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Abstract In this paper, we mainly consider the initial boundary problem for a quasilinear parabolic equation

ut − div(|∇u|p−2∇u) = −|u|β−1u+ α|u|q−2u,

where p > 1, β > 0, q > 1 and α > 0. By using Gagliardo-Nirenberg type inequality, the energy method and

comparison principle, the phenomena of blowup and extinction are classified completely in the different ranges

of reaction exponents.
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1 Introduction

In this paper, the following initial boundary problem is considered:
ut −∆pu = −|u|β−1u+ α|u|q−2u, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ RN (N > 1) is a smoothly bounded domain and p > 1, β > 0, q > 1, α > 0. The operator ∆p

is defined as follows:

∆pu := div(|∇u|p−2∇u).

We also suppose that u0(x) > 0, u0(x) ̸≡ 0, u0(x) ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Problem (1.1) arises in the theory of nonstationary filtration of non-Newtonian (or dilatant) fluids and

combustion of solid fuels. The term −|u|β−1u, which is negative as we can prove later that u > 0, is called

a singular absorption term for β < 0 or a strong absorption one for 0 < β < 1 or a weak absorption one for

β > 1. α|u|q−2u is an inner source term. It has been known for many years that the term −|u|β−1u with
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β > 0 may lead to finite time extinction, i.e., there exists a T ∈ (0,+∞) such that u(x, t) is nontrivial

for t ∈ [0, T ) and u(x, t) ≡ 0 for t ∈ [T,+∞) a.e. in x ∈ Ω. On the other hand, α|u|q−2u may lead to

finite time blowup. However, if the two terms appear simultaneously in the first equation of (1.1), then

the solutions will exhibit complicated properties which will be studied later. To be specific, both blowup

and extinction can occur under some suitable conditions.

As the operator ∆p is degenerate for p > 2 and is singular for 1 < p < 2, it is impossible to consider

the classical solutions of (1.1) generally. However, the concept of weak solutions is enough for our study.

For the local existence of weak solutions of (1.1), various methods can be applied such as approximation

by regular solution (see [4, 35]), the fixed point method (see [32]), the method of extension of semigroup

(see [12]) and the developed Faedo-Galerkin method (see [2, 3, 13]).

As soon as the local existence is established, one may ask whether the weak solution is global or not.

Moreover, we are eager to know when the solution is global in time and when it blows up in finite time.

For the global solution, we also want to know whether it will become zero in finite time or not.

The phenomenon of finite time blowup was first considered by Fujita [10] in 1966. Since then, many

people devoted themselves to this problem. The main equations they studied are the heat equations of

the form ut −∆u = |u|p−1u in bounded or unbounded smooth domains in RN . The theory of blowup for

the heat equation is already developed; we refer the reader to [15,18,24,25,27] and the references therein.

While for the p-Laplacian equations of the form ut −∆pu = f(x, t, u,∇u), there are still many problems

worth studying, such as the blowup rate, the blowup time estimate, the asymptotic behavior of blowup

solutions, the blowup criteria and so on. Some related results can be found in [11, 13, 19, 23, 33–36] and

the references therein. To be specific, in [13,19,23,32,35], criteria for the finite time blowup to occur were

established in bounded domains for different kinds of source terms and values of p. Generally speaking,

finite time blowup may occur if f(x, t, s, r⃗) grows faster than sp−1 (p > 2) or s (1 < p < 2) (q = p − 1

or q = 1 is called the critical blowup exponent) when s → ∞ and the initial data is large enough.

In [11], Galaktionov and Posashkov studied the blowup set for the equation ut − div(|∇u|σ∇u) = uβ

with σ > 0, β > 1 and x ∈ RN . They proved that the radial solution will blow up at |x| = 0. For the

blowup time estimate, Zhou and Yang [38] considered the equation ut − div(|∇u|m−2∇u) = |u|p(x)−1u

with Dirichlet boundary condition on bounded domains. They obtained an upper bound of the blowup

time for some suitable conditions on m, p(x) and initial data. Zhao and Liang [36] considered a Cauchy

problem ut − ∆pu = uq in the radial situation and obtained the blowup rate upper bound is of the

order (T − t)−1/(q−1) for q > p − 1. In our latest papers [33, 34], we considered the equation ut −∆pu

= λum + µ|∇u|q with p > 2 and λµ < 0, and proved that u will blow up in finite time in the L∞-norm

sense if λ > 0, µ < 0 and m > max{p − 1, q}, q 6 p/2. For the blowup of more general p-Laplacian

equations, there are also some important results. In [29, 31], the Fujita exponent for equations with

weighted source of the form

∂u

∂t
= div(|∇u|p−2∇u) + k

1

|x|2
|∇u|m−1∇u · x+ |x|λup

was studied. In [22, 37], the global existence, blowup and the blowup point of solutions for the doubly

degenerate equations, i.e., equations with div(|∇um|p−2∇um) were carefully studied.

