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1 Introduction

The S-curvature is one of the most important non-Riemannian quantities in Finsler geometry, which
was originally introduced for the volume comparison theorem (see [6]). Recent studies show that the
S-curvature plays a very important role in Finsler geometry (see [1,2,7-10]). It is proved that, if an
n-dimensional Finsler metric F' is of isotropic S-curvature S = (n + 1)c(z)F for a scalar function c(x)
and of scalar flag curvature K = K (z,y), then the flag curvature K can be given by

3cymy™

K=
F

+7(2),

where 7(x) is a scalar function (see [2]).
An (a, B)-metric is defined by a Riemann metric a = \/a;;(z)y'y’ and a 1-form 8 = b;(z)y" as follows:

F:a¢(8)v S:B/Ot,

where ¢(s) satisfies certain conditions such that F is regular (positively definite on TM — 0). A special
class of (a, B)-metrics are Randers metrics defined by F' = a4+ 8. With the help of navigation technique,
we can characterize and determine the local structures of Randers metrics with isotropic S-curvature (see
[5,8-10]).
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For a pair of a and 3, let b := ||3]|o denote the norm of 8 with respect to . Define

1 1
rij = S (biyj +b514)s  sij = 5(bi; —bj14),
2 2
r; = birij7 55 1= bisij, st i=a"sy,
where b; | ;’s denote the covariant derivatives of 8 with respect to a and b’ := a*/b; and (a") := (a;;) "
For a C*° function ¢(s) > 0 on (—b,, b,), define

P :=—(Q —sQ)(nA +sQ+1) — (b* — s*)(1+5Q)Q", (1.1)
A:=1+s5Q+ (02 -s)Q, Q:=0¢/(¢—sd).

It is known that a Randers metric F' = a+ f8 is of isotropic S-curvature, S = (n + 1)c(z)F, if and only
if (see [3]) Tij = 20(aij — bibj) — biSj - bjSi.

In this paper, we mainly prove the following theorem.
Theorem 1.1. Let F = a¢(s) and s = /o, be an («, f)-metric on an n (= 2)-dimensional man-
ifold M, where ¢(0) = 1 and ¢(s) # V1+es? + ks for any constants € and k. Suppose b = ||B||o #
constant in any domain in M and F is of isotropic S-curvature. Then the following statements hold:

(i) the dimension n =2, and

(ii) B satisfies

o Skt ket 4k ko b?
vy + (kl + 3k2)b2

(biSj +bj8i), (12)

and ¢ = ¢(s) is given by
8(s) = {(1+ k1)1 + Jps?) P eld 7, (13)

where 7(s) is defined by
ks —
(1 + k‘1$2)\/ 1+ ]<i2827

and k1 and ko are constants with ko > k1. In this case, the S-curvature S = 0.

T(s) := 5 (1.4)

Note that we have used the assumption that b # constant in Theorem 1.1. For the case that b is a
constant, see [4]. In order to derive Theorem 1.1(i) and (1.3), the condition b = ||5]|o # constant in any
domain in M can be weakened to db # 0 at a point on M. Furthermore, letting k; = ko in (1.3) and (1.4)
yields ¢(s) = v/1 + k152. So the case k; = ks is excluded.

Taking k1 = 0 and ko =4, by (1.2) and (1.3) we obtain

1

F(a,8) = (a® +48%)}\/28 + y/aZ + 452 (1.6)

Theorem 1.1 shows that the metric (1.6) in the two-dimensional case is of isotropic S-curvature if and
only if § satisfies (1.5). In the following example, we show a pair « and g satisfying (1.5). For more
examples, see Example 6.2 below.

Example 1.2. Let F' be an (o, §)-metric on a two-dimensional manifold defined by (1.6). Define «
and B by a =e?+/(y1)2 + (y2)? and B = e? (&y' + ny?), where &, 7 and o are scalar functions which are
given by

1
¢=a% m=-a', o=—g(l+4af), |of = (") + (%)
Then « and 8 satisfy (1.5), and therefore, F' is of isotropic S-curvature, S = 0, by Theorem 1.1. Fur-
thermore, we have b? = ||8]|2 = |z|* # constant.

Taking k1 = —1 and kg = 0 in (1.3), the metric F' in Theorem 1.1 becomes F' = y/a(a + 8), which is a
square-root metric. We can show in [11] that a square-root metric F' on a two-dimensional manifold is an
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Einstein metric if and only if F' is of vanishing S-curvature, and in this case, F' is generally not Ricci-flat
(non-zero isotropic flag curvature).

The paper is organized as follows. In Section 2, we give some definitions and notation which are
necessary for the present paper, and a lemma is contained. In Section 3, we will derive some results
about (2.6), which are necessary for the proof of Theorem 1.1. Furthermore, in Section 4, under the
assumptions that b # constant in any domain and ¢(s) # k11 + kos? + kss for any constants k1 > 0, ko
and k3, we are going to show that (2.8) has the non-trivial solutions only in the case of dimension n = 2.
Based on the above discussions, the proof of Theorem 1.1 is given in Section 5. Finally, some examples for
the metric F' satisfying (1.2)—(1.4) are given in Section 6. Besides, we write an appendix which introduces
the formulas for some coefficients occurring in (3.1), (3.2), (3.17), (4.1), (4.9) and (4.15).

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M with the standard local coordinate (z%,y") in

TM. The Finsler metric F induces a vector field G = y/* 8‘21 —2Gt atzi on T'M defined by

. 1 .
G' = Zgll{[FQ]mkylyk - [F2]ml}
The Hausdorff-Busemann volume form dV = op(z)dz! A --- A dx™ is defined by

@) = Vol(B")
T Nol{(y) € R [ Fyi g o) < 13

Furthermore, the S-curvature is defined by
oG™ 0

Si= Gy Y ggm

In O’F>.

