SCIENCE CHINA Mathematics

• ARTICLES •

January 2018 Vol. 61 No. 1: 57–72 doi: 10.1007/s11425-016-9079-1

On a class of two-dimensional Finsler manifolds of isotropic S-curvature

Xinyue Cheng¹, Zhongmin Shen² & Guojun Yang^{3,*}

¹School of Mathematics and Statistics, Chongqing University of Technology, Chongqing 400054, China;
 ²Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, IN 46202, USA;
 ³Department of Mathematics, Sichuan University, Chengdu 610065, China

 $Email:\ chengxy@cqut.edu.cn,\ zshen@math.iupui.edu,\ yangguojun@scu.edu.cn$

Received November 24, 2016; accepted April 6, 2017; published online May 22, 2017

Abstract For an (α, β) -metric (non-Randers type) of isotropic S-curvature on an n-dimensional manifold with non-constant norm $\|\beta\|_{\alpha}$, we first show that n=2, and then we characterize such a class of two-dimensional (α, β) -manifolds with some PDEs, and also construct some examples for such a class.

Keywords (α, β) -metric, Randers metric, S-curvature

MSC(2010) 53B40

Citation: Cheng X Y, Shen Z M, Yang G J. On a class of two-dimensional Finsler manifolds of isotropic S-curvature. Sci China Math, 2018, 61: 57–72, doi: 10.1007/s11425-016-9079-1

1 Introduction

The S-curvature is one of the most important non-Riemannian quantities in Finsler geometry, which was originally introduced for the volume comparison theorem (see [6]). Recent studies show that the S-curvature plays a very important role in Finsler geometry (see [1, 2, 7-10]). It is proved that, if an n-dimensional Finsler metric F is of isotropic S-curvature $\mathbf{S} = (n+1)c(x)F$ for a scalar function c(x) and of scalar flag curvature $\mathbf{K} = \mathbf{K}(x, y)$, then the flag curvature \mathbf{K} can be given by

$$\mathbf{K} = \frac{3c_{x^m}y^m}{F} + \tau(x),$$

where $\tau(x)$ is a scalar function (see [2]).

An (α, β) -metric is defined by a Riemann metric $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and a 1-form $\beta = b_i(x)y^i$ as follows:

$$F = \alpha \phi(s), \quad s = \beta/\alpha,$$

where $\phi(s)$ satisfies certain conditions such that F is regular (positively definite on TM-0). A special class of (α, β) -metrics are Randers metrics defined by $F = \alpha + \beta$. With the help of navigation technique, we can characterize and determine the local structures of Randers metrics with isotropic S-curvature (see [5, 8-10]).

© Science China Press and Springer-Verlag GmbH Germany 2017

^{*} Corresponding author

For a pair of α and β , let $b := \|\beta\|_{\alpha}$ denote the norm of β with respect to α . Define

$$r_{ij} := \frac{1}{2} (b_{i \mid j} + b_{j \mid i}), \quad s_{ij} := \frac{1}{2} (b_{i \mid j} - b_{j \mid i}),$$

$$r_{j} := b^{i} r_{ij}, \quad s_{j} := b^{i} s_{ij}, \quad s^{i} := a^{ik} s_{k},$$

where $b_{i|j}$'s denote the covariant derivatives of β with respect to α and $b^i := a^{ij}b_j$ and $(a^{ij}) := (a_{ij})^{-1}$. For a C^{∞} function $\phi(s) > 0$ on $(-b_o, b_o)$, define

$$\Phi := -(Q - sQ')(n\Delta + sQ + 1) - (b^2 - s^2)(1 + sQ)Q'',
\Delta := 1 + sQ + (b^2 - s^2)Q', \quad Q := \phi'/(\phi - s\phi').$$
(1.1)

It is known that a Randers metric $F = \alpha + \beta$ is of isotropic S-curvature, $\mathbf{S} = (n+1)c(x)F$, if and only if (see [3]) $r_{ij} = 2c(a_{ij} - b_ib_j) - b_is_j - b_js_i$.

In this paper, we mainly prove the following theorem.

Theorem 1.1. Let $F = \alpha \phi(s)$ and $s = \beta/\alpha$, be an (α, β) -metric on an $n \geq 2$ -dimensional manifold M, where $\phi(0) = 1$ and $\phi(s) \neq \sqrt{1 + \epsilon s^2} + ks$ for any constants ϵ and k. Suppose $b = \|\beta\|_{\alpha} \neq constant$ in any domain in M and F is of isotropic S-curvature. Then the following statements hold:

- (i) the dimension n = 2, and
- (ii) β satisfies

$$r_{ij} = \frac{3k_1 + k_2 + 4k_1k_2b^2}{4 + (k_1 + 3k_2)b^2} (b_i s_j + b_j s_i), \tag{1.2}$$

and $\phi = \phi(s)$ is given by

$$\phi(s) = \{(1 + k_1 s^2)(1 + k_2 s^2)\}^{\frac{1}{4}} e^{\int_0^s \tau(s)ds},\tag{1.3}$$

where $\tau(s)$ is defined by

$$\tau(s) := \frac{\pm \sqrt{k_2 - k_1}}{2(1 + k_1 s^2)\sqrt{1 + k_2 s^2}},\tag{1.4}$$

and k_1 and k_2 are constants with $k_2 > k_1$. In this case, the S-curvature S = 0.

Note that we have used the assumption that $b \neq \text{constant}$ in Theorem 1.1. For the case that b is a constant, see [4]. In order to derive Theorem 1.1(i) and (1.3), the condition $b = \|\beta\|_{\alpha} \neq \text{constant}$ in any domain in M can be weakened to $db \neq 0$ at a point on M. Furthermore, letting $k_1 = k_2$ in (1.3) and (1.4) yields $\phi(s) = \sqrt{1 + k_1 s^2}$. So the case $k_1 = k_2$ is excluded.

Taking $k_1 = 0$ and $k_2 = 4$, by (1.2) and (1.3) we obtain

$$r_{ij} = \frac{1}{1+3b^2}(b_i s_j + b_j s_i), \tag{1.5}$$

$$F(\alpha, \beta) = (\alpha^2 + 4\beta^2)^{\frac{1}{4}} \sqrt{2\beta + \sqrt{\alpha^2 + 4\beta^2}}.$$
 (1.6)

Theorem 1.1 shows that the metric (1.6) in the two-dimensional case is of isotropic S-curvature if and only if β satisfies (1.5). In the following example, we show a pair α and β satisfying (1.5). For more examples, see Example 6.2 below.

Example 1.2. Let F be an (α, β) -metric on a two-dimensional manifold defined by (1.6). Define α and β by $\alpha = e^{\sigma} \sqrt{(y^1)^2 + (y^2)^2}$ and $\beta = e^{\sigma} (\xi y^1 + \eta y^2)$, where ξ, η and σ are scalar functions which are given by

$$\xi = x^2$$
, $\eta = -x^1$, $\sigma = -\frac{1}{4}\ln(1+4|x|^2)$, $|x|^2 := (x^1)^2 + (x^2)^2$.

Then α and β satisfy (1.5), and therefore, F is of isotropic S-curvature, $\mathbf{S}=0$, by Theorem 1.1. Furthermore, we have $b^2=\|\beta\|_{\alpha}^2=|x|^2\neq \text{constant}$.

Taking $k_1 = -1$ and $k_2 = 0$ in (1.3), the metric F in Theorem 1.1 becomes $F = \sqrt{\alpha(\alpha + \beta)}$, which is a square-root metric. We can show in [11] that a square-root metric F on a two-dimensional manifold is an

Einstein metric if and only if F is of vanishing S-curvature, and in this case, F is generally not Ricci-flat (non-zero isotropic flag curvature).

The paper is organized as follows. In Section 2, we give some definitions and notation which are necessary for the present paper, and a lemma is contained. In Section 3, we will derive some results about (2.6), which are necessary for the proof of Theorem 1.1. Furthermore, in Section 4, under the assumptions that $b \neq$ constant in any domain and $\phi(s) \neq k_1 \sqrt{1 + k_2 s^2} + k_3 s$ for any constants $k_1 > 0, k_2$ and k_3 , we are going to show that (2.8) has the non-trivial solutions only in the case of dimension n = 2. Based on the above discussions, the proof of Theorem 1.1 is given in Section 5. Finally, some examples for the metric F satisfying (1.2)–(1.4) are given in Section 6. Besides, we write an appendix which introduces the formulas for some coefficients occurring in (3.1), (3.2), (3.17), (4.1), (4.9) and (4.15).

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M with the standard local coordinate (x^i, y^i) in TM. The Finsler metric F induces a vector field $G = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}$ on TM defined by

$$G^{i} = \frac{1}{4}g^{il}\{[F^{2}]_{x^{k}y^{l}}y^{k} - [F^{2}]_{x^{l}}\}.$$

The Hausdorff-Busemann volume form $dV = \sigma_F(x)dx^1 \wedge \cdots \wedge dx^n$ is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}(B^n)}{\operatorname{Vol}\{(y^i) \in \mathbb{R}^n \mid F(y^i \frac{\partial}{\partial x^i} \mid_x) < 1\}}.$$

Furthermore, the S-curvature is defined by

$$\mathbf{S} := \frac{\partial G^m}{\partial y^m} - y^m \frac{\partial}{\partial x^m} (\ln \sigma_F).$$

S is said to be *isotropic* if there is a scalar function c(x) on M such that $\mathbf{S} = (n+1)c(x)F$. If c(x) is a constant, then we call F is of *constant S-curvature*.

An (α, β) -metric is expressed in the following form:

$$F = \alpha \phi(s), \quad s = \beta/\alpha,$$

where $\phi(s) > 0$ is a C^{∞} function on an open interval $(-b_o, b_o)$. It is known that F is regular if

$$\phi(s) - s\phi'(s) > 0$$
, $\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$, $|s| \le b < b_0$.