Finite time extinction is another important property of solutions of evolution equations. Since Kalash-

nikov first brought in the concept of extinction in 1974, it has attracted many mathematicians’ interests

and most of them focused on the fast diffusive equations (see [5–9, 14, 17, 30] for examples). Moreover,

in [28], the homogeneous p-Laplacian equation ut = ∆pu with p > 1, x ∈ RN was studied. It was shown

that extinction can happen if and only if 1 < p 6 pc = 2N/(N + 1). In [32], Yin and Jin considered

the equation ut − ∆pu = λuq with x ∈ Ω and 1 < p < 2. They proved that q = p − 1 is the crit-

ical extinction exponent. In [14], Gu considered the p-Laplacian equation ut − ∆pu = −|u|β−1u with

p > 1. In that paper, the conditions for extinction to occur were obtained for any p > 1 while the non-

extinction condition was obtained only for p > 2. For the equation with absorption and source terms,

i.e., ut −∆pu = λuq − βuk with 1 < p < 2 and 0 < q, k < 1, it was showed in [8] that the solution will

exhibit extinction phenomenon under the assumptions that u0(x) or λ is small enough and that β is large
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enough. In [16,23], the extinction phenomenon for p-Laplacian equations with Neumann boundary data

and nonlocal absorption term was studied.

In this paper, we will deal with (1.1) for any p > 1. In Section 2, we will give some basic concepts

and a weak comparison principle. Section 3 is devoted to the existence of the weak solution for (1.1) in

a general case. The extinction phenomenon will be discussed in Section 4. We will give some blowup

results under different conditions for u0(x) and p, β, q, α in Section 5. In Section 6, we will give some

discussions.

2 Preliminaries

Before giving the definition of weak solutions, we bring in the following function space:

V := {v ∈ Lp(0, T ;W 1,p
0 (Ω)) | ∂tv ∈ Lp′

(0, T ;W−1,p′
(Ω))}. (2.1)

Now, let us introduce the definition of the weak solution of (1.1).

Definition 2.1. Let QT = Ω × (0, T ), ST = ∂Ω × (0, T ), ∂QT = ST ∪ {Ω × {0}}. A function u ∈
V ∩ C(0, T ;L2(Ω)) is called a weak solution of (1.1) if it satisfies the following:

(1) for every nonnegative test-function φ ∈ V ∩ C(0, T ;L2(Ω)),∫∫
QT

(∂tuφ+ |∇u|p−2∇u · ∇φ)dxdt = −
∫∫

QT

(|u|β−1u− α|u|q−2u)φdxdt. (2.2)

(2) u(x, 0) = u0(x) for a.e. x ∈ Ω.

Moreover, if we replace “=” in (2.2) by “6” (“>”) and assume that u(x, 0) 6 (>)u0(x), u(x, t) |x∈∂Ω 6
(>)0, then the corresponding solution is called a sub-(sup-) solution.

For the weak solution of (1.1), we have the following weak comparison principle. Some similar results

can be found in [4, 19,32,33].

Proposition 2.2. Suppose that u and v are weak sub- and sup- solutions of (1.1), respectively. If u

and v are locally bounded, then u 6 v a.e. in QT .

Proof. Let φ = max{u− v, 0}. Then φ(x, 0) = 0, φ(x, t) |x∈∂Ω = 0. By Definition 2.1, φ(x, t) satisfies∫∫
QT

∂tφφdxdt+

∫∫
QT

(|∇u|p−2∇u− |∇v|p−2∇v)(∇u−∇v)dxdt︸ ︷︷ ︸
M

6 −
∫∫

QT

(|u|β−1u− |v|β−1v)φdxdt+ α

∫∫
QT

(|u|q−2u− |v|q−2v)φdxdt

6 −
∫∫

QT

(|u|β−1u− |v|β−1v)φdxdt︸ ︷︷ ︸
A

+L

∫∫
QT

φ2dxdt, (2.3)

where L is a constant depending on the sup-norms of u and v.

Let us now estimate terms M and A appearing in (2.3). By the monotone inequality (see [20]), we

have M > 0 for any p > 1. For term A, by the fact that
|u|β−1u− |v|β−1v = uβ − vβ > 0, if u > v > 0,

|u|β−1u− |v|β−1v = uβ + |v|β > 0, if u > 0 > v,

|u|β−1u− |v|β−1v = −|u|β + |v|β > 0, if 0 > u > v,

(2.4)

we have A > 0.

Following the above discussion, we have

1

2

∫
Ω

φ2dx 6 L

∫∫
QT

φ2dxdt. (2.5)
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By Gronwall’s inequality, we have
∫
Ω
φ2 dx = 0. This implies that φ = 0 a.e. x ∈ Ω, i.e. u 6 v a.e.

(x, t) ∈ QT .

3 Existence of weak solutions

In this section, we will establish the local existence and global existence of weak solutions of (1.1).

Analogous to the proofs in [2, 3, 13] and the compactness results in [26], we have the following local

existence of the bounded weak solution for (1.1).

