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Abstract We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard

equation

−∆u =

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u+ λu in Ω,

where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N > 3, 2∗µ = (2N−µ)/(N−2)

is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
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1 Introduction

In the recent decades, many people studied the elliptic equation{
−∆u = |u|2

∗−2u+ λu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain of RN , 2∗ = 2N
N−2 is the critical exponent for the embedding of H1

0 (Ω)

to Lp(Ω), and λ ∈ (0, λ1), where λ1 is the first eigenvalue of −∆ set on the bounded domain. In a

celebrated paper [8], Brezis and Nirenberg proved that: if N > 4 and λ ∈ (0, λ1), then (1.1) has a

nontrivial solution; if N = 3 then there exists a constant λ∗ ∈ (0, λ1) such that for any λ ∈ (λ∗, λ1)

(1.1) has a positive solution. Furthermore, if Ω is a ball, then (1.1) has a positive solution if and only if

λ ∈ (λ1

4 , λ1). Capozzi et al. [11] proved if N > 4 then (1.1) has a nontrivial solution for all λ > 0. In [13],

for N > 6 and λ ∈ (0, λ1), Cerami et al. proved the existence of sign-changing solutions. While for the

case Ω is a ball, N > 7 and λ ∈ (0, λ1), they also proved the existence of infinitely many radial solutions

to (1.1). There is a great deal of work on elliptic equations with critical nonlinearity (see, for example,

[10,12,16,18,19,30,32,37] and the references therein).
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In the present paper, we consider the existence and nonexistence of solutions for the following nonlocal

equation: −∆u =

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u+ λu in Ω,

u ∈ H1
0 (Ω),

(1.2)

where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N > 3, 0 < µ < N

and 2∗µ = (2N − µ)/(N − 2). This nonlocal elliptic equation is closely related to the nonlinear Choquard

equation

−∆u+ V (x)u =

(
1

|x|µ
∗ |u|p

)
|u|p−2u in R3. (1.3)

Different from the fractional Laplacian where the pseudo-differential operator causes the nonlocal phe-

nomena, for the Choquard equation the nonlocal term appears in the nonlinearity and influences the

equation greatly. For p = 2 and µ = 1, it goes back to the description of the quantum theory of a polaron

at rest by Pekar [28] in 1954 and the modeling of an electron trapped in its own hole in 1976 in the work

of Choquard, as a certain approximation to Hartree-Fock theory of one-component plasma (see [20]).

In some particular cases, this equation is also known as the Schrödinger-Newton equation, which was

introduced by Penrose [29] in his discussion on the selfgravitational collapse of a quantum mechanical

wave function.

The existence and qualitative properties of solutions of (1.3) have been widely studied in the recent

decades. In [20], Lieb proved the existence and uniqueness, up to translations, of the ground state.

Later, in [22], Lions showed the existence of a sequence of radially symmetric solutions. Cingolani et

al. [14], Ma and Zhao [23] and Moroz and Van Schaftingen [24] showed the regularity, positivity and

radial symmetry of the ground states and derived decay property at infinity as well. Moreover, Moroz

and Van Schaftingen [25] considered the existence of ground states under the assumptions of Berestycki-

Lions type. For periodic potential V that changes sign and 0 lies in the gap of the spectrum of the

Schrödinger operator −∆+ V , the problem is strongly indefinite, and the existence of solution for p = 2

was considered in [9] by reduction arguments. In [3], Alves et al. studied the existence of multi-bump

shaped solution for the nonlinear Choquard equation with deepening potential well. For a general case,

Ackermann [1] proposed a new approach to prove the existence of infinitely many geometrically distinct

weak solutions. For other related results, we refer the readers to [15,17] for the existence of sign-changing

solutions, [4, 5, 26,33,36,39] for the existence and concentration behavior of the semiclassical solutions.

The starting point of the variational approach to (1.2) is the following well-known Hardy-Littlewood-

Sobolev inequality.

Proposition 1.1 (Hardy-Littlewood-Sobolev inequality, see [21]). Let t, r > 1 and 0 < µ < N with

1/t + µ/N + 1/r = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There exists a sharp constant C(t,N, µ, r),

independent of f and h, such that∫
RN

∫
RN

f(x)h(y)

|x− y|µ
dxdy 6 C(t,N, µ, r)|f |t|h|r. (1.4)

If t = r = 2N/(2N − µ), then

C(t,N, µ, r) = C(N,µ) = π
µ
2
Γ(N2 −

µ
2 )

Γ(N − µ
2 )

{
Γ(N2 )

Γ(N)

}−1+ µ
N

.

In this case, the equality in (1.4) holds if and only if f ≡ Ch and

h(x) = A(γ2 + |x− a|2)−(2N−µ)/2

for some A ∈ C, 0 ̸= γ ∈ R and a ∈ RN .

Notice that, by the Hardy-Littlewood-Sobolev inequality, the integral∫
RN

∫
RN

|u(x)|q|u(y)|q

|x− y|µ
dxdy
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is well-defined if |u|q ∈ Lt(RN ) for some t > 1 satisfying

2

t
+
µ

N
= 2.

Thus, for u ∈ H1(RN ), by Sobolev embedding theorems, we know

2 6 tq 6 2N

N − 2
,

i.e.,
2N − µ
N

6 q 6 2N − µ
N − 2

.

Thus, 2N−µ
N is called the lower critical exponent and 2∗µ = 2N−µ

N−2 is the upper critical exponent in the

sense of the Hardy-Littlewood-Sobolev inequality.

We need to point out that all the papers we mentioned above were about the nonlinear Choquard

equation with superlinear subcritical nonlinearities. In a recent paper [27], Moroz and Van Schaftingen

considered the nonlinear Choquard equation (1.3) in RN with lower critical exponent 2N−µ
N . Moroz

and Van Schaftingen [27] investigated the existence and nonexistence of solutions to the equation with

nonconstant potential by minimizing arguments. However, as far as we know there seems no result for the

nonlinear Choquard equation with upper critical exponent with respect to the Hardy-Littlewood-Sobolev

inequality. In [2], Alves et al. studied the existence and concentrations of the solutions of a nonlocal

Schrödinger with the critical exponential growth in R2, this problem is closely related to the Choquard

equation. Recently, many people also studied the Brezis-Nirenberg problem for elliptic equation driven

by the fractional Laplacian, this type of problem are nonlocal in nature and we may refer the readers

to [6, 34, 35] and the references therein for a recent progress. In addition, it is quite natural to ask if

the well-known results established by Brezis and Nirenberg [8] for the local elliptic equation still hold

for the nonlocal Choquard equation. The main purpose of the present paper is to study the nonlinear

Choquard equation with upper critical exponent 2∗µ = 2N−µ
N−2 and give a confirm answer to the question

of the existence and nonexistence of solutions. By the way, in a forthcoming paper, we will consider the

existence of solutions for the following nonlinear Choquard equation with upper critical exponent 2∗µ in

the whole space:

−∆u+ V (x)u =

(
1

|x|µ
∗G(u)

)
g(u) in R3, (1.5)

where the nonlinearity g is of upper critical growth in the sense of the Hardy-Littlewood-Sobolev

inequality.

From the Hardy-Littlewood-Sobolev inequality, for all u ∈ D1,2(RN ) we know(∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

6 C(N,µ)
N−2
2N−µ |u|22∗ ,

where C(N,µ) is defined as in Proposition 1.1. We use SH,L to denote best constant defined by

SH,L := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx

(
∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy)
N−2
2N−µ

. (1.6)

From the commentaries above, we can easily draw the following conclusion.

Lemma 1.2. The constant SH,L defined in (1.6) is achieved if and only if

u = C

(
b

b2 + |x− a|2

)N−2
2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. Furthermore,

SH,L =
S

C(N,µ)
N−2
2N−µ

,

where S is the best Sobolev constant.
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Proof. On one hand, by the Hardy-Littlewood-Sobolev inequality, we can see

SH,L > 1

C(N,µ)
N−2
2N−µ

inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx
|u|22∗

=
S

C(N,µ)
N−2
2N−µ

.

