. ARTICLES .

January 2018 Vol. 61 No. 1: 57[–72](#page-15-0) doi: [10.1007/s11425-016-9079-1](https://doi.org/10.1007/s11425-016-9079-1)

On a class of two-dimensional Finsler manifolds of isotropic S-curvature

Xinyue Cheng¹ , Zhongmin Shen² & Guojun Yang3,*[∗]*

¹*School of Mathematics and Statistics, Chongqing University of Technology, Chongqing* 400054*, China;* ²*Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, IN* 46202*, USA;* ³*Department of Mathematics, Sichuan University, Chengdu* 610065*, China*

Email: chengxy@cqut.edu.cn, zshen@math.iupui.edu, yangguojun@scu.edu.cn

Received November 24, 2016; accepted April 6, 2017; published online May 22, 2017

Abstract For an (*α, β*)-metric (non-Randers type) of isotropic S-curvature on an *n*-dimensional manifold with non-constant norm $||\beta||_{\alpha}$, we first show that $n=2$, and then we characterize such a class of two-dimensional (α, β) -manifolds with some PDEs, and also construct some examples for such a class.

Keywords (α, β) -metric, Randers metric, S-curvature

MSC(2010) 53B40

Citation: Cheng X Y, Shen Z M, Yang G J. On a class of two-dimensional Finsler manifolds of isotropic Scurvature. Sci China Math, 2018, 61: 57–[72,](#page-15-0) doi: [10.1007/s11425-016-9079-1](https://doi.org/10.1007/s11425-016-9079-1)

1 Introduction

The S-curvature is one of the most important non-Riemannian quantities in Finsler geometry, which was originally introduced for the volume comparison theorem (see [[6\]](#page-11-0)). Recent studies show that the S-curvature plays a very important role in Finsler geometry (see $[1, 2, 7-10]$ $[1, 2, 7-10]$ $[1, 2, 7-10]$ $[1, 2, 7-10]$ $[1, 2, 7-10]$). It is proved that, if an *n*-dimensional Finsler metric *F* is of *isotropic* S-curvature $S = (n+1)c(x)F$ for a scalar function $c(x)$ and of scalar flag curvature $K = K(x, y)$, then the flag curvature K can be given by

$$
K = \frac{3c_{x^m}y^m}{F} + \tau(x),
$$

where $\tau(x)$ is a scalar function (see [\[2](#page-11-2)]).

An (α, β) -metric is defined by a Riemann metric $\alpha = \sqrt{a_{ij}(x)y^i y^j}$ and a 1-form $\beta = b_i(x)y^i$ as follows:

$$
F = \alpha \phi(s), \quad s = \beta/\alpha,
$$

where $\phi(s)$ satisfies certain conditions such that *F* is regular (positively definite on $TM - 0$). A special class of (α, β) -metrics are Randers metrics defined by $F = \alpha + \beta$. With the help of navigation technique, we can characterize and determine the local structures of Randers metrics with isotropic S-curvature (see $[5, 8-10]$ $[5, 8-10]$ $[5, 8-10]$ $[5, 8-10]$.

 $\overline{\text{*}}$ Corresponding author

*[⃝]*c Science China Press and Springer-Verlag GmbH Germany 2017 <math.scichina.com> [link.springer.com](springerlink.bibliotecabuap.elogim.com)

For a pair of α and β , let $b := ||\beta||_{\alpha}$ denote the norm of β with respect to α . Define

$$
r_{ij} := \frac{1}{2}(b_{i+j} + b_{j+i}), \quad s_{ij} := \frac{1}{2}(b_{i+j} - b_{j+i}),
$$

$$
r_j := b^i r_{ij}, \quad s_j := b^i s_{ij}, \quad s^i := a^{ik} s_k,
$$

where $b_{i|j}$'s denote the covariant derivatives of β with respect to α and $b^{i} := a^{ij}b_j$ and $(a^{ij}) := (a_{ij})^{-1}$. For a C^{∞} function $\phi(s) > 0$ on $(-b_o, b_o)$, define

$$
\Phi := -(Q - sQ')(n\Delta + sQ + 1) - (b^2 - s^2)(1 + sQ)Q'',
$$

\n
$$
\Delta := 1 + sQ + (b^2 - s^2)Q', \quad Q := \phi' / (\phi - s\phi').
$$
\n(1.1)

It is known that a Randers metric $F = \alpha + \beta$ is of isotropic S-curvature, $S = (n + 1)c(x)F$, if and only if (see [[3\]](#page-11-7)) $r_{ij} = 2c(a_{ij} - b_ib_j) - b_is_j - b_js_i$.

In this paper, we mainly prove the following theorem.

Theorem 1.1. *Let* $F = \alpha \phi(s)$ and $s = \beta/\alpha$, be an (α, β) -metric on an $n \geq 2$)-dimensional manifold M, where $\phi(0) = 1$ and $\phi(s) \neq \sqrt{1 + \epsilon s^2} + ks$ for any constants ϵ and k . Suppose $b = ||\beta||_{\alpha} \neq$ *constant in any domain in M and F is of isotropic S-curvature. Then the following statements hold*:

- (i) *the dimension* $n = 2$ *, and*
- (ii) *β satisfies*

$$
r_{ij} = \frac{3k_1 + k_2 + 4k_1k_2b^2}{4 + (k_1 + 3k_2)b^2}(b_i s_j + b_j s_i),
$$
\n(1.2)

and $\phi = \phi(s)$ *is given by*

$$
\phi(s) = \{(1 + k_1 s^2)(1 + k_2 s^2)\}^{\frac{1}{4}} e^{\int_0^s \tau(s) ds},\tag{1.3}
$$

where $\tau(s)$ *is defined by*

$$
\tau(s) := \frac{\pm\sqrt{k_2 - k_1}}{2(1 + k_1 s^2)\sqrt{1 + k_2 s^2}},\tag{1.4}
$$

and k_1 *and* k_2 *are constants with* $k_2 > k_1$ *. In this case, the S-curvature* $S = 0$ *.*

Note that we have used the assumption that $b \neq$ constant in Theorem [1.1.](#page-1-0) For the case that *b* is a constant, see [[4\]](#page-11-8). In order to derive Theorem [1.1\(](#page-1-0)i) and ([1.3\)](#page-1-1), the condition $b = ||\beta||_{\alpha} \neq$ constant in any domain in *M* can be weakened to $db \neq 0$ at a point on *M*. Furthermore, letting $k_1 = k_2$ in ([1.3](#page-1-1)) and ([1.4\)](#page-1-2) yields $\phi(s) = \sqrt{1 + k_1 s^2}$. So the case $k_1 = k_2$ is excluded.

Taking $k_1 = 0$ and $k_2 = 4$, by [\(1.2\)](#page-1-3) and [\(1.3](#page-1-1)) we obtain

$$
r_{ij} = \frac{1}{1 + 3b^2} (b_i s_j + b_j s_i),\tag{1.5}
$$

$$
F(\alpha, \beta) = (\alpha^2 + 4\beta^2)^{\frac{1}{4}} \sqrt{2\beta + \sqrt{\alpha^2 + 4\beta^2}}.
$$
 (1.6)

Theorem [1.1](#page-1-0) shows that the metric ([1.6\)](#page-1-4) in the two-dimensional case is of isotropic S-curvature if and only if β satisfies ([1.5\)](#page-1-4). In the following example, we show a pair α and β satisfying [\(1.5](#page-1-4)). For more examples, see Example [6.2](#page-11-9) below.

Example 1.2. Let *F* be an (α, β) -metric on a two-dimensional manifold defined by [\(1.6\)](#page-1-4). Define α and β by $\alpha = e^{\sigma} \sqrt{(y^1)^2 + (y^2)^2}$ and $\beta = e^{\sigma} (\xi y^1 + \eta y^2)$, where ξ, η and σ are scalar functions which are given by

$$
\xi = x^2
$$
, $\eta = -x^1$, $\sigma = -\frac{1}{4}\ln(1+4|x|^2)$, $|x|^2 := (x^1)^2 + (x^2)^2$.

Then α and β satisfy [\(1.5\)](#page-1-4), and therefore, *F* is of isotropic S-curvature, $S = 0$, by Theorem [1.1](#page-1-0). Furthermore, we have $b^2 = ||\beta||^2_{\alpha} = |x|^2 \neq \text{constant}$.

Taking $k_1 = -1$ and $k_2 = 0$ in ([1.3\)](#page-1-1), the metric *F* in Theorem [1.1](#page-1-0) becomes $F = \sqrt{\alpha(\alpha + \beta)}$, which is a square-root metric. We can show in $[11]$ $[11]$ that a square-root metric F on a two-dimensional manifold is an Einstein metric if and only if *F* is of vanishing S-curvature, and in this case, *F* is generally not Ricci-flat (non-zero isotropic flag curvature).

