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1 Introduction

The Lie algebra W (2, 2) was introduced by Zhang and Dong [21] in their classification of moonshine type

vertex operator algebras generated by two weight 2 vectors. Note that this algebra has also appeared

in the framework of the non-relativistic conformal field theory (see [3]), the BMS/GCA correspondence

(see [5, 6, 16]), and two-dimensional statistical systems (see [11]).

The representation theory of the Lie algebra W (2, 2) has been investigated from many algebraic per-

spectives (see [1,3,13,14,17,19,21]). Although it can be regarded as an extension of the Virasoro algebra,

the representation theory of the algebra W (2, 2) is different from that for the Virasoro algebra significant-

ly. It is important to note that the maximal submodule of a Verma module is not necessarily generated

by some singular vectors. Instead, the submodule may be associated with some subsingular vectors, these

being vectors which become singular in an appropriate factor module (see [14,17]).

As is known, the structure of the Verma modules for a Virasoro algebra is partly encoded in the

determinant of its Shapovalov form [10, 12, 15]. The purpose of the present paper is to give an explicit

determinant formula of the Shapovalov form on the Verma module over the algebraW (2, 2). We determine

the zeros of the determinant in terms of a proper total ordering on the basis and compute their exponents.

As a byproduct, we also fix a subtle gap appeared in [21], in which the Gram matrix A or An in the

proofs of Theorems 2.1 and 2.4 is actually not an upper triangular matrix if n is even and n > 4. We

also discuss the characters and filtrations of the Verma modules over the algebra W (2, 2).
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The free field realizations play an important role in studying representation theory of the Virasoro

algebra (see [7–9, 18]). An interesting free field realization for the algebra W (2, 2) has been recently

constructed with the twisted Heisenberg-Virasoro algebra at level zero (see [1,2]). The second aim of this

paper is to give a direct realization of a certain vacuum module over the algebra W (2, 2) via the Weyl

vertex algebra.

The paper is organized as follows. In Section 2, we briefly review the relevant results on representations

of the algebra W (2, 2). In Section 3, we define a contravariant form on the Verma module and derive an

explicit determinant formula for this form. In Section 4, we construct a natural realization of a certain

vacuum module over the algebra W (2, 2) via the Weyl vertex algebra. Finally in Section 5, we give a

discussion containing the research background, the conclusion and the related research work. Throughout

the paper, Z+ denotes the set of non-negative integers.

2 The Lie algebra W (2,2)

Definition 2.1 (See [14,21]). The Lie algebra W (2, 2) is equipped with basis {Ln,Wn | n ∈ Z}∪{c,k}
and the following commutation relations:

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0c,

[Lm,Wn] = (m− n)Wm+n +
m3 −m

12
δm+n,0k,

[Wm,Wn] = 0,

where m,n ∈ Z and c and k are central elements of the Lie algebra W (2, 2).

The Lie algebra W (2, 2) contains the Virasoro algebra

Vir =
⊕
m∈Z

CLm ⊕ Cc

as a subalgebra. It is clear that the algebra W (2, 2) has the Z-grading and the triangular decomposition

W (2, 2) = W (2, 2)− ⊕W (2, 2)0 ⊕W (2, 2)+,

where

W (2, 2)± =
⊕
n>0

CL±n ⊕
⊕
n>0

CW±n, W (2, 2)0 = CL0 ⊕ CW0 ⊕ Cc⊕ Ck.

From the definition, we know that there is an anti-involution σ on the algebra W (2, 2) given by

σ(Ln) = L−n, σ(Wn) = W−n, σ(c) = c, σ(k) = k

for n ∈ Z.
Let (c, h, α, β) ∈ C4. Consider C as a W (2, 2)0-module with

c1 = c1, L01 = h1, W01 = α1, k1 = β1.