For an *n*-dimensional (α, β) -metric $F = \alpha \phi(s)$ and $s = \beta/\alpha$, it has been shown in [4] that the S-curvature is given by

$$S = \left\{ 2\Psi - \frac{f'(b)}{bf(b)} \right\} (r_0 + s_0) - \alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0), \tag{2.1}$$

where Φ is defined by (1.1) and

$$r_{0} := r_{i}y^{i}, \quad s_{0} := s_{i}y^{i}, \quad r_{00} := r_{ij}y^{i}y^{j},$$

$$\Psi := \frac{Q'}{2\Delta}, \quad \Delta := 1 + sQ + (b^{2} - s^{2})Q', \quad Q := \frac{\phi'}{\phi - s\phi'},$$

$$f(b) := \frac{\int_{0}^{\pi} \sin^{n-2}t dt}{\int_{0}^{\pi} \frac{\sin^{n-2}t}{\phi(b\cos t)^{n}} dt}.$$
(2.2)

Fix an arbitrary point $x \in M$ and take an orthonormal basis $\{e_i\}$ at x such that

$$\alpha = \sqrt{\sum_{i=1}^{n} (y^i)^2}, \quad \beta = by^1.$$

Then we change coordinates (y^i) to (s, y^A) such that

$$\alpha = \frac{b}{\sqrt{b^2 - s^2}}\bar{\alpha}, \quad \beta = \frac{bs}{\sqrt{b^2 - s^2}}\bar{\alpha},$$

where $\bar{\alpha} = \sqrt{\sum_{A=2}^{n} (y^A)^2}$. Let

$$\bar{r}_{10} := \sum_{A=2}^{n} r_{1A} y^{A}, \quad \bar{r}_{00} := \sum_{A,B=2}^{n} r_{AB} y^{A} y^{B}, \quad \bar{s}_{0} := \sum_{A=2}^{n} s_{A} y^{A}.$$

By (2.1), it is shown in [4] that F is of isotropic S-curvature, $\mathbf{S} = (n+1)c(x)F$, if and only if the following two equations hold:

$$\frac{\Phi}{2\Delta^2}(b^2 - s^2)\bar{r}_{00} = -\left\{s\left[\frac{s\Phi}{2\Delta^2} - 2\Psi b^2 + \frac{bf'(b)}{f(b)}\right]r_{11} + (n+1)cb^2\phi\right\}\bar{\alpha}^2,\tag{2.3}$$

$$\left\{ \frac{s\Phi}{\Delta^2} - 2\Psi b^2 + \frac{bf'(b)}{f(b)} \right\} r_{1A} = \left\{ \left(\frac{\Phi Q}{\Delta^2} + 2\Psi \right) b^2 - \frac{bf'(b)}{f(b)} \right\} s_{1A}. \tag{2.4}$$

In [4], Cheng and Shen studied (2.3) and (2.4) by three steps: (i) $\Phi = 0$, (ii) $\Phi \neq 0$ and $\Upsilon = 0$ and (iii) $\Phi \neq 0$ and $\Upsilon \neq 0$, where Υ is defined by

$$\Upsilon := \frac{d}{ds} \left[\frac{s\Phi}{\Delta^2} - 2\Psi b^2 \right].$$

For the two cases: (i) $\Phi = 0$, or (ii) $\Phi \neq 0$ and $\Upsilon = 0$ (in some neighborhood), it is proved in [4] that b must be a constant (in the neighborhood). For the third case $\Phi \neq 0$ and $\Upsilon \neq 0$, Lemma 2.1 is obtained (see [4, Lemma 6.1]), and our discussion (Sections 3 and 4) is based on such a lemma.

Lemma 2.1 (See [4]). Let $F = \alpha \phi(s)$ and $s = \beta/\alpha$ be an (α, β) -metric on an n-dimensional manifold. Assume $\phi(s)$ satisfies $\Phi \neq 0$ and $\Upsilon \neq 0$, and F has isotropic S-curvature, S = (n+1)c(x)F. Then

$$r_{ij} = ka_{ij} - \epsilon b_i b_j - \lambda (b_i s_j + b_j s_i), \tag{2.5}$$

$$-2s(k - \epsilon b^2)\Psi + (k - \epsilon s^2)\frac{\Phi}{2\Delta^2} + (n+1)c\phi - s\nu = 0,$$
(2.6)

where $\lambda = \lambda(x), k = k(x)$ and $\epsilon = \epsilon(x)$ are some scalar functions and

$$\nu := -\frac{f'(b)}{bf(b)}(k - \epsilon b^2). \tag{2.7}$$

If in addition $s_0 \neq 0$, then

$$-2\Psi - \frac{Q\Phi}{\Delta^2} - \lambda \left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right) = \delta, \tag{2.8}$$

where

$$\delta := -\frac{f'(b)}{bf(b)}(1 - \lambda b^2). \tag{2.9}$$

3 On (2.6)

In this section, we assume $b \neq \text{constant}$ (in any neighborhood) and $\phi(s) \neq k_1 \sqrt{1 + k_2 s^2} + k_3 s$ for any constants $k_1 > 0, k_2$ and k_3 . We are going to prove that $k = 0, c = 0, \epsilon = 0$ and $\nu = 0$ in (2.6). Before the discussion, we show a remark (needed in this section and Section 4).

Remark 3.1. Assume $b \neq \text{constant}$ in any neighborhood of the manifold M. Consider a polynomial

$$f(b) := c_0 + c_1 b + \cdots + c_m b^m$$

where c_i 's are constant and there is at least some c_i which is not zero. Let U be an open set of M, and $T := \{x \in U \mid f(b) = 0\}$. Then T is a closed and no-where dense set (since $b \neq \text{constant}$ in any neighborhood of M). So as an example, for a scalar function $\sigma = \sigma(x)$, if $\sigma = 0$ on U - T, then $\sigma = 0$ on U by continuity.

Thus without loss of generality, we can always assume $f(b) \neq 0$, or just have a restriction on U - T in the following discussion, if c_i 's are not all zero.

We first transform (2.6) into a differential equation about $\phi(s)$ and then (2.6) $\times 2\phi[\phi - s\phi' + (b^2 - s^2)\phi'']^2$ yields

$$-(b^{2} - s^{2})(k - \epsilon s^{2})(\phi - s\phi')\phi\phi''' + \{s[(2\nu + 2\epsilon - n\epsilon)s^{2} + 2(\epsilon - \nu)b^{2} + k(n - 4)]$$

$$+2(n+1)c(b^{2} - s^{2})\phi\}(b^{2} - s^{2})\phi(\phi'')^{2} + \{(n+1)(b^{2} - s^{2})[4c\phi^{2} - (k - \epsilon s^{2})\phi']$$

$$-s[(n\epsilon + \epsilon - 4\nu)s^{2} + 2(2\nu - \epsilon)b^{2} - (n - 1)k]\phi\}(\phi - s\phi')\phi'' + (\phi - s\phi')^{2}$$

$$\times \{(n+1)[2c\phi^{2} - (k - \epsilon s^{2})\phi'] - 2\nu s\phi\} = 0.$$

$$(3.1)$$

Express the power series of $\phi(s)$ at s=0 as

$$\phi(s) = 1 + a_1 s + a_2 s^2 + a_3 s^3 + \dots = 1 + \sum_{i=1}^{\infty} a_i s^i.$$

Let p_i be the coefficients of s^i in (3.1). The expressions of p_0, p_1, p_2, p_3, p_4 and p_5 , which will be needed in the following discussion, are given in Remark A.1. All the equations $p_i = 0$ are homogeneous linear equations about k, c, ϵ and ν . The coefficient determinant of the linear system $p_0 = 0, p_1 = 0, p_2 = 0$ and $p_3 = 0$ is in the form

$$A_1b^6 + A_2b^4 + A_3b^2 - (n+1)a_1[4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3],$$
(3.2)

where A_1, A_2 and A_3 are constant, and their expressions are given in Remark A.2. If

$$a_1 \neq 0$$
, $4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3 \neq 0$,

then the above determinant is not zero (see Remark 3.1), and thus in this case we conclude that k = 0, c = 0, $\epsilon = 0$ and $\nu = 0$ from the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_3 = 0$.

In the following, we further prove $k = 0, c = 0, \epsilon = 0$ and $\nu = 0$ if $a_1 = 0$, or $4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3 = 0$.

Case 1. Assume $a_1 = 0$. By $p_0 = 0, p_1 = 0$ and $a_1 = 0$, we obtain (assume $1 + 2a_2b^2 \neq 0$ by Remark 3.1)

$$\nu = \frac{2[(18a_3^2 - 10a_2^3 - 12a_2a_4)b^4 - (7a_2^2 + 6a_4)b^2 - a_2]k + 2a_2b^2(1 + 2a_2b^2)^2\epsilon}{(1 + 2a_2b^2)^3},$$
(3.3)

$$c = \frac{3a_3b^2}{(n+1)(1+2a_2b^2)^2}k. (3.4)$$

Since $\phi(s) \neq \sqrt{1 + 2a_2s^2} = \sum_{i=0}^{\infty} C_{\frac{1}{2}}^i (2a_2s^2)^i$, there exists some minimal integer m such that

$$a_{2m+1} \neq 0, \quad m \geqslant 1, \quad \text{or} \quad a_{2m} \neq C_{\frac{1}{2}}^{m} (2a_{2})^{m}, \quad m \geqslant 2,$$
 (3.5)

where C^i_{μ} 's are the generalized combination coefficients.

Case 1A. Assume $a_{2m+1} \neq 0$ in (3.5). First consider the case m = 1. Then $a_3 \neq 0$. Plug (3.3), (3.4) and $a_1 = 0$ into $p_2 = 0$ and $p_4 = 0$ and then we get a linear system about k and ϵ . The critical component of the determinant for this linear system is given by

$$(\cdots)b^8 + (\cdots)b^6 + (\cdots)b^4 + (\cdots)b^2 - 3(n-1)(n+3)a_3^2$$

where the omitted terms are all constants. Now it is seen that k=0 and $\epsilon=0$ since $a_3\neq 0$. Thus by (3.3) and (3.4) we have c=0 and $\nu=0$.