The paper is organized as follows. In Section 2, we give some definitions and notation which are necessary for the present paper, and a lemma is contained. In Section 3, we will derive some results about [\(2.6\)](#page-3-0), which are necessary for the proof of Theorem [1.1](#page-1-0). Furthermore, in Section 4, under the α ²Constant in any domain and $\phi(s) \neq k_1\sqrt{1 + k_2s^2} + k_3s$ for any constants $k_1 > 0, k_2$ and k_3 , we are going to show that [\(2.8](#page-3-1)) has the non-trivial solutions only in the case of dimension $n = 2$. Based on the above discussions, the proof of Theorem [1.1](#page-1-0) is given in Section [5.](#page-10-0) Finally, some examples for the metric F satisfying (1.2) (1.2) – (1.4) (1.4) (1.4) are given in Section 6. Besides, we write an appendix which introduces the formulas for some coefficients occurring in (3.1) (3.1) , (3.2) , (3.17) (3.17) , (4.1) (4.1) , (4.9) (4.9) and (4.15) (4.15) .

2 Preliminaries

Let *F* be a Finsler metric on an *n*-dimensional manifold *M* with the standard local coordinate (x^i, y^i) in *TM*. The Finsler metric *F* induces a vector field $G = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}$ on *TM* defined by

$$
G^{i} = \frac{1}{4} g^{il} \{ [F^{2}]_{x^{k}y^{l}} y^{k} - [F^{2}]_{x^{l}} \}.
$$

The Hausdorff-Busemann volume form $dV = \sigma_F(x)dx^1 \wedge \cdots \wedge dx^n$ is defined by

$$
\sigma_F(x) := \frac{\text{Vol}(B^n)}{\text{Vol}\{(y^i) \in \mathbb{R}^n \mid F(y^i \frac{\partial}{\partial x^i} \mid x) < 1\}}.
$$

Furthermore, the S-curvature is defined by

$$
\boldsymbol{S} := \frac{\partial G^m}{\partial y^m} - y^m \frac{\partial}{\partial x^m} (\ln \sigma_F).
$$

S is said to be *isotropic* if there is a scalar function $c(x)$ on *M* such that $S = (n+1)c(x)F$. If $c(x)$ is a constant, then we call *F* is of *constant S-curvature*.

An (α, β) -metric is expressed in the following form:

$$
F = \alpha \phi(s), \quad s = \beta/\alpha,
$$

where $\phi(s) > 0$ is a C^{∞} function on an open interval $(-b_o, b_o)$. It is known that *F* is regular if

$$
\phi(s) - s\phi'(s) > 0
$$
, $\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$, $|s| \leq b < b_o$.

For an *n*-dimensional (α, β) -metric $F = \alpha \phi(s)$ and $s = \beta/\alpha$, it has been shown in [[4\]](#page-11-8) that the Scurvature is given by

$$
\mathbf{S} = \left\{ 2\Psi - \frac{f'(b)}{bf(b)} \right\} (r_0 + s_0) - \alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0), \tag{2.1}
$$

where Φ is defined by (1.1) (1.1) and

$$
r_0 := r_i y^i, \quad s_0 := s_i y^i, \quad r_{00} := r_{ij} y^i y^j,
$$

\n
$$
\Psi := \frac{Q'}{2\Delta}, \quad \Delta := 1 + sQ + (b^2 - s^2)Q', \quad Q := \frac{\phi'}{\phi - s\phi'},
$$

\n
$$
f(b) := \frac{\int_0^{\pi} \sin^{n-2} t dt}{\int_0^{\pi} \frac{\sin^{n-2} t}{\phi(\cos t)^n} dt}.
$$
\n(2.2)

Fix an arbitrary point $x \in M$ and take an orthonormal basis ${e_i}$ at *x* such that

$$
\alpha = \sqrt{\sum_{i=1}^{n} (y^i)^2}, \quad \beta = by^1.
$$

Then we change coordinates (y^i) to (s, y^A) such that

$$
\alpha = \frac{b}{\sqrt{b^2 - s^2}} \bar{\alpha}, \quad \beta = \frac{bs}{\sqrt{b^2 - s^2}} \bar{\alpha},
$$

where $\bar{\alpha} = \sqrt{\sum_{A=2}^{n} (y^A)^2}$. Let

$$
\bar{r}_{10}:=\sum_{A=2}^n r_{1A}y^A, \quad \bar{r}_{00}:=\sum_{A,B=2}^n r_{AB}y^Ay^B, \quad \bar{s}_0:=\sum_{A=2}^n s_Ay^A.
$$

By ([2.1\)](#page-2-0), it is shown in [\[4](#page-11-8)] that *F* is of isotropic S-curvature, $S = (n+1)c(x)F$, if and only if the following two equations hold:

$$
\frac{\Phi}{2\Delta^2}(b^2 - s^2)\bar{r}_{00} = -\left\{ s \left[\frac{s\Phi}{2\Delta^2} - 2\Psi b^2 + \frac{bf'(b)}{f(b)} \right] r_{11} + (n+1)cb^2 \phi \right\} \bar{\alpha}^2,\tag{2.3}
$$

$$
\left\{\frac{s\Phi}{\Delta^2} - 2\Psi b^2 + \frac{bf'(b)}{f(b)}\right\} r_{1A} = \left\{ \left(\frac{\Phi Q}{\Delta^2} + 2\Psi\right) b^2 - \frac{bf'(b)}{f(b)}\right\} s_{1A}.
$$
 (2.4)

In [\[4](#page-11-8)], Cheng and Shen studied ([2.3](#page-3-2)) and [\(2.4](#page-3-3)) by three steps: (i) $\Phi = 0$, (ii) $\Phi \neq 0$ and $\Upsilon = 0$ and (iii) $\Phi \neq 0$ and $\Upsilon \neq 0$, where Υ is defined by

$$
\Upsilon := \frac{d}{ds} \left[\frac{s\Phi}{\Delta^2} - 2\Psi b^2 \right].
$$

For the two cases: (i) $\Phi = 0$, or (ii) $\Phi \neq 0$ and $\Upsilon = 0$ (in some neighborhood), it is proved in [\[4](#page-11-8)] that *b* must be a constant (in the neighborhood). For the third case $\Phi \neq 0$ and $\Upsilon \neq 0$, Lemma [2.1](#page-3-4) is obtained (see [[4,](#page-11-8) Lemma 6.1]), and our discussion (Sections [3](#page-3-5) and [4\)](#page-7-1) is based on such a lemma.

Lemma 2.1 (See [\[4](#page-11-8)]). Let $F = \alpha \phi(s)$ and $s = \beta/\alpha$ be an (α, β) -metric on an *n*-dimensional manifold. *Assume* $\phi(s)$ *satisfies* $\Phi \neq 0$ *and* $\Upsilon \neq 0$ *, and F has isotropic S-curvature,* $S = (n+1)c(x)F$ *. Then*

$$
r_{ij} = ka_{ij} - \epsilon b_i b_j - \lambda (b_i s_j + b_j s_i),\tag{2.5}
$$

$$
-2s(k - \epsilon b^2)\Psi + (k - \epsilon s^2)\frac{\Phi}{2\Delta^2} + (n+1)c\phi - s\nu = 0,
$$
\n(2.6)

where $\lambda = \lambda(x)$, $k = k(x)$ and $\epsilon = \epsilon(x)$ are some scalar functions and

$$
\nu := -\frac{f'(b)}{bf(b)}(k - \epsilon b^2).
$$
 (2.7)

If in addition $s_0 \neq 0$ *, then*

$$
-2\Psi - \frac{Q\Phi}{\Delta^2} - \lambda \left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right) = \delta,\tag{2.8}
$$

where

$$
\delta := -\frac{f'(b)}{bf(b)}(1 - \lambda b^2). \tag{2.9}
$$

3 On [\(2.6\)](#page-3-0)

In this section, we assume $b \neq$ constant (in any neighborhood) and $\phi(s) \neq k_1\sqrt{1+k_2s^2}+k_3s$ for any constants $k_1 > 0, k_2$ and k_3 . We are going to prove that $k = 0, c = 0, \epsilon = 0$ and $\nu = 0$ in ([2.6\)](#page-3-0). Before the discussion, we show a remark (needed in this section and Section [4\)](#page-7-1).

Remark 3.1. Assume $b \neq$ constant in any neighborhood of the manifold *M*. Consider a polynomial

$$
f(b) := c_0 + c_1b + \cdots + c_mb^m,
$$

where c_i 's are constant and there is at least some c_i which is not zero. Let *U* be an open set of *M*, and $T := \{x \in U \mid f(b) = 0\}$. Then *T* is a closed and no-where dense set (since $b \neq$ constant in any neighborhood of *M*). So as an example, for a scalar function $\sigma = \sigma(x)$, if $\sigma = 0$ on $U - T$, then $\sigma = 0$ on *U* by continuity.

Thus without loss of generality, we can always assume $f(b) \neq 0$, or just have a restriction on $U - T$ in the following discussion, if c_i 's are not all zero.

