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1 Introduction

The S-curvature is one of the most important non-Riemannian quantities in Finsler geometry, which

was originally introduced for the volume comparison theorem (see [6]). Recent studies show that the

S-curvature plays a very important role in Finsler geometry (see [1, 2, 7–10]). It is proved that, if an

n-dimensional Finsler metric F is of isotropic S-curvature S = (n + 1)c(x)F for a scalar function c(x)

and of scalar flag curvature K = K(x, y), then the flag curvature K can be given by

K =
3cxmym

F
+ τ(x),

where τ(x) is a scalar function (see [2]).

An (α, β)-metric is defined by a Riemann metric α =
√
aij(x)yiyj and a 1-form β = bi(x)y

i as follows:

F = αϕ(s), s = β/α,

where ϕ(s) satisfies certain conditions such that F is regular (positively definite on TM − 0). A special

class of (α, β)-metrics are Randers metrics defined by F = α+β. With the help of navigation technique,

we can characterize and determine the local structures of Randers metrics with isotropic S-curvature (see

[5, 8–10]).

*Corresponding author

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-016-9079-1&domain=pdf&date_stamp=May 22, 2017
https://doi.org/10.1007/s11425-016-9079-1
math.scichina.com
springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1007/s11425-016-9079-1


58 Cheng X Y et al. Sci China Math January 2018 Vol. 61 No. 1

For a pair of α and β, let b := ∥β∥α denote the norm of β with respect to α. Define

rij :=
1

2
(bi | j + bj | i), sij :=

1

2
(bi | j − bj | i),

rj := birij , sj := bisij , si := aiksk,

where bi | j ’s denote the covariant derivatives of β with respect to α and bi := aijbj and (aij) := (aij)
−1.

For a C∞ function ϕ(s) > 0 on (−bo, bo), define

Φ := −(Q− sQ′)(n∆+ sQ+ 1)− (b2 − s2)(1 + sQ)Q′′, (1.1)

∆ := 1 + sQ+ (b2 − s2)Q′, Q := ϕ′/(ϕ− sϕ′).

It is known that a Randers metric F = α + β is of isotropic S-curvature, S = (n+ 1)c(x)F , if and only

if (see [3]) rij = 2c(aij − bibj)− bisj − bjsi.

In this paper, we mainly prove the following theorem.

Theorem 1.1. Let F = αϕ(s) and s = β/α, be an (α, β)-metric on an n (> 2)-dimensional man-

ifold M , where ϕ(0) = 1 and ϕ(s) ̸=
√
1 + ϵs2 + ks for any constants ϵ and k. Suppose b = ∥β∥α ̸=

constant in any domain in M and F is of isotropic S-curvature. Then the following statements hold:

(i) the dimension n = 2, and

(ii) β satisfies

rij =
3k1 + k2 + 4k1k2b

2

4 + (k1 + 3k2)b2
(bisj + bjsi), (1.2)

and ϕ = ϕ(s) is given by

ϕ(s) = {(1 + k1s
2)(1 + k2s

2)} 1
4 e

∫ s
0
τ(s)ds, (1.3)

where τ(s) is defined by

τ(s) :=
±
√
k2 − k1

2(1 + k1s2)
√
1 + k2s2

, (1.4)

and k1 and k2 are constants with k2 > k1. In this case, the S-curvature S = 0.

Note that we have used the assumption that b ≠ constant in Theorem 1.1. For the case that b is a

constant, see [4]. In order to derive Theorem 1.1(i) and (1.3), the condition b = ∥β∥α ̸= constant in any

domain in M can be weakened to db ̸= 0 at a point on M . Furthermore, letting k1 = k2 in (1.3) and (1.4)

yields ϕ(s) =
√
1 + k1s2. So the case k1 = k2 is excluded.

Taking k1 = 0 and k2 = 4, by (1.2) and (1.3) we obtain

rij =
1

1 + 3b2
(bisj + bjsi), (1.5)

F (α, β) = (α2 + 4β2)
1
4

√
2β +

√
α2 + 4β2. (1.6)

Theorem 1.1 shows that the metric (1.6) in the two-dimensional case is of isotropic S-curvature if and

only if β satisfies (1.5). In the following example, we show a pair α and β satisfying (1.5). For more

examples, see Example 6.2 below.

Example 1.2. Let F be an (α, β)-metric on a two-dimensional manifold defined by (1.6). Define α

and β by α = eσ
√
(y1)2 + (y2)2 and β = eσ(ξy1 + ηy2), where ξ, η and σ are scalar functions which are

given by

ξ = x2, η = −x1, σ = −1

4
ln(1 + 4|x|2), |x|2 := (x1)2 + (x2)2.

Then α and β satisfy (1.5), and therefore, F is of isotropic S-curvature, S = 0, by Theorem 1.1. Fur-

thermore, we have b2 = ∥β∥2α = |x|2 ̸= constant.

Taking k1 = −1 and k2 = 0 in (1.3), the metric F in Theorem 1.1 becomes F =
√
α(α+ β), which is a

square-root metric. We can show in [11] that a square-root metric F on a two-dimensional manifold is an
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Einstein metric if and only if F is of vanishing S-curvature, and in this case, F is generally not Ricci-flat

(non-zero isotropic flag curvature).

The paper is organized as follows. In Section 2, we give some definitions and notation which are

necessary for the present paper, and a lemma is contained. In Section 3, we will derive some results

about (2.6), which are necessary for the proof of Theorem 1.1. Furthermore, in Section 4, under the

assumptions that b ̸= constant in any domain and ϕ(s) ̸= k1
√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3, we are going to show that (2.8) has the non-trivial solutions only in the case of dimension n = 2.

Based on the above discussions, the proof of Theorem 1.1 is given in Section 5. Finally, some examples for

the metric F satisfying (1.2)–(1.4) are given in Section 6. Besides, we write an appendix which introduces

the formulas for some coefficients occurring in (3.1), (3.2), (3.17), (4.1), (4.9) and (4.15).

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M with the standard local coordinate (xi, yi) in

TM . The Finsler metric F induces a vector field G = yi ∂
∂xi − 2Gi ∂

∂yi on TM defined by

Gi =
1

4
gil{[F 2]xkylyk − [F 2]xl}.

The Hausdorff-Busemann volume form dV = σF (x)dx
1 ∧ · · · ∧ dxn is defined by

σF (x) :=
Vol(Bn)

Vol{(yi) ∈ Rn |F (yi ∂
∂xi |x) < 1}

.

Furthermore, the S-curvature is defined by

S :=
∂Gm

∂ym
− ym

∂

∂xm
(lnσF ).

S is said to be isotropic if there is a scalar function c(x) on M such that S = (n + 1)c(x)F. If c(x) is a

constant, then we call F is of constant S-curvature.

An (α, β)-metric is expressed in the following form:

F = αϕ(s), s = β/α,

where ϕ(s) > 0 is a C∞ function on an open interval (−bo, bo). It is known that F is regular if

ϕ(s)− sϕ′(s) > 0, ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s| 6 b < bo.

For an n-dimensional (α, β)-metric F = αϕ(s) and s = β/α, it has been shown in [4] that the S-

curvature is given by

S =

{
2Ψ− f ′(b)

bf(b)

}
(r0 + s0)− α−1 Φ

2∆2
(r00 − 2αQs0), (2.1)

where Φ is defined by (1.1) and

r0 := riy
i, s0 := siy

i, r00 := rijy
iyj ,

Ψ :=
Q′

2∆
, ∆ := 1 + sQ+ (b2 − s2)Q′, Q :=

ϕ′

ϕ− sϕ′ ,

f(b) :=

∫ π

0
sinn−2 tdt∫ π

0
sinn−2 t

ϕ(b cos t)n dt
. (2.2)

Fix an arbitrary point x ∈ M and take an orthonormal basis {ei} at x such that

α =

√√√√ n∑
i=1

(yi)2, β = by1.
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Then we change coordinates (yi) to (s, yA) such that

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ,

where ᾱ =
√∑n

A=2(y
A)2. Let

r̄10 :=
n∑

A=2

r1Ay
A, r̄00 :=

n∑
A,B=2

rABy
AyB , s̄0 :=

n∑
A=2

sAy
A.