Now let m > 1. In this case, we have $a_3 = 0$. For our purpose to prove k = 0 and $\epsilon = 0$, we only need to compute p_{2m-2} and p_{2m} . Express $\phi(s)$ as

$$\phi(s) = g(s) + h(s), \tag{3.6}$$

where

$$g(s) := 1 + \sum_{i=1}^{\infty} a_{2i} s^{2i}, \quad h(s) := \sum_{i=m}^{\infty} a_{2i+1} s^{2i+1}.$$

Plug (3.6) into (3.1) and then we write the left-hand side of (3.1) as $P_1 + P_2$, where every term of P_1 includes at least h or its derivatives h', h'' and h'''', and P_2 is just the left-hand side of (3.1) with $\phi(s)$ being replaced with g(s). Among h, h', h'' and h'''', the function h'''' has the power series of the least degree 2m - 2. Since m > 1, we have $a_3 = 0$, and then we get c = 0 by (3.4). So the power series of P_2 has no term of even degree.

Thus by the above analysis we see that, to get p_{2m-2} , it is sufficient to put

$$g(s) = 1 + o(s), \quad h(s) = a_{2m+1}s^{2m+1} + o(s^{2m+2}),$$

and plug (3.6) into (3.1). Then by (3.3), (3.4), $a_1 = 0$ and $a_3 = 0$, the equation $p_{2m-2} = 0$ is reduced to

$$-2m(4m^2 - 1)b^2a_{2m+1}k = 0. (3.7)$$

By (3.7) we have k=0. Similarly, to get p_{2m} , it is sufficient to put

$$g(s) = 1 + a_2 s^2 + o(s^3), \quad h(s) = a_{2m+1} s^{2m+1} + a_{2m+3} s^{2m+3} + o(s^{2m+4}),$$

and plug (3.6) into (3.1). Then from (3.3), (3.4), $a_1 = 0$, $a_3 = 0$ and k = 0, the equation $p_{2m} = 0$ is reduced to

$$2m(2m+1)^2 a_{2m+1} b^2 \epsilon = 0. (3.8)$$

By (3.8) we have $\epsilon = 0$. Thus by (3.3) and (3.4) we have c = 0 and $\nu = 0$.

Case 1B. Assume all $a_{2i+1} = 0$ $(i \ge 0)$, and assume $a_{2m} \ne C_{\frac{1}{2}}^m(2a_2)^m$ in (3.5). If m = 2, then $2a_4 + a_2^2 \ne 0$. Plug (3.3), (3.4), $a_1 = 0$ and $a_3 = 0$ into $p_3 = 0$ and $p_5 = 0$ and then we get a linear system about k and ϵ . The critical component of the determinant for this linear system is given by

$$(\cdots)b^4 + (\cdots)b^2 - (n+1)(n+4)(2a_4 + a_2^2)^2$$
,

where the omitted terms are all constants. Now it is easy to see that k=0 and $\epsilon=0$ since $2a_4+a_2^2\neq 0$. Thus by (3.3) and (3.4) we have c=0 and $\nu=0$.

Now let m > 2. In this case, we have $a_4 = -a_2^2/2$. For our purpose to prove k = 0 and $\epsilon = 0$, we only need to compute p_{2m-3} and p_{2m-1} . Since $\sqrt{1+2a_2s^2} = \sum_{i=0}^{\infty} C_{\frac{1}{2}}^i (2a_2s^2)^i$, we may express $\phi(s)$ as

$$\phi(s) = g(s) + h(s), \tag{3.9}$$

where $g(s) := \sqrt{1 + 2a_2s^2}$, $h(s) := \sum_{i=m}^{\infty} d_{2i}s^{2i}$ and $d_{2m} \neq 0$. Plug (3.9) into (3.1) and then we write the left-hand side of (3.1) as $P_1 + P_2$, where every term of P_1 includes at least h or its derivatives h', h'' and h'''', and P_2 which is just the left-hand side of (3.1) with $\phi(s)$ being replaced with g(s), will vanish when we plug (3.3), (3.4) $(a_3 = 0)$ and $a_4 = -a_2^2/2$ into it. Among h, h', h'' and h'''', the function h'''' has the power series of the least degree 2m - 3.

By the above analysis, to get p_{2m-3} , it is sufficient to plug (3.9) and

$$g(s) = 1 + o(1), \quad h(s) = d_{2m}s^{2m} + o(s^{2m+1})$$

into (3.1). Then from (3.3), (3.4) and $a_4 = -a_2^2/2$, the equation $p_{2m-3} = 0$ is reduced to

$$-4m(2m-1)(m-1)(1+2a_2b^2)^2b^2d_{2m}k = 0. (3.10)$$

By (3.10) we get k = 0. To get p_{2m-1} , it is sufficient to plug (3.9) and

$$g(s) = 1 + a_2 s^2 + o(s^2), \quad h(s) = d_{2m} s^{2m} + d_{2m+2} s^{2m+2} + o(s^{2m+3})$$

into (3.1). Then from (3.3), (3.4), $a_4 = -a_2^2/2$ and k = 0, the equation $p_{2m-1} = 0$ is reduced to

$$4m^2(2m-1)b^2(1+2a_2b^2)^2d_{2m}\epsilon = 0. (3.11)$$

By (3.11) we get $\epsilon = 0$. Thus by (3.3) and (3.4) we have c = 0 and $\nu = 0$.

Case 2. Assume $a_1 \neq 0$ and $4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3 = 0$. In this case, the coefficient determinant of the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_3 = 0$ is not zero if $A_1 \neq 0$ or $A_2 \neq 0$ or $A_3 \neq 0$ (see (3.2)). So if $A_1 \neq 0$ or $A_2 \neq 0$ or $A_3 \neq 0$, then immediately we get k = 0, k = 0 and k = 0.

Thus we only need to consider the case $A_1=0, A_2=0$ and $A_3=0$. By an analysis on the equations $A_1=0, A_2=0$ and $A_3=0$, it is enough for us to prove $k=0, c=0, \epsilon=0$ and $\nu=0$ under one of the following two conditions:

$$a_3 = 0$$
, $a_4 = -\frac{1}{2}a_2^2$, $a_6 = \frac{1}{6}[(n-2)a_1a_5 + 3a_2^3]$ (3.12)

and

$$a_3 = -\frac{(4n^3 + 15n^2 + 16)a_1^3}{36(n^2 - 1)}, \quad a_4 = \frac{2(n+1)a_2^2 + (n-2)a_1a_3}{4(n+1)},$$
(3.13)

$$a_5 = \frac{(n+4)(4n^2 - n + 4)}{1440(n+1)^3(1-n)}T_0, \quad a_6 = \frac{T}{60(n+1)^2},$$
(3.14)

where

$$\begin{split} T_0 &:= a_1^3[2a_1^2n^3 + 5(3a_1^2 - 16a_2)n^2 + (6a_1^2 - 160a_2)n + 20(a_1^2 - 4a_2)], \\ T &:= a_1(10a_5 + 20a_2a_3 - 3a_1^2a_3)n^3 + (30a_2^3 - 120a_3^2 + 45a_1a_2a_3 - 6a_1^3a_3)n^2 \\ &\quad + (60a_2^3 + 15a_1^3a_3 - 30a_1a_5 - 276a_3^2 - 105a_1a_2a_3)n + 18a_1^3a_3 - 130a_1a_2a_3 \\ &\quad - 48a_3^2 + 30a_2^3 - 20a_1a_5. \end{split}$$

Case 2A. Assume (3.12). Solving $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_4 = 0$ yields (assume $c \neq 0$)

$$k = \frac{2(1+2a_2b^2)c}{a_1}, \quad \epsilon = \frac{2(a_1^2-2a_2)(1+2a_2b^2)c}{a_1}, \tag{3.15}$$

$$a_5 = 0, \quad \nu = \frac{2[(1+n+2a_2b^2)a_1^2 - 2a_2(1+2a_2b^2)]c}{a_1}.$$
 (3.16)

Plug (3.15) and (3.16) into (3.1) and then we get

$$c(f_0 + f_2b^2 + f_4b^4) = 0, (3.17)$$

where f_0 , f_2 and f_4 are some ODEs about $\phi(s)$, where the expressions of f_0 , f_2 and f_4 are given in Remark A.3. If $c \neq 0$, then by (3.17), solving $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$ yields $\phi(s) = a_1 s + \sqrt{1 + 2a_2 s^2}$. This case is excluded. So c = 0. Then by (3.15) and (3.16) we get k = 0, $\epsilon = 0$ and $\epsilon = 0$.

Case 2B. Assume (3.13) and (3.14). Plug (3.13) and (3.14) into $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_4 = 0$ and we obtain k = 0, $\epsilon = 0$, $\nu = 0$ and $\epsilon = 0$, since the coefficient determinant of the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_4 = 0$ is not zero.

4 On (2.8)

In this section, we assume $b \neq \text{constant}$ (in any neighborhood) and $\phi(s) \neq k_1 \sqrt{1 + k_2 s^2} + k_3 s$ for any constants $k_1 > 0$, k_2 and k_3 . We are going to show that (2.8) has the non-trivial solutions only in the case of dimension n = 2. In the following discussion, we will also use Remark 3.1.