We first transform ([2.6](#page-3-0)) into a differential equation about $\phi(s)$ and then $(2.6) \times 2\phi[\phi - s\phi' + (b^2 - s^2)\phi'']^2$ $(2.6) \times 2\phi[\phi - s\phi' + (b^2 - s^2)\phi'']^2$ $(2.6) \times 2\phi[\phi - s\phi' + (b^2 - s^2)\phi'']^2$ yields

$$
-(b^2 - s^2)(k - \epsilon s^2)(\phi - s\phi')\phi\phi''' + \{s[(2\nu + 2\epsilon - n\epsilon)s^2 + 2(\epsilon - \nu)b^2 + k(n - 4)]+ 2(n + 1)c(b^2 - s^2)\phi\}(b^2 - s^2)\phi(\phi'')^2 + \{(n + 1)(b^2 - s^2)[4c\phi^2 - (k - \epsilon s^2)\phi']- s[(n\epsilon + \epsilon - 4\nu)s^2 + 2(2\nu - \epsilon)b^2 - (n - 1)k]\phi\}(\phi - s\phi')\phi'' + (\phi - s\phi')^2\times \{(n + 1)[2c\phi^2 - (k - \epsilon s^2)\phi'] - 2\nu s\phi\} = 0.
$$
\n(3.1)

Express the power series of $\phi(s)$ at $s = 0$ as

$$
\phi(s) = 1 + a_1s + a_2s^2 + a_3s^3 + \dots = 1 + \sum_{i=1}^{\infty} a_i s^i.
$$

Let p_i be the coefficients of s^i in ([3.1\)](#page-4-0). The expressions of p_0, p_1, p_2, p_3, p_4 and p_5 , which will be needed in the following discussion, are given in Remark [A.1.](#page-12-0) All the equations $p_i = 0$ are homogeneous linear equations about k, c, ϵ and ν . The coefficient determinant of the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_3 = 0$ is in the form

$$
A_1b^6 + A_2b^4 + A_3b^2 - (n+1)a_1[4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3],
$$
\n(3.2)

where A_1, A_2 and A_3 are constant, and their expressions are given in Remark [A.2.](#page-13-0) If

$$
a_1 \neq 0
$$
, $4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3 \neq 0$,

then the above determinant is not zero (see Remark [3.1\)](#page-3-6), and thus in this case we conclude that $k = 0$, $c = 0, \epsilon = 0$ and $\nu = 0$ from the linear system $p_0 = 0, p_1 = 0, p_2 = 0$ and $p_3 = 0$.

In the following, we further prove $k = 0, c = 0, \epsilon = 0$ and $\nu = 0$ if $a_1 = 0$, or $4(n + 1)a_4 + 2(n + 1)a_2^2$ $+(n-2)a_1a_3=0.$

Case 1. Assume $a_1 = 0$. By $p_0 = 0, p_1 = 0$ and $a_1 = 0$, we obtain (assume $1 + 2a_2b^2 \neq 0$ by Remark [3.1](#page-3-6))

$$
\nu = \frac{2[(18a_3^2 - 10a_2^3 - 12a_2a_4)b^4 - (7a_2^2 + 6a_4)b^2 - a_2]k + 2a_2b^2(1 + 2a_2b^2)^2\epsilon}{(1 + 2a_2b^2)^3},
$$
(3.3)

$$
c = \frac{3a_3b^2}{(n+1)(1+2a_2b^2)^2}k.\tag{3.4}
$$

Since $\phi(s) \neq \sqrt{1 + 2a_2s^2} = \sum_{i=0}^{\infty} C_{\frac{1}{2}}^i (2a_2s^2)^i$, there exists some minimal integer *m* such that

$$
a_{2m+1} \neq 0
$$
, $m \ge 1$, or $a_{2m} \neq C_{\frac{1}{2}}^{m} (2a_2)^m$, $m \ge 2$, (3.5)

where C^i_μ 's are the generalized combination coefficients.

Case 1A. Assume $a_{2m+1} \neq 0$ in [\(3.5\)](#page-4-2). First consider the case $m = 1$. Then $a_3 \neq 0$. Plug [\(3.3\)](#page-4-3), ([3.4\)](#page-4-4) and $a_1 = 0$ into $p_2 = 0$ and $p_4 = 0$ and then we get a linear system about k and ϵ . The critical component of the determinant for this linear system is given by

$$
(\cdots)b^8 + (\cdots)b^6 + (\cdots)b^4 + (\cdots)b^2 - 3(n-1)(n+3)a_3^2,
$$

where the omitted terms are all constants. Now it is seen that $k = 0$ and $\epsilon = 0$ since $a_3 \neq 0$. Thus by ([3.3](#page-4-3)) and ([3.4\)](#page-4-4) we have $c = 0$ and $\nu = 0$.

Now let $m > 1$. In this case, we have $a_3 = 0$. For our purpose to prove $k = 0$ and $\epsilon = 0$, we only need to compute p_{2m-2} and p_{2m} . Express $\phi(s)$ as

$$
\phi(s) = g(s) + h(s),\tag{3.6}
$$

where

$$
g(s) := 1 + \sum_{i=1}^{\infty} a_{2i} s^{2i}, \quad h(s) := \sum_{i=m}^{\infty} a_{2i+1} s^{2i+1}.
$$

Plug ([3.6\)](#page-5-0) into ([3.1\)](#page-4-0) and then we write the left-hand side of (3.1) as $P_1 + P_2$, where every term of P_1 includes at least *h* or its derivatives h', h'' and h'''' , and P_2 is just the left-hand side of ([3.1\)](#page-4-0) with $\phi(s)$ being replaced with $g(s)$. Among h, h', h'' and h'''' , the function h'''' has the power series of the least degree $2m - 2$. Since $m > 1$, we have $a_3 = 0$, and then we get $c = 0$ by ([3.4\)](#page-4-4). So the power series of P_2 has no term of even degree.

Thus by the above analysis we see that, to get p_{2m-2} , it is sufficient to put

$$
g(s) = 1 + o(s)
$$
, $h(s) = a_{2m+1}s^{2m+1} + o(s^{2m+2})$,

and plug [\(3.6](#page-5-0)) into [\(3.1](#page-4-0)). Then by ([3.3\)](#page-4-3), [\(3.4](#page-4-4)), $a_1 = 0$ and $a_3 = 0$, the equation $p_{2m-2} = 0$ is reduced to

$$
-2m(4m^2-1)b^2a_{2m+1}k=0.
$$
\n(3.7)

By ([3.7](#page-5-1)) we have $k = 0$. Similarly, to get p_{2m} , it is sufficient to put

$$
g(s) = 1 + a_2s^2 + o(s^3)
$$
, $h(s) = a_{2m+1}s^{2m+1} + a_{2m+3}s^{2m+3} + o(s^{2m+4})$,

and plug ([3.6](#page-5-0)) into ([3.1\)](#page-4-0). Then from [\(3.3\)](#page-4-3), ([3.4](#page-4-4)), $a_1 = 0$, $a_3 = 0$ and $k = 0$, the equation $p_{2m} = 0$ is reduced to

$$
2m(2m+1)^2a_{2m+1}b^2\epsilon = 0.
$$
\n(3.8)

By ([3.8](#page-5-2)) we have $\epsilon = 0$. Thus by ([3.3](#page-4-3)) and ([3.4](#page-4-4)) we have $c = 0$ and $\nu = 0$.

Case 1B. Assume all $a_{2i+1} = 0$ ($i \ge 0$), and assume $a_{2m} \ne C_{\frac{1}{2}}^m (2a_2)^m$ in [\(3.5\)](#page-4-2). If $m = 2$, then $2a_4 + a_2^2 \neq 0$. Plug [\(3.3\)](#page-4-3), ([3.4](#page-4-4)), $a_1 = 0$ and $a_3 = 0$ into $p_3 = 0$ and $p_5 = 0$ and then we get a linear system about k and ϵ . The critical component of the determinant for this linear system is given by

$$
(\cdots)b^4 + (\cdots)b^2 - (n+1)(n+4)(2a_4 + a_2^2)^2,
$$

where the omitted terms are all constants. Now it is easy to see that $k = 0$ and $\epsilon = 0$ since $2a_4 + a_2^2 \neq 0$. Thus by ([3.3\)](#page-4-3) and [\(3.4\)](#page-4-4) we have $c = 0$ and $\nu = 0$.

Now let $m > 2$. In this case, we have $a_4 = -a_2^2/2$. For our purpose to prove $k = 0$ and $\epsilon = 0$, we only need to compute p_{2m-3} and p_{2m-1} . Since $\sqrt{1+2a_2s^2} = \sum_{i=0}^{\infty} C_i^i (2a_2s^2)^i$, we may express $\phi(s)$ as

$$
\phi(s) = g(s) + h(s),\tag{3.9}
$$

where $g(s) := \sqrt{1+2a_2s^2}$, $h(s) := \sum_{i=m}^{\infty} d_{2i}s^{2i}$ and $d_{2m} \neq 0$. Plug ([3.9\)](#page-5-3) into [\(3.1\)](#page-4-0) and then we write the left-hand side of (3.1) (3.1) (3.1) as $P_1 + P_2$, where every term of P_1 includes at least *h* or its derivatives h', h'' and h'''' , and P_2 which is just the left-hand side of [\(3.1\)](#page-4-0) with $\phi(s)$ being replaced with $g(s)$, will vanish when we plug ([3.3\)](#page-4-3), ([3.4\)](#page-4-4) $(a_3 = 0)$ and $a_4 = -a_2^2/2$ into it. Among h, h', h'' and h'''' , the function h'''' has the power series of the least degree $2m - 3$.