Let W (2, 2)+ act trivially on C, making C a (W (2, 2)0 ⊕ W (2, 2)−)-module. The Verma module

M(c, h, α, β) is defined by

M(c, h, α, β) = U(W (2, 2))⊗U(W (2,2)0⊕W (2,2)+) C ≃ U(W (2, 2)−)1,

where 1 = 1⊗ 1. It follows that M(c, h, α, β) =
⊕

n>0 Mn(c, h, α, β), where

Mn(c, h, α, β) = {v ∈ M(c, h, α, β) |L0v = (h+ n)v}.
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It is clear that M(c, h, α, β) has a unique maximal submodule J(c, h, α, β) and the factor module

L(c, h, α, β) = M(c, h, α, β)/J(c, h, α, β)

is an irreducible highest weight module.

Let ⟨·, ·⟩ be a C-valued bilinear form on M(c, h, α, β) defined by

⟨a1, b1⟩ = ⟨1, P (σ(a)b)1⟩, ⟨1,1⟩ = 1, for any a, b ∈ U(W (2, 2)−),

where P : U(W (2, 2)) → U(W (2, 2)0) is the Harish-Chandra projection, i.e., a projection along the

decomposition

U(W (2, 2)) = U(W (2, 2)0)⊕ (W (2, 2)−U(W (2, 2)) + U(W (2, 2))W (2, 2)+).

It follows that the form ⟨·, ·⟩ is contragradient, in the sense that,

⟨Lmu, v⟩ = ⟨u, L−mv⟩, ⟨Wmu, v⟩ = ⟨u,W−mv⟩

for m ∈ Z, u, v ∈ M(c, h, α, β). Since the distinct weight spaces of M(c, h, α, β) are orthogonal with

respect to ⟨·, ·⟩, it follows that the study of ⟨·, ·⟩ on M(c, h, α, β) can be reduced to the study of the

restrictions

⟨·, ·⟩n : Mn(c, h, α, β)×Mn(c, h, α, β) → C.

The Verma module M(c, h, α, β) is irreducible if and only if the forms ⟨·, ·⟩n are nondegenerate for all

n ∈ Z+.

3 Determinant formula

Recall that a partition of a positive integer n is a finite non-increasing sequence of positive integers

λ = (λ1, λ2, . . . , λr) such that n =
∑r

i=1 λi. The λi is called the part of the partition λ. We call r the

length of λ, denoted by ℓ(λ), and call the sum of λi’s the weight of λ, denoted by |λ|. The number of

partitions of n is given by the partition function p(n). Denote by Λ the set of all partitions. Recall that

the natural ordering on Λ is defined as follows:

λ > µ ⇔ λ1 = µ1, . . . , λk = µk, λk+1 > µk+1 for some k > 0,

λ = µ ⇔ λi = µi for all i.

For n > 0, let

Sn = {W−λL−µ | |λ|+ |µ| = n for any λ, µ ∈ Λ},

where W−λ := W−λ1 · · ·W−λr and L−µ := L−µ1 · · ·L−µs .

From the Poincaré-Birkhoff-Witt (PBW) theorem, Sn is a basis of U(W (2, 2)−). Let

p2(n) = dimU(W (2, 2)−)n = |Sn|.

Then p2(n) is finite and can be counted by the generating series

∞∑
n=0

p2(n)q
n =

∏
k>1

(1− qk)−2. (3.1)

In particular,

p2(n) =
n∑

i=0

p(i)p(n− i). (3.2)
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From [21], we have the following total ordering ≻ on Sn:

W−λL−µ ≻ W−λ′L−µ′ ⇔ |λ′| > |λ|, or |λ′| = |λ| and λ > λ′, or λ = λ′, and µ′ > µ.

Let

Sn = {bi | bi ≻ bj for i < j}, where bi = W−λ(i)L−µ(i) ,

with λ(i), µ(i) ∈ Λ and |λ(i)|+ |µ(i)| = n for i = 1, 2, . . . , p2(n). Let

Bn = {b11, . . . , bp2(n)1}.

Then Bn is a basis of Mn(c, h, α, β). Let Gn = (gij) be the Gram matrix of the form ⟨·, ·⟩ defined by

gij = ⟨bi1, bj1⟩ for i, j = 1, . . . , p2(n).