By (2.1), it is shown in [4] that F is of isotropic S-curvature, S = (n+1)c(x)F , if and only if the following

two equations hold:

Φ

2∆2
(b2 − s2)r̄00 = −

{
s

[
sΦ

2∆2
− 2Ψb2 +

bf ′(b)

f(b)

]
r11 + (n+ 1)cb2ϕ

}
ᾱ2, (2.3){

sΦ

∆2
− 2Ψb2 +

bf ′(b)

f(b)

}
r1A =

{(
ΦQ

∆2
+ 2Ψ

)
b2 − bf ′(b)

f(b)

}
s1A. (2.4)

In [4], Cheng and Shen studied (2.3) and (2.4) by three steps: (i) Φ = 0, (ii) Φ ̸= 0 and Υ = 0 and

(iii) Φ ̸= 0 and Υ ̸= 0, where Υ is defined by

Υ :=
d

ds

[
sΦ

∆2
− 2Ψb2

]
.

For the two cases: (i) Φ = 0, or (ii) Φ ̸= 0 and Υ = 0 (in some neighborhood), it is proved in [4] that b

must be a constant (in the neighborhood). For the third case Φ ̸= 0 and Υ ̸= 0, Lemma 2.1 is obtained

(see [4, Lemma 6.1]), and our discussion (Sections 3 and 4) is based on such a lemma.

Lemma 2.1 (See [4]). Let F = αϕ(s) and s = β/α be an (α, β)-metric on an n-dimensional manifold.

Assume ϕ(s) satisfies Φ ̸= 0 and Υ ̸= 0, and F has isotropic S-curvature, S = (n+ 1)c(x)F . Then

rij = kaij − ϵbibj − λ(bisj + bjsi), (2.5)

− 2s(k − ϵb2)Ψ + (k − ϵs2)
Φ

2∆2
+ (n+ 1)cϕ− sν = 0, (2.6)

where λ = λ(x), k = k(x) and ϵ = ϵ(x) are some scalar functions and

ν := − f ′(b)

bf(b)
(k − ϵb2). (2.7)

If in addition s0 ̸= 0, then

− 2Ψ− QΦ

∆2
− λ

(
sΦ

∆2
− 2Ψb2

)
= δ, (2.8)

where

δ := − f ′(b)

bf(b)
(1− λb2). (2.9)

3 On (2.6)

In this section, we assume b ̸= constant (in any neighborhood) and ϕ(s) ̸= k1
√
1 + k2s2 + k3s for any

constants k1 > 0, k2 and k3. We are going to prove that k = 0, c = 0, ϵ = 0 and ν = 0 in (2.6). Before

the discussion, we show a remark (needed in this section and Section 4).

Remark 3.1. Assume b ̸= constant in any neighborhood of the manifold M . Consider a polynomial

f(b) := c0 + c1b+ · · · cmbm,
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where ci’s are constant and there is at least some ci which is not zero. Let U be an open set of M ,

and T := {x ∈ U | f(b) = 0}. Then T is a closed and no-where dense set (since b ̸= constant in any

neighborhood of M). So as an example, for a scalar function σ = σ(x), if σ = 0 on U − T , then σ = 0

on U by continuity.

Thus without loss of generality, we can always assume f(b) ̸= 0, or just have a restriction on U − T in

the following discussion, if ci’s are not all zero.

We first transform (2.6) into a differential equation about ϕ(s) and then (2.6)× 2ϕ[ϕ−sϕ′+(b2−s2)ϕ′′]2

yields

−(b2 − s2)(k − ϵs2)(ϕ− sϕ′)ϕϕ′′′ + {s[(2ν + 2ϵ− nϵ)s2 + 2(ϵ− ν)b2 + k(n− 4)]

+ 2(n+ 1)c(b2 − s2)ϕ}(b2 − s2)ϕ(ϕ′′)2 + {(n+ 1)(b2 − s2)
[
4cϕ2 − (k − ϵs2)ϕ′]

− s[(nϵ+ ϵ− 4ν)s2 + 2(2ν − ϵ)b2 − (n− 1)k]ϕ}(ϕ− sϕ′)ϕ′′ + (ϕ− sϕ′)2

×{(n+ 1)[2cϕ2 − (k − ϵs2)ϕ′]− 2νsϕ} = 0. (3.1)

Express the power series of ϕ(s) at s = 0 as

ϕ(s) = 1 + a1s+ a2s
2 + a3s

3 + · · · = 1 +

∞∑
i=1

ais
i.

Let pi be the coefficients of si in (3.1). The expressions of p0, p1, p2, p3, p4 and p5, which will be needed

in the following discussion, are given in Remark A.1. All the equations pi = 0 are homogeneous linear

equations about k, c, ϵ and ν. The coefficient determinant of the linear system p0 = 0, p1 = 0, p2 = 0 and

p3 = 0 is in the form

A1b
6 +A2b

4 +A3b
2 − (n+ 1)a1[4(n+ 1)a4 + 2(n+ 1)a22 + (n− 2)a1a3], (3.2)

where A1, A2 and A3 are constant, and their expressions are given in Remark A.2. If

a1 ̸= 0, 4(n+ 1)a4 + 2(n+ 1)a22 + (n− 2)a1a3 ̸= 0,

then the above determinant is not zero (see Remark 3.1), and thus in this case we conclude that k = 0,

c = 0, ϵ = 0 and ν = 0 from the linear system p0 = 0, p1 = 0, p2 = 0 and p3 = 0.

In the following, we further prove k = 0, c = 0, ϵ = 0 and ν = 0 if a1 = 0, or 4(n + 1)a4 + 2(n + 1)a22
+ (n− 2)a1a3 = 0.

Case 1. Assume a1 = 0. By p0 = 0, p1 = 0 and a1 = 0, we obtain (assume 1 + 2a2b
2 ̸= 0 by

Remark 3.1)

ν =
2[(18a23 − 10a32 − 12a2a4)b

4 − (7a22 + 6a4)b
2 − a2]k + 2a2b

2(1 + 2a2b
2)2ϵ

(1 + 2a2b2)3
, (3.3)

c =
3a3b

2

(n+ 1)(1 + 2a2b2)2
k. (3.4)

Since ϕ(s) ̸=
√
1 + 2a2s2 =

∑∞
i=0 C

i
1
2

(2a2s
2)i, there exists some minimal integer m such that

a2m+1 ̸= 0, m > 1, or a2m ̸= Cm
1
2
(2a2)

m, m > 2, (3.5)

where Ci
µ’s are the generalized combination coefficients.

Case 1A. Assume a2m+1 ̸= 0 in (3.5). First consider the case m = 1. Then a3 ̸= 0. Plug (3.3), (3.4)

and a1 = 0 into p2 = 0 and p4 = 0 and then we get a linear system about k and ϵ. The critical component

of the determinant for this linear system is given by

(· · · )b8 + (· · · )b6 + (· · · )b4 + (· · · )b2 − 3(n− 1)(n+ 3)a23,
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where the omitted terms are all constants. Now it is seen that k = 0 and ϵ = 0 since a3 ̸= 0. Thus

by (3.3) and (3.4) we have c = 0 and ν = 0.

Now let m > 1. In this case, we have a3 = 0. For our purpose to prove k = 0 and ϵ = 0, we only need

to compute p2m−2 and p2m. Express ϕ(s) as

ϕ(s) = g(s) + h(s), (3.6)

where

g(s) := 1 +
∞∑
i=1

a2is
2i, h(s) :=

∞∑
i=m

a2i+1s
2i+1.

Plug (3.6) into (3.1) and then we write the left-hand side of (3.1) as P1 + P2, where every term of P1

includes at least h or its derivatives h′, h′′ and h′′′′, and P2 is just the left-hand side of (3.1) with ϕ(s)

being replaced with g(s). Among h, h′, h′′ and h′′′′, the function h′′′′ has the power series of the least

degree 2m− 2. Since m > 1, we have a3 = 0, and then we get c = 0 by (3.4). So the power series of P2

has no term of even degree.