By the above analysis, to get p_{2m-3} , it is sufficient to plug ([3.9](#page-5-3)) and

$$
g(s) = 1 + o(1),
$$
 $h(s) = d_{2m}s^{2m} + o(s^{2m+1})$

into [\(3.1\)](#page-4-0). Then from [\(3.3\)](#page-4-3), ([3.4\)](#page-4-4) and $a_4 = -a_2^2/2$, the equation $p_{2m-3} = 0$ is reduced to

$$
-4m(2m-1)(m-1)(1+2a_2b^2)^2b^2d_{2m}k = 0.
$$
\n(3.10)

By ([3.10](#page-6-1)) we get $k = 0$. To get p_{2m-1} , it is sufficient to plug ([3.9\)](#page-5-3) and

$$
g(s) = 1 + a_2s^2 + o(s^2)
$$
, $h(s) = d_{2m}s^{2m} + d_{2m+2}s^{2m+2} + o(s^{2m+3})$

into [\(3.1\)](#page-4-0). Then from [\(3.3\)](#page-4-3), ([3.4\)](#page-4-4), $a_4 = -a_2^2/2$ and $k = 0$, the equation $p_{2m-1} = 0$ is reduced to

$$
4m^2(2m-1)b^2(1+2a_2b^2)^2d_{2m}\epsilon = 0.
$$
\n(3.11)

By ([3.11](#page-6-2)) we get $\epsilon = 0$. Thus by [\(3.3\)](#page-4-3) and [\(3.4\)](#page-4-4) we have $c = 0$ and $\nu = 0$.

Case 2. Assume $a_1 \neq 0$ and $4(n+1)a_4 + 2(n+1)a_2^2 + (n-2)a_1a_3 = 0$. In this case, the coefficient determinant of the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_3 = 0$ is not zero if $A_1 \neq 0$ or $A_2 \neq 0$ or $A_3 \neq 0$ (see [\(3.2\)](#page-4-1)). So if $A_1 \neq 0$ or $A_2 \neq 0$ or $A_3 \neq 0$, then immediately we get $k = 0$, $c = 0$, $\epsilon = 0$ and $\nu = 0$.

Thus we only need to consider the case $A_1 = 0$, $A_2 = 0$ and $A_3 = 0$. By an analysis on the equations $A_1 = 0, A_2 = 0$ and $A_3 = 0$, it is enough for us to prove $k = 0, c = 0, \epsilon = 0$ and $\nu = 0$ under one of the following two conditions:

$$
a_3 = 0, \quad a_4 = -\frac{1}{2}a_2^2, \quad a_6 = \frac{1}{6}[(n-2)a_1a_5 + 3a_2^3]
$$
\n(3.12)

and

$$
a_3 = -\frac{(4n^3 + 15n^2 + 16)a_1^3}{36(n^2 - 1)}, \quad a_4 = \frac{2(n+1)a_2^2 + (n-2)a_1a_3}{4(n+1)},
$$
\n(3.13)

$$
a_5 = \frac{(n+4)(4n^2 - n + 4)}{1440(n+1)^3(1-n)}T_0, \quad a_6 = \frac{T}{60(n+1)^2},\tag{3.14}
$$

where

$$
T_0 := a_1^3[2a_1^2n^3 + 5(3a_1^2 - 16a_2)n^2 + (6a_1^2 - 160a_2)n + 20(a_1^2 - 4a_2)],
$$

\n
$$
T := a_1(10a_5 + 20a_2a_3 - 3a_1^2a_3)n^3 + (30a_2^3 - 120a_3^2 + 45a_1a_2a_3 - 6a_1^3a_3)n^2
$$

\n
$$
+ (60a_2^3 + 15a_1^3a_3 - 30a_1a_5 - 276a_3^2 - 105a_1a_2a_3)n + 18a_1^3a_3 - 130a_1a_2a_3
$$

\n
$$
- 48a_3^2 + 30a_2^3 - 20a_1a_5.
$$

Case 2A. Assume [\(3.12\)](#page-6-3). Solving $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_4 = 0$ yields (assume $c \neq 0$)

$$
k = \frac{2(1 + 2a_2b^2)c}{a_1}, \quad \epsilon = \frac{2(a_1^2 - 2a_2)(1 + 2a_2b^2)c}{a_1}, \tag{3.15}
$$

$$
a_5 = 0, \quad \nu = \frac{2[(1+n+2a_2b^2)a_1^2 - 2a_2(1+2a_2b^2)]c}{a_1}.
$$
\n(3.16)

Plug (3.15) and (3.16) into (3.1) and then we get

$$
c(f_0 + f_2b^2 + f_4b^4) = 0,\t\t(3.17)
$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$, where the expressions of f_0, f_2 and f_4 are given in Remark [A.3](#page-13-1). If $c \neq 0$, then by ([3.17](#page-6-0)), solving $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$ yields $\phi(s) = a_1 s + \sqrt{1 + 2a_2 s^2}$. This case is excluded. So $c = 0$. Then by [\(3.15](#page-6-4)) and [\(3.16\)](#page-6-5) we get $k = 0, \epsilon = 0$ and $\nu = 0$.

Case 2B. Assume ([3.13](#page-6-6)) and ([3.14\)](#page-6-7). Plug (3.13) and (3.14) into $p_0 = 0, p_1 = 0, p_2 = 0$ and $p_4 = 0$ and we obtain $k = 0$, $\epsilon = 0$, $\nu = 0$ and $c = 0$, since the coefficient determinant of the linear system $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $p_4 = 0$ is not zero.

4 On [\(2.8\)](#page-3-1)

In this section, we assume $b \neq$ constant (in any neighborhood) and $\phi(s) \neq k_1\sqrt{1+k_2s^2}+k_3s$ for any constants $k_1 > 0$, k_2 and k_3 . We are going to show that ([2.8](#page-3-1)) has the non-trivial solutions only in the case of dimension $n = 2$. In the following discussion, we will also use Remark [3.1.](#page-3-6)

We first transform [\(2.8\)](#page-3-1) into a differential equation about $\phi(s)$ and then $(2.8) \times \phi(-\phi + s\phi')[\phi - s\phi'$ $(2.8) \times \phi(-\phi + s\phi')[\phi - s\phi'$ $(2.8) \times \phi(-\phi + s\phi')[\phi - s\phi'$ $+(b^2 - s^2)\phi'']^2$ gives

$$
-(b^2 - s^2)(\phi - s\phi')[(1 - \lambda s^2)\phi' + \lambda s\phi]\phi\phi''' - \{[1 + (\delta - \lambda)b^2 + (n\lambda - 2\lambda - \delta)s^2](\phi - s\phi') + (n - 2)s\phi'\}(b^2 - s^2)\phi(\phi'')^2 - \{[1 + (\delta - \lambda)b^2 + (n\lambda - 2\delta + \lambda)s^2](\phi - s\phi')^2 + [2(n\lambda - \delta + \lambda)s^2 - (n\lambda - 2\delta + 2\lambda)b^2 - n - 2]s\phi'(\phi - s\phi') - (n + 1)(b^2 - 2s^2)(\phi')^2\} \times (\phi - s\phi')\phi'' - [\delta(\phi - s\phi')^2 - (n\lambda - \delta + \lambda)s\phi'(\phi - s\phi') - (n + 1)(\phi')^2] \times (\phi - s\phi')^2 = 0.
$$
\n(4.1)

Express the power series of $\phi(s)$ at $s = 0$ as

$$
\phi(s) = 1 + a_1s + a_2s^2 + a_3s^3 + \dots = 1 + \sum_{i=1}^{\infty} a_i s^i.
$$

Let p_i be the coefficients of s^i in ([4.1\)](#page-7-0). We need to compute p_0, p_1, p_2 and p_3 first, and their expressions are given in Remark [A.4.](#page-14-0) In the following, we will solve λ and δ in two cases.

Case 1. Assume $a_1 = 0$ and $a_3 = 0$. We are going to show that this case is excluded.

Plugging $a_1 = 0$ and $a_3 = 0$ into $p_0 = 0$ yields

$$
\delta = \frac{2a_2}{1 + 2a_2b^2} (\lambda b^2 - 1).
$$
\n(4.2)

Since $\phi(s) \neq \sqrt{1 + 2a_2s^2}$, there exists some minimal integer *m* such that

$$
a_{2m+1} \neq 0
$$
, $m \ge 2$, or $a_{2m} \neq C_{\frac{1}{2}}^{m} (2a_2)^m$, $m \ge 2$, (4.3)

where C^i_μ 's are the generalized combination coefficients. Then we will determine λ in the two cases of [\(4.3\)](#page-7-2).