We first transform (2.8) into a differential equation about $\phi(s)$ and then $(2.8) \times \phi(-\phi + s\phi')[\phi - s\phi' + (b^2 - s^2)\phi'']^2$ gives

$$-(b^{2} - s^{2})(\phi - s\phi')[(1 - \lambda s^{2})\phi' + \lambda s\phi]\phi\phi''' - \{[1 + (\delta - \lambda)b^{2} + (n\lambda - 2\lambda - \delta)s^{2}](\phi - s\phi') + (n - 2)s\phi'\}(b^{2} - s^{2})\phi(\phi'')^{2} - \{[1 + (\delta - \lambda)b^{2} + (n\lambda - 2\delta + \lambda)s^{2}](\phi - s\phi')^{2} + [2(n\lambda - \delta + \lambda)s^{2} - (n\lambda - 2\delta + 2\lambda)b^{2} - n - 2]s\phi'(\phi - s\phi') - (n + 1)(b^{2} - 2s^{2})(\phi')^{2}\} \times (\phi - s\phi')\phi'' - [\delta(\phi - s\phi')^{2} - (n\lambda - \delta + \lambda)s\phi'(\phi - s\phi') - (n + 1)(\phi')^{2}] \times (\phi - s\phi')^{2} = 0.$$

$$(4.1)$$

Express the power series of $\phi(s)$ at s=0 as

$$\phi(s) = 1 + a_1 s + a_2 s^2 + a_3 s^3 + \dots = 1 + \sum_{i=1}^{\infty} a_i s^i.$$

Let p_i be the coefficients of s^i in (4.1). We need to compute p_0, p_1, p_2 and p_3 first, and their expressions are given in Remark A.4. In the following, we will solve λ and δ in two cases.

Case 1. Assume $a_1 = 0$ and $a_3 = 0$. We are going to show that this case is excluded.

Plugging $a_1 = 0$ and $a_3 = 0$ into $p_0 = 0$ yields

$$\delta = \frac{2a_2}{1 + 2a_2b^2}(\lambda b^2 - 1). \tag{4.2}$$

Since $\phi(s) \neq \sqrt{1 + 2a_2s^2}$, there exists some minimal integer m such that

$$a_{2m+1} \neq 0, \quad m \geqslant 2, \quad \text{or} \quad a_{2m} \neq C_{\frac{1}{2}}^{m} (2a_{2})^{m}, \quad m \geqslant 2,$$
 (4.3)

where C_{μ}^{i} 's are the generalized combination coefficients. Then we will determine λ in the two cases of (4.3).

Case 1A. Assume $a_{2m+1} \neq 0$ in (4.3). In this case, we need to compute p_{2m-1} . For this, express $\phi(s)$ as

$$\phi(s) = g(s) + h(s), \tag{4.4}$$

where

$$g(s) := 1 + \sum_{i=1}^{\infty} a_{2i} s^{2i}, \quad h(s) := \sum_{i=m}^{\infty} a_{2i+1} s^{2i+1}.$$

Plug (4.4) into (4.1) and then we write the left-hand side of (4.1) as $P_1 + P_2$, where every term of P_1 includes at least h or its derivatives h', h'' and h'''', and P_2 is just the left-hand side of (4.1) with $\phi(s)$ being replaced with g(s). Among h, h', h'' and h'''', the function h'''' has the power series of the least degree 2m-2. Furthermore, it is easy to see that the power series of P_2 has no term of odd degree.

Thus by the above analysis we see that, to get p_{2m-1} , it is sufficient to put

$$g(s) = 1 + a_2 s^2 + o(s^3), \quad h(s) = a_{2m+1} s^{2m+1} + o(s^{2m+2}),$$

and plug (4.4) into (4.1). Then by $p_{2m-1} = 0$, $a_{2m+1} \neq 0$ and (4.2) we obtain

$$\lambda = \frac{1 - 2(2m - 1)a_2b^2}{2mb^2}. (4.5)$$

Case 1B. Assume all $a_{2i+1}=0$ $(i \ge 0)$, and assume $a_{2m} \ne C_{\frac{1}{2}}^m(2a_2)^m$ in (4.3). Express $\phi(s)$ as

$$\phi(s) = g(s) + h(s), \tag{4.6}$$

where

$$g(s) := \sqrt{1 + 2a_2 s^2}, \quad h(s) := \sum_{i=m}^{\infty} d_{2i} s^{2i}, \quad d_{2m} \neq 0.$$

Plug (4.6) into (4.1) and then we write the left-hand side of (4.1) as $P_1 + P_2$, where every term of P_1 includes at least h or its derivatives h', h'' and h'''', and P_2 which is just the left-hand side of (4.1) with $\phi(s)$ being replaced with g(s), will vanish when we plug (4.2) into it. Among h, h', h'' and h'''', the function h'''' has the power series of the least degree 2m-3.

Now by the above analysis, to compute p_{2m-2} in (4.1), it is sufficient to put

$$g(s) = 1 + a_2 s^2 + o(s), \quad h(s) = d_{2m} s^{2m} + o(s^{2m+1})$$

in (4.6) and plug (4.6) into (4.1). Then using (4.2) and $d_{2m} \neq 0$, by $p_{2m-2} = 0$ we obtain

$$\lambda = \frac{1 - 4(m - 1)a_2b^2}{(2m - 1)b^2}. (4.7)$$

Now we have solved λ in the two cases of (4.3). It is easy to see that (4.5) and (4.7) can be written in the following form:

$$\lambda = \frac{1 - 2(k - 1)a_2b^2}{kb^2},\tag{4.8}$$

where $k \geqslant 3$ is an integer.

Plugging (4.2) and (4.8) into (4.1) yields

$$f_0 + f_2 b^2 + f_4 b^4 = 0, (4.9)$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$ given in Remark A.5. Then by (4.9), solving $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$ yields $\phi(s) = \sqrt{1 + 2a_2s^2}$. This case is excluded.

Case 2. Assume $a_1 \neq 0$ or $a_3 \neq 0$. We are going to show that for one case, there are the non-trivial solutions for $\phi(s)$ in dimension n=2.

Case 2A. Assume $a_1 = 0$ and $a_3 \neq 0$. It follows that $a_4 = -\frac{1}{2}a_2^2$ from $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $a_1 = 0$. Then by $p_0 = 0$, $p_1 = 0$, $p_3 = 0$, $a_1 = 0$ and $a_4 = -\frac{1}{2}a_2^2$ we get a contradiction.

Case 2B. Assume $a_1 \neq 0$. Solving λ and δ from $p_0 = 0$ and $p_1 = 0$ gives

$$\lambda = \frac{B_4 b^4 + B_2 b^2 + B_0}{T}, \quad \delta = \frac{C_4 b^4 + C_2 b^2 + C_0}{T}, \tag{4.10}$$

where

$$\begin{split} B_4 &:= 4(n+1)a_1^2a_2(a_1a_2 + 3a_3) - 8(6a_4a_2 - 9a_3^2 + na_2^3 + 4a_2^3)a_1 - 24a_2^2a_3, \\ B_2 &:= (n+1)a_1^2(4a_1a_2 + 6a_3) - (8a_2^2n + 20a_2^2 + 24a_4)a_1, \\ B_0 &:= (n+1)a_1(a_1^2 - 2a_2) + 6a_3, \\ C_4 &:= -4(n+1)a_1^2a_2(a_1a_2 + 3a_3) + 8(4a_2^3 + 6a_4a_2 + a_2^3n - 9a_3^2)a_1 + 24a_2^2a_3, \\ C_2 &:= (n+1)a_1(-2(n+2)a_2a_1^2 - 18a_3a_1 + 8a_2^2) + 12a_3a_2, \\ C_0 &:= -(n+1)^2a_1^3 + 2(n+1)a_2a_1, \\ T &:= (2a_2b^2 + 1)[(12a_3 + 2a_2a_1(n+1))b^2 + a_1(n+1)]. \end{split}$$

Then plugging (4.10) into $p_2 = 0$ yields

$$a_4 = -\frac{1}{2}a_2^2 - a_1 a_3, (4.11)$$

$$a_5 = -\frac{a_3[n^2a_1^3 + (3a_3 + 20a_1a_2 - 6a_1^3)n + 20a_1a_2 - 21a_3 - 7a_1^3]}{10(n+1)a_1},$$
(4.12)

$$(n-7)a_3^2(na_1^3 + a_1^3 - 6a_3) = 0. (4.13)$$

By (4.13), we break our discussion into the following three steps.

(I) If n = 7 and $a_3 \neq 0$, plugging (4.10) together with n = 7, (4.11) and (4.12) into $p_3 = 0$ yields

$$q_4b^4 + q_2b^2 + q_0 = 0$$
,

where

$$\begin{aligned} q_4 &:= -24a_1(4a_2a_1 + 3a_3)a_6 - 4a_2(-12a_2^3a_1^2 - 9a_2^2a_1a_3 - 9a_2a_3^2 \\ &- 56a_3a_2a_1^3 - 60a_1^2a_3^2 + 12a_1^5a_3), \\ q_2 &:= (36a_2 + 12a_1^2)a_3^2 + 8a_1^3(-3a_1^2 + 10a_2)a_3 + 24a_1^2(a_2^3 - 2a_6), \\ q_0 &:= a_3(9a_3 - 16a_1^3). \end{aligned}$$

So we have $q_0 = 0$, $q_2 = 0$ and $q_4 = 0$, which implies a contradiction since $a_1 \neq 0$ and $a_3 \neq 0$.

(II) If $a_3 = 0$, then plug (4.11) and $a_3 = 0$ into (4.10) and we can get

$$\lambda = a_1^2 - 2a_2, \quad \delta = \frac{na_1^2 + (1 + 2a_2b^2)(a_1^2 - 2a_2)}{1 + 2a_2b^2}.$$
 (4.14)

Plugging (4.14) into (4.1) yields

$$f_0 + f_2 b^2 + f_4 b^4 = 0, (4.15)$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$, where the expressions of f_0, f_2 and f_4 are given in Remark A.6. Then by (4.15), solving $f_0 = 0, f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$ yields

$$\phi(s) = a_1 s + \sqrt{1 + 2a_2 s^2}.$$

This case is excluded.