On the other hand, notice that the equality in the Hardy-Littlewood-Sobolev inequality holds if and

only if

h(x) = C

(
b

b2 + |x− a|2

) 2N−µ
2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. Thus(∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

= C(N,µ)
N−2
2N−µ |u|22∗ ,

if and only if

u = C

(
b

b2 + |x− a|2

)N−2
2

.

Then, by the definition of SH,L, we know

SH,L 6
∫
RN |∇u|2dx

(
∫
RN

∫
RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy)
N−2
2N−µ

=
1

C(N,µ)
N−2
2N−µ

∫
RN |∇u|2dx
|u|22∗

and thus we get

SH,L 6 S

C(N,µ)
N−2
2N−µ

.

From the above arguments, we know that SH,L is achieved if and only if u = C( b
b2+|x−a|2 )

N−2
2 and

SH,L =
S

C(N,µ)
N−2
2N−µ

.

In particular, let U(x) := [N(N−2)]
N−2

4

(1+|x|2)
N−2

2

be a minimizer for S. Then

Ũ(x) = S
(N−µ)(2−N)
4(N−µ+2) C(N,µ)

2−N
2(N−µ+2)U(x)

= S
(N−µ)(2−N)
4(N−µ+2) C(N,µ)

2−N
2(N−µ+2)

[N(N − 2)]
N−2

4

(1 + |x|2)N−2
2

(1.7)

is the unique minimizer for SH,L and satisfies

−∆u =

(∫
RN

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u in RN .

Moreover, ∫
RN

|∇Ũ |2dx =

∫
RN

∫
RN

|Ũ(x)|2
∗
µ |Ũ(y)|2

∗
µ

|x− y|µ
dxdy = S

2N−µ
N−µ+2

H,L .

This completes the proof.

We have some more words about the best constant SH,L.

Lemma 1.3. Let N > 3. For every open subset Ω of RN ,

SH,L(Ω) := inf
u∈D1,2

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x−y|µ dxdy)
N−2
2N−µ

= SH,L, (1.8)

where SH,L(Ω) is never achieved except when Ω = RN .
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Proof. It is clear that SH,L 6 SH,L(Ω) by D
1,2
0 (Ω) ⊂ D1,2(RN ). Let {un} ⊂ C∞

0 (RN ) be a minimizing

sequence for SH,L. We make translations and dilations for {un} by choosing yn ∈ RN and τn > 0 such

that

uyn,τn
n (x) := τ

N−2
2

n un(τnx+ yn) ∈ C∞
0 (Ω),

which satisfies ∫
RN

|∇uyn,τn
n |2dx =

∫
RN

|∇un|2dx

and ∫
Ω

∫
Ω

|uyn,τn
n (x)|2

∗
µ |uyn,τn

n (y)|2
∗
µ

|x− y|µ
dxdy =

∫
RN

∫
RN

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy.

Hence we obtain SH,L(Ω) 6 SH,L. Since Ũ(x) is the only class of functions such that the equality

holds in the Hardy-Littlewood-Sobolev inequality, we know that SH,L(Ω) is never achieved except when

Ω = RN .

Next, we will denote the sequence of eigenvalues of the operator −∆ on Ω with homogeneous Dirichlet

boundary data by

0 < λ1 < λ2 6 · · · 6 λj 6 λj+1 6 · · ·

and

λj → +∞

as j → +∞. Moreover, {ej}j∈N ⊂ L∞(Ω) will be the sequence of eigenfunctions corresponding to

{λj}. We recall that this sequence is an orthonormal basis of L2(Ω) and an orthogonal basis of H1
0 (Ω).

We denote

Ej+1 := {u ∈ H1
0 (Ω) : ⟨u, ei⟩H1

0
= 0, ∀ i = 1, 2, . . . , j}, (1.9)

while Yj := span{e1, . . . , ej} will denote the linear subspace generated by the first j eigenfunctions of −∆
for any j ∈ N. It is easily seen that Yj is finite dimensional and Yj ⊕ Ej+1 = H1

0 (Ω).

In order to study the problem by variational methods, we introduce the energy functional associated

to (1.2) by

Jλ(u) =
1

2

∫
Ω

|∇u|2dx− 1

2 · 2∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy − λ

2

∫
Ω

|u|2dx.

Then the Hardy-Littlewood-Sobolev inequality implies Jλ belongs to C1(H1
0 (Ω),R). Moreover, u is a

weak solution of (1.2) if and only if u is a critical point of functional Jλ.

The main results of this paper are stated in the following theorem.

Theorem 1.4. Assume Ω is a bounded domain of RN , with Lipschitz boundary and 0 < µ < N . The

following results hold:

(i) If N > 4, then (1.2) has a nontrivial solution for λ > 0, provided λ is not an eigenvalue of −∆
with homogeneous Dirichlet boundary data.

(ii) If N = 3, then there exists λ∗ such that (1.2) has a nontrivial solution for λ > λ∗, provided λ is

not an eigenvalue of −∆ with homogeneous Dirichlet boundary data.

Throughout this paper, we denote the norm ∥u∥ := (
∫
Ω
|∇u|2dx) 1

2 on H1
0 (Ω) and write | · |q for the

Lq(Ω)-norm for q ∈ [1,∞] and always assume Ω is a bounded domain of RN with Lipschitz boundary, λ

is a real parameter. We denote positive constants by C,C1, C2, C3, . . .

Definition 1.5. Let I be a C1 functional defined on Banach space X, we say that {un} is a Palais-

Smale sequence of I at c ((PS)c sequence, for short) if

I(un)→ c, and I ′(un)→ 0, as n→ +∞. (1.10)

In addition, we say that I satisfies the Palais-Smale condition at the level c, if every Palais-Smale sequence

at c has a convergent subsequence.
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An outline of the paper is as follows: In Section 2, we give some preliminary results and prove the

(PS) condition. In Section 3, we prove the existence of solutions for (1.2) when N > 4 and 0 < λ < λ1
by the mountain pass theorem. In Section 4, we prove the existence of solutions for (1.2) when N > 4

and λ > λ1, provided λ is not an eigenvalue of −∆ with homogeneous Dirichlet boundary data, by the

linking theorem. In Section 5, we investigate the existence of solutions for λ > 0 when N = 3. In Section

6, we prove a Pohoz̆aev identity for (1.2) and use it to prove the nonexistence of solutions.

2 Preliminary results

To prove the (PS) condition, we need a key lemma which is inspired by the Brezis-Lieb convergence

lemma (see [7]). The proof is analogous to that of [1, Lemma 3.5] or [24, Lemma 2.4], but we exhibit it

here for completeness. First, we recall that pointwise convergence of a bounded sequence implies weak

convergence (see [38, Proposition 5.4.7]).

Lemma 2.1. Let N > 3, q ∈ (1,+∞) and {un} be a bounded sequence in Lq(RN ). If un → u almost

everywhere in RN as n→∞, then un ⇀ u weakly in Lq(RN ).

Lemma 2.2. Let N > 3 and 0 < µ < N . If {un} is a bounded sequence in L
2N

N−2 (RN ) such that

un → u almost everywhere in RN as n→∞, then the following holds:∫
RN

(|x|−µ ∗ |un|2
∗
µ)|un|2

∗
µdx−

∫
RN

(|x|−µ ∗ |un − u|2
∗
µ)|un − u|2

∗
µdx→

∫
RN

(|x|−µ ∗ |u|2
∗
µ)|u|2

∗
µdx

as n→∞.

Proof. First, similar to the proof of the Brezis-Lieb lemma (see [7]), we know that

|un − u|2
∗
µ − |un|2

∗
µ → |u|2

∗
µ (2.1)

in L
2N

2N−µ (RN ) as n→∞. The Hardy-Littlewood-Sobolev inequality implies that

|x|−µ ∗ (|un − u|2
∗
µ − |un|2

∗
µ)→ |x|−µ ∗ |u|2

∗
µ (2.2)

in L
2N
µ (RN ) as n→∞. On the other hand, we notice that∫

RN

(|x|−µ ∗ |un|2
∗
µ)|un|2

∗
µdx−

∫
RN

(|x|−µ ∗ |un − u|2
∗
µ)|un − u|2

∗
µdx

=

∫
RN

(|x|−µ ∗ (|un|2
∗
µ − |un − u|2

∗
µ))(|un|2

∗
µ − |un − u|2

∗
µ)dx

+ 2

∫
RN

(|x|−µ ∗ (|un|2
∗
µ − |un − u|2

∗
µ))|un − u|2

∗
µdx. (2.3)

By Lemma 2.1, we have that

|un − u|2
∗
µ ⇀ 0 (2.4)

in L
2N

2N−µ (RN ) as n→∞. From (2.1)–(2.4), we know that the result holds.