Case 1A. Assume $a_{2m+1} \neq 0$ in [\(4.3](#page-7-2)). In this case, we need to compute p_{2m-1} . For this, express $\phi(s)$ as

$$
\phi(s) = g(s) + h(s),\tag{4.4}
$$

where

$$
g(s) := 1 + \sum_{i=1}^{\infty} a_{2i} s^{2i}, \quad h(s) := \sum_{i=m}^{\infty} a_{2i+1} s^{2i+1}.
$$

Plug ([4.4\)](#page-7-3) into ([4.1\)](#page-7-0) and then we write the left-hand side of (4.1) as $P_1 + P_2$, where every term of P_1 includes at least *h* or its derivatives h', h'' and h'''' , and P_2 is just the left-hand side of ([4.1\)](#page-7-0) with $\phi(s)$ being replaced with $g(s)$. Among h, h', h'' and h'''' , the function h'''' has the power series of the least degree $2m-2$. Furthermore, it is easy to see that the power series of P_2 has no term of odd degree.

Thus by the above analysis we see that, to get p_{2m-1} , it is sufficient to put

$$
g(s) = 1 + a_2 s^2 + o(s^3)
$$
, $h(s) = a_{2m+1} s^{2m+1} + o(s^{2m+2})$,

and plug [\(4.4](#page-7-3)) into [\(4.1](#page-7-0)). Then by $p_{2m-1} = 0$, $a_{2m+1} \neq 0$ and ([4.2\)](#page-7-4) we obtain

$$
\lambda = \frac{1 - 2(2m - 1)a_2 b^2}{2m b^2}.
$$
\n(4.5)

Case 1B. Assume all $a_{2i+1} = 0$ ($i \ge 0$), and assume $a_{2m} \ne C_{\frac{1}{2}}^m (2a_2)^m$ in [\(4.3](#page-7-2)). Express $\phi(s)$ as

$$
\phi(s) = g(s) + h(s),\tag{4.6}
$$

where

$$
g(s) := \sqrt{1 + 2a_2s^2}
$$
, $h(s) := \sum_{i=m}^{\infty} d_{2i} s^{2i}$, $d_{2m} \neq 0$.

Plug [\(4.6\)](#page-8-1) into [\(4.1\)](#page-7-0) and then we write the left-hand side of ([4.1](#page-7-0)) as $P_1 + P_2$, where every term of P_1 includes at least *h* or its derivatives h', h'' and h'''' , and P_2 which is just the left-hand side of (4.1) (4.1) with $\phi(s)$ being replaced with $g(s)$, will vanish when we plug ([4.2\)](#page-7-4) into it. Among h, h', h'' and h'''' , the function $h^{\prime\prime\prime\prime}$ has the power series of the least degree $2m-3$.

Now by the above analysis, to compute p_{2m-2} in [\(4.1\)](#page-7-0), it is sufficient to put

$$
g(s) = 1 + a_2s^2 + o(s)
$$
, $h(s) = d_{2m}s^{2m} + o(s^{2m+1})$

in [\(4.6](#page-8-1)) and plug ([4.6\)](#page-8-1) into ([4.1\)](#page-7-0). Then using ([4.2](#page-7-4)) and $d_{2m} \neq 0$, by $p_{2m-2} = 0$ we obtain

$$
\lambda = \frac{1 - 4(m - 1)a_2 b^2}{(2m - 1)b^2}.
$$
\n(4.7)

Now we have solved λ in the two cases of ([4.3](#page-7-2)). It is easy to see that ([4.5\)](#page-7-5) and ([4.7\)](#page-8-2) can be written in the following form:

$$
\lambda = \frac{1 - 2(k - 1)a_2 b^2}{kb^2},\tag{4.8}
$$

where $k \geqslant 3$ is an integer.

Plugging (4.2) and (4.8) (4.8) into (4.1) (4.1) yields

$$
f_0 + f_2 b^2 + f_4 b^4 = 0,\t\t(4.9)
$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$ given in Remark [A.5.](#page-14-1) Then by ([4.9](#page-8-0)), solving $f_0 = 0$, *f*₂ = 0 and *f*₄ = 0 with ϕ (0) = 1 yields ϕ (*s*) = $\sqrt{1 + 2a_2s^2}$. This case is excluded.

Case 2. Assume $a_1 \neq 0$ or $a_3 \neq 0$. We are going to show that for one case, there are the non-trivial solutions for $\phi(s)$ in dimension $n = 2$.

Case 2A. Assume $a_1 = 0$ and $a_3 \neq 0$. It follows that $a_4 = -\frac{1}{2}a_2^2$ from $p_0 = 0$, $p_1 = 0$, $p_2 = 0$ and $a_1 = 0$. Then by $p_0 = 0$, $p_1 = 0$, $p_3 = 0$, $a_1 = 0$ and $a_4 = -\frac{1}{2}a_2^2$ we get a contradiction.

Case 2B. Assume $a_1 \neq 0$. Solving λ and δ from $p_0 = 0$ and $p_1 = 0$ gives

$$
\lambda = \frac{B_4 b^4 + B_2 b^2 + B_0}{T}, \quad \delta = \frac{C_4 b^4 + C_2 b^2 + C_0}{T}, \tag{4.10}
$$

where

$$
B_4 := 4(n+1)a_1^2a_2(a_1a_2+3a_3) - 8(6a_4a_2 - 9a_3^2 + na_2^3 + 4a_2^3)a_1 - 24a_2^2a_3,
$$

\n
$$
B_2 := (n+1)a_1^2(4a_1a_2+6a_3) - (8a_2^2n+20a_2^2+24a_4)a_1,
$$

\n
$$
B_0 := (n+1)a_1(a_1^2-2a_2)+6a_3,
$$

\n
$$
C_4 := -4(n+1)a_1^2a_2(a_1a_2+3a_3) + 8(4a_2^3+6a_4a_2+a_2^3n-9a_3^2)a_1 + 24a_2^2a_3,
$$

\n
$$
C_2 := (n+1)a_1(-2(n+2)a_2a_1^2-18a_3a_1+8a_2^2) + 12a_3a_2,
$$

\n
$$
C_0 := -(n+1)^2a_1^3 + 2(n+1)a_2a_1,
$$

\n
$$
T := (2a_2b^2+1)[(12a_3+2a_2a_1(n+1))b^2+a_1(n+1)].
$$

Then plugging (4.10) into $p_2 = 0$ yields

$$
a_4 = -\frac{1}{2}a_2^2 - a_1 a_3,\tag{4.11}
$$

66 Cheng X Y *et al. Sci China Math* January 2018 Vol. 61 No. 1

$$
a_5 = -\frac{a_3[n^2a_1^3 + (3a_3 + 20a_1a_2 - 6a_1^3)n + 20a_1a_2 - 21a_3 - 7a_1^3]}{10(n+1)a_1},
$$
\n(4.12)

$$
(n-7)a_3^2(na_1^3+a_1^3-6a_3)=0.
$$
\n(4.13)

By [\(4.13\)](#page-9-1), we break our discussion into the following three steps.

(I) If $n = 7$ and $a_3 \neq 0$, plugging ([4.10](#page-8-4)) together with $n = 7$, ([4.11\)](#page-8-5) and ([4.12\)](#page-9-2) into $p_3 = 0$ yields

$$
q_4b^4 + q_2b^2 + q_0 = 0,
$$

where

$$
q_4 := -24a_1(4a_2a_1 + 3a_3)a_6 - 4a_2(-12a_2^3a_1^2 - 9a_2^2a_1a_3 - 9a_2a_3^2 - 56a_3a_2a_1^3 - 60a_1^2a_3^2 + 12a_1^5a_3),
$$

\n
$$
q_2 := (36a_2 + 12a_1^2)a_3^2 + 8a_1^3(-3a_1^2 + 10a_2)a_3 + 24a_1^2(a_2^3 - 2a_6),
$$

\n
$$
q_0 := a_3(9a_3 - 16a_1^3).
$$

So we have $q_0 = 0$, $q_2 = 0$ and $q_4 = 0$, which implies a contradiction since $a_1 \neq 0$ and $a_3 \neq 0$.

(II) If $a_3 = 0$, then plug ([4.11\)](#page-8-5) and $a_3 = 0$ into ([4.10](#page-8-4)) and we can get

$$
\lambda = a_1^2 - 2a_2, \quad \delta = \frac{na_1^2 + (1 + 2a_2b^2)(a_1^2 - 2a_2)}{1 + 2a_2b^2}.
$$
\n(4.14)

Plugging ([4.14](#page-9-3)) into ([4.1](#page-7-0)) yields

$$
f_0 + f_2 b^2 + f_4 b^4 = 0,\t\t(4.15)
$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$, where the expressions of f_0, f_2 and f_4 are given in Remark [A.6.](#page-14-2) Then by ([4.15](#page-9-0)), solving $f_0 = 0, f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$ yields

$$
\phi(s) = a_1 s + \sqrt{1 + 2a_2 s^2}.
$$

This case is excluded.