(III) Assume

$$a_3 = \frac{1}{6}(n+1)a_1^3. (4.16)$$

Plugging (4.10) together with (4.11), (4.12) and (4.16) into $p_3 = 0$ yields

$$(\cdots)b^2 + (n+1)(n-2)a_1^4 = 0,$$

which implies n = 2. Plugging (4.10) together with (4.11), (4.16) and n = 2 into (4.1) yields

$$f_0 + f_2 b^2 + f_4 b^4 = 0, (4.17)$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$ given by

$$f_0 := [2(a_1^2 - a_2)s(\phi - s\phi') + \phi']s^2\phi\phi''' - s^2[1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2$$

$$+ \{(1 - 2a_2s^2)(\phi - s\phi')^2 + [4 + 2(3a_1^2 - 4a_2)s^2]s\phi'(\phi - s\phi') + 6s^2(\phi')^2\}\phi''$$

$$+ [(3a_1^2 - 2a_2)(\phi - s\phi')^2 + (4a_2 - 3a_1^2)s\phi'(\phi - s\phi') - 3(\phi')^2](\phi - s\phi'),$$

$$f_2 := \{[(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 2(a_2 - a_1^2)]s(\phi - s\phi') - (1 - 2a_2s^2)\phi'\}\phi\phi'''$$

$$\times [1 - (2a_2 + a_1^2)s^2][1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2 + \{[(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 4a_1^2](\phi - s\phi')^2 + [4(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 2(6a_2 - a_1^2)]s\phi'(\phi - s\phi')$$

$$+ 3(4a_2s^2 - 1)(\phi')^2\}\phi'' + \{(2a_2 + a_1^2)(2a_2 - 3a_1^2)(3s\phi' - \phi)(\phi - s\phi')$$

$$- 6a_2(\phi')^2\}(\phi - s\phi')$$

and

$$f_4 := [(2a_2 + a_1^2)(2a_2 - 3a_1^2)s(\phi - s\phi') - 2a_2\phi']\phi\phi'''$$

$$+ (2a_2 + a_1^2)[1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2$$

$$+ [(2a_2 + a_1^2)(2a_2 - 3a_1^2)(\phi - s\phi')(3s\phi' - \phi) - 6a_2(\phi')^2]\phi''.$$

Then by (4.17), we get $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$. To solve the system of ODEs $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$, we first express ϕ'' in terms of ϕ and ϕ' by eliminating ϕ''' from

$$s^{-2}f_0 + s^2f_4 + f_2 = 0.$$

Then plug the expression of ϕ'' into f_0 and we can get the expression of ϕ''' . Now plugging the expressions of ϕ'' and ϕ''' into f_4 , we obtain an ODE equivalent to

$$0 = 4(1 + k_1 s^2)(1 + k_2 s^2)^2 \phi'^2 - 4s(1 + k_2 s^2)(k_1 + k_2 + 2k_1 k_2 s^2)\phi\phi' + [k_1 - k_2 + 4k_1 k_2 s^2(1 + k_2 s^2)]\phi^2,$$
(4.18)

where we put

$$k_1 := 2a_2 - 3a_1^2, \quad k_2 := 2a_2 + a_1^2.$$
 (4.19)

Then solving (4.18) with $\phi(0) = 1$ yields (1.3).

5 Proof of Theorem 1.1

By the result in [4], we only need to consider the case shown in Lemma 2.1, and only in this case it possibly occurs that $b \neq \text{constant}$. Now suppose $\phi(s) \neq \sqrt{1 + \epsilon s^2} + ks$ for any constants ϵ and k, and $b \neq \text{constant}$ in any neighborhood. The discussions in Sections 3 and 4 imply that $\phi(s)$ is given by (1.3) and the dimension n = 2 (see Case 2B(III) in Section 4). Furthermore, plugging (4.11) and (4.16) and n = 2 into (4.10) yields

$$\delta = \frac{(3a_1^2 - 2a_2)[1 + (2a_2 + a_1^2)b^2]}{1 + 2a_2b^2},\tag{5.1}$$

$$\lambda = \frac{(3a_1^2 - 2a_2)(2a_2 + a_1^2)b^2 + 2(a_1^2 - a_2)}{1 + 2a_2b^2}.$$
 (5.2)

Since we have proved in Section 3 that k=0 and $\epsilon=0$, by (2.5) and (5.2) we obtain (1.2). At the end of Section 4, we have shown that $\phi(s)$ is given by (1.3) by solving (4.18) with $\phi(0)=1$. Besides, the proof in Section 3 also shows c=0, which implies S=0.

Remark 5.1. Plugging (5.1) and (5.2) into (2.9), we get

$$f(b) = \sqrt{1 + (2a_2 - 3a_1^2)b^2}. (5.3)$$

One possibly wonders whether we can get (5.3) from (2.2) when we plug (1.3) and n = 2 into (2.2). This is true. One way to check it is to expand (2.2) and (5.3) into power series, respectively. One may try a direct verification.

6 Examples

In this section, we will construct some examples for the metric F given by (1.2)–(1.4). Since every two-dimensional Riemann metric is locally conformally flat, we may put

$$\alpha = e^{\sigma} \sqrt{(y^1)^2 + (y^2)^2},$$
(6.1)

where $\sigma = \sigma(x)$ is a scalar function and $x = (x^1, x^2)$. Then β can be expressed as

$$\beta = e^{\sigma} (\xi y^1 + \eta y^2). \tag{6.2}$$

Now we can show that (1.2) is equivalent to the following system of PDEs:

$$\sigma_1 = \frac{T_1}{T_0}, \quad \sigma_2 = \frac{T_2}{\xi T_0}, \quad \xi_1 = -\frac{\eta(\eta \eta_2 + \xi \xi_2 + \xi \eta_1)}{\xi^2},$$
 (6.3)

where

$$T_0 := \xi[1 + k_2(\xi^2 + \eta^2)][1 + k_1(\xi^2 + \eta^2)],$$

$$T_1 := 2\xi\eta[(3k_1 - k_2)/4 + k_1k_2(\xi^2 + \eta^2)]\xi_2$$

$$-[1 + (k_1 + k_2)\xi^2/2 + (k_2 - k_1)\eta^2/2 + k_1k_2(\xi^4 - \eta^4)]\eta_2,$$

$$T_2 := [(k_2 - k_1)\xi^2/2 + (k_1 + k_2)\eta^2 - k_1k_2(\xi^4 - \eta^4)](\xi\xi_2 + \eta\eta_2)$$

$$+ \xi[1 + k_2(\xi^2 + \eta^2)][1 + k_1(\xi^2 + \eta^2)]\eta_1.$$

Proposition 6.1. Let $F = \alpha \phi(s)$ and $s = \beta/\alpha$ be a two-dimensional (α, β) -metric on \mathbb{R}^2 , where $b = \|\beta\|_{\alpha} \neq \text{constant}$ and $\phi(s)$ satisfies (1.3). Then F is of isotropic S-curvature if and only if α and β can be locally defined by (6.1) and (6.2), where ξ, η and σ are some scalar functions satisfying (6.3). In this case, S = 0.

If we take $\xi = x^2$ and $\eta = -x^1$, then σ determined by (6.3) is given by

$$\sigma = -\frac{1}{4} \{ \ln[1 + k_2 |x|^2] + 3 \ln[1 + k_1 |x|^2] \}, \tag{6.4}$$

where $|x|^2 := (x^1)^2 + (x^2)^2$. Thus we obtain the following example.

Example 6.2. Let F be a two-dimensional (α, β) -metric defined by (1.3). Define α and β by (6.1) and (6.2), where $\xi = x^2$ and $\eta = -x^1$, and σ is given by (6.4). Then F is of isotropic S-curvature $\mathbf{S} = 0$ by Theorem 1.1. Furthermore, we have $b^2 = ||\beta||_{\alpha}^2 = |x|^2 \neq \text{constant}$.

In Example 6.2, if we take $k_1 = 0$ and $k_2 = 4$, then by (1.3) and (1.4), we obtain

$$\phi(s) = (1+4s^2)^{\frac{1}{4}} \sqrt{2s + \sqrt{1+4s^2}},$$

and thus we get Example 1.2.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 11371386 and 11471226) and the European Union's Seventh Framework Programme (FP7/2007-2013) (Grant No. 317721).

References

- 1 Bao C, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J Differential Geom, 2004, 66: 391–449
- 2 Cheng X, Mo X, Shen Z. On the flag curvature of Finsler metrics of scalar curvature. J Lond Math Soc (2), 2003, 68: 762–780
- 3 Cheng X, Shen Z. Randers metrics with special curvature properties. Osaka J Math, 2003, 40: 87–101
- 4 Cheng X, Shen Z. A class of Finsler metrics with isotropic S-curvature. Israel J Math, 2009, 169: 317–340
- 5 Cheng X, Shen Z. Finsler Geometry—An Approach via Randers Spaces. Beijing: Science Press, 2012
- 6 Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128: 306–328
- 7 Shen Z. Landsberg Curvature, S-Curvature and Riemann Curvature. Cambridge: Cambridge University Press, 2004
- 8 Shen Z, Xing H. On Randers metrics of isotropic S-curvature. Acta Math Sin (Engl Ser), 2008, 24: 789–796
- 9 Yang G. On Randers metrics of isotropic S-curvature (in Chinese). Acta Math Sinica (Chin Ser), 2009, 52: 1147-1156
- $10\quad {\rm Yang~G.~On~Randers~metrics~of~isotropic~S-curvature~II.~Publ~Math~Debrecen,~2011,~78:~71-87}$
- 11 Yang G. On a class of Finsler metrics of Einstein-reversibility. ArXiv:1310.3460, 2013