Theorem 3.1. Suppose that u0 ∈ W 1,p
0 (Ω) ∩ L∞(Ω), u0 > 0, u0 ̸≡ 0 a.e. in Ω and that q > 1. Then

there exists a T ∗ = T ∗(u0) > 0 such that for 0 < T < T ∗, (1.1) admits a solution

u ∈ U := {u ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ) | ∂tu ∈ L2(QT )}. (3.1)

Moreover, 0 6 u 6 M a.e. in QT for some M depending on u0(x).

Next, we will give some results focusing on the global existence of the weak solution for (1.1).

Denote by Λ1 > 0 the first eigenvalue of the p-Laplacian operator with homogeneous Dirichlet boundary

condition, i.e.,

Λ1 := inf

{∫
Ω

|∇u|pdx
∣∣∣∣u ∈ W 1,p

0 (Ω),

∫
Ω

|u|pdx = 1

}
. (3.2)

Theorem 3.2 (Global existence). Let u0(x) ∈ W 1,p
0 (Ω) ∩ L∞(Ω), u0(x) > 0 and one of the following

conditions is satisfied:

(i) q = p, α < Λ1.

(ii) q = p = β + 1, α < Λ1 + 1.

(iii) 2 < p 6 q < β + 1.

(iv) q < p.

Then the solution of (1.1) is globally in time bounded, i.e., there exists a constant M depending only

on p, q, β,Λ1, α, u0 and Ω such that for every T > 0, 0 6 u 6 M .

Proof. (i) Let Ω̃ ⊂ RN be a smooth domain which satisfies Ω ⊂⊂ Ω̃. Denote by ϕ and Λ1(Ω̃) the first

eigenfunction and the first eigenvalue related to the following Dirichlet problem:

−∆pϕ = Λ1(Ω̃)|ϕ|p−2ϕ in Ω̃, ϕ = 0 on ∂Ω̃,

∫
Ω̃

|ϕ|pdx = 1. (3.3)

Then by [19, Lemma 1.1], we know that ϕ > 0 in Ω̃ and that Λ1(Ω̃) < Λ1(Ω). Moreover, by [21,

Theorem 3.2], Λ1(Ω̃) continuously depends on Ω̃ and Λ1(Ω̃) → Λ1(Ω) as Ω̃ → Ω in the Hausdorff

complementary topology. Thus, we can choose a suitable Ω̃ and θ > 0 such that α 6 Λ1(Ω̃) 6 Λ1(Ω).

Let Φ = Kϕ > Kµ > ∥u0∥L∞(Ω) with µ = infΩ ϕ > 0. Then a simple calculation shows that for every

nonnegative test-function φ ∈ V ∩ (0, T ;L2(Ω)),∫∫
QT

∂tΦφ+ |∇Φ|p−2∇Φ · ∇φdxdt > Λ1(Ω̃)

∫∫
QT

Φp−1φdxdt

> α

∫∫
QT

Φp−1φdxdt. (3.4)

This implies that Φ is a sup-solution of (1.1). Then by Proposition 2.2, we have 0 6 u 6 Φ a.e. in QT .

We can also see from the construction of Φ that it is independent of t which enables us to continue the

procedure above on any time interval [T, T ′]. Then, we can assert that the solution of (1.1) is globally in

time bounded.

The proof of (ii) is the same as the one of (i).

(iii) Without loss of generality, we assume α = 1 and the method below is still valid for the general case

with a little modification. Denote by ρ(Ω) the diameter of Ω. Then we can easily know that ρ(Ω) < ∞
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as Ω is bounded. Let ε ∈ (0, 1) satisfy: there exists a ball of radius ε belonging to B(·, ρ(Ω) + 1) ∩ Ωc.

For any a ∈ Ω, let xa satisfy

B(xa, ε) ⊂ B(xa, ρ(Ω) + 1) ∩ Ωc, |xa − a| < ρ(Ω) + 1. (3.5)

Let

V (x, t) = Leσr, r = |x− xa|, x ∈ Ω. (3.6)

Define Lpv := vt −∆pv − vq−1 + vβ . Then V (x, t) satisfies

LpV = −(p− 1)(Lσ)p−1e(p−1)σr − N − 1

r
(Lσ)p−1e(p−1)σr − Lq−1e(q−1)σr + Lβeβσr. (3.7)

In order to derive that LpV > 0, we need to choose suitable σ and L such that

(p− 1)σp +
N − 1

r
σp−1 6 Lβ+1−pe(β+1−p)σr − Lq−pe(q−p)σr. (3.8)

By (3.5) and (3.6), we know that ε 6 r < ρ(Ω) + 1. Then if we want (3.8) to be satisfied, it is sufficient

that

(p− 1)σp +
N − 1

ε
σp−1 + Lq−pe(q−p)σ(ρ(Ω)+1) 6 Lβ+1−p. (3.9)