Lemma 2.3. Assume N > 3 and 0 < µ < N . Let

∥ · ∥NL :=

(∫
Ω

∫
Ω

| · |2
∗
µ | · |2

∗
µ

|x− y|µ
dxdy

) 1
2·2∗µ

and

XNL := {u : Ω→ R; ∥u∥NL < +∞}.

Then ∥ · ∥NL is a norm in XNL. Moreover, under the norm ∥ · ∥NL, XNL is a Banach space.



Gao F S et al. Sci China Math July 2018 Vol. 61 No. 7 1225

Proof. By the semigroup property of the Riesz potential (see [31]), we obtain∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy =

∫
Ω

(∫
Ω

|u(y)|2
∗
µ

|x− y|N+µ
2

dy

)2

dx

for every u ∈ H1
0 (Ω). Then, by Minkowski’s inequality, we know, for any x ∈ Ω,(∫

Ω

|u(y) + v(y)|2
∗
µ

|x− y|N+µ
2

dy

)2

=

(∫
Ω

∣∣∣∣ u(y)

|x− y|
N+µ

2 · 1
2∗µ

+
v(y)

|x− y|
N+µ

2 · 1
2∗µ

∣∣∣∣2∗µdy) 1
2∗µ

·2·2∗µ

6
((∫

Ω

|u(y)|2
∗
µ

|x− y|N+µ
2

dy

)2· 1
2·2∗µ

+

(∫
Ω

|v(y)|2
∗
µ

|x− y|N+µ
2

dy

)2· 1
2·2∗µ

)2·2∗µ
.

Notice that the integrals are non-negative and so, by Minkowski’s inequality again, we have(∫
Ω

(∫
Ω

|u(y) + v(y)|2
∗
µ

|x− y|N+µ
2

dy

)2

dx

) 1
2·2∗µ

6
(∫

Ω

(∫
Ω

|u(y)|2
∗
µ

|x− y|N+µ
2

dy

)2

dx

) 1
2·2∗µ

+

(∫
Ω

(∫
Ω

|v(y)|2
∗
µ

|x− y|N+µ
2

dy

)2

dx

) 1
2·2∗µ

,

i.e.,

∥u+ v∥NL 6 ∥u∥NL + ∥v∥NL

for every u, v ∈ L2∗(Ω). So, it is easy to verify that ∥ · ∥NL is a norm. The completeness of the space

follows from a standard application of the monotone convergence theorem.

Lemma 2.4. Let N > 3, 0 < µ < N and λ > 0. If {un} is a (PS)c sequence of Jλ, then {un} is

bounded in H1
0 (Ω). Let u0 ∈ H1

0 (Ω) be the weak limit of {un}. Then u0 is a weak solution of (1.2).

Proof. It is easy to see that there exists C1 > 0 such that

|Jλ(un)| 6 C1,

∣∣∣∣⟨J ′
λ(un),

un
∥un∥

⟩∣∣∣∣ 6 C1.

In order to prove {un} is bounded in H1
0 (Ω), we consider the two cases: 0 < λ < λ1 and λ ∈ [λj , λj+1)

for some j ∈ N separately.

Case 1. 0 < λ < λ1.

For n large enough, we have

C1(1 + ∥un∥) > Jλ(un)−
1

2 · 2∗µ
⟨J ′

λ(un), un⟩

=

(
1

2
− 1

2 · 2∗µ

)
(∥un∥2 − λ|un|22)

>
(
1

2
− 1

2 · 2∗µ

)
δ1∥un∥2

for some δ1 > 0. Thus {un} is bounded in H1
0 (Ω).

Case 2. λ ∈ [λj , λj+1) for some j ∈ N.
Let β ∈ ( 1

2·2∗µ
, 12 ). For n large enough, we have

C1(1 + ∥un∥) > Jλ(un)− β⟨J ′
λ(un), un⟩

=

(
1

2
− β

)
(∥un∥2 − λ|un|22) +

(
β − 1

2 · 2∗µ

)
∥un∥

2·2∗µ
NL

=

(
1

2
− β

)
(∥zn∥2 + ∥yn∥2 − λ|zn|22 − λ|yn|22) +

(
β − 1

2 · 2∗µ

)
∥un∥

2·2∗µ
NL

>
(
1

2
− β

)
(δ2∥zn∥2 + (λ1 − λ)|yn|22) +

(
β − 1

2 · 2∗µ

)
∥un∥

2·2∗µ
NL
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for some δ2 > 0, where un = zn + yn, zn ∈ Ej+1, yn ∈ Yj , where Ej+1 is defined in (1.9). It is then easy

to verify that {un} is bounded in H1
0 (Ω) using the fact that Yj is finite dimensional and Lemma 2.3.

Since H1
0 (Ω) is reflexive, up to a subsequence, still denoted by un, there exists u0 ∈ H1

0 (Ω) such that

un ⇀ u0 in H1
0 (Ω) and un ⇀ u0 in L2∗(Ω) as n→ +∞. Then

|un|2
∗
µ ⇀ |u0|2

∗
µ in L

2N
2N−µ (Ω)

as n→ +∞. By the Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a linear continuous

map from L
2N

2N−µ (Ω) to L
2N
µ (Ω), we know that

|x|−µ ∗ |un|2
∗
µ ⇀ |x|−µ ∗ |u0|2

∗
µ in L

2N
µ (Ω)

as n→ +∞. Combining with the fact that

|un|2
∗
µ−2un ⇀ |u0|2

∗
µ−2u0 in L

2N
N−µ+2 (Ω)

as n→ +∞, we have

(|x|−µ ∗ |un|2
∗
µ)|un|2

∗
µ−2un ⇀ (|x|−µ ∗ |u0|2

∗
µ)|u0|2

∗
µ−2u0 in L

2N
N+2 (Ω)

as n→ +∞. Since, for any φ ∈ H1
0 (Ω),

0← ⟨J ′
λ(un), φ⟩ =

∫
Ω

∇un∇φdx− λ
∫
Ω

unφdx−
∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ−2un(y)φ(y)

|x− y|µ
dxdy,

passing to the limit as n→ +∞, we obtain∫
Ω

∇u0∇φdx− λ
∫
Ω

u0φdx−
∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ−2u0(y)φ(y)

|x− y|µ
dxdy = 0

for any φ ∈ H1
0 (Ω), which means u0 is a weak solution of (1.2).

Finally, taking φ = u0 ∈ H1
0 (Ω) as a test function in (1.2), we have∫

Ω

|∇u0|2dx = λ

∫
Ω

u20dx+

∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ

|x− y|µ
dxdy,

and so

Jλ(u0) =
N + 2− µ
4N − 2µ

∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ

|x− y|µ
dxdy > 0.

This completes the proof.

Lemma 2.5. Let N > 3, 0 < µ < N and λ > 0. If {un} is a (PS)c sequence of Jλ with

c <
N + 2− µ
4N − 2µ

S
2N−µ

N+2−µ

H,L , (2.5)

then {un} has a convergent subsequence.

