite and irreducible

(see [1, 5, 7]). An indecomposable GCM A is called of affine type if there are positive integers b1, . . . , bn
such that (b1, . . . , bn)A = 0. An indecomposable GCM A is called of indefinite type if A is neither of

finite type nor of affine type. We call an indecomposable GCM A of non-affine type if A is either of finite

type or of indefinite type. In this note, we always assume that a GCM A is both indecomposable and of

non-affine type unless otherwise stated.

Let g = gC(A) be the Kac-Moody Lie algebra associated with A over the field, C, of complex numbers,

which is generated by the Cartan subalgebra h and Chevalley generators e1, . . . , en, f1, . . . , fn (see [8,10,

13]). Using g, one can construct the so-called Tits group functor G = GA from the category of commutative

rings with identities to the category of groups (see [20]). For a field F , let G be the subgroup of GA(F )

generated by xα(t) = exp teα ∈ GA(F ) for all t ∈ F and all real roots α, where eα is a Chevalley basis

for α. Note that G = [G,G] if |F | > 4 (see [6]). Let Z = Z(G) be the center of G, and put G′ = G/Z.

We may call all of G, G and G′ Kac-Moody groups (see [9,17]). Let Fp be the prime field of characteristic

p > 0, and we denote by Fpk and Fp the field with pk elements and the algebraic closure of Fp, respectively.

Then, the following result is known (see [2, 3, 16,18]).

Theorem 1. Let F be an infinite subfield of Fp. Suppose that A is of non-affine type. Then, G′ is a

simple group.

Let f : Γ′ → Γ be a homomorphism of groups. If f is surjective, then f is called an extension. If the

kernel of an extension f is central, then f is called a central extension. If a central extension f̂ : Γ̂ → Γ

uniquely dominates all other central extensions of Γ, then f̂ is called a universal central extension. It

is known that Γ = [Γ,Γ] if and only if there exists a universal central extension f̂ of Γ (see [18]). In

this case, we put M(Γ) = Kerf̂ and call it the Schur multiplier of Γ. If a perfect group Γ is simple and

M(Γ) = 1, then we call Γ a simple group with trivial Schur multiplier (see [18]).

For distinct prime numbers p and q, we define ℓq(p) by ℓq(p) = min{m > 0 | pm ≡ 1 (mod q)}, which
means that ℓq(p) is the order of p modulo q. Then, we obtain the following two results.

Theorem 2. Let F be an infinite subfield of Fp. Suppose that det(A) ̸= 0 and Fpℓq(p) ̸⊂ F for every

prime number q satisfying q | det(A) and q ̸= p. Then G′ is a simple group with trivial Schur multiplier.

Theorem 3. If det(A) = ±pc for a prime number p and c > 0 and F = Fp, then G′ is a simple group

with trivial Schur multiplier.

3 Proofs

Proof of Theorem 1 including remark. If n > 2, then the result can be obtained using Caprace and

Rémy [2] (see also [4, 18]). Suppose n = 2, i.e.,

A =

(
2 a

b 2

)
.

If ab < 4, then G′ ≃ PSL3(F ), PSp4(F ), G2(F ) and the result is well-known (see [4, 18]). If ab > 4 and

one of a, b is −1, then the result can be also confirmed using Caprace and Rémy [3]. If ab > 4 as well
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as a < −1 and b < −1, then the result is established in [16]. Note that A is of affine type if ab = 4

(see [8, 13]).

Proof of Theorem 2 including remark. Let ∆ be the root system of g with respect to h, i.e.,

∆ = {α ∈ h∗ | α ̸= 0, gα ̸= 0},

where gα = {x ∈ g | [h, x] = α(h)x (∀h ∈ h)}. Then, we can find simple roots α1, . . . , αn which have the

corresponding root spaces gαi = Cei and g−αi = Cfi. For each i = 1, . . . , n, we define σi ∈ GL(h∗) to be

the reflection defined by σi(µ) = µ− µ(hi)αi (∀µ ∈ h∗). Then, the subgroup W of GL(h∗) generated by

σ1, . . . , σn is called the Weyl group, and ∆re = {σ(αi) | σ ∈ W, 1 6 i 6 n} is called the set of real roots.

Let hα be the coroot of α ∈ ∆re (see [8, 13]).