If q > p, let σ and L satisfy

σ =
1

(q − p)(ρ(Ω) + 1)
, L = max

{
(2e)

1
β+1−q ,

(
2

(
(p− 1)σp +

N − 1

ε
σp−1

)) 1
β+1−p

}
. (3.10)

If q = p, let σ and L satisfy

σ = 1, L = max

{
2

1
β+1−q ,

(
2

(
p− 1 +

N − 1

ε

)) 1
β+1−p

}
. (3.11)

Then it holds that LpV > 0. If we assume furthermore that L > ∥u0∥L∞(Ω), then V (x, 0) > u0(x). Thus,

we have proved that V (x, t) is a sup-solution of (1.1). By Proposition 2.2, we have

u(x, t) 6 Leσ(ρ(Ω)+1) < ∞. (3.12)

Notice that the right-hand side of (3.12) is in fact independent of t, which enables us to continue the

procedure above in any time interval [T, T ′]. Hence, we can conclude that u(x, t) is globally in time

bounded.

In the case q < p, by Young’s inequality, there exists a small γ > 0 such that α|s|q−2s 6 α|s|q−1 +Cα

6 γ|s|p−1 + C(γ). Then the conclusion follows from the same procedure as above.

4 Finite time extinction and decay

Before proving our main results, we first introduce the following Gagliardo-Nirenberg type inequality

which can be found in [6, 13] and the references therein.

Lemma 4.1. Let 1 < p < +∞ and r ∈ [β + 1,+∞) if p > N , and r ∈ [β + 1, Np
N−p ] if p < N . Then

there exists a constant C > 0, depending only on p, r,N, β and |Ω|, such that for every u ∈ W 1,p
0 (Ω),

∥u∥Lr(Ω) 6 C∥∇u∥θLp(Ω)∥u∥
1−θ
Lβ+1(Ω)

with θ =

1
β+1 − 1

r
1
N − 1

p + 1
β+1

∈ [0, 1]. (4.1)

Remark 4.2. We can see from the expression of θ with r > β + 1 that

θ <

1
β+1 − 1

r

− 1
p + 1

β+1

(4.2)

and that

r

(
θ

p
+

1− θ

β + 1

)
> 1, (4.3)

which will play an important role in establishing a desired ordinary differential inequality later.
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4.1 Finite time extinction

The following theorem deals with the finite time extinction.

Theorem 4.3. Let β + 1 6 q 6 p and β < min{1, p − 1}. Assume additionally that α < min{1,Λ1}.
Then there exists a finite time T ∗ > 0, such that u = 0 a.e. in Ω for t > T ∗.

Proof. By Theorem 3.2, u exists globally in time. Let y(t) = ∥u∥2L2(Ω). Then it satisfies

1

2
y′(t) +

∫
Ω

|∇u|pdx = α

∫
Ω

uqdx−
∫
Ω

uβ+1dx. (4.4)

By the assumption that β + 1 6 q 6 p, we have∫
Ω

uqdx =

∫
Ω∩{u>1}

uqdx+

∫
Ω∩{u61}

uqdx 6
∫
Ω∩{u>1}

updx+

∫
Ω∩{u61}

uβ+1dx

6
∫
Ω

(up + uβ+1)dx 6 1

Λ1

∫
Ω

|∇u|pdx+

∫
Ω

uβ+1dx, (4.5)

where we used Poincaré’s inequality Λ1∥u∥pLp(Ω) 6 ∥∇u∥pLp(Ω). Combining (4.4) with (4.5), we find

that for

D =


1− αmax

{
1

Λ1
, 1

}
, if β + 1 < q < p,

1− α, if β + 1 = q < p,

1− α

Λ1
, if β + 1 < q = p,

(4.6)

it holds that
1

2
y′(t) +D

∫
Ω

(|∇u|p + uβ+1)dx 6 0. (4.7)

Our next goal is to obtain the following differential inequality from (4.7):

y′(t) +Kyγ(t) 6 0, with K > 0, 0 < γ < 1. (4.8)

Integrating (4.8) with respect to t, we have

y(t) 6 (y1−γ(0)−K(1− γ)t)
1

1−γ , (4.9)

which implies

y(t) → 0 as t → T ∗ :=
y1−γ(0)

K(1− γ)
. (4.10)

Thus, the finite time extinction for the solution of (1.1) is proved.

To obtain (4.8), we divide our proof into two parts: p > 2N
N+2 and 1 < p < 2N

N+2 .