Appendix A

Remark A.1. Let p_i be the coefficients of s^i in (3.1). We have

$$\begin{array}{l} p_0 = (-a_1 - 2b^2a_1a_2 - a_1n - 6b^2a_3 - 2a_1na_2b^2)k + 2(2a_2b^2 + 1)^2(n + 1)c, \\ p_1 = (-4a_2 - 6a_1na_3b^2 - 12b^2a_3a_1 - 20a_2^2b^2 - 24b^2a_4)k - 2(2a_2b^2 + 1)^2v \\ + 4(2a_2b^2 + 1)(2b^2a_1a_2 + 6b^2a_3 + a_1)(n + 1)c + 4a_2b^2(2a_2b^2 + 1)\epsilon, \\ p_2 = (-60b^2a_5 + 3a_3n - 3a_3 + 6a_1na_2 - 3b^2a_4a_1 - 114b^2a_3a_2 + 6a_2na_3b^2 + 6a_1na_2^2b^2 \\ + 2a_2a_1 - 14a_2^2a_1b^2 - 12a_1na_2b^2)k + 2(24b^2a_3a_1 - 4a_2 + a_1^2 - 4a_2^2b^2 + 3a_2^3b^4 \\ + 36a_3^2b^4 + 48a_2b^4a_1a_3 + 24b^2a_4 + 4a_2b^2a_1^2 + 4a_1^2a_2^2b^4 + 48a_2b^4a_4)(n + 1)c \\ + (a_1n + 8a_2^2b^4a_1 + a_1 + 18b^2a_3 + 6b^2a_1a_2 + 48a_2b^4a_3 + 2a_1na_2b^2)\epsilon \\ - 2(2a_2b^2 + 1)(2b^2a_1a_2 + 12b^2a_3 + a_1)v, \\ p_3 = (-80b^2a_3a_1 + 10a_3a_1 + 16a_1na_3 + 8a_4 - 224b^2a_4a_2 + 34a_2a_1na_3b^2 + 18a_3^2nb^2 \\ - 20a_1na_5b^2 + 24a_2^2 - 156b^2a_3^2 + 16a_2na_4b^2 + 8a_4n + 8a_2^3nb^2 + 4a_2^2n_3 - 12a_2^3b^2 \\ - 80a_2a_1b^2a_3 - 120b^2a_6)k + 4(40a_2b^4a_3 + 24b^2a_4a_1 - 18b^2a_3a_2 + 20b^2a_3 - 8a_2^2a_1b^2 \\ + 6a_3b^2a_1^2 + 4a_1a_2^3b^4 + 72a_3b^4a_4 - 5a_2a_1 + 28a_2^2b^4a_3 + 36a_3^3b^4a_1 - 7a_3 \\ + 12a_1^2a_2b^4a_3 + 48a_2b^4a_1a_4)(n + 1)c + 2b^2(3a_1na_3 + 4a_2^3b^2 + 36b^2a_3^2 + 2a_2^2 \\ + 24a_2a_1b^2a_3 + 48b^2a_1a_2 + 24a_1 + 12a_3a_1)e + (-48b^2a_4 - 24b^2a_3a_1 - 48a_2b^4a_1a_3 \\ + 16a_2^2b^2 - 8a_2^3b^4 - 72a_3^3b^4 + 10a_2 - 96a_2b^4a_4)v, \\ p_4 = (15a_2^2a_1 + 30a_4a_1 + 15a_5n + 130a_2a_3 + 30a_1na_4 + 30a_2na_5b^2 + 66a_1na_2b^2a_4 \\ - 600a_3b^2a_4 + 84a_3nb^2a_4 + 6a_2na_3 - 210b^2a_7 + 54a_2^2nb^2a_3 - 120a_3^2a_1b^2 \\ - 80a_2^2b^2a_3 - 30a_1na_6b^2 - 150b^2a_6a_1 - 9a_1na_2^2 + 35a_5 + 48a_1na_3^2b^2 \\ - 150a_2a_1b^2a_4 + 370a_2b^2a_3)k + 4(144a_3b^4a_1a_1 + 80a_2b^4a_15_5 + 28a_1a_2^2b^4a_3 \\ + 24a_1^2a_2b^4a_4 - 52a_2a_1b^2a_3 - 38a_2b^2a_1 + 52a_2^2b^4a_4 + 120a_3b^4a_5 + 60a_2^2b^4a_3 \\ + 24a_1^2a_2b^4a_4 - 52a_2a_1b^2a_3 - 38a_2b^2a_1 + 52a_2^2b^4a_1 + 120a_3b^4a_5 + 60a_2^2b^4a_3 \\ + 24a_1^2a_2b^4a_4 - 52a_2a_1b^2a_3 + 8a_2^2b^2a_1 + 12a_2^2b^2a_3 - 12a_3^2b^4a_3 \\ + 26a_3b^4a_5 + 96a_2b^4a_1a_4 + 56a_2^$$

$$+ (-240 a_2 b^4 a_6 - 480 a_3 b^4 a_5 - 80 b^2 a_5 a_1 + 168 a_3^2 b^2 + 58 a_4 - 120 b^2 a_6 - 288 a_3 b^4 a_1 a_4 - 120 a_3^2 b^4 a_2 - 104 a_2^2 b^4 a_4 + 136 a_2 a_1 b^2 a_3 + 32 a_3 a_1 - 288 a_4^2 b^4 - 6 a_2^2 - 160 a_2 b^4 a_1 a_5 + 24 a_2^3 b^2 + 208 a_2 b^2 a_4) v.$$

Remark A.2. In (3.2), A_1 , A_2 and A_3 are given by

$$A_1 = 432\,a_3^3a_1^2 + 224\,a_2^5a_1 - 1440\,a_2^3a_5 + 288\,a_2^4a_3 - 48\,a_1^3a_2^4 - 4320\,a_3^2a_5 \\ - 2880\,a_4a_2a_5 + 2160\,a_6a_2a_3 + 5328\,a_2^2a_3a_4 + 864\,a_1a_3^2a_4 - 960\,a_2a_5na_1a_3 \\ + 80\,a_2^2a_1^2a_5 - 16\,a_2^5n^2a_1 + 240\,a_1a_2^2a_6 - 48\,a_1^3na_2^4 - 24\,a_1^4a_2^2a_3 + 432\,a_3^3a_1^2n \\ + 72\,a_3^2a_1^3a_2 - 108\,a_2na_3^3 - 96\,a_1^3a_2^2a_4 + 688\,a_2^3a_4a_1 - 32\,a_2^3n^2a_4a_1 \\ + 40\,a_2^2a_5na_1^2 + 240\,a_2^2a_1na_6 - 40\,a_2^2a_1^2n^2a_5 + 108\,a_3^2a_1^3na_2 + 12\,a_1^4a_2^2n^2a_3 \\ - 12\,a_1^4na_2^2a_3 - 96\,a_1^3na_2^2a_4 - 52\,a_1^2n^2a_3a_2^3 + 36\,a_1^3n^2a_3^2a_2 - 1008\,a_2^2na_3^2a_1 \\ - 432\,a_4a_1^2a_2a_3 + 864\,a_1na_4a_3^2 + 656\,a_1na_4a_2^3 - 92\,a_1^2na_2^3a_3 - 960\,a_1a_3a_2a_5 \\ + 5184\,a_4^2a_3 - 4536\,a_2a_3^3 + 72\,a_1^2n^2a_3a_2a_4 - 1008\,a_3^2a_2^2a_1 - 40\,a_1^2a_2^3a_3 \\ + 208\,a_1na_2^5 - 360\,a_1^2na_4a_2a_3, \\ A_2 = 2052\,a_3^3 + 80\,a_1^2a_2a_5 - 216\,a_1^2a_3a_4 + 192\,a_1na_2^4 + 54\,a_3^2a_1^3n + 76\,a_3a_1^2a_2^2 \\ + 240\,a_6a_1a_2 - 216\,a_2a_4a_3 - 480\,a_1a_3^2a_2 - 480\,a_5a_1a_3 - 48\,a_1^3na_2^3 - 96\,a_1^3a_2a_4 \\ + 36\,a_3^2a_1^3 + 672\,a_1a_2^2a_4 - 24\,a_2^4n^2a_1 - 24\,a_1^4a_2a_3 - 720\,a_2^2a_5 + 18\,a_1^3n^2a_3^2 \\ + 40\,a_2a_5na_1^2 - 74\,a_1^2n^2a_2^2a_3 + 36\,a_1^2n^2a_4a_3 + 240\,a_6a_1na_2 - 48\,a_2^2n^2a_4a_1 \\ - 40\,a_1^2n^2a_5a_2 - 480\,a_1na_3a_5 + 12\,a_1^4a_2n^2a_3 - 12\,a_1^4na_2a_3 - 96\,a_1^3na_2a_4 \\ + 624\,a_1na_4a_2^2 - 180\,a_1^2na_4a_3 + 2\,a_2^2a_1^2na_3 - 480\,a_2a_1na_3^2 - 48\,a_1^3a_2^3 \\ - 1440\,a_5a_4 + 1080\,a_6a_3 + 216\,a_2^4a_1 - 648\,a_2^3a_3 - 54\,a_3^3n, \\ A_3 = -26\,a_1^2n^2a_3a_2 + 120\,a_1na_3^2 - 24\,a_1^3na_4 + 10\,a_1^2na_5 + 156\,a_1a_2a_4 + 60\,a_6a_1n \\ + 52\,a_1^2a_2a_3 - 12\,a_1^3na_2^2 + 3\,a_1^4n^2a_3 - 3\,a_1^4na_3 - 72\,a_2^2a_3 + 120\,a_1a_3^2 \\ - 10\,a_1^2n^2a_5 - 12\,a_1^3a_2^2 - 12\,a_2^3n^2a_1 + 36\,a_1na_2^3 + 48\,a_1a_2^3 - 6\,a_1^4a_3 + 60\,a_6a_1 \\ - 24\,a_1^3a_4 + 20\,a_1^2a_5 - 144\,a_2a_5 - 124\,a_1^2na_3 + 132\,a_1na_2a_4 - 24\,a_2n^2a_4a_1.$$

