
SCIENCE CHINA
Mathematics CrossMark

August 2017 Vol. 60 No. 8: 1353–1370

doi: 10.1007/s11425-016-9045-1

c⃝ Science China Press and Springer-Verlag Berlin Heidelberg 2017 math.scichina.com link.springer.com

. REVIEWS .

Supersonic flow onto solid wedges, multidimensional
shock waves and free boundary problems

Dedicated to Professor LI TaTsien on the Occasion of His 80th Birthday

CHEN Gui-Qiang1,2,3,4

1School of Mathematical Sciences, Fudan University, Shanghai 200433, China;
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
3School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

4Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK

Email: chengq@maths.ox.ac.uk

Received December 21, 2016; accepted February 22, 2017; published online May 4, 2017

Abstract When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge,

governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is

less than the detachment angle—the steady weak shock with supersonic or subsonic downstream flow (determined

by the wedge angle that is less than or greater than the sonic angle) and the steady strong shock with subsonic

downstream flow, both of which satisfy the entropy condition. The fundamental issue—whether one or both

of the steady weak and strong shocks are physically admissible solutions—has been vigorously debated over

the past eight decades. In this paper, we survey some recent developments on the stability analysis of the

steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the

stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free

boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary

are suitably regular and small, and we finally present some recent results on the static stability of the steady

supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability

problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem

to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we

finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-

Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes

to infinity. Some further developments and mathematical challenges in this direction are also discussed.
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1 Introduction

We survey some recent developments in the analysis of supersonic flow onto solid wedges (see

Figure 1), involving multidimensional shock waves, and related initial-boundary value type problems

and free boundary problems for the Euler equations for compressible fluids. This paper is dedicated to
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Figure 1 Upstream steady uniform supersonic flow past a symmetric straight-sided wedge

Professor LI TaTsien on the occasion of his 80th birthday, who has made pioneering and fundamental

contributions to this research direction and related areas (see [29,33–35,38–42] and the references therein),

as we discuss below.

The wedge problem is a longstanding fundamental problem in mathematical fluid mechanics, partly

owing to both the rich wave configurations in the fluid flow around the wedge and the mathematical

challenges involved. More importantly, the solution configurations of the wedge problem are core config-

urations in the structure of global steady entropy solutions, as well as global dynamic entropy solutions

of the two-dimensional Riemann problem, for multidimensional hyperbolic systems of conservation laws.

The steady and Riemann solutions themselves are expected to be local building blocks and determine

local structures, global attractors, and large-time asymptotic states of general entropy solutions for the

systems (see [4,10,11,25,30,31,52]). In this sense, we have to understand the solution configurations and

their stability in order to understand fully the global entropy solutions of the multidimensional hyperbolic

systems of conservation laws.

The two-dimensional steady, full Euler equations take the form
∇x · (ρu) = 0,

∇x · (ρu⊗ u) +∇xp = 0,

∇x ·
(
ρu

(
E +

p

ρ

))
= 0,

(1.1)

where ∇x is the gradient in x = (x1, x2) ∈ R2, u = (u1, u2) the velocity, ρ the density, p the pressure, as

well as

E =
1

2
|u|2 + e (1.2)

is the total energy with the internal energy e. The other two thermodynamic variables are temperature T

and entropy S. If ρ and S are chosen as the independent variables, then the constitutive relations can be

written as (e, p, T ) = (e(ρ, S), p(ρ, S), T (ρ, S)) governed by TdS = de− p
ρ2 dρ. For an ideal gas,

p = RρT, e = cvT, γ = 1 +
R

cv
> 1, (1.3)

and

p = p(ρ, S) = κργeS/cv , e =
κ

γ − 1
ργ−1eS/cv =

RT

γ − 1
, (1.4)

where R, κ and cv are all positive constants.

The sonic speed of the polytropic gas flow is

c =

√
γp

ρ
. (1.5)

The flow is subsonic if |u| < c and supersonic if |u| > c. For a transonic flow, both cases occur in the flow,

and then System (1.1) is of mixed-composite elliptic-hyperbolic type, which consists of two equations of

mixed elliptic-hyperbolic type and two equations of transport-type (which are hyperbolic).

System (1.1) is a prototype of general nonlinear systems of conservation laws

∇x · F (U) = 0, x ∈ Rn, (1.6)
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Figure 2 The shock polar in the u-plane and uniform steady (weak and strong) shock flows

where U : Rn → Rm is unknown, while F : Rm → Mm×n is a given nonlinear mapping for the m × n

matrix space Mm×n. For (1.1), we may choose U = (u, p, ρ). The systems with form (1.6) often gov-

ern time-independent solutions of multidimensional quasilinear hyperbolic systems of conservation laws

(see [24,36]).