In order to compute the determinant of the Gram matrix Gn, we introduce a dual basis B∗
n of

Mn(c, h, α, β) as follows: For bi = W−λ(i)L−µ(i) ∈ Sn, we define

b∗i = W−µ(i)L−λ(i) , B∗
n = {b∗11, . . . , b∗p2(n)

1},

where λ(i), µ(i) ∈ Λ and |λ(i)|+ |µ(i)| = n for i = 1, 2, . . . , p2(n).

Lemma 3.1. Let Dn = (dij), where dij = ⟨bi1, b∗j1⟩ for i, j = 1, . . . , p2(n). Then the matrix Dn is

upper triangular.

Proof. Let

bp = W−λ(p)L−µ(p) , bq = W−λ(q)L−µ(q) , b∗p = W−µ(p)L−λ(p) , b∗q = W−µ(q)L−λ(q) .

Since bq ≻ bp for p > q in Sn, we can discuss it into three different cases.

(1) If |λ(p)| > |λ(q)|, then ⟨W−λ(p)1, L−λ(q)1⟩ = 0. It follows that

dpq = ⟨bp1, b∗q1⟩ = Lµ(p)Wλ(p)W−µ(q)L−λ(q)1 = Lµ(p)W−µ(q)Wλ(p)L−λ(q)1 = 0,

where Lµ = LµrLµr−1 · · ·Lµ1 for µ = (µ1, . . . , µr) ∈ Λ.

(2) If |λ(p)| = |λ(q)| and λ(p) ≻ λ(q), then

dpq = ⟨bp1, b∗q1⟩ = Lµ(p)W−µ(q)Wλ(p)L−λ(q)1 = 0.

(3) If |λ(p)| = |λ(q)| and λ(p) = λ(q), and µ(p) ≻ µ(q), then Wµ(q)L−µ(p)1 = 0. It follows that

dpq = ⟨bp1, b∗q1⟩ = Lλ(q)Wµ(q)W−λ(p)L−µ(p)1 = Lλ(q)W−λ(p)Wµ(q)L−µ(p)1 = 0.

Hence, dpq = 0 for p > q, which implies that Dn is upper triangular.

Corollary 3.2. The following holds:

detGn = detRn

p2(n)∏
p=1

dpp, (3.3)

where

dpp = ⟨bp1, b∗p1⟩ = ⟨W−λ(p)1, L−λ(p)1⟩⟨L−µ(p)1,W−µ(p)1⟩

for p = 1, . . . , p2(n), and Rn is the basis transformation matrix from B∗
n to Bn given by

(b11, . . . , bp2(n)1) = (b∗11, . . . , b
∗
p2(n)

1)Rn.
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Proof. It follows directly from Gn = DnRn and Lemma 3.1.

Lemma 3.3. The determinant detGn is a polynomial in α of degree∑
r,s∈Z+
16rs6n

p2(n− rs). (3.4)

Proof. The degree of α equals

p2(n)∑
p=1

(ℓ(λ(p)) + ℓ(µ(p))) =
n∑

i=0

p(i)
∑

ν∈Λ,|ν|=n−i

ℓ(ν)

=
n∑

i=0

p(i)
∑

r,s∈Z+
16rs6n−i

p(n− i− rs)

=
∑

r,s∈Z+
16rs6n

n−rs∑
i=0

p(i)p(n− i− rs)

=
∑

r,s∈Z+
16rs6n

p2(n− rs),

where we used the following identity: ∑
λ∈Λn,|λ|=n

ℓ(λ) =
∑

r,s∈Z+
16rs6n

p(n− rs).

The proof is complete.

Recall a basic result from linear algebra.

Lemma 3.4 (See [12]). Let V be a linear space of dimension n, and let A(t) ∈ End(V )[t]. Then

detA(t) is divisible by tk, where k is the dimension of kerA(0).

Lemma 3.5. The determinant detGn is divisible by ϕ
p2(n−rs)
r,s , where

ϕr,s =

{
ϕrϕs, r ̸= s,

ϕr, r = s,
ϕr = α+

r2 − 1

24
β, (3.5)

for any r, s ∈ Z+ satisfying 1 6 rs 6 n.