Thus by the above analysis we see that, to get p2m−2, it is sufficient to put

g(s) = 1 + o(s), h(s) = a2m+1s
2m+1 + o(s2m+2),

and plug (3.6) into (3.1). Then by (3.3), (3.4), a1 = 0 and a3 = 0, the equation p2m−2 = 0 is reduced to

− 2m(4m2 − 1)b2a2m+1k = 0. (3.7)

By (3.7) we have k = 0. Similarly, to get p2m, it is sufficient to put

g(s) = 1 + a2s
2 + o(s3), h(s) = a2m+1s

2m+1 + a2m+3s
2m+3 + o(s2m+4),

and plug (3.6) into (3.1). Then from (3.3), (3.4), a1 = 0, a3 = 0 and k = 0, the equation p2m = 0 is

reduced to

2m(2m+ 1)2a2m+1b
2ϵ = 0. (3.8)

By (3.8) we have ϵ = 0. Thus by (3.3) and (3.4) we have c = 0 and ν = 0.

Case 1B. Assume all a2i+1 = 0 (i > 0), and assume a2m ̸= Cm
1
2

(2a2)
m in (3.5). If m = 2, then

2a4+a22 ̸= 0. Plug (3.3), (3.4), a1 = 0 and a3 = 0 into p3 = 0 and p5 = 0 and then we get a linear system

about k and ϵ. The critical component of the determinant for this linear system is given by

(· · · )b4 + (· · · )b2 − (n+ 1)(n+ 4)(2a4 + a22)
2,

where the omitted terms are all constants. Now it is easy to see that k = 0 and ϵ = 0 since 2a4 + a22 ̸= 0.

Thus by (3.3) and (3.4) we have c = 0 and ν = 0.

Now let m > 2. In this case, we have a4 = −a22/2. For our purpose to prove k = 0 and ϵ = 0, we only

need to compute p2m−3 and p2m−1. Since
√
1 + 2a2s2 =

∑∞
i=0 C

i
1
2

(2a2s
2)i, we may express ϕ(s) as

ϕ(s) = g(s) + h(s), (3.9)

where g(s) :=
√
1 + 2a2s2, h(s) :=

∑∞
i=m d2is

2i and d2m ̸= 0. Plug (3.9) into (3.1) and then we write

the left-hand side of (3.1) as P1 + P2, where every term of P1 includes at least h or its derivatives h′, h′′

and h′′′′, and P2 which is just the left-hand side of (3.1) with ϕ(s) being replaced with g(s), will vanish

when we plug (3.3), (3.4) (a3 = 0) and a4 = −a22/2 into it. Among h, h′, h′′ and h′′′′, the function h′′′′

has the power series of the least degree 2m− 3.

By the above analysis, to get p2m−3, it is sufficient to plug (3.9) and

g(s) = 1 + o(1), h(s) = d2ms2m + o(s2m+1)
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into (3.1). Then from (3.3), (3.4) and a4 = −a22/2, the equation p2m−3 = 0 is reduced to

− 4m(2m− 1)(m− 1)(1 + 2a2b
2)2b2d2mk = 0. (3.10)

By (3.10) we get k = 0. To get p2m−1, it is sufficient to plug (3.9) and

g(s) = 1 + a2s
2 + o(s2), h(s) = d2ms2m + d2m+2s

2m+2 + o(s2m+3)

into (3.1). Then from (3.3), (3.4), a4 = −a22/2 and k = 0, the equation p2m−1 = 0 is reduced to

4m2(2m− 1)b2(1 + 2a2b
2)2d2mϵ = 0. (3.11)

By (3.11) we get ϵ = 0. Thus by (3.3) and (3.4) we have c = 0 and ν = 0.

Case 2. Assume a1 ̸= 0 and 4(n + 1)a4 + 2(n + 1)a22 + (n − 2)a1a3 = 0. In this case, the coefficient

determinant of the linear system p0 = 0, p1 = 0, p2 = 0 and p3 = 0 is not zero if A1 ̸= 0 or A2 ̸= 0 or

A3 ̸= 0 (see (3.2)). So if A1 ̸= 0 or A2 ̸= 0 or A3 ̸= 0, then immediately we get k = 0, c = 0, ϵ = 0 and

ν = 0.

Thus we only need to consider the case A1 = 0, A2 = 0 and A3 = 0. By an analysis on the equations

A1 = 0, A2 = 0 and A3 = 0, it is enough for us to prove k = 0, c = 0, ϵ = 0 and ν = 0 under one of the

following two conditions:

a3 = 0, a4 = −1

2
a22, a6 =

1

6
[(n− 2)a1a5 + 3a32] (3.12)

and

a3 = − (4n3 + 15n2 + 16)a31
36(n2 − 1)

, a4 =
2(n+ 1)a22 + (n− 2)a1a3

4(n+ 1)
, (3.13)

a5 =
(n+ 4)(4n2 − n+ 4)

1440(n+ 1)3(1− n)
T0, a6 =

T

60(n+ 1)2
, (3.14)

where

T0 := a31[2a
2
1n

3 + 5(3a21 − 16a2)n
2 + (6a21 − 160a2)n+ 20(a21 − 4a2)],

T := a1(10a5 + 20a2a3 − 3a21a3)n
3 + (30a32 − 120a23 + 45a1a2a3 − 6a31a3)n

2

+ (60a32 + 15a31a3 − 30a1a5 − 276a23 − 105a1a2a3)n+ 18a31a3 − 130a1a2a3

− 48a23 + 30a32 − 20a1a5.

Case 2A. Assume (3.12). Solving p0 = 0, p1 = 0, p2 = 0 and p4 = 0 yields (assume c ̸= 0)

k =
2(1 + 2a2b

2)c

a1
, ϵ =

2(a21 − 2a2)(1 + 2a2b
2)c

a1
, (3.15)

a5 = 0, ν =
2[(1 + n+ 2a2b

2)a21 − 2a2(1 + 2a2b
2)]c

a1
. (3.16)

Plug (3.15) and (3.16) into (3.1) and then we get

c(f0 + f2b
2 + f4b

4) = 0, (3.17)

where f0, f2 and f4 are some ODEs about ϕ(s), where the expressions of f0, f2 and f4 are given in

Remark A.3. If c ̸= 0, then by (3.17), solving f0 = 0, f2 = 0 and f4 = 0 with ϕ(0) = 1 yields

ϕ(s) = a1s+
√
1 + 2a2s2. This case is excluded. So c = 0. Then by (3.15) and (3.16) we get k = 0, ϵ = 0

and ν = 0.

Case 2B. Assume (3.13) and (3.14). Plug (3.13) and (3.14) into p0 = 0, p1 = 0, p2 = 0 and p4 = 0 and

we obtain k = 0, ϵ = 0, ν = 0 and c = 0, since the coefficient determinant of the linear system p0 = 0,

p1 = 0, p2 = 0 and p4 = 0 is not zero.
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4 On (2.8)

In this section, we assume b ̸= constant (in any neighborhood) and ϕ(s) ̸= k1
√
1 + k2s2 + k3s for any

constants k1 > 0, k2 and k3. We are going to show that (2.8) has the non-trivial solutions only in the

case of dimension n = 2. In the following discussion, we will also use Remark 3.1.

We first transform (2.8) into a differential equation about ϕ(s) and then (2.8)×ϕ(−ϕ + sϕ′)[ϕ − sϕ′

+ (b2 − s2)ϕ′′]2 gives

−(b2 − s2)(ϕ− sϕ′)[(1− λs2)ϕ′ + λsϕ]ϕϕ′′′ − {[1 + (δ − λ)b2

+(nλ− 2λ− δ)s2](ϕ− sϕ′) + (n− 2)sϕ′}(b2 − s2)ϕ(ϕ′′)2

−{[1 + (δ − λ)b2 + (nλ− 2δ + λ)s2](ϕ− sϕ′)2 + [2(nλ− δ + λ)s2

− (nλ− 2δ + 2λ)b2 − n− 2]sϕ′(ϕ− sϕ′)− (n+ 1)(b2 − 2s2)(ϕ′)2}
× (ϕ− sϕ′)ϕ′′ − [δ(ϕ− sϕ′)2 − (nλ− δ + λ)sϕ′(ϕ− sϕ′)− (n+ 1)(ϕ′)2]

× (ϕ− sϕ′)2 = 0. (4.1)

Express the power series of ϕ(s) at s = 0 as

ϕ(s) = 1 + a1s+ a2s
2 + a3s

3 + · · · = 1 +
∞∑
i=1

ais
i.