(i) If p > 2N
N+2 , then

Np
N−p > 2 for p < N which implies that we can choose r = 2 in (4.1). If p > N ,

then r ∈ [β + 1,+∞) which enables us to set r = 2 in (4.1). In both cases, we can obtain

∥u∥L2(Ω) 6 C∥∇u∥θLp(Ω)∥u∥
1−θ
Lβ+1(Ω)

= C

(∫
Ω

|∇u|pdx
) θ

p
(∫

Ω

uβ+1dx

) 1−θ
β+1

6 C

(∫
Ω

(|∇u|p + uβ+1)dx

) θ
p+

1−θ
β+1

(4.11)

from (4.1) with r = 2. Then

C−2y(t) 6
(∫

Ω

(|∇u|p + uβ+1)dx

)2( θ
p+

1−θ
β+1 )

. (4.12)
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Combining (4.12) with (4.7), we can obtain (4.8) with

1

γ
= 2

(
θ

p
+

1− θ

β + 1

)
> 1, K = 2DC−2γ . (4.13)

(ii) If 1 < p < 2N
N+2 , let 2 > r ∈ (β + 1, Np

N−p ] and M = ∥u∥L∞(QT ). Then we have

y(t) = ∥u∥L2(Ω) =

∫
Ω

u2−rurdx 6 M2−r∥u∥rLr(Ω). (4.14)

By (4.1) with r ∈ (β + 1, 2), it holds that

y(t) 6 M2−r(C∥∇u∥θLp(Ω)∥u∥
1−θ
Lβ+1(Ω)

)r

6 M2−r(D
θ
p+

1−θ
β+1 )−rCr

(
D

∫
Ω

(|∇u|p + uβ+1)dx

)r( θ
p+

1−θ
β+1 )

. (4.15)

Combining (4.15) with (4.7), we can derive (4.8) with

1

γ
= r

(
θ

p
+

1− θ

β + 1

)
> 1, K = 2DMγ(r−2)C−rγ . (4.16)

This completes the proof.

Remark 4.4. In the case 1 < p < 2, Fang et al. [8] obtained some similar extinction results. The

results there needed stronger conditions for the coefficients of absorption and source terms. Moreover,

the initial data was also chosen small enough. However, our results hold for any nontrivial initial data

and some α which does not need to be sufficiently small. Besides, our proof is more efficient.

Different from Theorem 4.3, the following theorem shows that finite time extinction can also occur for

q > p and 1 < p < 2 with small initial data.

Theorem 4.5. Assume that q > p, 1 < p < 2. Then the solution of (1.1) will vanish at finite time

provided the initial data is small enough.

Proof. The proof here is same as the one in [32, Theorem 4.1], so we omit it.

4.2 Decay

Let us now consider the decay of the solution.

Theorem 4.6. Assume that β > 1 and p > 2. Then the solution of (1.1) will not extinguish in

finite time. Assume additionally β 6 q − 1. Then there exists a constant ϵ > 0, such that if u0 > 0

and ∥u0∥L∞(Ω) < ϵ, then the solution will decay to zero as t → +∞. Moreover, we have the following

estimates: 0 6 u 6 C1(t+ C2)
−γ , γ =

1

β − 1
, for 1 < β 6 q − 1,

0 6 u 6 C3e
−C4t, for β = 1, q > 2.

(4.17)

The constants Ci, i = 1, 2, 3, 4 appearing above depend on q, β and α.

Proof. By [14, Theorem 3.3], we know that the solution of
vt −∆pv = −|v|β−1v, x ∈ Ω, t > 0,

v = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω

(4.18)

will not extinguish in finite time if p > 2, β > 1, u0(x) ∈ W 1,p
0 (Ω) ∩ L∞(Ω), u0(x) ̸≡ 0. As was shown in

Theorem 3.1, u > 0. Thus, v is a sub-solution of (1.1). By comparison principle, u will not extinguish in

finite time.
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Let us now consider the decay of the solution of (1.1). For convenience, we define Lp as

Lpφ = φt −∆pφ− α|φ|q−2φ+ |φ|β−1φ.

If 1 < β 6 q − 1, let

w(x, t) = C1(t+ C2)
−γ , γ =

1

β − 1
, (4.19)

where C1, C2 > 0 are constants to be decided later. By a direct computation, we have

Lpw = (t+ C2)
−γ−1(−γC1 + Cβ

1 − αCq−1
1 (t+ C2)

−(q−1−β)γ). (4.20)

If β < q − 1, let C1, C2 > 0 satisfy (2γ)γ 6 C1 6 (2α)
1

β−q+1Cγ
2 . Then we have Lpw > 0. Assume

additionally that ∥u0∥L∞(Ω) 6 C1C
−γ
2 . Then we have w(x, 0) > u0(x). Thus, we have shown that C1

and C2 satisfy

max{∥u0∥L∞(Ω)C
γ
2 , (2γ)

γ} 6 (2α)
1

β−q+1Cγ
2 . (4.21)

To make (4.21) satisfied, we need

∥u0∥L∞(Ω) 6 ϵ := (2α)
1

β−q+1 (4.22)

and

C2 > 2
1

γ(q−β−1)
+1γ. (4.23)

For C1 and C2 satisfying (4.21) and (4.23), we know that w is a sup-solution, which implies that

0 6 u 6 C1(t+ C2)
−γ , γ =

1

β − 1
, for 1 < β < q − 1 (4.24)

provided u0 satisfies (4.22).