Using the Chevalley involution ω of g, which is defined by ω(ei) = −fi, ω(fi) = −ei and ω(h) =

−h (1 6 i 6 n, ∀h ∈ h), we choose and fix a Chevalley basis C = {eα | α ∈ ∆re} for ∆re, where eα ∈ gα,

[eα, e−α] = hα and ω(eα) + e−α = 0. For each α ∈ ∆re, there is an exponential map xα : t 7→ exp teα
from the additive group F into G(F ). By the definition, G is generated by xα(t) for all α ∈ ∆re and

t ∈ F . Then, G is presented by the generators xα(t) with α ∈ ∆re and t ∈ F , and the following defining

relations (A), (B), (B′) and (C) (see [19]):

(A) xα(s)xα(t) = xα(s+ t),

(B) [xα(s), xβ(t)] =
∏

xiα+jβ(Nα,β,i,js
itj),

(B′) wα(u)xβ(t)wα(−u) = xβ′(t′),

(C) hα(u)hα(v) = hα(uv).

To understand (B), put Qα,β = {iα+ jβ | i, j ∈ Z>0} ∩∆. Then, we have

(B) [xα(s), xβ(t)] =
∏
Qα,β

xiα+jβ(Nα,β,i,js
itj),

whenever Qα,β ⊂ ∆re (see [14]). In fact, there are five possible types of relations in (B) (see [4, 14]), i.e.,

[xα(s), xβ(t)] = 1,

[xα(s), xβ(t)] = xα+β(±(r + 1)st),

r = max{i ∈ Z | β − iα ∈ ∆re},
[xα(s), xβ(t)] = xα+β(±st)x2α+β(±s2t),

[xα(s), xβ(t)] = xα+β(±2st)x2α+β(±3s2t)xα+2β(±3st2),

[xα(s), xβ(t)] = xα+β(±st)x2α+β(±s2t)x3α+β(±s3t)x3α+2β(±2s3t2).

To understand (B′) and (C), for u, v ∈ F×, we put

wα(u) = xα(u)x−α(−u−1)xα(u), hα(u) = wα(u)wα(−1).

Then, we have

(B′) wα(u)xβ(t)wα(−u) = xβ′(t′),

(C) hα(u)hα(v) = hα(uv),

where β′ = β − β(hα)α, t
′ = ±u−β(hα)t (see [18]). For each α ∈ ∆re, there is a group isomorphism

φα : ⟨xα(t), x−α(t) | t ∈ F ⟩ ≃−→ SL2(F )

satisfying

xα(t) 7→

(
1 t

0 1

)
, x−α(t) 7→

(
1 0

t 1

)
,

wα(u) 7→

(
0 u

−u−1 0

)
, hα(u) 7→

(
u 0

0 u−1

)
.
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We take an abstract symbol x̂α(t) for each α ∈ ∆re and t ∈ F . The Steinberg group Ĝ = St(A,F )

over F of type A is defined to be the group generated by x̂α(t) for all α ∈ ∆re and t ∈ F with the defining

relations corresponding to (A), (B) and (B′). It is known that Ĝ is a universal central extension of G′

(see [15]), which is induced by π′ : x̂α(t) 7→ xα(t) mod Z. We define K2(A,F ) by

1 → K2(A,F ) → Ĝ
π→ G → 1,

where π is given by π(x̂α(t)) = xα(t). Then, K2(A,F ) has a Matsumoto-type presentation (see [15]).

This gives a lot of information on K2(A,F ) and the corresponding Schur multiplier (see [11,12]). Exactly

saying, K2(A,F ) is isomorphic to the abelian group generated by ci(u, v) for all 1 6 i 6 n and u, v ∈ F×

with the following defining relations (see [15]):

(M1) ci(t, u)ci(tu, v) = ci(t, uv)ci(u, v);

(M2) ci(1, 1) = 1;

(M3) ci(u, v) = ci(u
−1, v−1);

(M4) ci(u, v) = ci(u, (1− u)v), u ̸= 1;

(M5) ci(u, v
aji) = cj(u

aij , v);

(M6) ci(tu, v
aji) = ci(t, v

aji)ci(u, v
aji).