Proof. Let u0 be the weak limit of {un} obtained in Lemma 2.4 and define vn := un − u0. Then we

know vn ⇀ 0 in H1
0 (Ω) and vn → 0 a.e. in Ω. Moreover, by [7, the Brezis-Lieb lemma] and Lemma 2.2,

we know ∫
Ω

|∇un|2dx =

∫
Ω

|∇vn|2dx+

∫
Ω

|∇u0|2dx+ on(1)

and∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy =

∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy +

∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ

|x− y|µ
dxdy + on(1).
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Then, we have

c← Jλ(un) =
1

2

∫
Ω

|∇un|2dx−
λ

2

∫
Ω

u2ndx−
1

2 · 2∗µ

∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy

=
1

2

∫
Ω

|∇vn|2dx+
1

2

∫
Ω

|∇u0|2dx−
λ

2

∫
Ω

u20dx

− 1

2 · 2∗µ

∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy − 1

2 · 2∗µ

∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ

|x− y|µ
dxdy + on(1)

= Jλ(u0) +
1

2

∫
Ω

|∇vn|2dx−
1

2 · 2∗µ

∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy + on(1)

> 1

2

∫
Ω

|∇vn|2dx−
1

2 · 2∗µ

∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy + on(1), (2.6)

since Jλ(u0) > 0 and
∫
Ω
u2ndx→

∫
Ω
u20dx, as n→ +∞. Similarly, since ⟨J ′

λ(u0), u0⟩ = 0, we have

on(1) = ⟨J ′
λ(un), un⟩

=

∫
Ω

|∇un|2dx− λ
∫
Ω

u2ndx−
∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dxdy

=

∫
Ω

|∇vn|2dx+

∫
Ω

|∇u0|2dx− λ
∫
Ω

u20dx

−
∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy −

∫
Ω

∫
Ω

|u0(x)|2
∗
µ |u0(y)|2

∗
µ

|x− y|µ
dxdy + on(1)

= ⟨J ′
λ(u0), u0⟩+

∫
Ω

|∇vn|2dx−
∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy + on(1)

=

∫
Ω

|∇vn|2dx−
∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy + on(1). (2.7)

From (2.7), we know there exists a non-negative constant b such that∫
Ω

|∇vn|2dx→ b

and ∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy → b,

as n→ +∞. From (2.6) and (2.7), we obtain

c > N + 2− µ
4N − 2µ

b. (2.8)

By the definition of the best constant SH,L in (1.6), we have

SH,L

(∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

6
∫
Ω

|∇vn|2dx,

which yields b > SH,Lb
N−2
2N−µ . Thus we have either b = 0 or b > S

2N−µ
N−µ+2

H,L . If b = 0, the proof is completed.

Otherwise b > S
2N−µ

N−µ+2

H,L , then we obtain from (2.8),

N + 2− µ
4N − 2µ

S
2N−µ

N−µ+2

H,L 6 N + 2− µ
4N − 2µ

b 6 c,

which contradicts with the fact that

c <
N + 2− µ
4N − 2µ

S
2N−µ

N+2−µ

H,L .
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Thus b = 0, and

∥un − u0∥ → 0

as n→ +∞. This ends the proof of Lemma 2.5.

3 The case N >>> 4, 0 < λ < λ1

We devote this section to proving Theorem 1.4 for the case N > 4 and 0 < λ < λ1.

By Lemma 1.2, we know that U(x) = [N(N−2)]
N−2

4

(1+|x|2)
N−2

2

is a minimizer for both S and SH,L. Without loss

of generality, we may assume that 0 ∈ Ω and Bδ ⊂ Ω ⊂ Bκ0δ for some positive κ0. Let ψ ∈ C∞
0 (Ω)

such that 
ψ(x) =

{
1, if x ∈ Bδ,

0, if x ∈ RN \ Ω,
0 6 ψ(x) 6 1, ∀x ∈ RN ,

|Dψ(x)| 6 C = const, ∀x ∈ RN .

We define, for ε > 0,

Uε(x) := ε
2−N

2 U

(
x

ε

)
,

uε(x) := ψ(x)Uε(x).

From [37, Lemma 1.46] and Lemma 1.2, we know

|∇Uε|22 = |Uε|2
∗

2∗ = S
N
2 , (3.1)

and as ε→ 0+, ∫
Ω

|∇uε|2dx = S
N
2 +O(εN−2) = C(N,µ)

N−2
2N−µ ·N2 S

N
2

H,L +O(εN−2), (3.2)∫
Ω

|uε|2
∗
dx = S

N
2 +O(εN ) (3.3)

and ∫
Ω

|uε|2dx >
{
dε2| ln ε|+O(ε2), if N = 4,

dε2 +O(εN−2), if N > 5,
(3.4)

where d is a positive constant.

Using the Hardy-Littlewood-Sobolev inequality, on one hand, we get(∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

6 C(N,µ)
N−2
2N−µ |uε|22∗

= C(N,µ)
N−2
2N−µ (S

N
2 +O(εN ))

N−2
N

= C(N,µ)
N−2
2N−µ (C(N,µ)

N−2
2N−µ ·N2 S

N
2

H,L +O(εN ))
N−2
N

= C(N,µ)
N−2
2N−µ ·N2 S

N−2
2

H,L +O(εN−2). (3.5)

While on the other hand,∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy >

∫
Bδ

∫
Bδ

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy

=

∫
Bδ

∫
Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy
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=

∫
RN

∫
RN

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy

− 2

∫
RN\Bδ

∫
Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy

−
∫
RN\Bδ

∫
RN\Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy

=: C(N,µ)
N
2 S

2N−µ
2

H,L − 2D− E, (3.6)

where

D =

∫
RN\Bδ

∫
Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy

and

E =

∫
RN\Bδ

∫
RN\Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ

|x− y|µ
dxdy.

By a direct computation, we know

D =

∫
RN\Bδ

∫
Bδ

εµ−2N [N(N − 2)]
2N−µ

2

(1 + |xε |2)
2N−µ

2 |x− y|µ(1 + |yε |2)
2N−µ

2

dxdy

= ε2N−µ[N(N − 2)]
2N−µ

2

∫
RN\Bδ

∫
Bδ

1

(ε2 + |x|2) 2N−µ
2 |x− y|µ(ε2 + |y|2) 2N−µ

2

dxdy

6 O(ε2N−µ)

(∫
RN\Bδ

1

(ε2 + |x|2)N
dx

) 2N−µ
2N

(∫
Bδ

1

(ε2 + |y|2)N
dy

) 2N−µ
2N

6 O(ε2N−µ)

(∫
RN\Bδ

1

|x|2N
dx

) 2N−µ
2N

(∫ δ

0

rN−1

(ε2 + r2)N
dr

) 2N−µ
2N

= O(ε
2N−µ

2 )

(∫ δ
ε

0

zN−1

(1 + z2)N
dz

) 2N−µ
2N

6 O(ε
2N−µ

2 )

(∫ +∞

0

zN−1

(1 + z2)N
dz

) 2N−µ
2N

= O(ε
2N−µ

2 ) (3.7)

and

E =

∫
RN\Bδ

∫
RN\Bδ

εµ−2N [N(N − 2)]
2N−µ

2

(1 + |xε |2)
2N−µ

2 |x− y|µ(1 + |yε |2)
2N−µ

2

dxdy

= ε2N−µ[N(N − 2)]
2N−µ

2

∫
RN\Bδ

∫
RN\Bδ

1

(ε2 + |x|2) 2N−µ
2 |x− y|µ(ε2 + |y|2) 2N−µ

2

dxdy

6 ε2N−µ[N(N − 2)]
2N−µ

2

∫
RN\Bδ

∫
RN\Bδ

1

|x|2N−µ|x− y|µ|y|2N−µ
dxdy

= O(ε2N−µ). (3.8)

It follows from (3.6) to (3.8) that(∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

> (C(N,µ)
N
2 S

2N−µ
2

H,L −O(ε
2N−µ

2 )−O(ε2N−µ))
N−2
2N−µ

= (C(N,µ)
N
2 S

2N−µ
2

H,L −O(ε
2N−µ

2 ))
N−2
2N−µ . (3.9)

When N = 3, (3.2) and (3.9) also hold.
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Lemma 3.1. If N > 4 and λ > 0, then, there exists v ∈ H1
0 (Ω)\{0} such that

|∇v|22 − λ|v|22
∥v∥2NL

< SH,L.

Proof. If N = 4, from (3.4), (3.2) and (3.9), we can obtain

|∇uε|22 − λ|uε|22
∥uε∥2NL

6
C(4, µ)

4
8−µS2

H,L − λdε2| ln ε|+O(ε2)

(C(4, µ)2S
8−µ
2

H,L −O(ε4−
µ
2 ))

2
8−µ

= SH,L −
λdε2| ln ε|

(C(4, µ)2S
8−µ
2

H,L −O(ε4−
µ
2 ))

2
8−µ

+O(ε2)

6 SH,L − λdε2| ln ε|+O(ε2)

< SH,L (3.10)

for ε > 0 sufficiently small. Analogously, if N > 5, we have

|∇uε|22 − λ|uε|22
∥uε∥2NL

< SH,L (3.11)

for ε > 0 sufficiently small. From the above arguments, we may take v := uε with ε small enough and

then the conclusion follows immediately.