If 1 < β = q − 1, assume additionally that α < 1, and we can still obtain the first estimate in (4.17)

for C1, C2 and u0 satisfying

C1 > max

{
Cγ

2 ,

(
γ

1− α

)γ}
. (4.25)

If β = 1, q > 2, let

w = C1e
−C2t (4.26)

with {
αCq−2

1 + C2 6 1, ∥u0∥L∞(Ω) 6 C1, for q > 2,

0 < C2 6 1− α, ∥u0∥L∞(Ω) 6 C1, for q = 2.
(4.27)

We can still verify that w is a sup-solution of (1.1). Then we obtain the desired result by the comparison

principle. Thus, the proof is completed.

5 Finite time blowup

In this section, we will use two different methods to show that the solution of (1.1) will blow up in finite

time. We first introduce the following blowup result which is based on the construction of a self-similar

sub-solution and comparison principle.

Theorem 5.1. Suppose that q > max{p, 2, β + 1}. Then the solution of (1.1) will blow up in finite

time for some large u0(x) satisfying u0(x) > 0 in Ω′ ⊂ Ω.

Proof. Without loss of generality, we assume that 0 ∈ Ω. Define v(x, t) as

v(x, t) =
1

(1− εt)k
V

(
|x|

(1− εt)m

)
, t0 6 t <

1

ε
, (5.1)
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where

V (y) = 1 +
A

σ
− yσ

σAσ−1
, y > 0, (5.2)

and

σ =
p

p− 1
, k =

1

q − 2
, 1 < m <

q − p

p(q − 2)
, A >

2k

m
, 0 < ε <

α

k(1 + A
σ )

. (5.3)

Let

R = (Aσ−1(σ +A))
1
σ , D :=

{
(x, t)

∣∣∣∣ t0 6 t <
1

ε
, |x| < R(1− εt)m

}
. (5.4)

Then V (y) > 0 is smooth in D and v(y) < 0 if y > R. Moreover, V (y) satisfies

1 6 V (y) 6 1 +
A

σ
, −1 6 V ′(y) 6 0, if 0 6 y 6 A,

0 6 V (y) 6 1, −Rσ−1

Aσ−1
6 V ′(y) 6 −1, if A 6 y 6 R,

(|V ′|p−2V ′)′ +
N − 1

y
|V ′|p−2V ′ = −N

A
.

(5.5)

Define

Lpv = vt −∆pv − α|v|q−2v + |v|β−1v. (5.6)

Then

Lpv =
ε(kV +myV ′)

(1− εt)k+1
−

(|V ′|p−2V ′)′ + N−1
y |V ′|p−2V ′

(1− εt)(k+m)(p−1)+m
− αV q−1

(1− εt)k(q−1)
+

V β

(1− εt)kβ
. (5.7)

By (5.3), we can easily see that k + 1 = k(q − 1), kβ < k + 1, (k + m)(p − 1) + m < k + 1. Then, for

0 6 1
ε − t0 ≪ 1 and t0 6 t < 1

ε , if y ∈ [0, A],

Lpv =
1

(1− εt)k+1

{
ε(kV +myV ′) +

N

A
(1− εt)k+1−m−(k+m)(p−1) − αV q−1

+ V β(1− εt)k+1−kβ

}
6 1

(1− εt)k+1

{
εk

(
1 +

A

σ

)
+

N

A
(1− εt)k+1−m−(k+m)(p−1) − α

+ V β(1− εt)k+1−kβ

}
6 0, for ε ≪ α

k(1 + A
σ )

. (5.8)

Similarly, if y ∈ [A,R],

Lpv 6 1

(1− εt)k+1

{
ε(k −mA) +

N

A
(1− εt)k+1−m−(k+m)(p−1) + (1− εt)k+1−kβ

}
6 0. (5.9)

Thus, we have proved that Lpv 6 0 in D. In order for v(x, t) to be a sub-solution, we also need to choose

suitable initial data and boundary value. Let t0 be such that u0(x) > 0 in B(0, R(1 − εt0)
m) ⊂ Ω and

u0(x) > v(·, t0) in B(0, R(1 − εt0)
m). According to Theorem 3.1 and the definition of v, u(x, t) > 0 =

v(x, t) in ∂B(0, R(1− εt)m)× (t0,
1
ε ). Thus, we have shown that v(x, t+ t0) is a sub-solution for (1.1) in

D(t0) := {(x, t) | 0 6 t 6 1
ε − t0, |x| < R(1− ε(t+ t0))

m}. By Proposition 2.2, we have

u(x, t) > v(x, t+ t0), (x, t) ∈ D(t0). (5.10)

Noticing that limt→1/ε v(0, t) → +∞, we have u must blow up at a finite time T 6 1
ε − t0 < ∞.
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Remark 5.2. If 1 < p < 2 we can also choose m such that 0 < m < 2−p
p(q−2) in (5.3).

