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1 Introduction

Using the terminology of central extensions, we may construct a family of perfect groups, more precisely
called a CE (central extension) family as follows:

SNy e\
SNy N\ e\
r—- ... -1 — ... I
N S S A
N S A

All arrows in the diagram are central extensions of perfect groups. Note that a group I is called perfect
if ' = [T, T]. A perfect group I' has a universal central extension, called I, which is uniquely determined
up to isomorphism (see [18, Section 7, Central extensions]).

Let I' be a perfect group in this paragraph. If I' is simple, then there is no nontrivial quotient of T.
If the Schur multiplier of I" is trivial, then there is no nontrivial central extension of I". Hence, if I" is a
simple group with trivial Schur multiplier, then the corresponding CE family is {T'}, consisting of a single
object. Note that one of the most famous simple groups with trivial Schur multipliers is the Monster
group M, which is known as the largest sporadic finite simple group.

In this note, we provide examples of several simple Kac-Moody groups with trivial Schur multipliers.
Recently, the simplicity of some Kac-Moody groups has been established (see [2,3,16]). Here, we mainly
discuss Kac-Moody groups over certain infinite fields. Then we will discuss their Schur multipliers, and
we will find new examples of simple Kac-Moody groups with trivial Schur multipliers.

(© Science China Press and Springer-Verlag GmbH Germany 2017 math.scichina.com  link.springer.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-016-9170-1&domain=pdf&date_stamp=November 8, 2017
https://doi.org/10.1007/s11425-016-9170-1
math.scichina.com
springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1007/s11425-016-9170-1

312 Morita J  Scit China Math  February 2018 Vol. 61 No.2

2 Results

Let A = (ai;) be an n x n generalized Cartan matrix (GCM), i.e., A is an integer matrix satisfying
(1) ais =2, (2) ai;; <0 (i #j), (3) a;; =0« a;; =0. Using a GCM A, we can construct the associated
Kac-Moody Lie algebra g. A GCM A = (a;;) is called indecomposable if there is no permutation 7 of

indices such that
- A'lO
AT = (aT(i),‘r(j)) = <O A//> )

where A’ and A" are non-trivial square blocks. An indecomposable GCM A is called of finite type if
g is a finite dimensional simple Lie algebra, or the corresponding root system is finite and irreducible
(see [1,5,7]). An indecomposable GCM A is called of affine type if there are positive integers by,...,b,
such that (b1,...,b,)A = 0. An indecomposable GCM A is called of indefinite type if A is neither of
finite type nor of affine type. We call an indecomposable GCM A of non-affine type if A is either of finite
type or of indefinite type. In this note, we always assume that a GCM A is both indecomposable and of
non-affine type unless otherwise stated.

Let g = gc(A) be the Kac-Moody Lie algebra associated with A over the field, C, of complex numbers,
which is generated by the Cartan subalgebra fj and Chevalley generators ey, ..., e, f1,..., fn (see [8,10,
13]). Using g, one can construct the so-called Tits group functor G = G4 from the category of commutative
rings with identities to the category of groups (see [20]). For a field F, let G be the subgroup of G4(F')
generated by z,(t) = expte, € Ga(F) for all t € F and all real roots «, where e, is a Chevalley basis
for a. Note that G = [G,G] if |F| > 4 (see [6]). Let Z = Z(G) be the center of G, and put G' = G/Z.
We may call all of G, G and G’ Kac-Moody groups (see [9,17]). Let F,, be the prime field of characteristic
p > 0, and we denote by IF,,» and F, the field with p* elements and the algebraic closure of F,, respectively.
Then, the following result is known (see [2,3,16,18]).

Theorem 1. Let F be an infinite subfield ofIFT,. Suppose that A is of non-affine type. Then, G’ is a
simple group.

Let f: I — I" be a homomorphism of groups. If f is surjective, then f is called an extension. If the
kernel of an extension f is central, then f is called a central extension. If a central extension f S
uniquely dominates all other central extensions of ', then f is called a universal central extension. It
is known that T' = [[',T'] if and only if there exists a universal central extension f of I' (see [18]). In
this case, we put M(T") = Ker f and call it the Schur multiplier of I'. If a perfect group I' is simple and
M(T) =1, then we call I" a simple group with trivial Schur multiplier (see [18]).

For distinct prime numbers p and ¢, we define £,(p) by ¢,(p) = min{m > 0 | p™ =1 (mod ¢)}, which
means that ¢,(p) is the order of p modulo g. Then, we obtain the following two results.