Let pi be the coefficients of si in (4.1). We need to compute p0, p1, p2 and p3 first, and their expressions

are given in Remark A.4. In the following, we will solve λ and δ in two cases.

Case 1. Assume a1 = 0 and a3 = 0. We are going to show that this case is excluded.

Plugging a1 = 0 and a3 = 0 into p0 = 0 yields

δ =
2a2

1 + 2a2b2
(λb2 − 1). (4.2)

Since ϕ(s) ̸=
√
1 + 2a2s2, there exists some minimal integer m such that

a2m+1 ̸= 0, m > 2, or a2m ̸= Cm
1
2
(2a2)

m, m > 2, (4.3)

where Ci
µ’s are the generalized combination coefficients. Then we will determine λ in the two cases

of (4.3).

Case 1A. Assume a2m+1 ̸= 0 in (4.3). In this case, we need to compute p2m−1. For this, express ϕ(s) as

ϕ(s) = g(s) + h(s), (4.4)

where

g(s) := 1 +

∞∑
i=1

a2is
2i, h(s) :=

∞∑
i=m

a2i+1s
2i+1.

Plug (4.4) into (4.1) and then we write the left-hand side of (4.1) as P1 + P2, where every term of P1

includes at least h or its derivatives h′, h′′ and h′′′′, and P2 is just the left-hand side of (4.1) with ϕ(s)

being replaced with g(s). Among h, h′, h′′ and h′′′′, the function h′′′′ has the power series of the least

degree 2m− 2. Furthermore, it is easy to see that the power series of P2 has no term of odd degree.

Thus by the above analysis we see that, to get p2m−1, it is sufficient to put

g(s) = 1 + a2s
2 + o(s3), h(s) = a2m+1s

2m+1 + o(s2m+2),

and plug (4.4) into (4.1). Then by p2m−1 = 0, a2m+1 ̸= 0 and (4.2) we obtain

λ =
1− 2(2m− 1)a2b

2

2mb2
. (4.5)
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Case 1B. Assume all a2i+1 = 0 (i > 0), and assume a2m ̸= Cm
1
2

(2a2)
m in (4.3). Express ϕ(s) as

ϕ(s) = g(s) + h(s), (4.6)

where

g(s) :=
√
1 + 2a2s2, h(s) :=

∞∑
i=m

d2is
2i, d2m ̸= 0.

Plug (4.6) into (4.1) and then we write the left-hand side of (4.1) as P1 + P2, where every term of P1

includes at least h or its derivatives h′, h′′ and h′′′′, and P2 which is just the left-hand side of (4.1)

with ϕ(s) being replaced with g(s), will vanish when we plug (4.2) into it. Among h, h′, h′′ and h′′′′, the

function h′′′′ has the power series of the least degree 2m− 3.

Now by the above analysis, to compute p2m−2 in (4.1), it is sufficient to put

g(s) = 1 + a2s
2 + o(s), h(s) = d2ms2m + o(s2m+1)

in (4.6) and plug (4.6) into (4.1). Then using (4.2) and d2m ̸= 0, by p2m−2 = 0 we obtain

λ =
1− 4(m− 1)a2b

2

(2m− 1)b2
. (4.7)

Now we have solved λ in the two cases of (4.3). It is easy to see that (4.5) and (4.7) can be written in

the following form:

λ =
1− 2(k − 1)a2b

2

kb2
, (4.8)

where k > 3 is an integer.

Plugging (4.2) and (4.8) into (4.1) yields

f0 + f2b
2 + f4b

4 = 0, (4.9)

where f0, f2 and f4 are some ODEs about ϕ(s) given in Remark A.5. Then by (4.9), solving f0 = 0,

f2 = 0 and f4 = 0 with ϕ(0) = 1 yields ϕ(s) =
√
1 + 2a2s2. This case is excluded.

Case 2. Assume a1 ̸= 0 or a3 ̸= 0. We are going to show that for one case, there are the non-trivial

solutions for ϕ(s) in dimension n = 2.

Case 2A. Assume a1 = 0 and a3 ̸= 0. It follows that a4 = − 1
2a

2
2 from p0 = 0, p1 = 0, p2 = 0 and

a1 = 0. Then by p0 = 0, p1 = 0, p3 = 0, a1 = 0 and a4 = − 1
2a

2
2 we get a contradiction.

Case 2B. Assume a1 ̸= 0. Solving λ and δ from p0 = 0 and p1 = 0 gives

λ =
B4b

4 +B2b
2 +B0

T
, δ =

C4b
4 + C2b

2 + C0

T
, (4.10)

where

B4 := 4(n+ 1)a21a2(a1a2 + 3a3)− 8(6a4a2 − 9a23 + na32 + 4a32)a1 − 24a22a3,

B2 := (n+ 1)a21(4a1a2 + 6a3)− (8a22n+ 20a22 + 24a4)a1,

B0 := (n+ 1)a1(a
2
1 − 2a2) + 6a3,

C4 := −4(n+ 1)a21a2(a1a2 + 3a3) + 8(4a32 + 6a4a2 + a32n− 9a23)a1 + 24a22a3,

C2 := (n+ 1)a1(−2(n+ 2)a2a
2
1 − 18a3a1 + 8a22) + 12a3a2,

C0 := −(n+ 1)2a31 + 2(n+ 1)a2a1,

T := (2a2b
2 + 1)[(12a3 + 2a2a1(n+ 1))b2 + a1(n+ 1)].

Then plugging (4.10) into p2 = 0 yields

a4 = −1

2
a22 − a1a3, (4.11)
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a5 = −a3[n
2a31 + (3a3 + 20a1a2 − 6a31)n+ 20a1a2 − 21a3 − 7a31]

10(n+ 1)a1
, (4.12)

(n− 7)a23(na
3
1 + a31 − 6a3) = 0. (4.13)

By (4.13), we break our discussion into the following three steps.

(I) If n = 7 and a3 ̸= 0, plugging (4.10) together with n = 7, (4.11) and (4.12) into p3 = 0 yields

q4b
4 + q2b

2 + q0 = 0,

where

q4 := −24a1(4a2a1 + 3a3)a6 − 4a2(−12a32a
2
1 − 9a22a1a3 − 9a2a

2
3

− 56a3a2a
3
1 − 60a21a

2
3 + 12a51a3),

q2 := (36a2 + 12a21)a
2
3 + 8a31(−3a21 + 10a2)a3 + 24a21(a

3
2 − 2a6),

q0 := a3(9a3 − 16a31).

So we have q0 = 0, q2 = 0 and q4 = 0, which implies a contradiction since a1 ̸= 0 and a3 ̸= 0.

(II) If a3 = 0, then plug (4.11) and a3 = 0 into (4.10) and we can get

λ = a21 − 2a2, δ =
na21 + (1 + 2a2b

2)(a21 − 2a2)

1 + 2a2b2
. (4.14)

Plugging (4.14) into (4.1) yields

f0 + f2b
2 + f4b

4 = 0, (4.15)

where f0, f2 and f4 are some ODEs about ϕ(s), where the expressions of f0, f2 and f4 are given in

Remark A.6. Then by (4.15), solving f0 = 0, f2 = 0 and f4 = 0 with ϕ(0) = 1 yields

ϕ(s) = a1s+
√
1 + 2a2s2.

This case is excluded.