S is said to be isotropic if there is a scalar function c¢(z) on M such that S = (n+ 1)c(x)F. If ¢(z) is a
constant, then we call F' is of constant S-curvature.
An (a, §)-metric is expressed in the following form:

F:a(b(s), S:B/a,
where ¢(s) > 0 is a C*° function on an open interval (—b,,b,). It is known that F' is regular if
6(s) — 56/(5) > 0, 6(s) — 5'(s) + (2 — 5)8"(5) > 0, |s| <b < by,

For an m-dimensional (a, §)-metric F' = ag¢(s) and s = (/a, it has been shown in [4] that the S-

curvature is given by

S = {2\11 - l{f((ll)))) }(7“0 + s0) — a_l%(roo —2aQsy), (2.1)

where ® is defined by (1.1) and

ro = Tiyia S0 = siyiv Too = rijyiyj’
_ &
TN
™ s n—2
Jo sin™ % tdt
fb) == =32

T T
fO (bs(lbncos t)m dt

A::1+5Q+(b2—52)Q’, Q;:L

v
¢ — s

Fix an arbitrary point € M and take an orthonormal basis {e;} at  such that
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Then we change coordinates (3°) to (s,y?) such that

b b
a:77 6:78@7

/02 — g2 * 2 — g2
where & = />4 _,(y*)?. Let

n n n
= § : A = § : A B = § : A
10 ‘= mAY Too ‘= TABY Y, Sp = SAY .
A=2 A,B=2 A=2

By (2.1), it is shown in [4] that F is of isotropic S-curvature, S = (n+1)c(z)F, if and only if the following
two equations hold:

%(lﬁ — §%)Fo0 = —{s [;; —20b? + bJJj;[()f)))]m + (n+ 1)cb2¢}@2, (2.3)
R N (- £

In [4], Cheng and Shen studied (2.3) and (2.4) by three steps: (i) ® = 0, (ii) ® # 0 and T = 0 and
(iii) ® # 0 and T # 0, where T is defined by

For the two cases: (i) ® =0, or (ii) ® # 0 and T = 0 (in some neighborhood), it is proved in [4] that b
must be a constant (in the neighborhood). For the third case ® # 0 and Y # 0, Lemma 2.1 is obtained
(see [4, Lemma 6.1]), and our discussion (Sections 3 and 4) is based on such a lemma.

Lemma 2.1 (See [4]). Let F = a¢(s) and s = B/a be an (a, B)-metric on an n-dimensional manifold.
Assume ¢(s) satisfies ® £ 0 and T # 0, and F has isotropic S-curvature, S = (n+ 1)c(z)F. Then

iy = kaij — Gbibj — A(bzsj + bjsi)7 (25)
P
—2s(k—eb2)\1'—|—(k—esg)w—i—(n—&—l)aﬁ—&/:o, (2.6)

where X\ = M),k = k(z) and e = e(x) are some scalar functions and

/()

V= 0 (k — eb?). (2.7)

If in addition so # 0, then
) )
. % - /\<SA2 - 2\1/1)2) =3, (2.8)
where )
o a2

0= bf(b)<1 Ab7). (2.9)

3 On (2.6)

In this section, we assume b # constant (in any neighborhood) and ¢(s) # k1v/1+ kos? + kss for any
constants k; > 0, ko and k3. We are going to prove that k = 0,¢ = 0,e = 0 and v» = 0 in (2.6). Before
the discussion, we show a remark (needed in this section and Section 4).

Remark 3.1. Assume b # constant in any neighborhood of the manifold M. Consider a polynomial

f(b) :==co+eib+ - cpd™,
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where ¢;’s are constant and there is at least some ¢; which is not zero. Let U be an open set of M,
and T := {x € U | f(b) = 0}. Then T is a closed and no-where dense set (since b # constant in any
neighborhood of M). So as an example, for a scalar function o = o(z), if 6 =0on U — T, then 0 =0
on U by continuity.

Thus without loss of generality, we can always assume f(b) # 0, or just have a restriction on U — T in
the following discussion, if ¢;’s are not all zero.

We first transform (2.6) into a differential equation about ¢(s) and then (2.6) x 2¢[¢p—s¢’+(b*>—s2)¢"]?
yields

—(b% = 5*)(k — es?) (¢ — 50" )" + {s[(2v + 2¢ — ne)s® + 2(e — v)b* + k(n — 4)]
2(n+ 1)efb? — 2)EHE — )3 + {(n+ V(B — ) [ded? — (k — )]
~sl(ne + € — )5 + 220 — O — (n— DEI}D— 566" + (6 — 56)?
x {(n+1)[2c4? — (k — es*)¢'] — 2vsp} = 0. (3.1)

Express the power series of ¢(s) at s =0 as
0 .
#(s) =1+ a1s+ass® +azs® +--- = 1+Zai52-
i=1

Let p; be the coefficients of s* in (3.1). The expressions of pg, p1, p2, 3, p4 and ps, which will be needed
in the following discussion, are given in Remark A.1. All the equations p; = 0 are homogeneous linear
equations about k, ¢, € and v. The coefficient determinant of the linear system pg = 0, p; = 0, ps = 0 and
p3 = 0 is in the form

Ab® 4 Agb* 4+ Asb® — (n 4 1)ay[4(n + ayg +2(n + 1)ai + (n — 2)ayas], (3.2)
where Ay, A and A3z are constant, and their expressions are given in Remark A.2. If
a1 #0, 4(n+1)ay +2(n+1)a3 + (n —2)ajaz # 0,

then the above determinant is not zero (see Remark 3.1), and thus in this case we conclude that k = 0,
c¢=0, e =0 and v =0 from the linear system py =0, p; =0, ps =0 and p3 = 0.

In the following, we further prove k = 0,c = 0,6 = 0 and v = 0 if a; = 0, or 4(n + 1)ay + 2(n + 1)a3
+ (n —2)ajaz = 0.
Case 1. Assume a; = 0. By pg = 0,p1 = 0 and a; = 0, we obtain (assume 1 + 2asb> # 0 by
Remark 3.1)

2[(18a3 — 10a3 — 12aza4)b* — (7a3 + 6a4)b? — azlk + 2a2b*(1 + 2a9b?)%e

_ 3.3
Y (14 2a0%)? ’ (3:3)
3a3b2
= k. 3.4
T D1+ 2a007)2 (34)
Since ¢(s) # V1 +2a25% = > .2, C% (2a2s%)", there exists some minimal integer m such that
aomi1 #0, m=>=1, or agy, # C’%"(?ag)m, m = 2, (3.5)

where C),’s are the generalized combination coeflicients.

Case 1A. Assume agpy1 # 0 in (3.5). First consider the case m = 1. Then a3 # 0. Plug (3.3), (3.4)
and a; = 0 into ps = 0 and p4 = 0 and then we get a linear system about k£ and €. The critical component
of the determinant for this linear system is given by

(- 4 (-4 (- (- )b = 3(n — 1) (n + 3)a2,
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where the omitted terms are all constants. Now it is seen that £k = 0 and ¢ = 0 since ag # 0. Thus
by (3.3) and (3.4) we have ¢ =0 and v = 0.