Remark A.3. In (3.17), f_0, f_2 and f_4 are given by (define $\phi_1 := \phi', \phi_2 := \phi''$ and $\phi_3 := \phi'''$)

 $f_0 = -\phi s^2 (s\phi_1 - \phi)(2a_2s^2 - s^2a_1^2 + 1)\phi_3 - s^3\phi (-s\phi a_1 - \phi sna_1 + n + 4s^2a_1^2)$

$$+ 2 s^2 n a_2 + s^2 a_1^2 n - 4 - 8 a_2 s^2) \phi_2^2 + s (s \phi_1 - \phi) (-2 s^3 \phi_1 a_2 + s^3 \phi_1 a_1^2 + s^3 \phi_1 n a_1^2$$

$$- 2 s^3 \phi_1 n a_2 + 6 s^2 \phi_2 - 3 s^2 \phi_1^2 n - 3 s^2 \phi_1^2 - 2 s^2 \phi_1 a_2 - s \phi_1 n - s \phi_1 + 2 s \phi^2 n a_1$$

$$+ 2 s \phi^2 a_1 + \phi - \phi_1 \phi_2 - (s \phi_1 - \phi)^2 (2 s^2 \phi_1 a_2 n - s^2 \phi_1 a_1^2 + 2 s^2 \phi_1 a_2 - s^2 \phi_1 n a_1^2$$

$$- 4 s \phi_2 a_2 + 2 s \phi_1^2 n + 2 s \phi_1^2 + \phi_1 n + \phi_1 - \phi^2 n a_1 - \phi^2 a_1),$$

$$f_2 = -\phi (-1 + 2 a_2 s^2) (2 a_2 s^2 - s^2 a_1^2 + 1) (s \phi_1 - \phi) \phi_3 + s \phi (-2 s \phi_1 a_1 - 2 \phi_1 s n a_1$$

$$- 8 s^4 a_2 a_1^2 + 16 s^4 a_2^2 + n - 4 s^4 n a_2^2 - 4 + 4 s^2 a_1^2 + 2 s^4 n a_2 a_1^2 + 3 s^2 a_1^2 n) \phi_2^2$$

$$+ (s \phi_1 - \phi) (-4 s^4 \phi_1 a_2^2 - 4 s^4 \phi_1 n a_2^2 + 2 s^4 \phi_1 n a_2 a_1^2 + 2 s^4 \phi_1 a_2 a_1^2 + 12 s^3 \phi_1 a_2^2$$

$$- 6 s^3 \phi_1 a_2 a_1^2 - 4 s^3 \phi_1 n a_2^2 + 2 s^3 \phi_1 n a_2 a_1^2 - s^2 \phi_1 a_1^2 - s^2 \phi_1 n a_1^2 + 2 s \phi_1 a_1^2$$

$$- 2 s \phi_1 a_2 - 2 s \phi_1 n a_2 + 4 s \phi_1 a_1^2 n + \phi_1 n + \phi_1 n - 2 \phi^2 a_1 - 2 \phi^2 n a_1) \phi_2$$

$$- 2 a_2 (s \phi_1 - \phi)^2 (2 s^2 \phi_1 a_2 + 2 s^2 \phi_1 a_2 n - s^2 \phi_1 n a_1^2 - s^2 \phi_1 a_1^2 - 4 s \phi_1 a_2$$

$$+ 2 s \phi_1 a_1^2 + \phi_1 n + \phi_1),$$

$$f_4 = 2 \phi_1 a_2 (2 a_2 s^2 - s^2 a_1^2 + 1) (s \phi_1 - \phi) \phi_3 + \phi (\phi_1 + \phi_1 n a_1 - 16 s^3 a_2^2$$

$$- 8 s a_2 - 2 s a_1^2 n + 2 s n a_2 + 8 s^3 a_2 a_1^2 + 4 s^3 n a_2^2 - 2 s^3 n a_2 a_1^2) \phi_2^2$$

$$- 2 (s \phi_1 - \phi) a_2 (-2 s^2 \phi_1 a_2 - 2 s^2 \phi_1 a_2 n + s^2 \phi_1 n a_1^2 + s^2 \phi_1 a_1^2$$

$$+4 s\phi a_2 - 2 s\phi a_1^2 - \phi_1 n - \phi_1)\phi_2.$$

Remark A.4. Let p_i be the coefficients of s^i in (4.1). We have

$$\begin{split} p_0 &= 2 \, a_2 b^2 (1 + 2 \, a_2 b^2) \lambda - (1 + 2 \, a_2 b^2)^2 \delta + 6 \, a_1 b^2 a_3 - 2 \, a_2 + a_1^2 n + 2 \, b^2 a_1^2 a_2 \\ &- 4 \, a_2^2 b^2 + 2 \, a_1^2 n a_2 b^2 + a_1^2, \\ p_1 &= (1 + 2 \, a_2 b^2) (2 \, a_2 b^2 a_1 + 12 \, b^2 a_3 + a_1 n + a_1) \lambda - (1 + 2 \, a_2 b^2) (2 \, a_2 b^2 a_1 \\ &+ 12 \, b^2 a_3 + a_1) \delta + 12 \, b^2 a_1^2 a_3 - 6 \, a_3 + 4 \, a_1 n a_2^2 b^2 - 12 \, a_2 b^2 a_3 + 2 \, a_1 n a_2 \\ &+ 24 \, a_1 b^2 a_4 + 6 \, a_1^2 n a_3 b^2 + 12 \, a_2^2 a_1 b^2, \\ p_2 &= 6 \, b^2 (3 \, a_3 a_1 + 4 \, a_2 b^2 a_3 a_1 + 8 \, b^2 a_2 a_4 + a_2^2 + 6 \, a_4 + 6 \, a_3^2 b^2 + a_1 n a_3) \lambda \\ &+ (12 \, a_2^2 b^2 - 24 \, b^2 a_4 - 48 \, a_2 b^4 a_4 - 36 \, a_3^2 b^4 - 12 \, a_1 b^2 a_3 + 6 \, a_2 - 24 \, a_2 b^4 a_3 a_1) \delta \\ &+ 72 \, a_2 b^2 a_3 a_1 - 6 \, a_1^2 n a_2^2 b^2 - 6 \, a_2 a_1^2 + 36 \, b^2 a_1^2 a_4 - 12 \, a_4 + 6 \, a_2^2 + 60 \, a_1 b^2 a_5 \\ &- 6 \, a_1^2 n a_2 - 12 \, a_3 a_1 + 6 \, a_2^2 a_1^2 b^2 - 18 \, a_3^2 b^2 + 24 \, a_2^3 b^2 + 12 \, a_1^2 n a_4 b^2 + 12 \, a_1 n a_2 b^2 a_3, \\ p_3 &= (24 \, a_2 b^2 a_3 + 80 \, b^2 a_5 - 7 \, a_2 a_1 - 3 \, a_3 n - 7 \, a_1 n a_2 + 48 \, a_1 b^2 a_4 - 4 \, a_2^2 a_1 b^2 \\ &+ 144 \, a_3 b^4 \, a_4 + 36 \, a_3^2 b^4 \, a_1 - 4 \, a_2^2 b^4 a_3 + 80 \, a_2 b^4 a_5 - 4 \, a_2^3 a_1 b^4 - 9 \, a_3 + 48 \, a_2 b^4 a_4 a_1 \\ &- 6 \, a_2 n b^2 a_3 - 8 \, a_1 n a_2^2 b^2 + 12 \, a_1 n a_4 b^2) \lambda + (-40 \, b^2 a_5 - 24 \, a_1 b^2 a_4 + 7 \, a_2 a_1 \\ &+ 4 \, a_2^2 b^4 a_3 + 17 \, a_3 - 36 \, a_3^2 b^4 a_1 - 80 \, a_2 b^4 a_5 - 144 \, a_3 b^4 a_4 - 48 \, a_2 b^4 a_4 a_1 \\ &+ 16 \, a_2^2 a_1 b^2 + 72 \, a_2 b^2 a_3 + 4 \, a_2^3 a_1 b^4) \delta - 20 \, a_5 - 16 \, a_1 n a_2^2 - 4 \, a_1 a_4 n + 80 \, b^2 a_1^2 a_5 \\ &- 16 \, a_1^2 n a_3 - 48 \, a_3 b^2 a_4 + 120 \, a_1 b^2 a_6 - 40 \, a_4 a_1 + 18 \, a_3 a_2 - 20 \, a_2^2 a_1 - 22 \, a_3 a_1^2 \\ &- 20 \, a_1 n a_2^3 b^2 + 32 \, a_2 a_1^2 b^2 a_3 + 160 \, a_2 b^2 a_4 a_1 - 12 \, a_2^2 n b^2 a_3 + 84 \, a_3^2 b^2 a_1 \\ &- 34 \, a_1^2 n a_2 b^2 a_3 + 20 \, a_1^2 n a_5 b^2 + 20 \, a_2^3 a_1 b^2 + 40 \, a_2 b^2 a_5 + 172 \, a_2^2 b^2 a_3 \\ &- 6 \, a_2 n a_3 + 16 \, a_1 n a_2 b^2 a_4. \end{split}$$