(III) Assume

a3 =
1

6
(n+ 1)a31. (4.16)

Plugging (4.10) together with (4.11), (4.12) and (4.16) into p3 = 0 yields

(· · · )b2 + (n+ 1)(n− 2)a41 = 0,

which implies n = 2. Plugging (4.10) together with (4.11), (4.16) and n = 2 into (4.1) yields

f0 + f2b
2 + f4b

4 = 0, (4.17)

where f0, f2 and f4 are some ODEs about ϕ(s) given by

f0 := [2(a21 − a2)s(ϕ− sϕ′) + ϕ′]s2ϕϕ′′′ − s2[1 + (2a2 − 3a21)s
2]ϕ(ϕ′′)2

+ {(1− 2a2s
2)(ϕ− sϕ′)2 + [4 + 2(3a21 − 4a2)s

2]sϕ′(ϕ− sϕ′) + 6s2(ϕ′)2}ϕ′′

+ [(3a21 − 2a2)(ϕ− sϕ′)2 + (4a2 − 3a21)sϕ
′(ϕ− sϕ′)− 3(ϕ′)2](ϕ− sϕ′),

f2 := {[(2a2 + a21)(3a
2
1 − 2a2)s

2 + 2(a2 − a21)]s(ϕ− sϕ′)− (1− 2a2s
2)ϕ′}ϕϕ′′′

× [1− (2a2 + a21)s
2][1 + (2a2 − 3a21)s

2]ϕ(ϕ′′)2 + {[(2a2 + a21)(3a
2
1 − 2a2)s

2

+ 4a21](ϕ− sϕ′)2 + [4(2a2 + a21)(3a
2
1 − 2a2)s

2 + 2(6a2 − a21)]sϕ
′(ϕ− sϕ′)

+ 3(4a2s
2 − 1)(ϕ′)2}ϕ′′ + {(2a2 + a21)(2a2 − 3a21)(3sϕ

′ − ϕ)(ϕ− sϕ′)

− 6a2(ϕ
′)2}(ϕ− sϕ′)
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and

f4 := [(2a2 + a21)(2a2 − 3a21)s(ϕ− sϕ′)− 2a2ϕ
′]ϕϕ′′′

+ (2a2 + a21)[1 + (2a2 − 3a21)s
2]ϕ(ϕ′′)2

+ [(2a2 + a21)(2a2 − 3a21)(ϕ− sϕ′)(3sϕ′ − ϕ)− 6a2(ϕ
′)2]ϕ′′.

Then by (4.17), we get f0 = 0, f2 = 0 and f4 = 0. To solve the system of ODEs f0 = 0, f2 = 0 and

f4 = 0 with ϕ(0) = 1, we first express ϕ′′ in terms of ϕ and ϕ′ by eliminating ϕ′′′ from

s−2f0 + s2f4 + f2 = 0.

Then plug the expression of ϕ′′ into f0 and we can get the expression of ϕ′′′. Now plugging the expressions

of ϕ′′ and ϕ′′′ into f4, we obtain an ODE equivalent to

0 = 4(1 + k1s
2)(1 + k2s

2)2ϕ′2 − 4s(1 + k2s
2)(k1 + k2 + 2k1k2s

2)ϕϕ′

+ [k1 − k2 + 4k1k2s
2(1 + k2s

2)]ϕ2, (4.18)

where we put

k1 := 2a2 − 3a21, k2 := 2a2 + a21. (4.19)

Then solving (4.18) with ϕ(0) = 1 yields (1.3).

5 Proof of Theorem 1.1

By the result in [4], we only need to consider the case shown in Lemma 2.1, and only in this case it

possibly occurs that b ̸= constant. Now suppose ϕ(s) ̸=
√
1 + ϵs2+ks for any constants ϵ and k, and b ̸=

constant in any neighborhood. The discussions in Sections 3 and 4 imply that ϕ(s) is given by (1.3) and

the dimension n = 2 (see Case 2B(III) in Section 4). Furthermore, plugging (4.11) and (4.16) and n = 2

into (4.10) yields

δ =
(3a21 − 2a2)[1 + (2a2 + a21)b

2]

1 + 2a2b2
, (5.1)

λ =
(3a21 − 2a2)(2a2 + a21)b

2 + 2(a21 − a2)

1 + 2a2b2
. (5.2)

Since we have proved in Section 3 that k = 0 and ϵ = 0, by (2.5) and (5.2) we obtain (1.2). At the end of

Section 4, we have shown that ϕ(s) is given by (1.3) by solving (4.18) with ϕ(0) = 1. Besides, the proof

in Section 3 also shows c = 0, which implies S = 0.

Remark 5.1. Plugging (5.1) and (5.2) into (2.9), we get

f(b) =
√

1 + (2a2 − 3a21)b
2. (5.3)

One possibly wonders whether we can get (5.3) from (2.2) when we plug (1.3) and n = 2 into (2.2). This

is true. One way to check it is to expand (2.2) and (5.3) into power series, respectively. One may try a

direct verification.

6 Examples

In this section, we will construct some examples for the metric F given by (1.2)–(1.4).

Since every two-dimensional Riemann metric is locally conformally flat, we may put

α = eσ
√
(y1)2 + (y2)2, (6.1)
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where σ = σ(x) is a scalar function and x = (x1, x2). Then β can be expressed as

β = eσ(ξy1 + ηy2). (6.2)

Now we can show that (1.2) is equivalent to the following system of PDEs:

σ1 =
T1

T0
, σ2 =

T2

ξT0
, ξ1 = −η(ηη2 + ξξ2 + ξη1)

ξ2
, (6.3)

where

T0 := ξ[1 + k2(ξ
2 + η2)][1 + k1(ξ

2 + η2)],

T1 := 2ξη[(3k1 − k2)/4 + k1k2(ξ
2 + η2)]ξ2

− [1 + (k1 + k2)ξ
2/2 + (k2 − k1)η

2/2 + k1k2(ξ
4 − η4)]η2,

T2 := [(k2 − k1)ξ
2/2 + (k1 + k2)η

2 − k1k2(ξ
4 − η4)](ξξ2 + ηη2)

+ ξ[1 + k2(ξ
2 + η2)][1 + k1(ξ

2 + η2)]η1.

Proposition 6.1. Let F = αϕ(s) and s = β/α be a two-dimensional (α, β)-metric on R2, where

b = ∥β∥α ̸= constant and ϕ(s) satisfies (1.3). Then F is of isotropic S-curvature if and only if α and β

can be locally defined by (6.1) and (6.2), where ξ, η and σ are some scalar functions satisfying (6.3). In

this case, S = 0.

If we take ξ = x2 and η = −x1, then σ determined by (6.3) is given by

σ = −1

4
{ln[1 + k2|x|2] + 3 ln[1 + k1|x|2]}, (6.4)

where |x|2 := (x1)2 + (x2)2. Thus we obtain the following example.

Example 6.2. Let F be a two-dimensional (α, β)-metric defined by (1.3). Define α and β by (6.1)

and (6.2), where ξ = x2 and η = −x1, and σ is given by (6.4). Then F is of isotropic S-curvature S = 0

by Theorem 1.1. Furthermore, we have b2 = ∥β∥2α = |x|2 ̸= constant.

In Example 6.2, if we take k1 = 0 and k2 = 4, then by (1.3) and (1.4), we obtain

ϕ(s) = (1 + 4s2)
1
4

√
2s+

√
1 + 4s2,

and thus we get Example 1.2.
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Appendix A