Lemma 3.2. If N > 3 and λ ∈ (0, λ1), then, the functional Jλ satisfies the following properties:

(i) There exist α, ρ > 0 such that Jλ(u) > α for ∥u∥ = ρ.

(ii) There exists e ∈ H1
0 (Ω) with ∥e∥ > ρ such that Jλ(e) < 0.

Proof. (i) By λ ∈ (0, λ1), the Sobolev embedding and the Hardy-Littlewood-Sobolev inequality, for all

u ∈ H1
0 (Ω)\ {0} we have

Jλ(u) >
1

2

∫
Ω

|∇u|2dx− λ

2λ1

∫
Ω

|∇u|2dx− 1

22∗µ
C1|u|

2( 2N−µ
N−2 )

2∗

> 1

2

(
1− λ

λ1

)
∥u∥2 − 1

22∗µ
C2∥u∥2(

2N−µ
N−2 ).

Since 2 < 2( 2N−µ
N−2 ), we can choose some α, ρ > 0 such that Jλ(u) > α for ∥u∥ = ρ.

(ii) For some u1 ∈ H1
0 (Ω)\ {0}, we have

Jλ(tu1) =
t2

2

∫
Ω

|∇u1|2dx−
λt2

2

∫
Ω

u21dx−
t2·2

∗
µ

2 · 2∗µ

∫
Ω

∫
Ω

|u1(x)|2
∗
µ |u1(y)|2

∗
µ

|x− y|µ
dxdy < 0

for t > 0 large enough. Hence, we can take an e := t1u1 for some t1 > 0 and (ii) follows.

Proposition 3.3. By Lemma 3.2 and the mountain pass theorem without (PS) condition (see [37]),

there exists a (PS) sequence {un} such that Jλ(un) → c and J ′
λ(un) → 0 in H1

0 (Ω)
−1 at the

minimax level

c∗ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > 0, (3.12)

where

Γ := {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = 0, Jλ(γ(1)) < 0}.

Proof of Theorem 1.4. Case N > 4, 0 < λ < λ1. From Lemma 3.1, we know there exists v ∈ H1
0 (Ω)\{0}

such that
|∇v|22 − λ|v|22
∥v∥2NL

< SH,L.
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Therefore,

0 < max
t>0

Jλ(tv) = max
t>0

{
t2

2

∫
Ω

|∇v|2dx− λt2

2

∫
Ω

v2dx− t2·2
∗
µ

2 · 2∗µ

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dxdy

}

=
N + 2− µ
4N − 2µ

(
|∇v|22 − λ|v|22
∥v∥2NL

) 2N−µ
N+2−µ

<
N + 2− µ
4N − 2µ

S
2N−µ

N+2−µ

H,L .

By the definition of c∗, we know c∗ < N+2−µ
4N−2µ S

2N−µ
N+2−µ

H,L . Let {un} be the (PS) sequence obtained in

Proposition 3.3. Applying Lemma 2.5, we know {un} contains a convergent subsequence. In addition,

we have Jλ has a critical value c∗ ∈ (0, N+2−µ
4N−2µ S

2N−µ
N+2−µ

H,L ) and (1.2) has a nontrivial solution.

4 The case N >>> 4, λ >>> λ1

We may suppose that λ ∈ [λj , λj+1) for some j ∈ N, where λj is the j-th eigenvalue of −∆ on Ω with

boundary condition u = 0. ej is the j-th eigenfunctions corresponding to the eigenvalue λj .

Lemma 4.1. If N > 3 and λ ∈ [λj , λj+1) for some j ∈ N, then, the functional Jλ satisfies the following

properties:

(i) There exist α, ρ > 0 such that for any u ∈ Ej+1 with ∥u∥ = ρ it results that Jλ(u) > α.

(ii) Jλ(u) < 0 for any u ∈ Yj.

(iii) Let F be a finite dimensional subspace of H1
0 (Ω). There exists R > ρ such that for any u ∈ F with

∥u∥ > R it results that Jλ(u) 6 0.

Proof. (i) Since λ ∈ [λj , λj+1), by the Sobolev embedding and the Hardy-Littlewood-Sobolev inequality,

for all u ∈ Ej+1\ {0} we have

Jλ(u) >
1

2

∫
Ω

|∇u|2dx− λ

2λj+1

∫
Ω

|∇u|2dx− 1

22∗µ
C1|u|

2( 2N−µ
N−2 )

2∗

> 1

2

(
1− λ

λj+1

)
∥u∥2 − 1

22∗µ
C2∥u∥2(

2N−µ
N−2 ).

Since 2 < 2( 2N−µ
N−2 ), we can choose some α, ρ > 0 such that Jλ(u) > α for u ∈ Ej+1 with ∥u∥ = ρ.

(ii) Let u ∈ Yj , i.e., u =
∑j

i=1 liei, where li ∈ R, i = 1, . . . , j. Since {ei}i∈N is an orthonormal basis

of L2(Ω) and H1
0 (Ω), we have

∫
Ω

u2dx =

j∑
i=1

l2i and

∫
Ω

|∇u|2dx =

j∑
i=1

l2i |∇ei|22.

Then, we get

Jλ(u) =
1

2

j∑
i=1

l2i (|∇ei|22 − λ)−
1

22∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

<
1

2

j∑
i=1

l2i (λi − λ)

6 0,

thanks to λi 6 λj 6 λ.



1232 Gao F S et al. Sci China Math July 2018 Vol. 61 No. 7

(iii) For u ∈ F\ {0}, the non-negativity of λ gives

Jλ(u) =
1

2
∥u∥2 − λ

2
|u|22 −

1

2 · 2∗µ
∥u∥2·2

∗
µ

NL

6 1

2
∥u∥2 − 1

2 · 2∗µ
∥u∥2·2

∗
µ

NL

6 1

2
∥u∥2 − C1

2 · 2∗µ
∥u∥2·2

∗
µ

for some positive constant C1, since all norms on finite dimensional space are equivalent. So, Jλ(u)→ −∞
as ∥u∥ → +∞. Hence, there exists R > ρ such that for any u ∈ F with ∥u∥ > R it results that Jλ(u) 6 0

and (iii) follows.

From Lemma 3.1, if N > 4 and λ > 0, then for ε small enough,

|∇uε|22 − λ|uε|22
∥uε∥2NL

< SH,L.

For any j ∈ N, we define the linear space

Gj,ε := span{e1, . . . , ej , uε}

and set

mj,ε := max
u∈Gj,ε,∥u∥NL=1

(∫
Ω

|∇u|2dx− λ
∫
Ω

|u|2dx
)
,

where ∥ · ∥NL is defined in Lemma 2.3.

Lemma 4.2. If N > 4 and λ ∈ [λj , λj+1) for some j ∈ N, then
(i) mj,ε is achieved at some um ∈ Gj,ε and um can be written as follows:

um = v + tuε

with v ∈ Yj and t > 0.

(ii) The following estimate holds true:

mj,ε 6
{
(λj − λ)|v|22, if t = 0,

(λj − λ)|v|22 +Aε(1 + |v|2O(ε
N−2

2 )) +O(ε
N−2

2 )|v|2, if t > 0,
(4.1)

as ε→ 0, where v is given in (i), uε is given in Section 3 and

Aε =
|∇uε|22 − λ|uε|22
∥uε∥2NL

. (4.2)

Proof. (i) Since Gj,ε is a finite dimensional space, mε is achieved at some um ∈ Gj,ε, i.e.,

mj,ε = |∇um|22 − λ|um|22 and ∥um∥NL = 1.

Obviously, um ̸≡ 0. From the definition of Gj,ε we have that

um = v + tuε

for some v ∈ Yj and t ∈ R. We can suppose that t > 0, otherwise, if t < 0 we can replace um with −um.

The result follows.