Using these relations, we can show that K2(A,F ) is trivial, which means that Ĝ = G (see [18]).

Now we want to consider the structure of Z = Z(G). Using the fact that Z is in the standard maximal

torus T = {hα1(t1) · · ·hαn(tn) | ti ∈ F×}, we can establish that Z is isomorphic to Hom(Ξ, F×), where

Ξ = Zn/⟨a1, . . . ,an⟩ and A = (aij) = (a1, . . . ,an) (see [18]).

If q is a prime number such that q | det(A) and q ̸= p, then we should consider tq = 1 in F×. In this

case, we can assume that t ∈ Fpk ⊂ F for some k. Then, q | (pk − 1) and pk ≡ 1 (mod q), which implies

ℓq(p) | k and Fpℓq(p) ⊂ Fpk ⊂ F . Hence, our assumption implies Hom(Z/qZ, F×) = 1. Therefore, the

principal divisor theorem shows that Hom(Ξ, F×) = 1 and Z = 1. Thus, M(G′) = 1, i.e., G′ is a simple

group with trivial Schur multiplier.

Proof of Theorem 3 including remark. The proof of Theorem 2 shows this result. Note that if q is a

prime number satisfying q | det(A) and q ̸= p, then we can always find Z ̸= 1 in this case.

4 New examples

Here, we will show several typical examples, which are new.

Example 4. G′ is a simple group with trivial Schur multiplier if

(1) A = ( 2 −2
−3 2 ), F = F2;

(2) A = ( 2 −5
−17 2 ), F = F3;

(3) A = ( 2 −3
−3 2 ), F = F5;

(4) A = ( 2 −3
−5 2 ), F = F11.

Example 5. Let q = | det(A)|. Suppose that q is a prime number satisfying q ̸= p and p ̸≡ 1 (mod q).

In particular, ℓq(p) > 1 and ℓq(p) divides q − 1, which means that ℓq(p) does not divide qi. Set

F =
∪
i>0

Fpqi ( Fp .

Then, we see Fpℓq(p) ̸⊂ F . Therefore, G′ is a simple group with trivial Schur multiplier.

Example 6. G′ is a simple group with trivial Schur multiplier in the following cases:

(1) Let p = 7 and A = ( 2 −3
−3 2 ), and we set F =

∪
i>0 F75i ( F7.

(2) Let p = 7 and A = ( 2 −3
−5 2 ), and we set F =

∪
i>0 F711i ( F7.

(3) Let p = 7 and A = ( 2 −3
−7 2 ), and we set F =

∪
i>0 F717i ( F7.

(4) Let p = 7 and A = ( 2 −5
−7 2 ), and we set F =

∪
i>0 F731i ( F7.
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5 Remarks

Remark 7. Let F = Fpk . Suppose that det(A) ̸= 0 and ℓq(p)̸ | k for every prime number q satisfying

q | det(A) and q ̸= p. Then, we have St(A,F ) = G = G′.

Remark 8 (See [2,3]). About the simplicity of G′, the following results are known for a finite field F :

(1) Suppose that A is of non-affine type, and F = Fpk satisfying pk > n > 2. Then G′ is a simple

group.

(2) Let

A =

(
2 a

−1 2

)
be a 2× 2 hyperbolic GCM, i.e., a < −4, and F = Fpk satisfying pk > 3. Then G′ is a simple group.

Remark 9. About the simplicity of G′ in the case when A is of indefinite type, the following table is

known (see Theorem 1 and Remark 8):

char = p > 0 Finite field Infinite field

rank > 3 Fpk (pk ≫ 0) F ⊂ Fp(
2 a

−1 2

)
Fpk (pk ≫ 0) F ⊂ Fp(

2 a

b 2

)
; a, b < −1 ∃ non-simple F ⊂ Fp

char = 0 − open

Remark 10. In the above table (see Remark 9), we have several questions.

(1) Is G′ simple for a general infinite field F of characteristic p > 0?

(2) Is there any example for G′ to be simple if F is of characteristic 0?

(3) Especially, is G′ simple if F = C?
(4) Let

A =

(
2 a

b 2

)
be a 2 × 2 hyperbolic GCM satisfying a, b < −1 and suppose that F is a finite field. There are many

non-simple examples of G′. Is there any example for G′ to be simple?
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