Remark A.1. Let pi be the coefficients of si in (3.1). We have

p0 = (−a1 − 2b2a1a2 − a1n− 6b2a3 − 2a1na2b
2)k + 2(2a2b

2 + 1)2(n+ 1)c,

p1 = (−4a2 − 6a1na3b
2 − 12b2a3a1 − 20a2

2b2 − 24b2a4)k − 2(2a2b
2 + 1)2v

+ 4(2a2b
2 + 1)(2b2a1a2 + 6b2a3 + a1)(n+ 1)c+ 4a2b

2(2a2b
2 + 1)ϵ,

p2 = (−60b2a5 + 3a3n− 3a3 + 6a1na2 − 36b2a4a1 − 114b2a3a2 + 6a2na3b
2 + 6a1na2

2b2

+ 2a2a1 − 14a2
2a1b

2 − 12a1na4b
2)k + 2(24b2a3a1 − 4a2 + a1

2 − 4a2
2b2 + 8a2

3b4

+ 36a3
2b4 + 48a2b

4a1a3 + 24b2a4 + 4a2b
2a1

2 + 4a1
2a2

2b4 + 48a2b
4a4)(n+ 1)c

+ (a1n+ 8a2
2b4a1 + a1 + 18b2a3 + 6b2a1a2 + 48a2b

4a3 + 2a1na2b
2)ϵ

− 2(2a2b
2 + 1)(2b2a1a2 + 12b2a3 + a1)v,

p3 = (−80b2a5a1 + 10a3a1 + 16a1na3 + 8a4 − 224b2a4a2 + 34a2a1na3b
2 + 18a3

2nb2

− 20a1na5b
2 + 24a2

2 − 156b2a3
2 + 16a2na4b

2 + 8a4n+ 8a2
3nb2 + 4a2

2n− 12a2
3b2

− 80a2a1b
2a3 − 120b2a6)k + 4(40a2b

4a5 + 24b2a4a1 − 18b2a3a2 + 20b2a5 − 8a2
2a1b

2

+ 6a3b
2a1

2 + 4a1a2
3b4 + 72a3b

4a4 − 5a2a1 + 28a2
2b4a3 + 36a3

2b4a1 − 7a3

+ 12a1
2a2b

4a3 + 48a2b
4a1a4)(n+ 1)c+ 2b2(3a1na3 + 4a2

3b2 + 36b2a3
2 + 2a2

2

+ 24a2a1b
2a3 + 48b2a4a2 + 24a4 + 12a3a1)ϵ+ (−48b2a4 − 24b2a3a1 − 48a2b

4a1a3

+ 16a2
2b2 − 8a2

3b4 − 72a3
2b4 + 10a2 − 96a2b

4a4)v,

p4 = (15 a2
2a1 + 30 a4a1 + 15 a5n+ 130 a2a3 + 30 a1na4 + 30 a2na5b

2 + 66 a1na2b
2a4

− 600 a3b
2a4 + 84 a3nb

2a4 + 6 a2na3 − 210 b2a7 + 54 a2
2nb2a3 − 120 a3

2a1b
2

− 80 a2
2b2a3 − 30 a1na6b

2 − 150 b2a6a1 − 9 a1na2
2 + 35 a5 + 48 a1na3

2b2

− 150 a2a1b
2a4 − 370 a2b

2a5)k + 4 (144 a3b
4a1a4 + 80 a2b

4a1a5 + 28 a1a2
2b4a3

+ 24 a1
2a2b

4a4 − 52 a2a1b
2a3 − 38 a2b

2a4 + 52 a2
2b4a4 + 120 a3b

4a5 + 60 a3
2b4a2

+ 60 a2b
4a6 − 6 a1

2a2
2b2 + 18 a1

2a3
2b4 + 12 a4b

2a1
2 + 40 b2a5a1 − a2

2 − 14 a4

− 36 a3
2b2 − 15 a3a1 − 10 a2

3b2 + 72 a4
2b4 + 30 b2a6 − 3 a2a1

2 + 2 a2
4b4)(n+ 1)c

+ (100 b2a5 + 72 a3
2b4a1 + 60 b2a4a1 − 6 a2a1 − 6 a2na3b

2 + 14 a2b
2a3 − 6 a2

2a1b
2

+ 160 a2b
4a5 + 96 a2b

4a1a4 + 56 a2
2b4a3 + 12 a1na4b

2 − 6 a1na2
2b2 − 3 a3n

+ 288 a3b
4a4 − 6 a1na2 − 9 a3)ϵ+ (−56 a2

2b4a3 − 72 a3
2b4a1 + 30 a3 − 288 a3b

4a4

− 160 a2b
4a5 + 12 a2a1 − 80 b2a5 + 24 a2

2a1b
2 + 104 a2b

2a3 − 96 a2b
4a1a4 − 48 b2a4a1)v,

p5 = (114 a2nb
2a3

2 + 96 a2
2nb2a4 − 468 a3a1b

2a4 − 48 a1na2a3 − 42 a1na7b
2

− 232 a2a1b
2a5 + 150 a3na5b

2 + 48 a2na6b
2 + 174 a3

2 + 24 a6n+ 68 a5a1 − 12 a2
3n

− 12 a3
2n− 576 a4

2b2 − 336 b2a8 + 84 a6 + 108 a2a1na5b
2 + 186 a1na3b

2a4 + 248 a2a4

− 972 a3b
2a5 − 552 a2b

2a6 + 48 a1na5 + 96 a4
2nb2 + 86 a2a1a3 − 252 b2a7a1

− 168 a3
2a2b

2 − 140 a2
2b2a4 + 12 a2

3)k + 4 (52 a1a2
2b4a4 + 240 a3b

4a1a5

+ 216 a3b
4a2a4 − 150 a3b

2a4 + 42 b2a7 − 64 a2b
2a5 − 70 a2

2b2a3 − 84 a3
2a1b

2

+ 60 b2a6a1 + 3 a2a3 + 3 a2
2a1 − 29 a4a1 + 84 a2b

4a7 + 20 a5b
2a1

2 − 12 a1a2
3b2

+ 144 a4
2b4a1 + 240 a4b

4a5 + 180 a3b
4a6 + 84 a2

2b4a5 + 16 a2
3b4a3 + 72 a1

2a3b
4a4

− 104 a2a1b
2a4 − 8 a3a1

2 + 36 a3
3b4 − 23 a5 − 34 a1

2a2b
2a3 + 40 a1

2a2b
4a5

+ 120 a2b
4a1a6 + 60 a1a2b

4a3
2)(n+ 1)c+ (−18 a3

2nb2 − 16 a1na3 − 4 a2
2n− 32 a4

+ 104 a2
2b4a4 − 8 a2

3nb2 + 24 a2b
2a4 − 22 a3a1 − 8 a4n− 16 a2na4b

2 + 288 a3b
4a1a4

+ 120 b2a5a1 + 240 a2b
4a6 + 120 a3

2b4a2 + 180 b2a6 + 20 a1na5b
2 − 16 a2

2 − 8 a2
3b2

+ 480 a3b
4a5 − 36 a2a1b

2a3 + 288 a4
2b4 − 34 a1na2b

2a3 + 160 a2b
4a1a5)ϵ
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+ (−240 a2b
4a6 − 480 a3b

4a5 − 80 b2a5a1 + 168 a3
2b2 + 58 a4 − 120 b2a6

− 288 a3b
4a1a4 − 120 a3

2b4a2 − 104 a2
2b4a4 + 136 a2a1b

2a3 + 32 a3a1 − 288 a4
2b4

− 6 a2
2 − 160 a2b

4a1a5 + 24 a2
3b2 + 208 a2b

2a4)v.