(ii) If t = 0, then um = v ∈ Yj and

mj,ε = |∇um|22 − λ|um|22 = |∇v|22 − λ|v|22 6 (λj − λ)|v|22.
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We consider the case t > 0. Since e1, . . . , ej ∈ L∞(Ω), we also have v ∈ L∞(Ω). By a direct

computation, we have∫
Bκ0δ

∫
Bκ0δ

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy

=

∫
Bκ0δ

∫
Bκ0δ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ−1

|x− y|µ
dxdy

= ε
2µ−3N−2

2 [N(N − 2)]
3N−2µ+2

4

∫
Bκ0δ

∫
Bκ0δ

1

(1 + |xε |2)
2N−µ

2 |x− y|µ(1 + |yε |2)
N−µ+2

2

dxdy

= ε
2µ−3N−2

2 [N(N − 2)]
3N−2µ+2

4 ε2N−µ

∫
Bκ0δ

ε

∫
Bκ0δ

ε

1

(1 + |x|2) 2N−µ
2 |x− y|µ(1 + |y|2)N−µ+2

2

dxdy

6 O(ε
N−2

2 )

∫
RN

∫
RN

1

(1 + |x|2) 2N−µ
2 |x− y|µ(1 + |y|2)N−µ+2

2

dxdy,

where κ0 is given in Section 3. If µ > 1, by the Hardy-Littlewood-Sobolev inequality, we have∫
Bκ0δ

∫
Bκ0δ

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy

6 O(ε
N−2

2 )

(∫
RN

(
1

(1 + |x|2) 2N−µ
2

) N
N−1

dx

)N−1
N

(∫
RN

(
1

(1 + |x|2)N−µ+2
2

) N
N−µ+1

dx

)N−µ+1
N

= O(ε
N−2

2 ).

If µ 6 1, by the Hardy-Littlewood-Sobolev inequality again, we have∫
Bκ0δ

∫
Bκ0δ

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy

6 O(ε
N−2

2 )

(∫
RN

(
1

(1 + |x|2) 2N−µ
2

) 2N
2N−µ

dx

) 2N−µ
2N

(∫
RN

(
1

(1 + |x|2)N−µ+2
2

) 2N
2N−µ

dx

) 2N−µ
2N

= O(ε
N−2

2 ).

Thus, we obtain ∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy 6 O(ε

N−2
2 ).

On the other hand, by a direct computation, we have∫
Bδ

∫
Bδ

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy

=

∫
Bδ

∫
Bδ

|Uε(x)|2
∗
µ |Uε(y)|2

∗
µ−1

|x− y|µ
dxdy

= ε
2µ−3N−2

2 [N(N − 2)]
3N−2µ+2

4

∫
Bδ

∫
Bδ

1

(1 + |xε |2)
2N−µ

2 |x− y|µ(1 + |yε |2)
N−µ+2

2

dxdy

= ε
2µ−3N−2

2 [N(N − 2)]
3N−2µ+2

4 ε2N−µ

∫
B δ

ε

∫
B δ

ε

1

(1 + |x|2) 2N−µ
2 |x− y|µ(1 + |y|2)N−µ+2

2

dxdy

> O(ε
N−2

2 )

∫
Bδ

∫
Bδ

1

(1 + |x|2) 2N−µ
2 |x− y|µ(1 + |y|2)N−µ+2

2

dxdy

= O(ε
N−2

2 )

provided ε < 1 and so ∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy > O(ε

N−2
2 ).
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Then we can get ∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ−1

|x− y|µ
dxdy = O(ε

N−2
2 ).

By convexity, we obtain

1 =

∫
Ω

∫
Ω

|um(x)|2
∗
µ |um(y)|2

∗
µ

|x− y|µ
dxdy

=

∫
Ω

∫
Ω

|v(x) + tuε(x)|2
∗
µ |v(y) + tuε(y)|2

∗
µ

|x− y|µ
dxdy

>
∫
Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dxdy + 2 · 2∗µ

∫
Ω

∫
Ω

|tuε(x)|2
∗
µ−1v(x)|tuε(y)|2

∗
µ

|x− y|µ
dxdy

> t2·2
∗
µ

∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy − 2 · 2∗µt2·2

∗
µ−1|v|∞

∫
Ω

∫
Ω

|uε(x)|2
∗
µ−1|uε(y)|2

∗
µ

|x− y|µ
dxdy

> t2·2
∗
µ

∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dxdy − C2t

2·2∗µ−1|v|2O(ε
N−2

2 ), (4.3)

where we used the fact that Yj is a finite dimensional space and all norms on Yj are equivalent. This

implies that t < C3 for some constant C3 > 0. Taking (4.3) into account, we have∫
Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dxdy 6 1 +O(ε

N−2
2 )|v|2.

By (4.2), one can see that

mj,ε =

∫
Ω

|∇(v + tuε)|2dx− λ
∫
Ω

|v + tuε|2dx

6 (λj − λ)|v|22 +Aε

(∫
Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dxdy

) N−2
2N−µ

+ C4|uε|1|v|2

6 (λj − λ)|v|22 +Aε(1 + |v|2O(ε
N−2

2 ))
N−2
2N−µ + C4|uε|1|v|2

6 (λj − λ)|v|22 +Aε(1 + |v|2O(ε
N−2

2 )) +O(ε
N−2

2 )|v|2,

where we had used the estimate in [37, Lemma 2.25] that |uε|1 = O(ε
N−2

2 ).

Lemma 4.3. If N > 4 and λ ∈ (λj , λj+1) for some j ∈ N, then,

|∇u|22 − λ|u|22
∥u∥2NL

< SH,L

for any u ∈ Gj,ε.

Proof. We only need to check that

mj,ε = max
u∈Gj,ε,∥u∥NL=1

(∫
Ω

|∇u|2dx− λ
∫
Ω

|u|2dx
)
< SH,L.

If t = 0 in (4.1), by the choice of λ ∈ (λj , λj+1), we get that

mj,ε 6 (λj − λ)|v|22 < 0 < SH,L.

Now we suppose that t > 0 and discuss the cases N > 5 and N = 4, separately.

If N > 5, we have

mj,ε 6 (λj − λ)|v|22 +
|∇uε|22 − λ|uε|22
∥uε∥2NL

(1 + |v|2O(ε
N−2

2 )) +O(ε
N−2

2 )|v|2
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6 (λj − λ)|v|22 +
C(N,µ)

N−2
2N−µ ·N2 S

N
2

H,L − λdε2 +O(εN−2)

(C(N,µ)
N
2 S

2N−µ
2

H,L −O(εN−µ
2 ))

N−2
2N−µ

(1 + |v|2O(ε
N−2

2 )) +O(ε
N−2

2 )|v|2

6
(
SH,L −

λdε2

(C(N,µ)
N
2 S

2N−µ
2

H,L −O(εN−µ
2 ))

N−2
2N−µ

+O(ε
N
2 )

)
× (1 + |v|2O(ε

N−2
2 )) + (λj − λ)|v|22 +O(ε

N−2
2 )|v|2

6 SH,L −
λdε2

(C(N,µ)
N
2 S

2N−µ
2

H,L −O(εN−µ
2 ))

N−2
2N−µ

+O(ε
N
2 ) + (λj − λ)|v|22 +O(ε

N−2
2 )|v|2

for ε > 0 sufficiently small. Since λ ∈ (λj , λj+1), we know

(λj − λ)|v|22 +O(ε
N−2

2 )|v|2 6 1

4(λj − λ)
O(εN−2) = O(εN−2). (4.4)

Therefore

mj,ε 6 SH,L − λdε2 +O(ε
N
2 ) < SH,L

for ε > 0 sufficiently small.