Remark 5.3. The method we used above is first introduced by Souplet and Weissler [27] for p = 2. Li

and Xie [19] developed this method for p > 2. In our latest papers [33,34], we used this method to study

the blowup results of the initial boundary problem for a p-Laplacian parabolic equation with a nonlinear

gradient term.

Next, we will introduce some blowup results whose proofs are based on the energy method and concavity

method which were also used in [1,19,32,35] and the references therein. In the proof of our desired results,

the following lemma concerning the so-called “energy” is useful.

Lemma 5.4. Let

E(t) =

∫
Ω

(
1

p
|∇u|p + 1

β + 1
uβ+1 − α

q
uq

)
dx. (5.11)

If E(0) < 0, then E(t) < 0 for all t > 0.

Proof. By a direct computation, we can see that

E′(t) =

∫
Ω

(|∇u|p−2∇u · ∇ut + uβut − αuq−1ut)dx

=

∫
Ω

(−∆pu+ uβ − αuq−1)utdx = −
∫
Ω

u2
tdx 6 0. (5.12)

Hence, E(t) 6 E(0) < 0 for all t > 0.

The following theorem is the main result of this section.

Theorem 5.5. Suppose u0(x) satisfies∫
Ω

(
1

p
|∇u0|p +

1

β + 1
uβ+1
0 − α

q
uq
0

)
dx < 0. (5.13)

Then the solution of (1.1) will blow up in finite time provided that one of the following cases occurs:

(a) 0 < β < min{1, p− 1}, q > max{p, 2};
(b) q = p, 1 < β < p− 1;

(c) β = p− 1, q > max{p, 2};
(d) 1 < β < p− 1, q > p > 2;

(e) β + 1 = q = p > 2;

(f) q > β + 1 > p > 2, and ∥u0∥2L2(Ω) is large enough.

Proof. Let y(t) = ∥u∥2L2(Ω). Then it satisfies

1

2
y′(t) =

∫
Ω

uutdx =

∫
Ω

(u∆pu− uβ+1 + αuq)dx =

∫
Ω

(−|∇u|p − uβ+1 + αuq)dx. (5.14)

By Lemma 5.4, we can get

1

2p
y′(t) =

∫
Ω

(
− 1

p
|∇u|p − 1

p
uβ+1 − α

p
uq

)
dx

= −E(t) +

(
1

β + 1
− 1

p

)∫
Ω

uβ+1dx+ α

(
1

p
− 1

q

)∫
Ω

uqdx

>

(
1

β + 1
− 1

p

)∫
Ω

uβ+1dx+ α

(
1

p
− 1

q

)∫
Ω

uqdx. (5.15)

Let us now estimate (5.15) furthermore in different cases.

(a) 0 < β < min{1, p−1}, q > max{p, 2}. In this case, by Hölder’s inequality, (5.15) can be rewritten as

1

2p
y′(t) > α

(
1

p
− 1

q

)∫
Ω

uqdx > α

(
1

p
− 1

q

)
|Ω|

2−q
2 y

q
2 , (5.16)
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i.e.,

y′(t) > 2pα

(
1

p
− 1

q

)
|Ω|

2−q
2 y

q
2 (t). (5.17)

Integrating (5.17) with respect to t, we have

y(t) >
(
y

2−q
2 (0)− pα(q − 2)

(
1

p
− 1

p

)
|Ω|

2−q
2 t

) 2
2−q

, (5.18)

which implies that

y(t) → +∞, as t → T ∗
1 :=

y
2−q
2 (0)|Ω|

2
2−q

pα(q − 2)( 1p − 1
q )

. (5.19)

(b) q = p, 1 < β < p− 1. In this case, it holds that

y′(t) > 2p

(
1

β + 1
− 1

p

)∫
Ω

uβ+1dx > 2p

(
1

β + 1
− 1

p

)
|Ω|

1−β
2 y

β+1
2 (t). (5.20)

Then

y(t) >
(
y

1−β
2 (0)− p(β − 1)

(
1

β + 1
− 1

p

)
|Ω|

1−β
2 t

) 2
1−β

. (5.21)

Thus

y(t) → +∞, as t → T ∗
2 :=

y
1−β
2 (0)|Ω|

2
1−β

p(β − 1)( 1
β+1 − 1

p )
. (5.22)

(c) β = p− 1, q > max{p, 2}. Similarly to (a), we can derive that y(t) → +∞, as t → T ∗
3 = T ∗

1 .