Remark A.2. In (3.2), A1, A2 and A3 are given by

A1 = 432 a3
3a1

2 + 224 a2
5a1 − 1440 a2

3a5 + 288 a2
4a3 − 48 a1

3a2
4 − 4320 a3

2a5

− 2880 a4a2a5 + 2160 a6a2a3 + 5328 a2
2a3a4 + 864 a1a3

2a4 − 960 a2a5na1a3

+ 80 a2
2a1

2a5 − 16 a2
5n2a1 + 240 a1a2

2a6 − 48 a1
3na2

4 − 24 a1
4a2

2a3 + 432 a3
3a1

2n

+ 72 a3
2a1

3a2 − 108 a2na3
3 − 96 a1

3a2
2a4 + 688 a2

3a4a1 − 32 a2
3n2a4a1

+ 40 a2
2a5na1

2 + 240 a2
2a1na6 − 40 a2

2a1
2n2a5 + 108 a3

2a1
3na2 + 12 a1

4a2
2n2a3

− 12 a1
4na2

2a3 − 96 a1
3na2

2a4 − 52 a1
2n2a3a2

3 + 36 a1
3n2a3

2a2 − 1008 a2
2na3

2a1

− 432 a4a1
2a2a3 + 864 a1na4a3

2 + 656 a1na4a2
3 − 92 a1

2na2
3a3 − 960 a1a3a2a5

+ 5184 a4
2a3 − 4536 a2a3

3 + 72 a1
2n2a3a2a4 − 1008 a3

2a2
2a1 − 40 a1

2a2
3a3

+ 208 a1na2
5 − 360 a1

2na4a2a3,

A2 = 2052 a3
3 + 80 a1

2a2a5 − 216 a1
2a3a4 + 192 a1na2

4 + 54 a3
2a1

3n+ 76 a3a1
2a2

2

+ 240 a6a1a2 − 216 a2a4a3 − 480 a1a3
2a2 − 480 a5a1a3 − 48 a1

3na2
3 − 96 a1

3a2a4

+ 36 a3
2a1

3 + 672 a1a2
2a4 − 24 a2

4n2a1 − 24 a1
4a2a3 − 720 a2

2a5 + 18 a1
3n2a3

2

+ 40 a2a5na1
2 − 74 a1

2n2a2
2a3 + 36 a1

2n2a4a3 + 240 a6a1na2 − 48 a2
2n2a4a1

− 40 a1
2n2a5a2 − 480 a1na3a5 + 12 a1

4a2n
2a3 − 12 a1

4na2a3 − 96 a1
3na2a4

+ 624 a1na4a2
2 − 180 a1

2na4a3 + 2 a2
2a1

2na3 − 480 a2a1na3
2 − 48 a1

3a2
3

− 1440 a5a4 + 1080 a6a3 + 216 a2
4a1 − 648 a2

3a3 − 54 a3
3n,

A3 = −26 a1
2n2a3a2 + 120 a1na3

2 − 24 a1
3na4 + 10 a1

2na5 + 156 a1a2a4 + 60 a6a1n

+ 52 a1
2a2a3 − 12 a1

3na2
2 + 3 a1

4n2a3 − 3 a1
4na3 − 72 a2

2a3 + 120 a1a3
2

− 10 a1
2n2a5 − 12 a1

3a2
2 − 12 a2

3n2a1 + 36 a1na2
3 + 48 a1a2

3 − 6 a1
4a3 + 60 a6a1

− 24 a1
3a4 + 20 a1

2a5 − 144 a4a3 + 26 a2a1
2na3 + 132 a1na2a4 − 24 a2n

2a4a1.

Remark A.3. In (3.17), f0, f2 and f4 are given by (define ϕ1 := ϕ′, ϕ2 := ϕ′′ and ϕ3 := ϕ′′′)

f0 = −ϕ s2(sϕ1 − ϕ)(2 a2s
2 − s2a1

2 + 1)ϕ3 − s3ϕ (−sϕ a1 − ϕ sna1 + n+ 4 s2a1
2

+ 2 s2na2 + s2a1
2n− 4− 8 a2s

2)ϕ2
2 + s(sϕ1 − ϕ)(−2 s3ϕ1a2 + s3ϕ1a1

2 + s3ϕ1na1
2

− 2 s3ϕ1na2 + 6 s2ϕa2 − 3 s2ϕa1
2n− 3 s2ϕa1

2 − 2 s2ϕna2 − sϕ1n− sϕ1 + 2 sϕ2na1

+ 2 sϕ2a1 + ϕ− ϕn)ϕ2 − (sϕ1 − ϕ)2(2 s2ϕ1a2n− s2ϕ1a1
2 + 2 s2ϕ1a2 − s2ϕ1na1

2

− 4 sϕ a2 + 2 sϕ a1
2n+ 2 sϕ a1

2 + ϕ1n+ ϕ1 − ϕ2na1 − ϕ2a1),

f2 = −ϕ (−1 + 2 a2s
2)(2 a2s

2 − s2a1
2 + 1)(sϕ1 − ϕ)ϕ3 + sϕ (−2 sϕ a1 − 2ϕ sna1

− 8 s4a2a1
2 + 16 s4a2

2 + n− 4 s4na2
2 − 4 + 4 s2a1

2 + 2 s4na2a1
2 + 3 s2a1

2n)ϕ2
2

+ (sϕ1 − ϕ)(−4 s4ϕ1a2
2 − 4 s4ϕ1na2

2 + 2 s4ϕ1na2a1
2 + 2 s4ϕ1a2a1

2 + 12 s3ϕa2
2

− 6 s3ϕa2a1
2 − 4 s3ϕna2

2 + 2 s3ϕna2a1
2 − s2ϕ1a1

2 − s2ϕ1na1
2 + 2 sϕ a1

2

− 2 sϕ a2 − 2 sϕna2 + 4 sϕ a1
2n+ ϕ1n+ ϕ1 − 2ϕ2a1 − 2ϕ2na1)ϕ2

− 2 a2(sϕ1 − ϕ)2(2 s2ϕ1a2 + 2 s2ϕ1a2n− s2ϕ1na1
2 − s2ϕ1a1

2 − 4 sϕ a2

+ 2 sϕ a1
2 + ϕ1n+ ϕ1),

f4 = 2ϕa2(2 a2s
2 − s2a1

2 + 1)(sϕ1 − ϕ)ϕ3 + ϕ (ϕa1 + ϕna1 − 16 s3a2
2

− 8 sa2 − 2 sa1
2n+ 2 sna2 + 8 s3a2a1

2 + 4 s3na2
2 − 2 s3na2a1

2)ϕ2
2

− 2 (sϕ1 − ϕ)a2(−2 s2ϕ1a2 − 2 s2ϕ1a2n+ s2ϕ1na1
2 + s2ϕ1a1

2
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+ 4 sϕ a2 − 2 sϕ a1
2 − ϕ1n− ϕ1)ϕ2.

Remark A.4. Let pi be the coefficients of si in (4.1). We have

p0 = 2 a2b
2(1 + 2 a2b

2)λ− (1 + 2 a2b
2)2δ + 6 a1b

2a3 − 2 a2 + a1
2n+ 2 b2a1

2a2

− 4 a2
2b2 + 2 a1

2na2b
2 + a1

2,

p1 = (1 + 2 a2b
2)(2 a2b

2a1 + 12 b2a3 + a1n+ a1)λ− (1 + 2 a2b
2)(2 a2b

2a1

+ 12 b2a3 + a1)δ + 12 b2a1
2a3 − 6 a3 + 4 a1na2

2b2 − 12 a2b
2a3 + 2 a1na2

+ 24 a1b
2a4 + 6 a1

2na3b
2 + 12 a2

2a1b
2,

p2 = 6 b2(3 a3a1 + 4 a2b
2a3a1 + 8 b2a2a4 + a2

2 + 6 a4 + 6 a3
2b2 + a1na3)λ

+ (12 a2
2b2 − 24 b2a4 − 48 a2b

4a4 − 36 a3
2b4 − 12 a1b

2a3 + 6 a2 − 24 a2b
4a3a1)δ

+ 72 a2b
2a3a1 − 6 a1

2na2
2b2 − 6 a2a1

2 + 36 b2a1
2a4 − 12 a4 + 6 a2

2 + 60 a1b
2a5

− 6 a1
2na2 − 12 a3a1 + 6 a2

2a1
2b2 − 18 a3

2b2 + 24 a2
3b2 + 12 a1

2na4b
2 + 12 a1na2b

2a3,

p3 = (24 a2b
2a3 + 80 b2a5 − 7 a2a1 − 3 a3n− 7 a1na2 + 48 a1b

2a4 − 4 a2
2a1b

2

+ 144 a3b
4a4 + 36 a3

2b4a1 − 4 a2
2b4a3 + 80 a2b

4a5 − 4 a2
3a1b

4 − 9 a3 + 48 a2b
4a4a1

− 6 a2nb
2a3 − 8 a1na2

2b2 + 12 a1na4b
2)λ+ (−40 b2a5 − 24 a1b

2a4 + 7 a2a1

+ 4 a2
2b4a3 + 17 a3 − 36 a3

2b4a1 − 80 a2b
4a5 − 144 a3b

4a4 − 48 a2b
4a4a1

+ 16 a2
2a1b

2 + 72 a2b
2a3 + 4 a2

3a1b
4)δ − 20 a5 − 16 a1na2

2 − 4 a1a4n+ 80 b2a1
2a5

− 16 a1
2na3 − 48 a3b

2a4 + 120 a1b
2a6 − 40 a4a1 + 18 a3a2 − 20 a2

2a1 − 22 a3a1
2

− 20 a1na2
3b2 + 32 a2a1

2b2a3 + 160 a2b
2a4a1 − 12 a2

2nb2a3 + 84 a3
2b2a1

− 34 a1
2na2b

2a3 + 20 a1
2na5b

2 + 20 a2
3a1b

2 + 40 a2b
2a5 + 172 a2

2b2a3

− 6 a2na3 + 16 a1na2b
2a4.