Theorem 2.  Let F be an infinite subfield of F,. Suppose that det(A) # 0 and Feq ¢ F for every
prime number q satisfying q | det(A) and q # p. Then G’ is a simple group with trivial Schur multiplier.

Theorem 3.  If det(A) = +p° for a prime number p and ¢ > 0 and F =T, then G’ is a simple group
with trivial Schur multiplier.

3 Proofs

Proof of Theorem 1 including remark. If n > 2, then the result can be obtained using Caprace and
Rémy [2] (see also [4,18]). Suppose n = 2, i.e.,

- (52)

If ab < 4, then G’ ~ PSL3(F), PSps(F),G2(F) and the result is well-known (see [4,18]). If ab > 4 and
one of a,b is —1, then the result can be also confirmed using Caprace and Rémy [3]. If ab > 4 as well
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as a < —1 and b < —1, then the result is established in [16]. Note that A is of affine type if ab = 4
(see [8,13)). O

Proof of Theorem 2 including remark. Let A be the root system of g with respect to b, i.e.,

A={ach* |a#0, g, #0),

where go = {z € g | [h, 2] = a(h)z (Vh € b)}. Then, we can find simple roots a4, ..., o, which have the
corresponding root spaces g,, = Ce; and g_,, = Cf;. For each i = 1,...,n, we define o; € GL(H*) to be
the reflection defined by o; (1) = p — p(h;)a; (Vo € §*). Then, the subgroup W of GL(h*) generated by
01,...,0q is called the Weyl group, and A™ = {o(a;) | 0 € W, 1 < i < n} is called the set of real roots.
Let h, be the coroot of a € A (see [8,13]).

Using the Chevalley involution w of g, which is defined by w(e;) = —fi, w(fi;) = —e; and w(h) =
—h (1<i<n,Vheb), we choose and fix a Chevalley basis C = {e, | @ € A™} for A, where ey € gq,
[ase—a] = ha and w(e,) + e_o = 0. For each a € A, there is an exponential map x,, : t — exp te,
from the additive group F into G(F'). By the definition, G is generated by z,(t) for all @ € A™ and
t € F. Then, G is presented by the generators z,(t) with o € A™ and t € F, and the following defining
relations (A), (B), (B’) and (C) (see [19]):

(A) za(s)za(t) = zals +1),

(B) [za(s), 25(t)] = [1 Tiatjp(Nap.ii5't),
(B') wa(u)zs(t)wa(—u) = zp (1),
(C) ha(w)ha(v) = ha(uv).

To understand (B), put Qa3 = {ia + 75 |4,j € Zso} N A. Then, we have

B) [za(s),25()] = [ #iatis(Nagiss't)),
Qa,p

whenever Q. 3 C A (see [14]). In fact, there are five possible types of relations in (B) (see [4,14]), i.e

[Ta(s), 2a(t)] =1,

[za(s), 25(t)] = Tasp(E(r +1)st),

r=max{i € Z | —ia € A"},

[2a(s), 25(t)] = Tasp(Est) 220+ (£57),

[2a(5), 25(1)] = Tat+p(E£250) 020+ 5(£35°)Tasr2s(£3s1%),

[za(s), z5(t)] = onrﬁ(iSt)x%ﬂrﬁ(i52t)x3a+ﬂ(isgt)x3a+2ﬁ(i233t2)'

8

Za(s

3

8

To understand (B’) and (C), for u,v € F'*, we put
Wo (1) = To (W) _o(—u N2 (1), ha(u) = we(u)we(—1).

Then, we have
(BY) wa(u)zp(t)wa(—u) =z ('),

(C) ha(u ) (U) = ha(wv),
where g8/ = Bha)a, t' = £u=Pha)t (see [18]). For each o € A™, there is a group isomorphism
Yo (Ta(t), T_o(t) |t € F) — SLy(F)
satisfying
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We take an abstract symbol &, (t) for each @ € A'™ and ¢t € F. The Steinberg group G = St(A, F)
over F of type A is defined to be the group generated by #,(t) for all « € A and t € F with the defining
relations corresponding to (A), (B) and (B'). It is known that G is a universal central extension of G’
(see [15]), which is induced by 7" : Z4(t) — 24(t) mod Z. We define K5(A, F) by