(d) 1 < β < p− 1, q > p > 2. We can rewrite (5.15) as

y′(t) > 2p

(
1

β + 1
− 1

p

)
|Ω|

1−β
2 y

β+1
2 (t) + 2pα

(
1

p
− 1

q

)
|Ω|

2−q
2 y

q
2 (t)

> 4p

√
α

(
1

β + 1
− 1

p

)(
1

p
− 1

q

)
|Ω|

3−q−β
4 y

q+β+1
4 (t). (5.23)

Then y(t) → +∞, as t → T ∗
4 6 min{T ∗

1 , T
∗
2 , T

′} with

T ′ :=
y

3−q−β
4 (0)|Ω|

4
3−q−β

p(q + β − 3)
√

α( 1
β+1 − 1

p )(
1
p − 1

q )
. (5.24)

(e) β +1 = q = p. If this happens, then we can only derive from (5.15) that y′(t) > 0 which cannot be

used to show that y(t) → +∞ as t → T̃ < ∞. However, if p > 2, we can still obtain the desired result by

the concavity method. The proof here is same as the one of [19, Lemma 3.4]. Here, we just provided the

final ordinary inequality

y′(t) > y′(0)

y
p
2 (0)

y
p
2 (t). (5.25)

(f) q > β + 1 > p > 2. As β + 1 > p, the first term of the right-hand side in (5.15) is negative, we

cannot use the above procedure directly. However, by the fact that q > β + 1, we can still obtain the

desired result. Indeed, by Young’s inequality, we have for small ϵ > 0,∫
Ω

uβ+1dx 6 ϵ(β + 1)

q

∫
Ω

uqdx+ C(ϵ)
q − β − 1

q
|Ω|. (5.26)

Choose a suitable ϵ such that (
1

β + 1
− 1

p

)
ϵ(β + 1)

q
> −α

2

(
1

p
− 1

q

)
. (5.27)
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Then we have
1

2p
y′(t) > α

2

(
1

p
− 1

q

)∫
Ω

uqdx+ C(ϵ)

(
1

β + 1
− 1

p

)
q − β − 1

q
|Ω|. (5.28)

If we assume additionally that ∥u0∥2L2(Ω) is large enough, then we can derive

y′(t) > pα

2

(
1

p
− 1

q

)
|Ω|

2−q
2 y

q
2 (t), (5.29)

which implies that

y(t) → +∞, as t → T ∗
5 := 4T ∗

1 . (5.30)

The proof of Theorem 5.5 is now completed.

Remark 5.6. Following the same manner as in [19, Theorem 3.5], we can still obtain the desired

blowup results in Theorem 5.5(e) if we assume that α > Λ1 + 1 instead of (5.13).

Remark 5.7. During the proof of Theorem 5.5, we also obtain an upper bound of the blowup time in

each case.

6 Discussions

As was shown in the previous sections, the relation of p, q and β plays an important role in determining

the properties of the weak solution of (1.1). To be specific, we will state it for 1 < p < 2 and p > 2,

respectively. Moreover, we will use two figures to state the results of blowup, extinction and global

existence intuitionally. For simplicity, we will not point out which domain the boundary lines and the

coordinate axis belong to.

We first discuss the case 1 < p < 2 (see Figure 1). In this case, if q > max{2, β + 1} or 0 < β 6
p − 1, q > 2, then finite time blowup will occur for some suitably large initial data (see Theorems 5.1,

5.5(a) and 5.5(c)). If q ∈ (β + 1, p), or q = β + 1, or q = p, then finite time extinction will happen with

suitable α and any nontrivial initial data (see Theorem 4.3). If q > p, β > 0, then small initial data can

lead to finite time extinction (see Theorem 4.5). Noticing that if q > 2, then large initial data can lead

to finite time blowup while small initial data implies finite time extinction which is interesting.

0
-q

6
β

r r r r
r
r
r
r

�
�
�

q = β + 1

p− 1 1 2p

p− 1

1

2

p Global

Existence

Extinction(E2)

or

Blowup

E1

E2

E1: Extinction for

any initial data

E2: Extinction for

small initial data

Figure 1 1 < p < 2
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0
-q

6β

r
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r
1

r
2

r
p

rp− 1

r1

r2

rp

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

q = β + 1

Global Existence

Blowup
Extinction

Decay
or

Blowup

Decay

Figure 2 p > 2

Next, let us consider the case p > 2 (see Figure 2). In this case, if q > max{p, β + 1}, or q > p, 0 <

β 6 q − 1, or q = p > β + 1 > 2, then for some suitably large initial data, the solution of (1.1) will blow

up in finite time (see Theorems 5.1, 5.5(b) and 5.5(d)–5.5(f)). If q ∈ (β + 1, p), β < 1, or q = β + 1 < 2,

or q = p, then finite time extinction will happen with suitable α and any nontrivial initial data (see

Theorem 4.3). Besides, if 1 6 β 6 q − 1, then as was shown in Theorem 4.6, the solution of (1.1) cannot

extinguish in finite time, while it will decay to zero as t → +∞ for some suitably small u0.

We also need to point out that finite time extinction is not a singularity property for solution of (1.1)

as β and q − 1 are positive. If finite time extinction happens, we have in fact shown that the solution

of (1.1) is global in time bounded which is also an important property of the solution of (1.1). For the

global existence of the weak solution, we can see from Theorem 3.2 that the critical value for q is p if

1 < p < 2. While in the degenerate case, the critical value is p and β+1. Moreover, if q 6 p or q < β+1,

then we can obtain the global existence.
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