Proof. Let Jn(c, h, α, β) = J(c, h, α, β) ∩Mn(c, h, α, β). Then

Jn(c, h, α, β) = kerGn = ker⟨·, ·⟩n.

It follows that detGn(c, h, α, β) = 0 if and only if Jn(c, h, α, β) ̸= 0.

Suppose that k is the smallest positive integer for which the determinant detGk vanishes at α = h0.

It follows that there exists 0 ̸= u ∈ Jk(cL, β, h, h0) such that Lmu = 0, Wmu = 0 for all m > 0.

Otherwise, we assume that Liu ̸= 0 or Wiu ̸= 0 for some i > 0. Then ⟨v, Liu⟩ = ⟨L−iv, u⟩ = 0 or

⟨v,Wiu⟩ = ⟨W−iv, u⟩ = 0 for any v ∈ M(c, h, α, β) and Liu,Wiu ∈ Mk−i(c, h, α, β); this contradicts the

minimality of k. Then ⟨u⟩ is a submodule of J(c, h, α, β). The subspace ⟨u⟩ ∩Mn(c, h, α, β) is spanned

by the elements W−λL−µu where λ, µ ∈ Λ, |λ| + |µ| = n − k. These vectors are linearly independent,

since U(W (2, 2)) has no divisors of zero. Therefore, Jn(c, h, α, β) has a subspace of dimension p2(n− k).

Then Gn has a kernel of at least dimension p2(n− k).

It follows from Lemma 3.4 that detGn is divisible by (α − h0)
p2(n−k). Since detGn has a zero at

α = − r2−1
24 β for r ∈ Z+ satisfying 1 6 r 6 n, the determinant detGn is divisible by ϕ

p2(n−r)
r . From

p2(n− rs) 6 min{p2(n− r), p2(n− s)}
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for any r, s ∈ Z+ satisfying 1 6 rs 6 n, we have detGn is divisible by ϕ
p2(n−rs)
r,s for any r, s ∈ Z+

satisfying 1 6 rs 6 n. Finally, with the degree and the coefficient of the highest power of α, we have

detGn = kn
∏

r,s∈Z+
16rs6n

ϕp2(n−rs)
r,s ,

where kn is a nonzero constant independent of c, h, α and β.

Theorem 3.6. For n ∈ Z+, the determinant of the Gram matrix of ⟨·, ·⟩n has the form

detGn = kn
∏

r,s∈Z+
16rs6n

ϕp2(n−rs)
r,s , (3.6)

where kn is a nonzero constant independent of c, h, α, β and

ϕr,s =

{
ϕrϕs, r ̸= s,

ϕr, r = s,
ϕr = α+

r2 − 1

24
β.

As a corollary, we have the following corollary.

Corollary 3.7. M(c, h, α, β) is irreducible if and only if

2α+
m2 − 1

12
β ̸= 0 for all m ∈ Z+.

Next, we recall and summarize the structure of the Verma module M(c, h, α, β).

Assume that β ̸= 0 and p =
√

1− 24α
β ∈ Z+. It follows from [14, Theorem 2.7] that the Verma module

M(c, h, α, β) possesses a singular vector

u = S1 ∈ Mp(c, h, α, β), (3.7)

where S = W−p +Q(W ) and Q(W ) is a polynomial of W−i with 0 < i < p. Let

h(r) =
α

β
c+

(13p+ 1)(p− 1)

12
+

(1− r)p

2
(3.8)

for any r ∈ Z+. Using [14, Corollary 3.20] (see also [17, Theorem 3.1]), we have the following theorem.

Theorem 3.8. (1) If h ̸= h(r) for all r ∈ Z+, then

L(c, h, α, β) = M(c, h, α, β)/⟨u⟩

and its character is given by

qh(1− qp)
∏
k>1

(1− qk)−2. (3.9)

(2) Assume h = h(r) for some r ∈ Z+. Let

T = L−p +Q1(W )L1−p + · · ·+Qp−1(W )L−1 +Qp(W ) ∈ Up(W (2, 2)+).