1o Ky(AF) G561,

where 7 is given by (&4 (t)) = z4(t). Then, K5(A, F) has a Matsumoto-type presentation (see [15]).
This gives a lot of information on K(A, F') and the corresponding Schur multiplier (see [11,12]). Exactly
saying, Ko(A, F) is isomorphic to the abelian group generated by ¢;(u,v) for all 1 < i < n and u,v € F*
with the following defining relations (see [15]):

(M1) ¢;(t,w)ei(tu, v) = ¢;(t, uv)ce;(u, v);

(M2) ¢;(1,1) = 1;

(M3) ci(u,v) = ci(u™t,v71);

(M4) ¢;(u,v) = ¢;(u (1 —u)v), u# 1;
(M5) c;(u,v®7) = c;(u,v);

(M6) c;(tu, v¥i) = ¢;(t, v%)e; (u, v497).

Using these relations, we can show that Ky(A, F) is trivial, which means that G' = G (see [18]).

Now we want to consider the structure of Z = Z(G). Using the fact that Z is in the standard maximal
torus T' = {ha, (t1) - - b, (tn) | ti € F*}, we can establish that Z is isomorphic to Hom(Z, F*), where
=E=72"/(ai,...,a,) and A = (a;;) = (a1,...,a,) (see [18]).

If ¢ is a prime number such that ¢ | det(A) and ¢ # p, then we should consider ¢ = 1 in F*. In this
case, we can assume that ¢ € F» C F for some k. Then, ¢| (p¥ — 1) and p* =1 (mod q), which implies
y(p) |k and F e, C Fpe C F. Hence, our assumption implies Hom(Z/qZ, F*) = 1. Therefore, the
principal divisor theorem shows that Hom(=, F*) =1 and Z = 1. Thus, M(G’) =1, i.e., G’ is a simple
group with trivial Schur multiplier. O
Proof of Theorem 3 including remark. The proof of Theorem 2 shows this result. Note that if ¢ is a
prime number satisfying ¢| det(A) and g # p, then we can always find Z # 1 in this case. O

4 New examples

Here, we will show several typical examples, which are new.

Example 4. G’ is a simple group with trivial Schur multiplier if
(1) A=(2 *2) F =T>;
(2) A—(_217 >), F =3
(3)A=(2%7), F=TFs
(4) A= (35 5 ), F=Fy.
Example 5. Let ¢ = |det(A)|. Suppose that ¢ is a prime number satisfying g # p and p # 1 (mod q).
In particular, £,(p) > 1 and ¢,(p) divides ¢ — 1, which means that ¢,(p) does not divide ¢*. Set

F= Uqui QE
i>0

Then, we see F ¢, ¢ F. Therefore, G’ is a simple group with trivial Schur multiplier.

Example 6. G’ is a simple group with trivial Schur multiplier in the following cases:
)Let p=7and A = ( 32),andwesetF:Ui>OIF75i C .

2) Let p="7and A= ( % 3?), and we set [ = UisoFre G Fr.

3)Let p=7and A= (2% 3?), and we set F' = Uiso Frirs

) (7732)

4) Let p=Tand A = >

75

(1
( -
( ¢
( , and we set F' = J;50Fra C
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5 Remarks

Remark 7. Let F' = [F,x. Suppose that det(A) # 0 and £,(p) [k for every prime number ¢ satisfying
q| det(A) and g # p. Then, we have St(4,F) =G =G".
Remark 8 (See [2,3]). About the simplicity of G’, the following results are known for a finite field F':
(1) Suppose that A is of non-affine type, and F = F,« satisfying p* > n > 2. Then G’ is a simple
group.
(2) Let
2 a
—-12

be a 2 x 2 hyperbolic GCM, i.e., a < —4, and F' = F» satisfying p* > 3. Then G’ is a simple group.

Remark 9. About the simplicity of G’ in the case when A is of indefinite type, the following table is
known (see Theorem 1 and Remark 8):

char=p >0 Finite field Infinite field
rank > 3 Fpr (p* > 0) FCF,
2 a —
Fi (pF > 0) FCF,
-1 2
2 a . —
<b 2) ;a,b< —1 Jdnon-simple FCFy
char =0 - open

Remark 10. In the above table (see Remark 9), we have several questions.
(1) Is G’ simple for a general infinite field F' of characteristic p > 07
(2) Is there any example for G’ to be simple if F is of characteristic 07
(3) Especially, is G’ simple if FF = C?
(4) Let
2a

b 2

be a 2 x 2 hyperbolic GCM satisfying a,b < —1 and suppose that F' is a finite field. There are many
non-simple examples of G’. Is there any example for G’ to be simple?
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