It is well known that, for an upstream steady uniform supersonic flow past a symmetric straight-sided

wedge (see Figure 1)

W := {x = (x1, x2) ∈ R2 : |x2| < x1 tan θw, x1 > 0}, (1.7)

whose angle θw is less than the detachment angle θdw, there exists an oblique shock emanating from the

wedge vertex. Since the upper and lower subsonic regions do not interact with each other, it suffices to

study the upper part. Then, more precisely, if the upstream steady flow is a uniform supersonic state,

we can find the corresponding constant downstream flow along the straight-sided upper wedge boundary,

together with a straight shock separating the two states. The downstream flow is determined by the shock

polar whose states in the phase space are governed by the Rankine-Hugoniot conditions and the entropy

condition; see Figure 2 and Section 2. Indeed, Prandtl [50] first employed the shock polar analysis to show

that there are two possible steady oblique shock configurations when the wedge angle θw is less than the

detachment angle θdw—the steady weak shock with supersonic or subsonic downstream flow (determined

by the wedge angle that is less than or greater than the sonic angle θsw) and the steady strong shock

with subsonic downstream flow, both of which satisfy the entropy condition, provided that no additional

conditions are assigned at downstream. See also Busemann [3], Courant and Friedrichs [23], Meyer [49],

and the references cited therein.

The fundamental issue—whether one or both of the steady weak and strong shocks are physically

admissible—has been vigorously debated over the past eight decades (see [23, 24, 44, 53, 54]). On the

basis of experimental and numerical evidence, it has strongly indicated that the steady weak shock

solution would be physically admissible, as Prandtl conjectured in [50]. One natural approach to single

out the physical admissible steady shock solutions is via the stability analysis: The stable ones are

physical. For example, it is indicated by Courant and Friedrichs [23, Section 123] that “The question

arises which of the two actually occurs. It has frequently been stated that the strong one is unstable and

that, therefore, only the weak one could occur. A convincing proof of this instability has apparently never

been given.” On August 17, 1949, during the Symposium on the Motion of Gaseous Masses of Cosmical

Dimensions held at Paris, von Neumann [54] invited several eminent scientists of that days, including

Burges, Heisenberg, Liepmann, von Kármán, and Temple, to join his discussion panel on the topic

entitled “the Existence and Uniqueness of Multiplicity of Solutions of the Aerodynamical Equations”. In

his open remarks, von Neumann made his comments specifically on the wedge problem: “Occasionally the

simplest hydrodynamical problems have several solutions, some of which are very difficult to exclude on

mathematical grounds only. For instance, a very simple hydrodynamical problem is that of the supersonic

flow of a gas through a concave corner, which obviously leads to the appearance of shock wave. In general,

there are two different solutions with shock waves, and it is perfectly well known from experimentation

that only one of the two, the weaker shock wave, occurs in nature. But I think that all stability arguments

to prove that it must be so, are of very dubious quality.” From these comments, one may see that von

Neumann was not so optimistic then whether the mathematical stability analysis could provide a complete
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understanding of the non-uniqueness issue. After von Neumannn’s remarks, the panel members provided

their own insights and different points of view for the admissibility of the weak and strong shock waves

and related problems. For more details, we refer the reader to von Neumann [54] (see also [44,53]).

It is interesting to observe that there was not too much progress on the global stability analysis of the

steady oblique shock solutions until recently; this is partly owing to the lack of mathematical tools and

techniques that are required for solving the problem. Mathematically, there are two levels of the stability

analysis of the multidimensional shock waves: One is the static stability of the shocks under steady

perturbations within the steady regime, i.e., the steady perturbation of both the upstream supersonic

flow and the wedge boundary; the other is the dynamic stability to show that the steady shock solutions

are the long-time asymptotic limiting states of the corresponding unsteady solutions of the Euler equations

for compressible fluids.

As far as we have known, the rigorous study of the local static stability of supersonic shock waves (i.e.,

both the upstream and downstream states are supersonic) around the wedge vertex for potential flow was

first initiated by the Fudan Nonlinear PDE Group led by GU ChaoHao and LI TaTsien in 1960 (see [29]).

In this work, the shock wave involved was first regarded as a free boundary to formulate the stability

problem as a free boundary problem, and was further reformulated the free boundary problem into a

fixed boundary problem via the hodograph transform. The hodograph method was further refined by

employing the parameterization method of characteristics in [33–35]. In [32], Gu extended the analysis of

the wedge problem from the isentropic to full Euler equations and related quasilinear hyperbolic systems.

In [40,41] (see also [42]), a more general method of transformations was developed to analyze more general

quasilinear hyperbolic systems. The local stability of the two-dimensional supersonic shock waves for the

full Euler equations was proved by Li [38, 39] via employing the approach to solving free boundary

problems for quasilinear hyperbolic systems, developed in [40, 41] (see also [42]), which considerably

simplified the original proof of Schaeffer [51] that had been achieved via the Nash-Moser iterations. It is

shown that the flow possesses the same qualitative features as a flow past a straight-sided wedge locally.

The result by Li [38,39] was obtained without the additional hypothesis of the Hölder continuity employed

in [51] via the Nash-Moser iterations. See also Chen [14, 18] for the local static stability of supersonic

shock waves past a three-dimensional wing and conical body for potential flow. For the first rigorous

treatment of the local existence and stability of unsteady multidimensional shock fronts for nonlinear

hyperbolic systems of conservation laws, see Majda [45–47].