Now let m > 1. In this case, we have ag = 0. For our purpose to prove k£ = 0 and € = 0, we only need
to compute pogy,—2 and pa,,. Express ¢(s) as

o(s) = g(s) + h(s), (3.6)
where

g(s):=1+ Zamszz" h(s) == Z iy 52T
i=1 i=m

Plug (3.6) into (3.1) and then we write the left-hand side of (3.1) as P, + P, where every term of P;
includes at least h or its derivatives k', h” and ", and P; is just the left-hand side of (3.1) with ¢(s)
being replaced with g(s). Among h,h’,h” and A", the function h”” has the power series of the least
degree 2m — 2. Since m > 1, we have ag = 0, and then we get ¢ = 0 by (3.4). So the power series of Py
has no term of even degree.

Thus by the above analysis we see that, to get pa,,_o, it is sufficient to put

g(s) =1+0(s), h(s) = azmsr15*™ " + 0(s*"2),
and plug (3.6) into (3.1). Then by (3.3), (3.4), a1 = 0 and a3 = 0, the equation pa,,—2 = 0 is reduced to
—2m(4m? — 1)b%agm 1k = 0. (3.7)
By (3.7) we have k = 0. Similarly, to get pa,, it is sufficient to put
g(s) =14 ass® +0(53), h(s) = azms152™ T + aomy35°™ 3 + o(s*™ ),

and plug (3.6) into (3.1). Then from (3.3), (3.4), a1 = 0, ag = 0 and k = 0, the equation py,, = 0 is
reduced to
2m(2m + 1)%ag,, 4 1b% = 0. (3.8)

By (3.8) we have e = 0. Thus by (3.3) and (3.4) we have ¢ =0 and v = 0.
Case 1B. Assume all ag;4; = 0 (¢ > 0), and assume ag,, # CT"(2a2)™ in (3.5). If m = 2, then

2a4 +a% # 0. Plug (3.3), (3.4), a; = 0 and a3z = 0 into p3 = 0 and ps = 0 and then we get a linear system
about k and e. The critical component of the determinant for this linear system is given by

(- 4 (- = (4 1) (n + 4)(2a4 + a2)?,

where the omitted terms are all constants. Now it is easy to see that k = 0 and € = 0 since 2a4 + a3 # 0.
Thus by (3.3) and (3.4) we have ¢ =0 and v = 0.

Now let m > 2. In this case, we have ay = —a3/2. For our purpose to prove k = 0 and € = 0, we only
need to compute paym—3 and pom—1. Since /1 + 2a9s2 = >co C% (2a25%)?, we may express ¢(s) as

p(s) = g(s) + h(s), (3.9)

where g(s) := V1 +2a282, h(s) := Y o, do;s* and da,, # 0. Plug (3.9) into (3.1) and then we write
the left-hand side of (3.1) as P, + P», where every term of P; includes at least h or its derivatives h’, h”
and A", and P, which is just the left-hand side of (3.1) with ¢(s) being replaced with g(s), will vanish
when we plug (3.3), (3.4) (a3 = 0) and ay = —a3/2 into it. Among h, ', " and h"”, the function h'""
has the power series of the least degree 2m — 3.

By the above analysis, to get pa,,—3, it is sufficient to plug (3.9) and

g(s) =140(1), h(s) = dms®™ + o(s*™ 1)
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into (3.1). Then from (3.3), (3.4) and ay = —a3/2, the equation pa,,_3 = 0 is reduced to
—4m(2m — 1)(m — 1)(1 4 2a2b*)*b*da, k = 0. (3.10)
By (3.10) we get k = 0. To get pa,,—1, it is sufficient to plug (3.9) and
g(s) = 14 ass® + 0(s?),  h(s) = doms™™ + dapm 125> 4 o(s*™F3)
into (3.1). Then from (3.3), (3.4), ay = —a3/2 and k = 0, the equation ps,, 1 = 0 is reduced to
4m?2(2m — 1)b*(1 + 2ab?)*dapme = 0. (3.11)

By (3.11) we get € = 0. Thus by (3.3) and (3.4) we have ¢ =0 and v = 0.

Case 2. Assume a; # 0 and 4(n + 1)ag + 2(n + 1)a3 + (n — 2)ajasz = 0. In this case, the coefficient
determinant of the linear system py = 0, p1 = 0, po = 0 and p3 = 0 is not zero if A; # 0 or Ay # 0 or
As # 0 (see (3.2)). Soif A] # 0 or Az # 0 or A3 # 0, then immediately we get k =0, ¢ =0, e = 0 and
v =0.

Thus we only need to consider the case A; = 0, A2 = 0 and A3 = 0. By an analysis on the equations
Ay =0, Ay =0 and A3z = 0, it is enough for us to prove k =0, ¢ =0, e = 0 and v = 0 under one of the
following two conditions:

1 1
a3 =0, a4= —iag, ag = 6[(71 — 2)ajas + 3a3] (3.12)
and
wy— — (4n® + 1502 + 16)@?7 oy — 2(n+1)a3 + (n — 2)a1a3’ (3.13)
36(n% —1) 4(n+1)
(n+4)(4n? —n+4) T
= T = 3.14
T 0+ 1)1 —n) " T 60(n+1)2 (3:.14)
where
Ty := a3[2a3n> + 5(3a3 — 16a)n? + (6a3 — 160az)n + 20(a? — 4as)],
T := a1(10as + 20aza3 — 3a?a3)n3 + (30@% — 120a§ + 45a1a9a3 — 6a?a3)n2
+ (60a3 + 15a%az — 30aas — 27643 — 105a1aza3)n + 18a3az — 130a;asas3
— 48a3 + 30a3 — 20a; as.
Case 2A. Assume (3.12). Solving po = 0, p1 =0, po = 0 and py = 0 yields (assume ¢ # 0)
k- 2(1+ Qasz)c7 . 2(a? — 2a9)(1 + 2a2b2)c’ (3.15)
ajq ai
2[(1 2a9b%)a? — 2a9(1 + 2aqb?
g5 =0, v AdEn2asbTay - 2s(1 + 2507 e (3.16)
ay
Plug (3.15) and (3.16) into (3.1) and then we get
c(fo+ fab® + fab*) =0, (3.17)

where fo, fo and f; are some ODEs about ¢(s), where the expressions of fy, fo and f4 are given in
Remark A.3. If ¢ # 0, then by (3.17), solving fo = 0, fo = 0 and f4 = 0 with ¢(0) = 1 yields
#(s) = a18 + /1 + 2as?. This case is excluded. So ¢ = 0. Then by (3.15) and (3.16) we get k = 0,¢ =0
and v = 0.