Remark A.5. In (4.9), f_0 , f_2 and f_4 are given by (define $\phi_1 := \phi'$, $\phi_2 := \phi''$ and $\phi_3 := \phi'''$)

$$\begin{split} f_0 &= s(\phi - s\phi_1)(\phi \, s^2(\phi - s\phi_1)\phi_3 - \phi \, s^3(-2 + n)\phi_2^{\,2} + s(\phi - s\phi_1)(\phi + s\phi_1)(n + 1)\phi_2 \\ &- \phi_1(\phi - s\phi_1)^2(n + 1)), \\ f_2 &= (-\phi \, s^3(k + 2 \, s^2 a_2 k - 4 \, a_2 s^2)\phi_1^{\,2} + \phi^2 \, s^2(1 - 8 \, a_2 s^2 + k + 4 \, s^2 a_2 k)\phi_1 \\ &- s\phi^3(-4 \, a_2 s^2 + 1 + 2 \, s^2 a_2 k))\phi_3 + (-\phi \, s^3(12 \, a_2 s^2 + 2 - 3 \, k - 6 \, s^2 a_2 k + 2 \, s^2 n a_2 k \\ &- 4 \, s^2 n a_2 + n k)\phi_1 + \phi^2 \, s^2(-4 \, s^2 n a_2 - k + 2 \, s^2 n a_2 k + 12 \, a_2 s^2 - 6 \, s^2 a_2 k + n))\phi_2^{\,2} \\ &+ (-s^3(k + 2 \, s^2 a_2 k - 4 \, a_2 s^2)(n + 1)\phi_1^{\,3} + \phi \, s^2(2 \, s^2 n a_2 k + 2 \, n + k - 4 \, s^2 n a_2 \\ &- 12 \, a_2 s^2 + 6 \, s^2 a_2 k)\phi_1^{\,2} + \phi^2 \, s(-2 + k)(n - 6 \, a_2 s^2 - 1 + 2 \, s^2 n a_2)\phi_1 \\ &- \phi^3(-2 + k)(-2 \, a_2 s^2 + 2 \, s^2 n a_2 - 1))\phi_2 - s^2(-1 - 4 \, a_2 s^2 + k + 2 \, s^2 a_2 k)(n + 1)\phi_1^{\,4} \\ &+ 2 \, \phi \, s(k - 1 + nk - n + 3 \, s^2 n a_2 k + 4 \, s^2 a_2 k - 6 \, s^2 n a_2 - 8 \, a_2 s^2)\phi_1^{\,3} - \phi^2(-12 \, s^2 n a_2 k + k + 12 \, s^2 a_2 k - 1 + nk - 24 \, a_2 s^2 - n + 6 \, s^2 n a_2 k)\phi_1^{\,2} + 2 \, s\phi^3 a_2(-2 + k)(n + 4)\phi_1 \\ &- 2 \, \phi^4 a_2(-2 + k), \\ f_4 &= (\phi \, s(-1 - 4 \, a_2 s^2 + k + 2 \, s^2 a_2 k)\phi_1^{\,2} - \phi^2(4 \, s^2 a_2 k - 1 + k - 8 \, a_2 s^2)\phi_1 \\ &+ 2 \, s\phi^3 a_2(-2 + k))\phi_3 + (\phi \, s(2 \, s^2 n a_2 k + 4 - 3 \, k + 12 \, a_2 s^2 + nk - 6 \, s^2 a_2 k \\ &- n - 4 \, s^2 n a_2)\phi_1 - \phi^2(-2 + k)(2 \, s^2 n a_2 - 6 \, a_2 s^2 - 1))\phi_2^{\,2} + (s(-1 - 4 \, a_2 s^2 + k + 2 \, s^2 a_2 k)(n + 1)\phi_1^{\,3} - \phi \, (nk - n + k + 4 \, s^2 n a_2 k - 1 + 6 \, s^2 a_2 k \\ &- h + 2 \, a_2 s^2 - 8 \, s^2 n a_2)\phi_1^{\,2} + 2 \, \phi^2 s a_2(-2 + k)(3 + n)\phi_1 - 2 \, \phi^3 a_2(-2 + k))\phi_2. \end{split}$$

Remark A.6. In (4.15), f_0, f_2 and f_4 are given by (define $\phi_1 := \phi', \phi_2 := \phi''$ and $\phi_3 := \phi'''$)

$$f_0 = -s^2\phi (-\phi + s\phi_1)(-\phi_1s^2a_1^2 + 2\phi_1s^2a_2 + s\phi a_1^2 - 2s\phi a_2 + \phi_1)\phi_3$$

$$-s^2\phi \left(3\,s^3\phi_1a_1^2 + 2\,s^3\phi_1na_2 - 6\,s^3\phi_1a_2 - 3\,s^2\phi\,a_1^2 + 6\,s^2a_2\phi - 2\,s^2\phi\,na_2\right.\\ -3\,s\phi_1 + \phi_1sn + \phi\right)\phi_2^2 - \left(-\phi + s\phi_1\right)\left(-s^4\phi_1^2na_1^2 - s^4\phi_1^2a_1^2 + 2\,s^4\phi_1^2a_2\right.\\ +2\,s^4\phi_1^2na_2 + 2\,s^3\phi_1\phi\,a_1^2n + 2\,s^3\phi_1\phi\,a_1^2 - 4\,s^3\phi\,\phi_1a_2 + s^2\phi_1^2n + s^2\phi_1^2\\ +2\,s^2\phi^2a_2 - s^2\phi^2na_1^2 - 2\,s^2\phi^2na_2 - s^2\phi^2a_1^2 + \phi\,n\phi_1s + \phi^2\right)\phi_2\\ - \left(-\phi + s\phi_1\right)^2\left(2\,s^2\phi_1^2a_2 - s^2\phi_1^2a_1^2 - s^2\phi_1^2na_1^2 + 2\,s^2a_2\phi_1^2n\right.\\ -4\,s\phi\,\phi_1a_2 + 2\,s\phi_1\phi\,a_1^2 + 2\,s\phi_1\phi\,a_1^2n - 2\,s\phi_1\phi\,na_2 + \phi_1^2n + \phi_1^2\\ +2\,\phi^2a_2 - \phi^2a_1^2 - \phi^2a_1^2n\right),$$

$$f_2 = \phi\left(-1 + 2\,s^2a_2\right)\left(-\phi + s\phi_1\right)\left(\phi_1s^2a_1^2 - 2\,\phi_1s^2a_2 - s\phi\,a_1^2 + 2\,s\phi\,a_2 - \phi_1\right)\phi_3\\ -\phi\left(-4\,\phi\,s^4na_2^2 + 2\,s^2\phi\,na_2 - 4\,s^2a_2\phi + 12\,\phi\,s^4a_2^2 + 2\,\phi\,s^4na_1^2a_2 - \phi\right.\\ +\phi\,s^2na_1^2 + 3\,s^2\phi\,a_1^2 - 6\,\phi\,s^4a_1^2a_2 - 3\,s^3\phi_1a_1^2 + 3\,s\phi_1 - 2\,s^5\phi_1na_1^2a_2\\ -12\,s^5\phi_1a_2^2 - \phi_1sn - s^3\phi_1a_1^2n + 6\,s^5\phi_1a_1^2a_2 + 4\,s^5\phi_1na_2^2\right)\phi_2^2\\ +\left(-\phi + s\phi_1\right)\left(2\,s^4\phi_1^2na_1^2a_2 - 4\,s^4\phi_1^2a_2^2 + 2\,s^4\phi_1^2a_1^2a_2 - 4\,s^4\phi_1^2na_2^2\\ -4\,s^3\phi_1\phi\,a_1^2a_2 + 8\,s^3\phi\,\phi_1a_2^2 - s^2\phi_1^2a_1^2 - s^2\phi_1^2na_1^2 - 2\,s^2\phi^2na_1^2a_2\\ +4\,s^2\phi^2na_2^2 - 4\,s^2\phi^2a_2^2 + 2\,s^2\phi^2a_1^2a_2 + 2\,s\phi_1\phi\,a_1^2 + 3\,s\phi_1\phi\,a_1^2n\\ -4\,s\phi\,\phi_1a_2 - 4\,s\phi_1\phi\,na_2 + \phi_1^2n + \phi_1^2 - 2\,\phi^2a_1^2n - \phi^2a_1^2\right)\phi_2\\ -2\,a_2\left(-\phi + s\phi_1\right)^2\left(2\,s^2a_2\phi_1^2n + 2\,s^2\phi_1^2a_2 - s^2\phi_1^2a_1^2 - s^2\phi_1^2na_1^2 - 2\,s\phi_1\phi\,na_2\\ -4\,s\phi\,\phi_1a_2 + s\phi_1\phi\,a_1^2n + 2\,s\phi_1\phi\,a_1^2 + 2\,\phi^2a_2 + \phi_1^2 + \phi_1^2n - \phi^2a_1^2\right).$$

$$\begin{split} f_4 &= 2 \phi \, a_2 (-\phi + s \phi_1) (-\phi_1 s^2 a_1^2 + 2 \phi_1 s^2 a_2 + s \phi \, a_1^2 - 2 \, s \phi \, a_2 + \phi_1) \phi_3 \\ &+ \phi \, (2 \phi \, a_2 - 4 \phi \, s^2 n a_2^2 + 2 \phi \, s^2 n a_1^2 a_2 + \phi \, a_1^2 n + 12 \, s^2 \phi \, a_2^2 - 6 \, s^2 \phi \, a_1^2 a_2 \\ &+ 6 \, s^3 \phi_1 a_1^2 a_2 + 4 \, s^3 \phi_1 n a_2^2 - 2 \, s^3 \phi_1 n a_1^2 a_2 - s \phi_1 a_1^2 n + 2 \phi_1 s n a_2 - 12 \, s^3 \phi_1 a_2^2 \\ &- 6 \, s \phi_1 a_2) \phi_2^2 - 2 \, (-\phi + s \phi_1) a_2 (-2 \, s^2 a_2 \phi_1^2 n - 2 \, s^2 \phi_1^2 a_2 + s^2 \phi_1^2 n a_1^2 \\ &+ s^2 \phi_1^2 a_1^2 + 4 \, s \phi \, \phi_1 a_2 + 2 \, s \phi_1 \phi \, n a_2 - s \phi_1 \phi \, a_1^2 n - 2 \, s \phi_1 \phi \, a_1^2 \\ &- 2 \, \phi^2 a_2 - \phi_1^2 - \phi_1^2 n + \phi^2 a_1^2) \phi_2. \end{split}$$