(III) Assume

$$
a_3 = \frac{1}{6}(n+1)a_1^3.
$$
\n(4.16)

Plugging ([4.10](#page-8-4)) together with [\(4.11\)](#page-8-5), ([4.12\)](#page-9-2) and ([4.16\)](#page-9-4) into $p_3 = 0$ yields

$$
(\cdots)b^2 + (n+1)(n-2)a_1^4 = 0,
$$

which implies $n = 2$. Plugging [\(4.10\)](#page-8-4) together with ([4.11\)](#page-8-5), ([4.16](#page-9-4)) and $n = 2$ into ([4.1](#page-7-0)) yields

$$
f_0 + f_2 b^2 + f_4 b^4 = 0,\t\t(4.17)
$$

where f_0, f_2 and f_4 are some ODEs about $\phi(s)$ given by

$$
f_0 := [2(a_1^2 - a_2)s(\phi - s\phi') + \phi']s^2\phi\phi''' - s^2[1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2
$$

+ { (1 - 2a_2s^2)(\phi - s\phi')^2 + [4 + 2(3a_1^2 - 4a_2)s^2]s\phi'(\phi - s\phi') + 6s^2(\phi')^2} \phi''
+ [(3a_1^2 - 2a_2)(\phi - s\phi')^2 + (4a_2 - 3a_1^2)s\phi'(\phi - s\phi') - 3(\phi')^2](\phi - s\phi'),

$$
f_2 := \{ [(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 2(a_2 - a_1^2)]s(\phi - s\phi') - (1 - 2a_2s^2)\phi'\} \phi\phi''' \times [1 - (2a_2 + a_1^2)s^2][1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2 + \{ [(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 4a_1^2](\phi - s\phi')^2 + [4(2a_2 + a_1^2)(3a_1^2 - 2a_2)s^2 + 2(6a_2 - a_1^2)]s\phi'(\phi - s\phi') + 3(4a_2s^2 - 1)(\phi')^2\} \phi'' + \{ (2a_2 + a_1^2)(2a_2 - 3a_1^2)(3s\phi' - \phi)(\phi - s\phi') - 6a_2(\phi')^2\} (\phi - s\phi')
$$

and

$$
f_4 := [(2a_2 + a_1^2)(2a_2 - 3a_1^2)s(\phi - s\phi') - 2a_2\phi']\phi\phi'''
$$

+
$$
(2a_2 + a_1^2)[1 + (2a_2 - 3a_1^2)s^2]\phi(\phi'')^2
$$

+
$$
[(2a_2 + a_1^2)(2a_2 - 3a_1^2)(\phi - s\phi')(3s\phi' - \phi) - 6a_2(\phi')^2]\phi''
$$

Then by ([4.17\)](#page-9-5), we get $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$. To solve the system of ODEs $f_0 = 0$, $f_2 = 0$ and $f_4 = 0$ with $\phi(0) = 1$, we first express ϕ'' in terms of ϕ and ϕ' by eliminating ϕ''' from

$$
s^{-2}f_0 + s^2 f_4 + f_2 = 0.
$$

Then plug the expression of ϕ'' into f_0 and we can get the expression of ϕ''' . Now plugging the expressions of ϕ'' and ϕ''' into f_4 , we obtain an ODE equivalent to

$$
0 = 4(1 + k_1s^2)(1 + k_2s^2)^2\phi'^2 - 4s(1 + k_2s^2)(k_1 + k_2 + 2k_1k_2s^2)\phi\phi'
$$

+
$$
[k_1 - k_2 + 4k_1k_2s^2(1 + k_2s^2)]\phi^2,
$$
 (4.18)

where we put

$$
k_1 := 2a_2 - 3a_1^2, \quad k_2 := 2a_2 + a_1^2. \tag{4.19}
$$

.

Then solving (4.18) (4.18) with $\phi(0) = 1$ yields (1.3) .

5 Proof of Theorem [1.1](#page-1-0)

By the result in [[4\]](#page-11-8), we only need to consider the case shown in Lemma [2.1,](#page-3-4) and only in this case it *√* possibly occurs that $b \neq$ constant. Now suppose $\phi(s) \neq \sqrt{1 + \epsilon s^2 + ks}$ for any constants ϵ and k , and $b \neq$ constant in any neighborhood. The discussions in Sections [3](#page-3-5) and [4](#page-7-1) imply that $\phi(s)$ is given by ([1.3](#page-1-1)) and the dimension $n = 2$ (see Case 2B(III) in Section [4](#page-7-1)). Furthermore, plugging ([4.11\)](#page-8-5) and ([4.16\)](#page-9-4) and $n = 2$ into [\(4.10\)](#page-8-4) yields

$$
\delta = \frac{(3a_1^2 - 2a_2)[1 + (2a_2 + a_1^2)b^2]}{1 + 2a_2b^2},\tag{5.1}
$$

$$
\lambda = \frac{(3a_1^2 - 2a_2)(2a_2 + a_1^2)b^2 + 2(a_1^2 - a_2)}{1 + 2a_2b^2}.
$$
\n(5.2)

Since we have proved in Section [3](#page-3-5) that $k = 0$ and $\epsilon = 0$, by [\(2.5\)](#page-3-7) and ([5.2\)](#page-10-2) we obtain [\(1.2\)](#page-1-3). At the end of Section [4,](#page-7-1) we have shown that $\phi(s)$ is given by ([1.3](#page-1-1)) by solving ([4.18\)](#page-10-1) with $\phi(0) = 1$. Besides, the proof in Section [3](#page-3-5) also shows $c = 0$, which implies $S = 0$.

Remark 5.1. Plugging ([5.1\)](#page-10-3) and ([5.2\)](#page-10-2) into ([2.9\)](#page-3-8), we get

$$
f(b) = \sqrt{1 + (2a_2 - 3a_1^2)b^2}.
$$
\n(5.3)

One possibly wonders whether we can get (5.3) (5.3) from (2.2) (2.2) (2.2) when we plug (1.3) and $n = 2$ into (2.2) (2.2) . This is true. One way to check it is to expand ([2.2\)](#page-2-1) and ([5.3](#page-10-4)) into power series, respectively. One may try a direct verification.

6 Examples

In this section, we will construct some examples for the metric F given by (1.2) (1.2) – (1.4) (1.4) .

Since every two-dimensional Riemann metric is locally conformally flat, we may put

$$
\alpha = e^{\sigma} \sqrt{(y^1)^2 + (y^2)^2},\tag{6.1}
$$

where $\sigma = \sigma(x)$ is a scalar function and $x = (x^1, x^2)$. Then β can be expressed as

$$
\beta = e^{\sigma} (\xi y^1 + \eta y^2). \tag{6.2}
$$

Now we can show that ([1.2](#page-1-3)) is equivalent to the following system of PDEs:

$$
\sigma_1 = \frac{T_1}{T_0}, \quad \sigma_2 = \frac{T_2}{\xi T_0}, \quad \xi_1 = -\frac{\eta(\eta \eta_2 + \xi \xi_2 + \xi \eta_1)}{\xi^2},\tag{6.3}
$$

where

$$
T_0 := \xi[1 + k_2(\xi^2 + \eta^2)][1 + k_1(\xi^2 + \eta^2)],
$$

\n
$$
T_1 := 2\xi\eta[(3k_1 - k_2)/4 + k_1k_2(\xi^2 + \eta^2)]\xi_2
$$

\n
$$
- [1 + (k_1 + k_2)\xi^2/2 + (k_2 - k_1)\eta^2/2 + k_1k_2(\xi^4 - \eta^4)]\eta_2,
$$

\n
$$
T_2 := [(k_2 - k_1)\xi^2/2 + (k_1 + k_2)\eta^2 - k_1k_2(\xi^4 - \eta^4)](\xi\xi_2 + \eta\eta_2)
$$

\n
$$
+ \xi[1 + k_2(\xi^2 + \eta^2)][1 + k_1(\xi^2 + \eta^2)]\eta_1.
$$

Proposition 6.1. *Let* $F = \alpha \phi(s)$ *and* $s = \beta/\alpha$ *be a two-dimensional* (α, β) *-metric on* \mathbb{R}^2 *, where* $b = ||\beta||_{\alpha} \neq$ constant *and* $\phi(s)$ *satisfies* [\(1](#page-1-1).3). Then *F is of isotropic S-curvature if and only if* α *and* β *can be locally defined by* [\(6](#page-11-12).1) *and* (6.2)*, where* ξ, η *and* σ *are some scalar functions satisfying* (6.3)*. In this case,* $S = 0$ *.*

If we take $\xi = x^2$ and $\eta = -x^1$, then σ determined by [\(6.3\)](#page-11-12) is given by

$$
\sigma = -\frac{1}{4} \{ \ln[1 + k_2 |x|^2] + 3\ln[1 + k_1 |x|^2] \},\tag{6.4}
$$

where $|x|^2 := (x^1)^2 + (x^2)^2$. Thus we obtain the following example.

Example 6.2. Let *F* be a two-dimensional (α, β) -metric defined by ([1.3](#page-1-1)). Define α and β by ([6.1\)](#page-10-5) and [\(6.2\)](#page-11-11), where $\xi = x^2$ and $\eta = -x^1$, and σ is given by [\(6.4\)](#page-11-13). Then *F* is of isotropic S-curvature $S = 0$ by Theorem [1.1.](#page-1-0) Furthermore, we have $b^2 = ||\beta||^2_{\alpha} = |x|^2 \neq \text{constant}$.