Then

L(c, h, α, β) = M(c, h, α, β)/⟨vr⟩,

where

vr = (T r +Q1(W )T r−1 + · · ·+Qr−1(W )T +Qr(W ))1, (3.10)

where Qi(W ) ∈ U(W+)ip and W−p does not occur in Qi(W ) for i = 1, . . . , r. Here, this vector vr is called

the subsingular vector in M(c, h, α, β). Furthermore, the character of the irreducible module L(c, h, α, β)

is given by

qh(1− qp)(1− qrp)
∏
k>1

(1− qk)−2. (3.11)
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Corollary 3.9. If 2α + p2−1
12 β = 0 for some p ∈ Z+, there is a singular vector un at level np in

M(c, h, α, β) for non-negative integer n and the singular vector is

un = Sn1 ∈ Mnp(c, h, α, β).

The submodule ⟨un⟩ generated by un is isomorphic to M(c, h + np, α, β), and there exits the following

descending filtration:

M(c, h, α, β) = ⟨u0⟩ ⊃ ⟨u1⟩ ⊃ ⟨u2⟩ ⊃ ⟨u3⟩ ⊃ · · · (3.12)

for the submodules of Verma module M(c, h, α, β).

(1) If h ̸= h(r) for all r ∈ Z+, then the subquotient ⟨ur⟩/⟨ur+1⟩ is the irreducible module L(c, h

+ rp, α, β) and ⟨u1⟩ is the maximal submodule of M(c, h, α, β).

(2) If h = h(2m) for some m ∈ Z+, there are subsingular vectors and the following descending filtration:

M0 = ⟨u0⟩ ⊃ M1 = ⟨v2m⟩ ⊃ M2 = ⟨u1⟩ ⊃ M3 = ⟨v2m−2⟩ ⊃ M4 = ⟨u2⟩ ⊃ · · ·
⊃ M2m−1 = ⟨v2⟩ ⊃ M2m = ⟨um⟩ ⊃ M2m+1 = ⟨um+1⟩ ⊃ · · · (3.13)

such that the subquotient Mi/Mi+1 is the irreducible Verma module over the algebra W (2, 2) for any

i ∈ Z+ and M1 = ⟨v2m⟩ is the maximal submodule of M(c, h, α, β).

(3) If h = h(2m − 1) for some m ∈ Z+, there are subsingular vectors and the following descending

filtration:

M0 = ⟨u0⟩ ⊃ M1 = ⟨v2m−1⟩ ⊃ M2 = ⟨u1⟩ ⊃ M3 = ⟨v2m−3⟩ ⊃ M4 = ⟨u2⟩ ⊃ · · ·
⊃ M2m−1 = ⟨v1⟩ ⊃ M2m = ⟨um⟩ ⊃ M2m+1 = ⟨um+1⟩ ⊃ · · · (3.14)

such that the subquotient Mi/Mi+1 is the irreducible Verma module over the algebra W (2, 2) for any

i ∈ Z+ and M1 = ⟨v2m−1⟩ is the maximal submodule of M(c, h, α, β).

Proof. The proof of (1) follows from the proof of Remark 3.22 in [17]. It suffices to give the proof

of (2). The filtration in (2) is due to (3.12) and

h+ ip = h(2m− 2i)

for i = 0, . . . ,m − 1. Clearly, by (1), these subquotients ⟨ui⟩/⟨v2m−2i⟩ are the irreducible modules

L(c, h + ip, α, β) and the subquotients ⟨uk⟩/⟨uk+1⟩ are the irreducible modules L(c, h + kp, α, β) for

k > m. By the proof of Corollary 3.19 in [17], we obtain that the subquotients ⟨v2m+2−2i⟩/⟨ui⟩ are

isomorphic to the irreducible modules L(c, h+ (2m+ 2− 2i)p, α, β), respectively.

4 A realization of the vaccum module

For (c, β) ∈ C2 with β ̸= 0, it follows from Corollary 3.7 that the Verma module M(c, 0, 0, β) is reducible.