If N = 4, by (4.4), we have

mj,ε 6 (λj − λ)|v|22 +
|∇uε|22 − λ|uε|22
∥uε∥2NL

(1 + |v|2O(ε)) +O(ε)|v|2

6 (λj − λ)|v|22 +
C(4, µ)

4
8−µS2

H,L − λdε2| ln ε|+O(ε2)

(C(4, µ)2S
8−µ
2

H,L −O(ε4−
µ
2 ))

2
8−µ

(1 + |v|2O(ε)) +O(ε)|v|2

6
(
SH,L −

λdε2| ln ε|

(C(4, µ)2S
8−µ
2

H,L −O(ε4−
µ
2 ))

2
8−µ

+O(ε2)

)
(1 + |v|2O(ε)) + (λj − λ)|v|22 +O(ε)|v|2

6 SH,L −
λdε2| ln ε|

(C(4, µ)2S
8−µ
2

H,L −O(ε4−
µ
2 ))

2
8−µ

+O(ε2) + (λj − λ)|v|22 +O(ε)|v|2

6 SH,L − λdε2| ln ε|+O(ε2)

< SH,L

for ε > 0 sufficiently small. The result follows.

Proof of Theorem 1.4. Case N > 4, λ > λ1. From the definition of Gj,ε, we know

um = v + tzε,

where

v = v + t

j∑
i=1

(∫
Ω

uεeidx

)
ei ∈ Yj

and

zε = uε −
j∑

i=1

(∫
Ω

uεeidx

)
ei,

so that v and zε are orthogonal in L2(Ω). This implies that

|um|22 = |v|22 + t2|zε|22.

Then,

Gj,ε = Yj ⊕ Rzε.
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Applying Lemma 4.1, we know that Jλ satisfies the geometric structure of the linking theorem (see [30,

Theorem 5.3]), i.e.,

inf
u∈Ej+1,∥u∥=ρ

Jλ(u) > α > 0, sup
u∈Yj

Jλ(u) < 0

and

sup
u∈Gj,ε,∥u∥>R

Jλ(u) 6 0,

where α and R are as in Lemma 4.1. Define the linking critical level of Jλ, i.e.,

c⋆ = inf
γ∈Γ

max
u∈V

Jλ(γ(u)) > 0, (4.5)

where

Γ := {γ ∈ C(V ,H1
0 (Ω)) : γ = id on ∂V }

and

V := (BR ∩ Yj)⊕ {rzε : r ∈ (0, R)}.

For any γ ∈ Γ, we have

c⋆ 6 max
u∈V

Jλ(γ(u))

and in particular, if we take γ = id on V , then

c⋆ 6 max
u∈V

Jλ(u) 6 max
u∈Gj,ε

Jλ(u).

Note that for any u ∈ H1
0 (Ω)\{0},

max
t>0

Jλ(tu) =
N + 2− µ
4N − 2µ

(
|∇u|22 − λ|u|22
∥u∥2NL

) 2N−µ
N+2−µ

.

From the face that Gj,ε is a linear space we have

max
u∈Gj,ε

Jλ(u) = max
u∈Gj,ε,t̸=0

Jλ

(
|t| u
|t|

)
= max

u∈Gj,ε,t>0
Jλ(tu) 6 max

u∈Gj,ε,t>0
Jλ(tu).

Thus, by Lemma 4.3, we have

c⋆ 6 max
u∈Gj,ε,t>0

Jλ(tu)

= max
u∈Gj,ε

N + 2− µ
4N − 2µ

(
|∇u|22 − λ|u|22
∥u∥2NL

) 2N−µ
N+2−µ

<
N + 2− µ
4N − 2µ

S
2N−µ

N+2−µ

H,L .

Therefore, the linking theorem and Lemma 2.5 yield that (1.2) admits a nontrivial solution u ∈ H1
0 (Ω)

with critical value c⋆ > α. 2

5 The case N = 3

In this section, we prove Theorem 1.4 for the case N = 3 by using the mountain pass theorem and the

linking theorem. We still denote F to be a finite dimensional subspace of H1
0 (Ω) and

Gj,ε := span{e1, . . . , ej , uε},

for any j ∈ N.
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Lemma 5.1. Let N = 3 and uε be as in Section 3. Then, there exists λ∗ such that for any λ > λ∗,

|∇uε|22 − λ|uε|22
∥uε∥2NL

< SH,L

provided ε > 0 is sufficiently small.

Proof. By the definition of uε, we can get∫
Ω

|uε|2dx >
∫
Bδ

|Uε|2dx > C0ε (5.1)

for ε > 0 sufficiently small. By (3.2), (3.9) and (5.1), we have

|∇uε|22 − λ|uε|22
∥uε∥2NL

6
C(3, µ)

1
6−µ · 32S

3
2

H,L − λC0ε+O(ε)

(C(3, µ)
3
2S

6−µ
2

H,L −O(ε3−
µ
2 ))

1
6−µ

= SH,L −
(λC0 −O(1))ε

(C(3, µ)
3
2S

6−µ
2

H,L −O(ε3−
µ
2 ))

1
6−µ

< SH,L

if λ is large enough, say λ > λ∗ > 0, while ε > 0 is sufficiently small.

We show that Jλ has the geometric structure of the mountain pass theorem when λ ∈ (0, λ1) and the

geometric structure of the linking theorem when λ ∈ [λj , λj+1) for some j ∈ N.
We set

mj,ε := max
u∈Gj,ε,∥u∥NL=1

(∫
Ω

|∇u|2dx− λ
∫
Ω

|u|2dx
)
.

Related to Lemma 4.2, we also have the corresponding result for N = 3, so, we have the following lemma.

Lemma 5.2. If N = 3 and λ ∈ [λj , λj+1) for some j ∈ N, then,
(i) mε is achieved in um ∈ Gj,ε and um can be written as follows:

um = v + tuε

with v ∈ Yj and t > 0.

(ii) The following estimate holds true:

mj,ε 6
{
(λj − λ)|v|22, if t = 0,

(λj − λ)|v|22 +Aε(1 + |v|2O(ε
1
2 )) +O(ε

1
2 )|v|2, if t > 0,

(5.2)

as ε→ 0, where v is given in (i), uε is given in Section 3 and

Aε =
|∇uε|22 − λ|uε|22
∥uε∥2NL

.

Lemma 5.3. If N = 3, λ ∈ (λj , λj+1) for some j ∈ N and λ > λ∗, then,

|∇u|22 − λ|u|22
∥u∥2NL

< SH,L

for any u ∈ Gj,ε.

Proof. If t = 0 in (5.2), by the choice of λ ∈ (λj , λj+1), we get that

mε 6 (λj − λ)|v|22 6 0 < SH,L.
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When t > 0, by (3.2), (3.9), (5.1) and Lemma 5.2, using the similar estimates to that in (4.4), we have

mj,ε 6 (λj − λ)|v|22 +
|∇uε|22 − λ|uε|22
∥uε∥2NL

(1 + |v|2O(ε
1
2 )) +O(ε

1
2 )|v|2

6 (λj − λ)|v|22 +
C(3, µ)

1
6−µ · 32S

3
2

H,L − λC0ε+O(ε)

(C(3, µ)
3
2S

6−µ
2

H,L −O(ε3−
µ
2 ))

1
6−µ

(1 + |v|2O(ε
1
2 )) +O(ε

1
2 )|v|2

6
(
SH,L −

(λC0 −O(1))ε

(C(3, µ)
3
2S

6−µ
2

H,L −O(ε3−
µ
2 ))

1
6−µ

)
(1 + |v|2O(ε

1
2 )) + (λj − λ)|v|22 +O(ε

1
2 )|v|2

6 SH,L −
(λC0 −O(1))ε

(C(3, µ)
3
2S

6−µ
2

H,L −O(ε3−
µ
2 ))

1
6−µ

+ (λj − λ)|v|22 +O(ε
1
2 )|v|2

6 SH,L − λC0ε+O(ε)

< SH,L

for ε > 0 sufficiently small, since λ > λ∗ and λ ∈ (λj , λj+1). The result follows.

Proof of Theorem 1.4. Case N = 3. We consider the two cases: λ1 > λ∗ and λ1 6 λ∗, separately.

Case 1. λ1 > λ∗.

For this case, we use the mountain pass theorem if λ ∈ (λ∗, λ1) while the linking theorem if λ ∈
(λj , λj+1) for some j ∈ N.

If λ ∈ (λ∗, λ1), by Lemma 3.2 and the mountain pass theorem without the (PS) condition (see [37]),

there exists a (PS) sequence {un} such that Jλ(un) → c∗ and J ′
λ(un) → 0 in H1

0 (Ω)
−1 at the mountain

pass level c∗. From Lemma 5.1, we have there exists v ∈ H1
0 (Ω)\{0} such that

|∇v|22 − λ|v|22
∥v∥2NL

< SH,L.