Case 2B. Assume (3.13) and (3.14). Plug (3.13) and (3.14) into po = 0,p; = 0,p2 = 0 and py = 0 and
we obtain £ =0, e = 0, » = 0 and ¢ = 0, since the coefficient determinant of the linear system py = 0,
p1 =0, po =0 and py = 0 is not zero.
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4 On (2.8)

In this section, we assume b # constant (in any neighborhood) and ¢(s) # kiv/1 + kgs2 + kzs for any
constants k1 > 0, ko and k3. We are going to show that (2.8) has the non-trivial solutions only in the
case of dimension n = 2. In the following discussion, we will also use Remark 3.1.

We first transform (2.8) into a differential equation about ¢(s) and then (2.8) x ¢(—¢ + s¢')[¢p — s¢’
+ (b% — s%)¢")? gives

— (0% = 8*)(¢ — 5¢")[(1 = As*)¢' + sl — {[1+ (6 — A)b?
+(nA = 2X = 8)s%)(¢ — s¢') + (n — 2)5¢'}(b* — s%)p(¢")?
—{[14 (6 = N)b? + (A — 26 + N)s?] (¢ — 5¢)? + [2(nA — 6 + \)s?
—(nA — 28 +2\)b* —n — 2]s¢/ (¢ — s¢) — (n + 1)(b* — 25%)(¢)?}
X (¢ = 50')¢" = [0(¢ — 56')° — (nA = 8+ N5 (¢ — s¢) — (n+1)(¢)’]
x (¢ — s¢')* = 0. (4.1)
Express the power series of ¢(s) at s =0 as

d(s) =1+ars+as® +ags®+--- = 1+Zaisi.
i=1

Let p; be the coefficients of s* in (4.1). We need to compute pg, p1, p2 and p3 first, and their expressions
are given in Remark A.4. In the following, we will solve A and § in two cases.
Case 1. Assume a; = 0 and a3 = 0. We are going to show that this case is excluded.

Plugging a; = 0 and a3z = 0 into pg = 0 yields

2CL2

§=—"="_(\2-1). 4.2
1+2@m( ) (4.2)

Since ¢(s) # V1 + 2ays2, there exists some minimal integer m such that
agmi1 70, m =2, or agy, #Cr(2a)™, m>=2, (4.3)
2

where CZ‘/S are the generalized combination coefficients. Then we will determine A in the two cases
of (4.3).

Case 1A. Assume agy,+1 # 01in (4.3). In this case, we need to compute po,,—1. For this, express ¢(s) as
o(s) = g(s) + h(s), (4.4)
where

oo [e.e]
g(s) =1+ Z a2i82i, h(s) :== Z a2i+152i+1-
i=1 i=m

Plug (4.4) into (4.1) and then we write the left-hand side of (4.1) as P; + P,, where every term of P;

includes at least h or its derivatives k', h” and b, and P; is just the left-hand side of (4.1) with ¢(s)

being replaced with g(s). Among h,h’,h” and A", the function h”” has the power series of the least

degree 2m — 2. Furthermore, it is easy to see that the power series of P» has no term of odd degree.
Thus by the above analysis we see that, to get pa,,,_1, it is sufficient to put

g(s) =14 ass® + 0(s3),  h(s) = agmi15*™ ! 4 o(s*™F?),
and plug (4.4) into (4.1). Then by pam—1 = 0, agm+1 # 0 and (4.2) we obtain

~1—2(2m — 1)agb?

A 2mb?

(4.5)
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Case 1B.  Assume all ag;+1 =0 (¢ > 0), and assume ag,, # CT(2a2)™ in (4.3). Express ¢(s) as
2

o(s) = g(s) + h(s), (4.6)
where

9(8) := 1+ 2a3s%, h(s):= Z d9is®,  dom # 0.

Plug (4.6) into (4.1) and then we write the left-hand side of (4.1) as Py + P, where every term of Py
includes at least h or its derivatives h',h” and h"”, and P, which is just the left-hand side of (4.1)
with ¢(s) being replaced with g(s), will vanish when we plug (4.2) into it. Among h, ', h’”" and A", the
function A" has the power series of the least degree 2m — 3.

Now by the above analysis, to compute pa,—2 in (4.1), it is sufficient to put

g(s) =1+ ass®> +0(s), h(s) = dams>™ + o(s*™ 1)

in (4.6) and plug (4.6) into (4.1). Then using (4.2) and da,, # 0, by pam—2 = 0 we obtain

1 —4(m — 1)agb?

A
(2m — 1)b?

(4.7)

Now we have solved A in the two cases of (4.3). It is easy to see that (4.5) and (4.7) can be written in

the following form:
N 1— 2(]{} — 1)a2b2

A e , (4.8)
where k£ > 3 is an integer.
Plugging (4.2) and (4.8) into (4.1) yields
fo+ f2b® + fab* =0, (4.9)

where fy, f2 and f4 are some ODEs about ¢(s) given in Remark A.5. Then by (4.9), solving fo = 0,
fo=0and f; =0 with ¢(0) = 1 yields ¢(s) = V1 + 2ass?. This case is excluded.

Case 2. Assume a; # 0 or ag # 0. We are going to show that for one case, there are the non-trivial
solutions for ¢(s) in dimension n = 2.

Case 2A. Assume a; = 0 and ag # 0. It follows that a4 = —%a% from pg = 0, p1 =0, po = 0 and

a; = 0. Then by pg =0, p1 =0, p3 =0, a; =0 and a4 = f%ag we get a contradiction.

Case 2B. Assume a; # 0. Solving A and ¢ from pg = 0 and p; = 0 gives

. B4b4 + ng2 + By 5= C4b4 + 02b2 + Cy

A T 7 ) (4.10)
where
By :=4(n+1)aiaz(araz + 3as) — 8(6asaz — 9a3 + naj + 4a3)ay — 24a3as,
By := (n+ 1)af(4ayas + 6a3) — (8azn + 20a3 + 24a4)as,
By = (n+ 1)ai(a — 2a2) + 6as,
Cy := —4(n + 1)atas(a1as + 3az) + 8(4as + 6asaz + azn — 9a3)ar + 24a3az,
s = -+ V) (2 + 2)aza — 18y + 503) + 12050
Co = —(n+1)%a + 2(n + 1)aga,
T := (2a2b2 + 1)[(12a3 + 2a2a1(n + 1)>b2 +ai(n+1)].
Then plugging (4.10) into po = 0 yields
a4 = — a2 — ayas, (4.11)

2
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az[n?a? + (3az + 20aiaz — 6a3)n + 20aiaz — 21az — 7a3)]
10(n + 1)ay ’
(n — 7)a3(na? + a3 — 6az) = 0. (4.13)

(4.12)

a5 = —

By (4.13), we break our discussion into the following three steps.
(I) If n =7 and a3 # 0, plugging (4.10) together with n =7, (4.11) and (4.12) into p3 = 0 yields

qab* + @20 + g0 = 0,
where

qq := —24ay (4asay + 3az)ag — das(—12a3a} — 9a3a1a3 — Yasa3
— 56asasa’ — 60a%ai + 12a5as3),

q2 := (36az + 12a3)a + 8a3(—3a? + 10az)az + 24a? (a3 — 2as),

qo := az(9a3 — 16a3).