In particular, (U(W (2, 2))L−11 + U(W (2, 2))W−11) is a proper submodule of M(c, 0, 0, β). We call the

factor module

V (c, β) = M(c, 0, 0, β)/(U(W (2, 2))L−11+ U(W (2, 2))W−11)

the vaccum module over the algebra W (2, 2). Furthermore, V (c, β) is an irreducible W (2, 2)-module.

Let the symbols x, x1 and x2 denote mutually commuting independent formal variables. We denote

by EndV (c, β)[[x, x−1]] the vector space of (doubly infinite) formal Laurent series in x with coefficients

in EndV (c, β). We have the following generating functions:

L(x) =
∑
n∈Z

Lnx
−n−2, W (x) =

∑
n∈Z

Wnx
−n−2 ∈ EndV (c, β)[[x, x−1]].
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Set 1̄ = 1+ (U(W (2, 2))L−11+ U(W (2, 2))W−11) and let

L = L−21̄, W = W−21̄ ∈ V (c, β).

It follows from [21] that there exists a vertex algebra structure on V (c, β), which is uniquely determined

by the condition that 1̄ is the vacuum vector and

Y (L, x) = L(x), Y (W,x) = W (x).

As a vertex algebra, V (c, β) is generated by the subset {L,W}.
The Weyl algebra W has generators a(n), a∗(n) (n ∈ Z), and relations

[a(m), a∗(n)] = δm+n,0, [a∗(m), a∗(n)] = [a(m), a(n)] = 0

for m,n ∈ Z. The simple W-module VW is generated by a vector 1 which satisfies

a(n)1 = 0, n > 2, a∗(n)1 = 0, n > −2.

Set

a(x) =
∑
n∈Z

a(n)x−n+1, a∗(x) =
∑
n∈Z

a∗(n)x−n−2.

Then

[a(x1), a
∗(x2)] = x−1

1 δ

(
x2

x1

)
.

There exists a unique vertex algebra structure (VW , Y,1) on VW such that 1 is the vacuum vector and

the vertex operator map for this vertex algebra structure is given by

Y (a(1)1, x) = a(x), Y (a∗(−2)1, x) = a∗(x).

For u, v ∈ VW , we define the normal order of vertex operators as follows:

◦
◦ Y (u, x)Y (v, x) ◦

◦ = Y +(u, x)Y (v, x) + Y (v, x)Y +(u, x),

where

Y (u, x) =
∑
n∈Z

unx
−n−1 = Y +(u, x) + Y −(u, x) =

∑
n>0

unx
−n−1 +

∑
n<0

unx
−n−1.

Let

T (x) = − ◦
◦ a(x)∂xa

∗(x) ◦
◦ − 2 ◦

◦ a
∗(x)∂xa(x)

◦
◦ .

It follows from the well-known Feigh-fuchs construction (see [8, 9]) of the Virasoro algebra that

[T (x1), T (x2)] = ∂x2T (x2)x
−1
1 δ

(
x2

x1

)
+ 2T (x2)

∂

∂x2
x−1
1 δ

(
x2

x1

)
+

13

6

(
∂

∂x2

)3

x−1
1 δ

(
x2

x1

)
,

[T (x1), a(x2)] = ∂x2a(x2)x
−1
1 δ

(
x2

x1

)
− a(x2)

∂

∂x2
x−1
1 δ

(
x2

x1

)
,

[T (x1), a
∗(x2)] = ∂x2a

∗(x2)x
−1
1 δ

(
x2

x1

)
+ 2a∗(x2)

∂

∂x2
x−1
1 δ

(
x2

x1

)
.

Let

T (x) =
∑
n∈Z

Tnx
−n−2.