In Example [6.2](#page-11-9), if we take $k_1 = 0$ and $k_2 = 4$, then by ([1.3\)](#page-1-1) and ([1.4\)](#page-1-2), we obtain

$$
\phi(s) = (1 + 4s^2)^{\frac{1}{4}} \sqrt{2s + \sqrt{1 + 4s^2}},
$$

and thus we get Example [1.2.](#page-1-6)

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 11371386 and 11471226) and the European Union's Seventh Framework Programme (FP7/2007-2013) (Grant No. 317721).

References

- 1 Bao C, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J Differential Geom, 2004, 66: 391–449
- 2 Cheng X, Mo X, Shen Z. On the flag curvature of Finsler metrics of scalar curvature. J Lond Math Soc (2), 2003, 68: 762–780
- 3 Cheng X, Shen Z. Randers metrics with special curvature properties. Osaka J Math, 2003, 40: 87–101
- 4 Cheng X, Shen Z. A class of Finsler metrics with isotropic S-curvature. Israel J Math, 2009, 169: 317–340
- 5 Cheng X, Shen Z. Finsler Geometry—An Approach via Randers Spaces. Beijing: Science Press, 2012
- 6 Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128: 306–328
- 7 Shen Z. Landsberg Curvature, S-Curvature and Riemann Curvature. Cambridge: Cambridge University Press, 2004
- 8 Shen Z, Xing H. On Randers metrics of isotropic S-curvature. Acta Math Sin (Engl Ser), 2008, 24: 789–796
- 9 Yang G. On Randers metrics of isotropic S-curvature (in Chinese). Acta Math Sinica (Chin Ser), 2009, 52: 1147–1156
- 10 Yang G. On Randers metrics of isotropic S-curvature II. Publ Math Debrecen, 2011, 78: 71–87
- 11 Yang G. On a class of Finsler metrics of Einstein-reversibility. ArXiv:1310.3460, 2013

Appendix A

Remark A.1. Let p_i be the coefficients of s^i in [\(3.1\)](#page-4-0). We have

$$
p_{0} = (-a_{1} - 2b^{2}a_{1}a_{2} - a_{1}a_{1} - 6b^{2}a_{3} - 2a_{1}a_{2}b^{2} + 4(2a_{2}b^{2} + 1)^{2}(n + 1)c,
$$

\n
$$
p_{1} = (-4a_{2} - 6a_{1}a_{3}b^{2} - 12b^{2}a_{3}a_{1} - 20a_{2}^{2}b^{2} - 24b^{2}a_{4})k - 2(2a_{2}b^{2} + 1)^{2}v
$$
\n
$$
+ 4(2a_{2}b^{2} + 1)(2b^{2}a_{1}a_{2} + 6b^{2}a_{3} + a_{1})(n + 1)c + 4a_{2}b^{2}(2a_{2}b^{2} + 1)c,
$$

\n
$$
p_{2} = (-60b^{2}a_{5} + 3a_{3}a_{7} - 3a_{3} + 6a_{1}a_{2} - 36b^{2}a_{4}a_{1} - 114b^{2}a_{3}a_{2} + 6a_{2}a_{3}a_{3}b^{2} + 6a_{1}a_{2}^{2}b^{2})
$$
\n
$$
+ 2a_{2}a_{1} - 14a_{2}^{2}a_{1}b^{2} - 12a_{1}a_{4}a_{2}b^{2} + 12(24b^{2}a_{3}a_{1} - 4a_{2} + a_{1}^{2} - 4a_{2}^{2}b^{2} + 8a_{2}^{3}b^{4}
$$
\n
$$
+ 36a_{3}^{2}b^{4} + 48a_{2}b^{4}a_{1}a_{3} + 24b^{2}a_{4} + 4a_{2}b^{2}a_{1}^{2} + 44a_{4}^{2}a_{2}b^{4} + 48a_{2}b^{4}a_{4})/n + 1)c
$$
\n
$$
+ (a_{1}n + 8a_{2}^{2}b^{4}a_{1} + 10a_{1}a_{3}^{2} + 8b^{2}a_{1}a_{2} + 42b_{4}a_{2} + 4a_{2}b^{4}a_{3} + 2a_{1}a_{2}^{2}b_{4}^{2} + 48a_{2}b
$$

+
$$
(-240 a_2 b^4 a_6 - 480 a_3 b^4 a_5 - 80 b^2 a_5 a_1 + 168 a_3^2 b^2 + 58 a_4 - 120 b^2 a_6
$$

\n- $288 a_3 b^4 a_1 a_4 - 120 a_3^2 b^4 a_2 - 104 a_2^2 b^4 a_4 + 136 a_2 a_1 b^2 a_3 + 32 a_3 a_1 - 288 a_4^2 b^4$
\n- $6 a_2^2 - 160 a_2 b^4 a_1 a_5 + 24 a_2^3 b^2 + 208 a_2 b^2 a_4)v$.

Remark A.2. In ([3.2](#page-4-1)), *A*1*, A*² and *A*³ are given by

$$
A_{1} = 432 a_{3}^{3}a_{1}^{2} + 224 a_{2}^{5}a_{1} - 1440 a_{2}^{3}a_{5} + 288 a_{2}^{4}a_{3} - 48 a_{1}^{3}a_{2}^{4} - 4320 a_{3}^{2}a_{5} \\ - 2880 a_{4}a_{2}a_{5} + 2160 a_{6}a_{2}a_{3} + 5328 a_{2}^{2}a_{3}a_{4} + 864 a_{1}a_{3}^{2}a_{4} - 960 a_{2}a_{5}ma_{1}a_{3} \\ + 80 a_{2}^{2}a_{1}^{2}a_{5} - 16 a_{2}^{5}n^{2}a_{1} + 240 a_{1}a_{2}^{2}a_{6} - 48 a_{1}^{3}na_{2}^{4} - 24 a_{1}^{4}a_{2}^{2}a_{3} + 432 a_{3}^{3}a_{1}^{2}n \\ + 72 a_{3}^{2}a_{1}^{3}a_{2} - 108 a_{2}na_{3}^{3} - 96 a_{1}^{3}a_{2}^{2}a_{4} + 688 a_{2}^{3}a_{4}a_{1} - 32 a_{2}^{3}n^{2}a_{4}a_{1} \\ + 40 a_{2}^{2}a_{5}na_{1}^{2} + 240 a_{2}^{2}a_{1}na_{6} - 40 a_{2}^{2}a_{1}^{2}n^{2}a_{5} + 108 a_{3}^{2}a_{1}^{3}na_{2} + 12 a_{1}^{4}a_{2}^{2}n^{2}a_{3} \\ - 12 a_{1}^{4}na_{2}^{2}a_{3} - 96 a_{1}^{3}na_{2}^{2}a_{4} - 52 a_{1}^{2}n^{2}a_{3}a_{2}^{3} + 36 a_{1}^{3}n^{2}a_{3}^{2}a_{2} - 1008 a_{2}^{2}na_{3}^{2}a_{1} \\ - 432 a_{4}a_{1}^{2}a_{2}a_{3} + 864 a_{1}na_{4}a_{3}^{2} + 656 a_{1}na_{4}a_{3}^{3} - 92 a_{1}^{2}na_{2}^{3}a_{3} -
$$

Remark A.3. In ([3.17](#page-6-0)), f_0, f_2 and f_4 are given by (define $\phi_1 := \phi', \phi_2 := \phi''$ and $\phi_3 := \phi'''$)

$$
f_0 = -\phi s^2(s\phi_1 - \phi)(2a_2s^2 - s^2a_1^2 + 1)\phi_3 - s^3\phi(-s\phi a_1 - \phi sna_1 + n + 4s^2a_1^2
$$

+ $2s^2na_2 + s^2a_1^2n - 4 - 8a_2s^2)\phi_2^2 + s(s\phi_1 - \phi)(-2s^3\phi_1a_2 + s^3\phi_1a_1^2 + s^3\phi_1na_1^2$
- $2s^3\phi_1na_2 + 6s^2\phi a_2 - 3s^2\phi a_1^2n - 3s^2\phi a_1^2 - 2s^2\phi na_2 - s\phi_1n - s\phi_1 + 2s\phi^2na_1$
+ $2s\phi^2a_1 + \phi - \phi n)\phi_2 - (s\phi_1 - \phi)^2(2s^2\phi_1a_2n - s^2\phi_1a_1^2 + 2s^2\phi_1a_2 - s^2\phi_1na_1^2$
- $4s\phi a_2 + 2s\phi a_1^2n + 2s\phi a_1^2 + \phi_1n + \phi_1 - \phi^2na_1 - \phi^2a_1),$

$$
f_2 = -\phi(-1 + 2a_2s^2)(2a_2s^2 - s^2a_1^2 + 1)(s\phi_1 - \phi)\phi_3 + s\phi(-2s\phi a_1 - 2\phi sna_1
$$