Thus,

0 < max
t>0

Jλ(tv) = max
t>0

{
t2

2

∫
Ω

|∇v|2dx− λt2

2

∫
Ω

v2dx− t2·2
∗
µ

2 · 2∗µ

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dxdy

}

=
5− µ
12− 2µ

(
|∇v|22 − λ|v|22
∥v∥2NL

) 6−µ
5−µ

<
5− µ
12− 2µ

S
6−µ
5−µ

H,L .

By the definition of c, we know c < 5−µ
12−2µS

6−µ
5−µ

H,L .

From Lemma 2.5, we obtain {un} contains a convergent subsequence. So, we have Jλ has a critical

value c∗ ∈ (0, 5−µ
12−2µS

6−µ
5−µ

H,L ) and (1.2) has a nontrivial solution.

If λ ∈ (λj , λj+1) for some j ∈ N, we define

zε = uε −
n∑

i=1

(∫
Ω

uεeidx

)
ei,

then,

Gj,ε = Yj ⊕ Ruε = Yj ⊕ Rzε.

By Lemma 4.1, we get that Jλ has the geometric structure required by the linking theorem (see [30,

Theorem 5.3]). Thus we can define the linking critical level cL of Jλ as in (4.5) and

cL 6 max
u∈V

Jλ(u) 6 max
u∈Gj,ε

Jλ(u).
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On the other hand, we note that for any u ∈ H1
0 (Ω)\{0},

max
t>0

Jλ(tu) =
5− µ
12− 2µ

(
|∇u|22 − λ|u|22
∥u∥2NL

) 6−µ
5−µ

.

As the same arguments in Section 4, we have

cL 6 max
u∈Gj,ε,t>0

Jλ(tu)

= max
u∈Gj,ε

5− µ
12− 2µ

(
|∇u|22 − λ|u|22
∥u∥2NL

) 6−µ
5−µ

<
5− µ
12− 2µ

S
6−µ
5−µ

H,L .

Therefore, the linking theorem and Lemma 2.5 yield that (1.2) admits a solution u ∈ H1
0 (Ω) with

critical value cL > α. Since α > 0 = Jλ(0), we deduce that u is not identically zero.

Case 2. λ1 6 λ∗.

We only consider λ ∈ (λj , λj+1) for some j ∈ N and λ > λ∗. We can argue as in the last part of

Case 1. In this way, we get that for any λ > λ∗ different from an eigenvalue of −∆, (1.2) admits a

solution u ∈ H1
0 (Ω) with critical value cL > α and u is not identically zero.

6 Nonexistence

In this section, we discuss the nonexistence of solutions for (1.2) by using the Pohoz̆aev identity. Firstly,

we are going to show that the solutions for (1.2) possess some regularity which will be used to prove the

Pohožaev identity.

Lemma 6.1. If N > 3, λ < 0 and u ∈ H1(Ω) solves (1.2), then u ∈W 2,p
loc (Ω) for any p > 1.

Proof. Denote by H = K = |u|2
∗
µ−1 = |u|

N−µ+2
N−2 . Then H,K ∈ L

2N
N−µ+2 (Ω). Using [25, Proposition 3.2],

we know u ∈ Lp(Ω) for every p ∈ [2, 2N2

(N−µ)(N−2) ). Moreover, there exists a constant Cp independent of u

such that (∫
Ω

|u|pdx
) 1

p

6 Cp

(∫
Ω

|u|2dx
) 1

2

.

Thus, |u|2
∗
µ ∈ Lq(Ω) for every q ∈ [ 2(N−2)

2N−µ ,
2N2

(N−µ)(2N−µ) ). Since
2(N−2)
2N−µ < N

N−µ <
2N2

(N−µ)(2N−µ) , we have∫
Ω

|u|2
∗
µ

|x− y|µ
dy ∈ L∞(Ω),

and so

| −∆u− λu| 6 C|u|
N−µ+2
N−2 .

By the classical bootstrap method for subcritical local problems in bounded domains, we deduce that

u ∈W 2,p
loc (Ω) for any p > 1.

Proposition 6.2. If N > 3, λ < 0 and u ∈ H1(Ω) solves (1.2), then the following equality holds:

1

2

∫
∂Ω

(x · ν)|∇u|2ds+ N − 2

2

∫
Ω

|∇u|2dx =
2N − µ
2 · 2∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy +

λN

2

∫
Ω

|u|2dx,

where ν denotes the unit outward normal to ∂Ω.

Proof. Since u is a solution of (1.2) and Lemma 6.1, u satisfies

−∆u =

(∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u+ λu. (6.1)
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Then

−
∫
Ω

(x · ∇u)∆udx =

∫
Ω

(x · ∇u)
(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−1dx+ λ

∫
Ω

(x · ∇u)udx. (6.2)

Calculating the first term on the right-hand side, we know∫
Ω

(x · ∇u(x))
(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u(x)|2

∗
µ−1dx

= −
∫
Ω

u(x)∇
(
x

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−1

)
dx

= −
∫
Ω

u(x)

(
N

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−1 + (2∗µ − 1)|u(x)|2

∗
µ−2x · ∇u(x)

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy

+ |u(x)|2
∗
µ−1

∫
Ω

(−µ)x · (x− y) |u(y)|
2∗µ

|x− y|µ+2
dy

)
dx

= −N
∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy − (2∗µ − 1)

∫
Ω

x · ∇u(x)
∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u(x)|2

∗
µ−1dx

+ µ

∫
Ω

∫
Ω

x · (x− y) |u(y)|
2∗µ

|x− y|µ+2
|u(x)|2

∗
µdydx. (6.3)

This implies that

2∗µ

∫
Ω

(x · ∇u(x))
(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u(x)|2

∗
µ−1dx

= −N
∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy + µ

∫
Ω

∫
Ω

x · (x− y) |u(y)|
2∗µ

|x− y|µ+2
|u(x)|2

∗
µdydx,

similarly,

2∗µ

∫
Ω

(y · ∇u(y))
(∫

Ω

|u(x)|2
∗
µ

|x− y|µ
dx

)
|u(y)|2

∗
µ−1dy

= −N
∫
Ω

∫
Ω

|u(y)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dydx+ µ

∫
Ω

∫
Ω

y · (y − x) |u(x)|
2∗µ

|x− y|µ+2
|u(y)|2

∗
µdxdy

and consequently, we get∫
Ω

(x · ∇u(x))
(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u(x)|2

∗
µ−1dx =

µ− 2N

22∗µ

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy. (6.4)

Moreover, we already know that ∫
Ω

(x · ∇u)udx = −N
2

∫
Ω

u2dx (6.5)

and ∫
∂Ω

(x · ν)|∇u|2ds = (2−N)

∫
Ω

|∇u|2dx+ 2

∫
Ω

(x · ∇u)∆udx. (6.6)

From the above equalities, we know the result holds.

Using the Pohožaev identity obtained above, we can easily draw the following conclusion, the proof is

standard and we omit it here.

Theorem 6.3. If N > 3, λ < 0 and Ω ̸= RN is a smooth (possibly unbounded) domain in RN , which

is strictly star-shaped with respect to the origin in RN , then any solution u ∈ H1
0 (Ω) of (1.2) is trivial.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

11571317 and 11671364) and Natural Science Foundation of Zhejiang (Grant No. LY15A010010). The authors

thank the anonymous referees for their useful comments and suggestions which helped to improve the presentation

of the paper greatly.



Gao F S et al. Sci China Math July 2018 Vol. 61 No. 7 1241

References

1 Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248: 423–443

2 Alves C O, Cassani D, Tarsi C, et al. Existence and concentration of ground state solutions for a critical nonlocal

Schrödinger equation in R2. J Differential Equations, 2016, 261: 1933–1972
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28 Pekar S. Untersuchungüber die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954

29 Penrose R. On gravity’s role in quantum state reduction. Gen Relativity Gravitation, 1996, 28: 581–600

30 Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional

Conference Series in Mathematics, vol. 65. Providence: Amer Math Soc, 1986
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