So we have gy = 0, g2 = 0 and g4 = 0, which implies a contradiction since a; # 0 and agz # 0.
(IT) If a3 = 0, then plug (4.11) and a3 = 0 into (4.10) and we can get

na? + (1+ 2a2b?)(a? — 2az)

A=a?-2 5=
4@ az 1+ 20,07

. (4.14)

Plugging (4.14) into (4.1) yields
fo+ f2b® + fab* =0, (4.15)

where foy, fo and f4 are some ODEs about ¢(s), where the expressions of fy, fo and f4 are given in
Remark A.6. Then by (4.15), solving fo =0, fo =0 and f4, = 0 with ¢(0) = 1 yields

() = a1s + V14 2a2s2.
This case is excluded.
(IIT) Assume
1
as = E(n +1)as. (4.16)

Plugging (4.10) together with (4.11), (4.12) and (4.16) into p; = 0 yields
(- )b* + (n+1)(n —2)aj =0,
which implies n = 2. Plugging (4.10) together with (4.11), (4.16) and n = 2 into (4.1) yields
fo+ fab® + fab* =0, (4.17)

where fo, fo and f; are some ODEs about ¢(s) given by

fo:=[2(a} = a2)s(¢ — 5¢') + ¢]s?90"" — s*[1 + (2a2 — 3a7)s%]9(4")?
4+ {(1 — 2a95%)(¢p — s¢')? + [4 + 2(3a? — 4az)s?|s¢ (¢ — 5¢') + 65%(¢)?}¢”
+ [(3a} — 2a2)(¢ — s¢')* + (4as — 3ai)s¢' (¢ — s¢) — 3(¢')*](¢ — 5¢),

fa = {[(2a2 + a?) (37 — 2a2)s* + 2(az — a})]s(¢ — 5¢) — (1 — 2a25%)¢'} 99"
X [1 = (2ag + a?)s%][1 + (2a2 — 3a3)s%]p(¢")? + {[(2a2 + a7)(3a] — 2a2)s”
+ 4a?)(¢ — s¢')? + [4(2a2 + a?)(3a3 — 2a2)s* + 2(6as — a?)]sd’ (¢ — s¢')
+ 3(4az5” — 1)(¢)*}¢" + {(2a2 + a})(2a2 — 3a7)(35¢" — ¢)(¢ — 5¢")
— 6az(¢)*}(¢ — 59)
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and

f1:=[(2a2 + a)(2a2 — 3a3)s(¢ — s¢') — 2a26'] 60"
+ (2a2 + af)[1 + (202 — 3a})s°]p(¢")°
+[(2as + a7)(2a2 — 3a3) (¢ — 5¢') (350" — ¢) — 6az(¢')?)¢".

Then by (4.17), we get fo = 0, fo = 0 and f4 = 0. To solve the system of ODEs fy = 0, fo = 0 and
fa =0 with ¢(0) = 1, we first express ¢” in terms of ¢ and ¢’ by eliminating ¢"’ from

s 2fo+ 82 f1+ f2 = 0.

Then plug the expression of ¢’ into fy and we can get the expression of ¢””’. Now plugging the expressions
of ¢" and ¢"' into f4, we obtain an ODE equivalent to

0 = 4(1 + k152 (1 + kos?)2¢" — 4s(1 + kos?) (k1 + ko + 2k1kos?)p¢’
+ [ky — ko + dk1kos? (1 + kos?)] 02, (4.18)
where we put
ki == 2a9 — Saf, ko 1= 2a9 + a%. (4.19)
Then solving (4.18) with ¢(0) = 1 yields (1.3).

5 Proof of Theorem 1.1

By the result in [4], we only need to consider the case shown in Lemma 2.1, and only in this case it
possibly occurs that b # constant. Now suppose ¢(s) # V1 + es? + ks for any constants € and k, and b #
constant in any neighborhood. The discussions in Sections 3 and 4 imply that ¢(s) is given by (1.3) and
the dimension n = 2 (see Case 2B(III) in Section 4). Furthermore, plugging (4.11) and (4.16) and n = 2
into (4.10) yields

5— (3a? — 2a2)[1 + (2a2 + a?)b?]

1
1+ 2a2b2 ’ (5 )
- (3a? — 2a3)(2az + a2)b? + 2(a? — as) (5.2)
o 1+ 2a2b2 ' '

Since we have proved in Section 3 that k = 0 and € = 0, by (2.5) and (5.2) we obtain (1.2). At the end of
Section 4, we have shown that ¢(s) is given by (1.3) by solving (4.18) with ¢(0) = 1. Besides, the proof
in Section 3 also shows ¢ = 0, which implies S = 0.

Remark 5.1. Plugging (5.1) and (5.2) into (2.9), we get

£(b) = \/1+ (242 — 3a})02. (5.3)

One possibly wonders whether we can get (5.3) from (2.2) when we plug (1.3) and n = 2 into (2.2). This
is true. One way to check it is to expand (2.2) and (5.3) into power series, respectively. One may try a
direct verification.

6 Examples

In this section, we will construct some examples for the metric F' given by (1.2)—(1.4).
Since every two-dimensional Riemann metric is locally conformally flat, we may put

a=e"/(y')? + (¥2)?, (6.1)
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where 0 = o(x) is a scalar function and x = (2!, 2%). Then 3 can be expressed as

8 =e"(&y' +ny?). (6.2)
Now we can show that (1.2) is equivalent to the following system of PDEs:

Ty Ty

T 02 = ——+» 51:_77
Ty §To

(e + &2 + &Em)
&2 ’

g1 =

where

To = &[1 4 k2(&% + )1 + k1 (82 +17)],
Ty := 26n[(3k1 — k2) /4 + kika (€2 + %))
—[1+ (k1 + k2)€ /2 + (ka — k1)n? /2 + kaka (€1 = 0",
Ty = [(ky — k1)€%/2 + (k1 + k2)n® — kika (€ — 1n")](6€2 + nm2)
+HE[L+ k(€2 + )] [L + k1 (€2 + %)

Proposition 6.1. Let F = ag¢(s) and s = B/a be a two-dimensional (c, 3)-metric on R?, where
b = ||B|lo # constant and ¢(s) satisfies (1.3). Then F is of isotropic S-curvature if and only if o and S
can be locally defined by (6.1) and (6.2), where £,m and o are some scalar functions satisfying (6.3). In
this case, S = 0.