- $8s^4a_2a_1^2 + 16s^4a_2^2 + n - 4s^4na_2^2 - 4 + 4s^2a_1^2 + 2s^4na_2a_1^2 + 3s^2a_1^2n)\phi_2^2$
+ $(s\phi_1 - \phi)(-4s^4\phi_1a_2^2 - 4s^4\phi_1na_2^2 + 2s^4\phi_1na_2a_1^2 + 2s^4\phi_1a_2a_1^2 + 12s^3\phi a_2^2$
- $6s^3\phi a_2a_1^2 - 4s^3\phi na_2^2 + 2s^3\phi na_2a_1^2 - s^2\phi_1a_1^2 - s^2\phi_1na$

$$
+4 s\phi a_2 - 2 s\phi a_1^2 - \phi_1 n - \phi_1)\phi_2.
$$

Remark A.4. Let p_i be the coefficients of s^i in [\(4.1\)](#page-7-0). We have

$$
p_0 = 2 a_2 b^2 (1 + 2 a_2 b^2) \lambda - (1 + 2 a_2 b^2)^2 \delta + 6 a_1 b^2 a_3 - 2 a_2 + a_1^2 n + 2 b^2 a_1^2 a_2 - 4 a_2^2 b^2 + 2 a_1^2 n a_2 b^2 + a_1^2,
$$

$$
p_1 = (1 + 2 a_2 b^2)(2 a_2 b^2 a_1 + 12 b^2 a_3 + a_1 n + a_1) \lambda - (1 + 2 a_2 b^2)(2 a_2 b^2 a_1 + 12 b^2 a_3 + a_1) \delta + 12 b^2 a_1^2 a_3 - 6 a_3 + 4 a_1 n a_2^2 b^2 - 12 a_2 b^2 a_3 + 2 a_1 n a_2 + 24 a_1 b^2 a_4 + 6 a_1^2 n a_3 b^2 + 12 a_2^2 a_1 b^2,
$$

$$
p_2 = 6 b^2 (3 a_3 a_1 + 4 a_2 b^2 a_3 a_1 + 8 b^2 a_2 a_4 + a_2^2 + 6 a_4 + 6 a_3^2 b^2 + a_1 n a_3) \lambda + (12 a_2^2 b^2 - 24 b^2 a_4 - 48 a_2 b^4 a_4 - 36 a_3^2 b^4 - 12 a_1 b^2 a_3 + 6 a_2 - 24 a_2 b^4 a_3 a_1) \delta + 72 a_2 b^2 a_3 a_1 - 6 a_1^2 n a_2^2 b^2 - 6 a_2 a_1^2 + 36 b^2 a_1^2 a_4 - 12 a_4 + 6 a_2^2 + 60 a_1 b^2 a_5 - 6 a_1^2 n a_2 - 12 a_3 a_1 + 6 a_2^2 a_1^2 b^2 - 18 a_3^2 b^2 + 24 a_2^3 b^2 + 12 a_1^2 n a_4 b^2 + 12 a_1 n a_2 b^2 a_3,
$$

$$
p_3 = (24 a_2 b^2 a_3 + 80 b^2 a_5 - 7 a_2 a_1 - 3 a_3 n - 7 a_1 n a_2 + 48 a_1 b^2 a_4 - 4 a
$$

Remark A.5. In ([4.9](#page-8-0)), f_0, f_2 and f_4 are given by (define $\phi_1 := \phi', \phi_2 := \phi''$ and $\phi_3 := \phi'''$)

$$
f_0 = s(\phi - s\phi_1)(\phi s^2(\phi - s\phi_1)\phi_3 - \phi s^3(-2 + n)\phi_2^2 + s(\phi - s\phi_1)(\phi + s\phi_1)(n + 1)\phi_2 - \phi_1(\phi - s\phi_1)^2(n + 1)),
$$

\n
$$
f_2 = (-\phi s^3(k + 2 s^2 a_2 k - 4 a_2 s^2)\phi_1^2 + \phi^2 s^2(1 - 8 a_2 s^2 + k + 4 s^2 a_2 k)\phi_1 - s\phi^3(-4 a_2 s^2 + 1 + 2 s^2 a_2 k))\phi_3 + (-\phi s^3(12 a_2 s^2 + 2 - 3 k - 6 s^2 a_2 k + 2 s^2 n a_2 k - 4 s^2 n a_2 + n k)\phi_1 + \phi^2 s^2(-4 s^2 n a_2 - k + 2 s^2 n a_2 k + 12 a_2 s^2 - 6 s^2 a_2 k + n))\phi_2^2 + (-s^3(k + 2 s^2 a_2 k - 4 a_2 s^2)(n + 1)\phi_1^3 + \phi s^2(2 s^2 n a_2 k + 2 n + k - 4 s^2 n a_2 - 12 a_2 s^2 + 6 s^2 a_2 k)\phi_1^2 + \phi^2 s(-2 + k)(n - 6 a_2 s^2 - 1 + 2 s^2 n a_2)\phi_1 - \phi^3(-2 + k)(-2 a_2 s^2 + 2 s^2 n a_2 - 1))\phi_2 - s^2(-1 - 4 a_2 s^2 + k + 2 s^2 a_2 k)(n + 1)\phi_1^4 + 2 \phi s(k - 1 + nk - n + 3 s^2 n a_2 k + 4 s^2 a_2 k - 6 s^2 n a_2 - 8 a_2 s^2)\phi_1^3 - \phi^2(-12 s^2 n a_2 + k + 12 s^2 a_2 k - 1 + nk - 24 a_2 s^2 - n + 6 s^2 n a_2 k)\phi_1^2 + 2 s\phi^3 a_2(-2 + k)(n + 4)\phi_1 - 2 \phi^4 a_2(-2 + k),
$$

\n
$$
f_4 = (\phi s(-1 - 4 a_2 s^2 + k + 2 s^2 a_2 k)\phi
$$

Remark A.6. In ([4.15](#page-9-0)), f_0, f_2 and f_4 are given by (define $\phi_1 := \phi', \phi_2 := \phi''$ and $\phi_3 := \phi'''$)

$$
f_0 = -s^2\phi \left(-\phi + s\phi_1\right)\left(-\phi_1 s^2 a_1{}^2 + 2\phi_1 s^2 a_2 + s\phi a_1{}^2 - 2s\phi a_2 + \phi_1\right)\phi_3
$$

$$
-s^{2}\phi (3 s^{3}\phi_{1}a_{1}^{2}+2 s^{3}\phi_{1}na_{2}-6 s^{3}\phi_{1}a_{2}-3 s^{2}\phi_{1}a_{1}^{2}+6 s^{2}a_{2}\phi-2 s^{2}\phi_{1}a_{2}\\-3 s\phi_{1}+\phi_{1}s n+\phi)\phi_{2}^{2}-(-\phi+s\phi_{1})(-s^{4}\phi_{1}^{2}na_{1}^{2}-s^{4}\phi_{1}^{2}a_{1}^{2}+2 s^{4}\phi_{1}^{2}a_{2}\\+2 s^{4}\phi_{1}^{2}na_{2}+2 s^{3}\phi_{1}\phi a_{1}^{2}n+2 s^{3}\phi_{1}\phi a_{1}^{2}-4 s^{3}\phi_{1}a_{2}+s^{2}\phi_{1}^{2}n+ s^{2}\phi_{1}^{2}\\+2 s^{2}\phi_{2}^{2}-s^{2}\phi_{2}^{2}na_{1}^{2}-2 s^{2}\phi_{1}^{2}a_{2}-s^{2}\phi_{1}^{2}n+4\phi_{1}s+\phi^{2})\phi_{2}\\-(-\phi+s\phi_{1})^{2}(2 s^{2}\phi_{1}^{2}a_{2}-s^{2}\phi_{1}^{2}a_{1}^{2}-s^{2}\phi_{1}^{2}na_{1}^{2}+2 s^{2}\phi_{2}\phi_{1}^{2}n\\-4 s\phi_{1}\phi_{1}a_{2}+2 s\phi_{1}\phi_{1}a_{1}^{2}+2 s\phi_{1}\phi_{1}a_{2}^{2}-s^{2}\phi_{1}^{2}na_{1}^{2}+2 s^{2}\phi_{2}\phi_{1}^{2}n\\-4 s\phi_{1}a_{2}+2 s\phi_{1}\phi_{1}^{2}+2 s\phi_{1}\phi_{1}^{2}n-2 s\phi_{1}\phi_{1}a_{2}+4 s^{4}\phi_{1}^{2}+2 s^{2}\phi_{2}-\phi_{1})\phi_{3}\\-\phi (-4 \phi s^{4}na_{2}^{2}+2 s^{2}\phi_{1}a_{2}-4 s^{2}\phi_{2}+12 \phi s^{4}a_{2}^{2}+2 s\phi_{2}-\phi_{1})\phi_{3}\\-\phi (-4 \phi s^{4}na_{2}^{2}+2 s^{2}\phi_{1}a_{2}-4 s^{2}\phi_{2}+12 \phi_{3}^{2}a_{2}-s\phi_{1}^{2}+2 s\phi_{1}
$$