It follows that

[Tm, Tn] = (m− n)Tm+n +
13

6
(m3 −m)δm+n,0,

[Tm, an] = −(2m+ n)am+n,

[Tm, a∗n] = (m− n)a∗m+n

for m,n ∈ Z.
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Theorem 4.1. For β ∈ C, there exists a homomorphism of vertex algebras

Φ : V (26, β) → VW

uniquely determined by

L(x) 7→ − ◦
◦ a(x)∂xa

∗(x) ◦
◦ − 2 ◦

◦ a
∗(x)∂xa(x)

◦
◦ − β

12
∂3
xa(x),

W (x) 7→ a∗(x).

Proof. Let

L̃(x) = − ◦
◦ a(x)∂xa

∗(x) ◦
◦ − 2 ◦

◦ a
∗(x)∂xa(x)

◦
◦ − β

12
∂3
xa(x)

= T (x)− β

12
∂3
xa(x) =

∑
n∈Z

L̃nx
−n−2.

It follows that

[L̃m, L̃n] =

[
Tm +

1

12
β(m3 −m)am, Tn +

1

12
β(n3 − n)an

]
= (m− n)Tm+n +

13

6
(m3 −m)δm+n,0 +

1

12
β(n3 − n)[Tm, an]

− 1

12
β(m3 −m)[Ln, am]

= (m− n)Tm+n +
13

6
(m3 −m)δm+n,0 −

1

12
β(n3 − n)(2m+ n)

+
1

12
β(m3 −m)(2n+m)

= (m− n)

(
Tm+n +

1

12
β((m+ n)3 −m− n)am+n

)
+

13

6
(m3 −m)δm+n,0,

and

[L̃m, a∗n] =

[
Tm +

1

12
β(m3 −m)am, a∗n

]
= (m− n)a∗m+n +

1

12
β(m3 −m)δm+n,0.

We have

[L̃(x1), L̃(x2)] = ∂x2L̃(x2)x
−1
1 δ

(
x2

x1

)
+ L̃(x2)

∂

∂x2
x−1
1 δ

(
x2

x1

)
+

26

12

(
∂

∂x2

)3

x−1
1 δ

(
x2

x1

)
,

[L̃(x1), a
∗(x2)] = ∂x2a

∗(x2)x
−1
1 δ

(
x2

x1

)
+ a∗(x2)

∂

∂x2
x−1
1 δ

(
x2

x1

)
+

β

12

(
∂

∂x2

)3

x−1
1 δ

(
x2

x1

)
,

which implies that Φ is a W (2, 2)-module homomorphism. Since L(x) and W (x) generate V (26, β) as a

vertex algebra, Φ is a homomorphism of vertex algebras.

5 Discussion

In the recent years, great attention has been paid to the study of the representations of infinite-dimensional

Virasoro type Lie algebras. The Lie algebra W (2, 2), which is also called the centrally extended BMS3
algebra in physics, can be regarded as an extension of the Virasoro algebra. The induced representations,

coadjont representations, and the characters associated with certain induced representations over the

centrally extended BMS3 have recently been studied in [5,6,16]. The associated bms3 algebra is isomorphic

to the infinite-dimensional extension of the Galilean conformal algebra in two dimensions, which is closely

related to non-relativistic conformal symmetries (see [4]). A class of non-unitary representations of central
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extended GCA in 2D have been studied in some details (see [3]). The bms3 algebra has also appeared

in the framework of two-dimensional statistical systems in the form of an infinite-dimensional extension

of alt1 (see [11]) and turned out to be related to the classifications of vertex operator algebras in the form

of the algebra W (2, 2). The representations of the algebra W (2, 2) have been investigated from a purely

algebraic point of view (see [2, 13,14,17,19–21]).

In this article, we give an explicit determinant formula of the contravariant form on the Verma module

of the algebra W (2, 2). We also discuss the structure of the Verma module such as irreducibility, non-

unitarity, singular vectors, characters and filtrations. Finally, we give a direct realization of certain

vacuum module over the algebra W (2, 2) via the Weyl vertex algebra. Especially, the result related to

the maximal submodule of the Verma module over the algebra W (2, 2) is partly different from that given

by Radobolja [17]. We believe that these results provide valuable insights into the nature of W (2, 2)-

modules, free field realizations and some algebraic properties for the other Virasoro type Lie algebras.
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