If we take ¢ = 22 and = —z?, then o determined by (6.3) is given by
1
o= fz{ln[l + kolz|?] 4 31n[1 + &1 |z)?]}, (6.4)

where |z|? := (21)2 + (2%)%2. Thus we obtain the following example.

Example 6.2. Let F be a two-dimensional (o, 8)-metric defined by (1.3). Define o and 8 by (6.1)
and (6.2), where £ = 2 and n = —z!, and o is given by (6.4). Then F is of isotropic S-curvature S = 0
by Theorem 1.1. Furthermore, we have b2 = ||3||2 = |z|?> # constant.

In Example 6.2, if we take ky = 0 and ko = 4, then by (1.3) and (1.4), we obtain

d(s) = (1+45%)71/25 + /1 + 452,

and thus we get Example 1.2.
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Appendix A

Remark A.1. Let p; be the coefficients of s in (3.1). We have

po = (—a; — 2b%a1as — ayn — 6b%az — 2a1nasb®)k + 2(2axb* + 1)%(n + 1)c,
p1 = (—4ay — 6aynazb® — 12b%aza; — 20a9°b* — 24b%ay)k — 2(2a9b* + 1)%v
+ 4(2a9b? + 1)(2b%arag + 6b%az + a1)(n + 1)c + dagh? (2a26* + 1)e,
pa = (760b2a5 + 3agn — 3az + 6a1nas — 36b%asa; — 114b2a3a2 + 6a2na362 + 6a1nay’b?
+ 2a0a; — 14a3%a1b? — 12a1na4b®)k + 2(24b%aza; — 4as + a1? — 4a2b* + 8as3b*
+ 36a3%b* 4 48asb*ayas + 24b%ay + dasb®ar? + 4ar2ax?b* + 48azb ay)(n + 1)c
+ (a1n + 8ax?bay + a1 + 18b%az + 6b%aray + 48azb as 4 2a1naxb?)e
— 2(2a2b* + 1)(2b%aiay + 12b%as + a1)v,
p3 = (—8Ob2a5a1 + 10azay + 16a1nas + 8ay — 224b%agas + 34asainasb® + 18aznb?
— 20a1nasbh? + 24as% — 156b%a32 + 16asnasb?® + 8agn + 8as>nb? + 4as’n — 12a2>b?
— 80aga1b®az — 1200%ag)k + 4(40asb*as + 24b%asa; — 18b%azay + 20b%as — Sazab?
+ 6a3b2a12 + 4daya2’b* + 72a3b4a4 — basay + 28a22b4a3 + 36a32b4a1 — Tas
+ 12a;%asb*as + 48asb*araq)(n + 1)c 4 26 (3a1nas + 4ax®b? + 36b%as? + 2a52
+ 24asa1b®as + 48b%agay + 24ay + 12aza; )e + (—48b%ay — 24b%aza; — 48axb*aras
+ 16a9%b* — 8az>b* — 72a3%b* + 10ay — 96azb"ay)v,
ps = (15 as®a; + 30aga; + 15 asn + 130 asas + 30 a1nay + 30 agna5b2 + 66 aynasb’ay
— 600 azb®ay + 84 asnb®ay + 6 asnas — 210 b%ar + 54 as’nb®as — 120 aza b?
— 80 as?b%as — 30 aynagh® — 150 b%aga; — 9 aynas® + 35 a5 + 48 a;nas?b?
— 150 asaib’ay — 370 a2b2a5)k +4(144 asb*aiaq + 80 asb*ajas + 28 ajas®btas
+ 24 a12asb*ay — 52 azarb’as — 38 asb®as + 52 as?b*as + 120 agb*as + 60 asz®b*as
+ 60 a2b4a6 —6a1%a2%b% + 18 a1 %a3b* + 12 a4b®ar? + 40b%asa; — as? — 1day
—36a3%b* — 15a3a; — 10 ax®b? + 72a4*b* + 30 b%ag — 3azar® + 2ax*b*)(n + 1)c
+ (100 b2as + 72 as*b*a; + 60b%asa; — 6 asa; — 6 asnasb® + 14 asb?as — 6 as®ab?
+ 160 a2b4a5 + 96 asb*aiay + 56 a22b4a3 + 12 a1nasb?® — 6 ajnas?b® — 3 asn
+ 288 azb*ay — 6 aynas — 9az)e + (—56 as?btas — 72 a3%b*ay + 30 a3 — 288 asbray
— 160 asb*as + 12 asa; — 80b%as + 24 as?a b + 104 asb®as — 96 asb*aiay — 48 b2a4a1)v,
ps = (114 asnb®as? + 96 as®nb’ay — 468 azaib’as — 48 aynasas — 42 agnarb?
— 232 asaib®as + 150 agnasb® + 48 asnagh?® + 174 as® + 24 agn + 68 asa; — 12 ax®n
— 12a3®n — 576 a4*b* — 336 b”as + 84 ag + 108 azainasb® + 186 aynasb®ay + 248 asay
— 972 asb?as — 552 asb®ag + 48 aynas + 96 as’nb® + 86 asaias — 252 b%ara;
— 168 as?asb® — 140 ax?b?ay + 12 a23)k +4 (52 aras’bray + 240 agbaqas
+ 216 agbiasas — 150 agb®aq + 42 b%a7 — 64 azb’as — 70 ax?b%as — 84 aza, b?
+ 60b%aga; + 3asas + 3asa; — 29 agaq + 84 asb*ar + 20 asb?ar? — 12 a1asb?
+ 144 as?bay + 240 agb®as + 180 aszb*ag + 84 as?b*as + 16 as>b*as + 72 a1 2azb*ay
— 104 asa1b’ay — 8azar® + 36 a3>b* — 23 as — 34 a12asb’as + 40 a1 2asbtas
+ 120 agb*ayag + 60 arasb®as?®)(n + 1)c + (=18 az*nb® — 16 a1nas — 4ax’n — 32ay
+ 104 as?b%ay — 8 as’nb? + 24 asb’ay — 22 asa; — 8 asn — 16 agnasb® + 288 a3b4a1a4
+ 120 b%asa; + 240 asb*ag + 120 az®bras + 180 b%ag + 20 anasb® — 16 as® — 8 axbh
+ 480 azb*as — 36 asaib®az + 288 a4’b* — 34 aynasbaz + 160 agb4a1a5)6
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+ (=240 axb*ag — 480 azb'as — 80b%asa; + 168 az?b? + 58 ay — 120 b%ag
— 288 agb*aras — 120 ag®bas — 104 ax®baq + 136 asaib®as + 32 aza; — 288 a,’b*
— 6as? — 160 asb*ajas + 24 ax>b? + 208 azb®ay)v.