Remark A.5. In (4.9), f0, f2 and f4 are given by (define ϕ1 := ϕ′, ϕ2 := ϕ′′ and ϕ3 := ϕ′′′)

f0 = s(ϕ− sϕ1)(ϕ s2(ϕ− sϕ1)ϕ3 − ϕ s3(−2 + n)ϕ2
2 + s(ϕ− sϕ1)(ϕ+ sϕ1)(n+ 1)ϕ2

− ϕ1(ϕ− sϕ1)
2(n+ 1)),

f2 = (−ϕ s3(k + 2 s2a2k − 4 a2s
2)ϕ1

2 + ϕ2s2(1− 8 a2s
2 + k + 4 s2a2k)ϕ1

− sϕ3(−4 a2s
2 + 1 + 2 s2a2k))ϕ3 + (−ϕ s3(12 a2s

2 + 2− 3 k − 6 s2a2k + 2 s2na2k

− 4 s2na2 + nk)ϕ1 + ϕ2s2(−4 s2na2 − k + 2 s2na2k + 12 a2s
2 − 6 s2a2k + n))ϕ2

2

+ (−s3(k + 2 s2a2k − 4 a2s
2)(n+ 1)ϕ1

3 + ϕ s2(2 s2na2k + 2n+ k − 4 s2na2

− 12 a2s
2 + 6 s2a2k)ϕ1

2 + ϕ2s(−2 + k)(n− 6 a2s
2 − 1 + 2 s2na2)ϕ1

− ϕ3(−2 + k)(−2 a2s
2 + 2 s2na2 − 1))ϕ2 − s2(−1− 4 a2s

2 + k + 2 s2a2k)(n+ 1)ϕ1
4

+ 2ϕ s(k − 1 + nk − n+ 3 s2na2k + 4 s2a2k − 6 s2na2 − 8 a2s
2)ϕ1

3 − ϕ2(−12 s2na2

+ k + 12 s2a2k − 1 + nk − 24 a2s
2 − n+ 6 s2na2k)ϕ1

2 + 2 sϕ3a2(−2 + k)(n+ 4)ϕ1

− 2ϕ4a2(−2 + k),

f4 = (ϕ s(−1− 4 a2s
2 + k + 2 s2a2k)ϕ1

2 − ϕ2(4 s2a2k − 1 + k − 8 a2s
2)ϕ1

+ 2 sϕ3a2(−2 + k))ϕ3 + (ϕ s(2 s2na2k + 4− 3 k + 12 a2s
2 + nk − 6 s2a2k

− n− 4 s2na2)ϕ1 − ϕ2(−2 + k)(2 s2na2 − 6 a2s
2 − 1))ϕ2

2 + (s(−1− 4 a2s
2

+ k + 2 s2a2k)(n+ 1)ϕ1
3 − ϕ (nk − n+ k + 4 s2na2k − 1 + 6 s2a2k

− 12 a2s
2 − 8 s2na2)ϕ1

2 + 2ϕ2sa2(−2 + k)(3 + n)ϕ1 − 2ϕ3a2(−2 + k))ϕ2.

Remark A.6. In (4.15), f0, f2 and f4 are given by (define ϕ1 := ϕ′, ϕ2 := ϕ′′ and ϕ3 := ϕ′′′)

f0 = −s2ϕ (−ϕ+ sϕ1)(−ϕ1s
2a1

2 + 2ϕ1s
2a2 + sϕ a1

2 − 2 sϕ a2 + ϕ1)ϕ3
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− s2ϕ (3 s3ϕ1a1
2 + 2 s3ϕ1na2 − 6 s3ϕ1a2 − 3 s2ϕa1

2 + 6 s2a2ϕ− 2 s2ϕna2

− 3 sϕ1 + ϕ1sn+ ϕ)ϕ2
2 − (−ϕ+ sϕ1)(−s4ϕ1

2na1
2 − s4ϕ1

2a1
2 + 2 s4ϕ1

2a2

+ 2 s4ϕ1
2na2 + 2 s3ϕ1ϕa1

2n+ 2 s3ϕ1ϕa1
2 − 4 s3ϕϕ1a2 + s2ϕ1

2n+ s2ϕ1
2

+ 2 s2ϕ2a2 − s2ϕ2na1
2 − 2 s2ϕ2na2 − s2ϕ2a1

2 + ϕnϕ1s+ ϕ2)ϕ2

− (−ϕ+ sϕ1)
2(2 s2ϕ1

2a2 − s2ϕ1
2a1

2 − s2ϕ1
2na1

2 + 2 s2a2ϕ1
2n

− 4 sϕϕ1a2 + 2 sϕ1ϕa1
2 + 2 sϕ1ϕa1

2n− 2 sϕ1ϕna2 + ϕ1
2n+ ϕ1

2

+ 2ϕ2a2 − ϕ2a1
2 − ϕ2a1

2n),

f2 = ϕ (−1 + 2 s2a2)(−ϕ+ sϕ1)(ϕ1s
2a1

2 − 2ϕ1s
2a2 − sϕ a1

2 + 2 sϕ a2 − ϕ1)ϕ3

− ϕ (−4ϕ s4na2
2 + 2 s2ϕna2 − 4 s2a2ϕ+ 12ϕ s4a2

2 + 2ϕ s4na1
2a2 − ϕ

+ ϕ s2na1
2 + 3 s2ϕa1

2 − 6ϕ s4a1
2a2 − 3 s3ϕ1a1

2 + 3 sϕ1 − 2 s5ϕ1na1
2a2

− 12 s5ϕ1a2
2 − ϕ1sn− s3ϕ1a1

2n+ 6 s5ϕ1a1
2a2 + 4 s5ϕ1na2

2)ϕ2
2

+ (−ϕ+ sϕ1)(2 s
4ϕ1

2na1
2a2 − 4 s4ϕ1

2a2
2 + 2 s4ϕ1

2a1
2a2 − 4 s4ϕ1

2na2
2

− 4 s3ϕ1ϕa1
2a2 + 8 s3ϕϕ1a2

2 − s2ϕ1
2a1

2 − s2ϕ1
2na1

2 − 2 s2ϕ2na1
2a2

+ 4 s2ϕ2na2
2 − 4 s2ϕ2a2

2 + 2 s2ϕ2a1
2a2 + 2 sϕ1ϕa1

2 + 3 sϕ1ϕa1
2n

− 4 sϕϕ1a2 − 4 sϕ1ϕna2 + ϕ1
2n+ ϕ1

2 − 2ϕ2a1
2n− ϕ2a1

2)ϕ2

− 2 a2(−ϕ+ sϕ1)
2(2 s2a2ϕ1

2n+ 2 s2ϕ1
2a2 − s2ϕ1

2a1
2 − s2ϕ1

2na1
2 − 2 sϕ1ϕna2

− 4 sϕϕ1a2 + sϕ1ϕa1
2n+ 2 sϕ1ϕa1

2 + 2ϕ2a2 + ϕ1
2 + ϕ1

2n− ϕ2a1
2),

f4 = 2ϕa2(−ϕ+ sϕ1)(−ϕ1s
2a1

2 + 2ϕ1s
2a2 + sϕ a1

2 − 2 sϕ a2 + ϕ1)ϕ3

+ ϕ (2ϕa2 − 4ϕ s2na2
2 + 2ϕ s2na1

2a2 + ϕa1
2n+ 12 s2ϕa2

2 − 6 s2ϕa1
2a2

+ 6 s3ϕ1a1
2a2 + 4 s3ϕ1na2

2 − 2 s3ϕ1na1
2a2 − sϕ1a1

2n+ 2ϕ1sna2 − 12 s3ϕ1a2
2

− 6 sϕ1a2)ϕ2
2 − 2 (−ϕ+ sϕ1)a2(−2 s2a2ϕ1

2n− 2 s2ϕ1
2a2 + s2ϕ1

2na1
2

+ s2ϕ1
2a1

2 + 4 sϕϕ1a2 + 2 sϕ1ϕna2 − sϕ1ϕa1
2n− 2 sϕ1ϕa1

2

− 2ϕ2a2 − ϕ1
2 − ϕ1

2n+ ϕ2a1
2)ϕ2.
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