Remark A.2. In (3.2), 41, A5 and Ajs are given by

Ay = 432a3%a1% + 224 a5%a; — 1440 as>as + 288 as*as — 48 a1ay* — 4320 asas

— 2880 agasas + 2160 agasas + 5328 a22a3a4 + 864 a1a32a4 — 960 asasnaias

+ 80 a22a12a5 — 16 a3’n%ay + 240 a1a22a6 — 48 ar®nax* — 24 a14a22a3 + 432 a33a12n
+ 72a3%a13as — 108 asnas® — 96 a13ax2aq + 688 as®asar — 32 ax’n’asaq

+ 40 as?asnar? + 240 as2ainag — 40 as?a;*nas + 108 az?ai*nas + 12 a1*as?nas
—12 a14na22a3 — 96 a13na22a4 — 52 a12n2a3a23 + 36 a13n2a32a2 — 1008 a22na32a1
— 432 a4a12a2a3 + 864 alna4a32 + 656 aynagas® — 92 a12na23a3 — 960 ajazaqas

+ 5184 as®az — 4536 azaz® + 72 a1*n’azasas — 1008 az®ar’a; — 40 ar’az’as

+ 208 alna25 — 360 a12na4a2a3,

Ay = 2052 a33 + 80 a12a2a5 — 216 a12a3a4 + 192 alna24 + 54 a32a13n + 76 a3a12a22

As

+ 240 agaras — 216 asagas — 480 a1a32a2 — 480 asa1a3 — 48 ar’nas® — 96 a1 asay
+ 36 a32a13 + 672 a1a22a4 —24 a24n2a1 — 24 a14a2a3 — 720 a22a5 + 18 a13n2a32

2 2

+ 40 asasnal? — T4 a1 n?as’as + 36 a12n?agas + 240 againas — 48 as’n’agay

— 40 a;%nasas — 480 aynasas + 12 a1*asn’as — 12 a1 *nasas — 96 a1>nasay
+ 624 aynasasz? — 180 alzna4a3 +2 a22a12na3 — 480 agalna32 — 48 a,3as®

— 1440 asas + 1080 agas + 216 as*a; — 648 ax>asz — 54 as’n,

—26 a12n2a3a2 + 120 alna32 —24 a13na4 + 10 alzna5 + 156 a1asay + 60 again

+ 52 a12a2a3 —12 a13na22 + 3a14n2a3 — 3a14na3 — 72 a22a3 + 120 a1a32

—10 a12n2a5 —12 a13a22 — 12 a23n2a1 + 36 alna23 + 48 a1a23 —6 a14a3 + 60 agay

—24 a13a4 + 20 a12a5 — 144 a4a3 + 26 a2a12na3 + 132 a1nasay — 24 a2n2a4a1.

Remark A.3. In (3.17), fo, f2 and f4 are given by (define ¢1 := ¢', ¢ := ¢ and ¢35 := @)

fo

fo

—p 5% (51 — ) (2azs® — s2a1? + 1)p3 — s3¢ (—sp a1 — psnay +n + 45%a1?
+25%nay + s%a1%n — 4 — 8a5?)o® + (s — d)(—25°pras + s3p1a1? + s> p1na;?
—283¢1nas + 652pas —3s2pa1’n — 3s2par? — 252 pnag — spin — sy + 2 s¢pnay
+2 5¢2al +¢—on)ps — (51 — ¢)2(2 82¢1a2n - 52¢1a12 +2 52¢1a2 - 52¢7le12
—4dspas +2spai’n +2spar’ + ¢in + é1 — ¢*nay — ¢?ay),

—¢ (=1 +2a25%)(2a98% — s%a1? +1)(s¢1 — ¢)p3 + 5¢ (=250 a1 — 2 d snay
—8stasa1? + 16 s*as® + n — 4 s*nas? — 4+ 452012 + 2 s*nasa? + 3 52(112n)<;522

+ (s¢1 — @) (—4 s praz? — 45 p1nas® + 2 s p1nasar® + 2 s pragar® + 12 53¢ ay?

— 683¢> asal® — 433¢)na,22 + 253(;5 nasa;® — 52¢1a12 — 32¢1na12 +2s¢ a,?
—2s¢az —2spnas +4spa’n + gin+ ¢ — 2¢°ar — 2¢°nar)ds

—2as(sp1 — $)* (2% pras + 2 8% prasn — s*p1nar® — s*prar® — dspas

+2spai® + ¢in + ¢1),

fi= 20¢ax(2a25* — s%a1® + 1)(s¢1 — d) 3 + & (p a1 + dpna; — 16 s>ay>

— 85as — 2sa1’n + 2 snas + 8 s3asar? + 4 s°nas? — 2 s3na2a12)q§22

—2(s¢1 — ¢)as(—2 s*pras — 25°Prasn + s*¢1nar® + s>prar?
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+4spay —2spar” — din — ¢1)da.
Remark A.4. Let p; be the coefficients of s* in (4.1). We have

po = 2a2b2(1 + 2a2b2))\ -1+ 2a2b2)2(5 +6ar1b%as — 2as + a1’n + 2b%a1%as
— 40520 + 2a1%nasb® + a12,
p1 = (1 +2a20?)(2a9b%a; + 12b%a3 + a1n + a))X — (14 2a26%)(2 axb*ay
+12b%a;3 + a)d + 12 b2ai%as — 6az + 4 ainas?b?® — 12 asb?as + 2 a1nas
+ 24 a1 b%aq + 6a12na3b2 + 12 a22a1b2,
po =6 b2(3 asay + 4asb?aza; + 8b%asay + as® + 6 ayg + 6 a32b® + ainagz)A
+ (12 a9?b? — 24 b%ay — 48 asb*ay — 36 az®b* — 12a1b%az + 6 ay — 24 agb*azay)d
+ 72 asb%asa; — 6 a1’nas?b? — 6 asar? + 36 b%a12ay — 12a4 + 6 as? + 60 ab’as
— 6a1%nas — 12asa; + 6 as?a1?b? — 18 az?b?® + 24 a23b? + 12 a1 *nagb® + 12 alna2b2a3,
p3 = (24 a2b2a3 + 80 b2a5 — Taga; —3azn — 7Tajnas + 48 arb’ay — 4ax’arb?
+ 144 azbaq + 36 a3brar — 4 ax?b*as + 80 asb*as — 4asarb* — 9ag + 48 asb*asay
— 6agnb’az — 8aynax?b? + 12 aynasb®) A + (—40b%as — 24 a1b*ay + 7azay
+4ax?baz + 17a3 — 36 azb*a; — 80 asb'as — 144 azb*as — 48 asb*asay
+ 16 as?a1b® + 72 asb*as + 4a23a1b4)5 —20as — 16 aynas? — 4ayagn + 80 b%a,%as
— 16a1%nas — 48 agb®ay + 120 a1b?ag — 40 agay + 18 azas — 20 ax2ay — 22 asza;?
— 20 a1nas>b? + 32 asa; 2b2as + 160 asb®asa; — 12 as’nb’as + 84 as2b’ay
— 34a1%nasb?as + 20 a1 *nasb?® + 20 as3a1b? + 40 agb®as + 172 as?b%as

— 6agnaz + 16 ainasb’ay.
Remark A.5. In (4.9), fo, f2 and f4 are given by (define ¢; := ¢', ¢ := ¢ and ¢3 := ¢”)

fo=5(¢—591)(¢5> (¢ — sd1)ps — & s> (=2 +n)da® + 5(¢ — 5¢1)(¢ + 5¢1)(n + 1)
— ¢1(¢ — 5¢1)*(n + 1)),

fo=(—ps3(k+25%azk — 4a252)¢12 + %52 (1 — 8 ags® + k + 4 s2azk) ¢y
— s¢3(—4 ass? +1+ 252a2k‘))¢3 +(—¢ 83(12 ass? +2 — 3k — 6 s2ask + 2 s®nask
—45%nas + nk)or + ¢252(74 $?nas — k + 2 $*nask + 12 ass® — 6 sask + n))¢22
+ (=53 (k 4+ 2 5%ask — 4 ags?)(n + 1)1 + ¢ s2(2 s®nask + 2n + k — 4 s%nasy
—12a2s% 4+ 6 52agI<:)¢12 + ¢%s(—2 4+ k)(n — 6azs® — 1 + 2 s°nas)
— ¢ (=24 k)(—2a25® +25%nag — 1))pg — s2(—1 — dags® + k + 2 5%ask)(n + 1)p,*
+2¢s(k—1+nk—m+3 s’nask + 4 s%ask — 6 $*nay — 8a232)¢13 — ¢2(712 $2nas
+k+125%a5k — 14+ nk —24ass> —n+6 SZnagk)¢12 +25¢3%a2(—2 4+ k)(n +4)¢1
—2¢%ax(—2+k),

fa=(¢s(—1— dass®>+k+2 SQan)qSlQ — (;52(4 sask —1+k—8 a232)¢1
+25¢3%az(—2+ k)3 + (6 5(2 s°nagk +4 — 3k + 12 az5* + nk — 6 s%azk
—n—45%nay)¢1 — ¢ (=2 + k)(25*nas — 6azs® — 1))pa? + (s(—1 — dags®
+ k4 25%axk) (n + 1)¢13 — ¢ (nk—n+k+4s°nak — 1+ 6s%ask
—12a25% — 85%naz)P1> + 2 ¢?saz(—2 + k) (3 +n)p1 — 2¢3az(—2 + k))ba.

Remark A.6. In (4.15), fo, fo and fy4 are given by (define ¢1 := ¢, o := ¢” and ¢3 := ¢'")

fo= =520 (¢ + s¢1)(—d15%a1® + 2 p15%as + spar® — 2spaz + ¢1)¢s
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— 5% (3 $3pra1? +253p1nas — 653p1ag — 3s%par’ + 6 s%axd — 252 P nay
— 3501 4 P50 + @) — (—d + 561)(—s p1?na? — s*d1%a1? + 2%, %ay
+25%1°nags + 251 ai’n + 2% 19 a1 — 45°d praz + s2h1 P + 21
+25°¢%ay — s*¢"nar® — 25°¢°nag — s°¢%ar” + pngrs + ¢°)d2
— (=0 +561)°(25°¢1%a2 — s°¢1°a1” — 2P nar® + 2 s axdi *n
—4dspdraz +2sp1d a1’ + 2sh1dar’n — 2shprdnas + ¢1°n + ¢1”
+2¢%as — B*ar® — ¢Par’n),
fo= ¢ (—1+25%a2)(—¢ + 561)(p15%a1% — 2 p15%as — spar® +2spaz — ¢1)ps
—¢ (—4¢s4na22 +25%pnay —45%az0 + 12 pstas® + 2 s*nar®ay — ¢
+ ¢ s?na? + 3520 a2 —6pstailas —353¢p1a1% + 3sh1 — 25°p1narZas
—125%p1as% — prsn — s> Pprar®n + 6 S pras2as + 4 8° pr1nas?) o
+ (—p 4 501)(2 s*d1%nar2ay — 4 511 %as% + 2 s 1% a1 a0 — 4 5% 1 nay?
—45°p1¢ar’as + 852 ) praz® — s*p1 a1’ — %1 °nar® — 25°¢%nasas
+4 52¢2na22 — 452¢2a22 + 2 52¢2a12a2 +2 sd)ld)alQ +3 sd)l(balzn
—4sp prag — dspidnas + 1’n + ¢1” — 2¢0%a1’n — ¢%a1?)és
—2ay(—¢ + 5¢1)*(25%a21 0 + 2 5°¢1 % a2 — 52617 a1” — 52617 nar® — 2s¢1pnay
—4sp prag + sp1par’n + 2s¢1¢ a1’ + 2¢%az + ¢1° + ¢1°n — ¢%ar?),
fi=2¢ax(—¢+ s¢1)(—15%ar” + 2¢15%as + spar® — 2sp az + ¢1)ds
+ ¢ (2pas —4¢s*naz® +2 ¢ s*nar’as + par’n +1252°¢ as® — 6 s°par’as
+6 33¢1a12a2 + 4s3¢1na22 -2 s3¢1na12a2 — s¢1a12n + 2 ¢p15nag — 12 33¢1a22
— 65¢10)da” — 2(—¢ + s5¢1)aa(—2 5% asr*n — 25° ¢ *ag + ”¢17na,”
+5%01%a1? + 45 praz + 2 sp1pnas — sprpar’n — 2sp1¢par’
—2¢%ay — ¢1° — 170 + ¢*ar?) o
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