The global stability results we present here are originally motivated by these fundamental results,

insights, and remarks mentioned above. The purpose of this paper is to analyze the stability of both

weak and strong shock waves, to show how the wedge problem can be formulated as mathematical

problems—initial-boundary value type problems and free boundary problems, to present some recent

developments, and to discuss further mathematical challenges and open problems in the global stability

analysis of multidimensional shock waves.

More precisely, in Section 2, we first formulate the wedge problem as an initial-boundary value type

problem, and then reformulate it into a free boundary problem. In Section 3, we present the global static

stability of steady supersonic shocks under the BV perturbation of both the upstream steady supersonic

flow and the slope of the wedge boundary, as long as the wedge vertex angle is less than the sonic angle.

In Section 4, we present the global static stability of both weak and strong transonic shocks under the

perturbation of both the upstream flow and the slope of the wedge boundary in a weighted Hölder space.

In Section 5, we show that the steady weak supersonic/transonic shock solutions are the asymptotic limits

of the dynamic self-similar solutions, the Prandtl-Meyer configurations. Finally, in Section 6, we discuss

some further developments and mathematical challenges in this research direction.

2 Static stability I: Mathematical formulations and free boundary problems

In this section, we first formulate the wedge problem as an initial-boundary value type problem, and

then reformulate it into a free boundary problem when the perturbation of both the upstream steady
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supersonic flow and the wedge boundary are suitably regular and small.

In order that a piecewise smooth solution U = (u, p, ρ) separated by a front S := {x : x2 = σ(x1), x1

> 0} becomes a weak solution of the Euler equations (1.1), the Rankine-Hugoniot conditions must be

satisfied along S, i.e., 

σ′(x1)[ρu1] = [ρu2],

σ′(x1)[ρu
2
1 + p] = [ρu1u2],

σ′(x1)[ρu1u2] = [ρu2
2 + p],

σ′(x1)

[
ρu1

(
E +

p

ρ

)]
=

[
ρu2

(
E +

p

ρ

)]
,

(2.1)

where [ · ] denotes the jump between the quantity of two states across front S; i.e., if w− and w+ represent

the left and right states, respectively, then [w] := w+ − w−.

Such a front S is called a shock if the entropy condition holds along S: The density increases in the

fluid direction across S.
For a given state U−, all states U that can be connected with U− through the relations in (2.1) form

a curve in the state space R4; the part of the curve whose states satisfy the entropy condition is called

the shock polar. The projection of the shock polar onto the u–plane is shown in Figure 2.

In particular, for an upstream uniform horizontal flow U−
0 = (u−

10, 0, p
−
0 , ρ

−
0 ) past the upper part of a

straight-sided wedge whose angle is θw, the downstream constant flow can be determined by the shock

polar (see Figure 2). According to the shock polar, the two flow angles are important: One is the

detachment angle θdw that ensures the existence of an attached shock at the wedge vertex, and the other

is the sonic angle θsw < θdw for which the downstream fluid velocity is at the sonic speed in the direction.

More precisely, in Figure 2, θsw is the wedge-angle such that line u2 = u1 tan θ
s
w intersects with the shock

polar at a point on the circle of radius c0, and θdw is the wedge-angle so that line u2 = u1 tan θ
d
w is

tangential to the shock polar and there is no intersection between line u2 = u1 tan θw and the shock polar

when θw > θdw.

When the wedge angle is less than the detachment angle θdw, the tangent point T corresponding to

the detachment angle divides arc÷HS into the two open arcs öTS and÷TH (see Figure 2). The nature of

these two cases, as well as the case for arc÷SQ, is very different. When the wedge angle θw is between θsw
and θdw, there are two subsonic solutions; while the wedge angle θw is smaller than θsw, there are one

subsonic solution and one supersonic solution. Such an oblique shock S0 is also straight, described by

x2 = s0x1. The question is whether the steady oblique shock solution is stable under a perturbation of

both the upstream supersonic flow and the wedge boundary.

Assume that the perturbed upstream flow U−
I is close to U−

0 , which is supersonic and almost horizontal,

and the wedge is close to a straight-sided wedge. Then, for any suitable wedge angle (smaller than a

detachment angle), it is expected that there should be a shock attached to the wedge vertex. We now

use a function b(x1) > 0 to describe the upper wedge boundary:

∂W = {x ∈ R2 : x2 = b(x1), b(0) = 0}. (2.2)

Then the wedge problem can be formulated as the following problem.

Problem 2.1 (Initial-boundary value type problem). Find a global solution of (1.1) in Ω := {x2 >

b(x1), x1 > 0} such that the following hold:

(i) Cauchy condition at x1 = 0:

U |x1=0 = U−
I (x2); (2.3)

(ii) boundary condition on ∂W as the slip boundary:

u · n |∂W = 0, (2.4)

where n is the outer unit normal vector to ∂W.
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Figure 3 The leading steady shock as a free boundary under the perturbation

Suppose that the background shock is the straight line given by x2 = σ0(x1) = s0x1. When the

upstream steady supersonic perturbation U−
I (x2) at x1 = 0 is suitably regular and small, the upstream

steady supersonic smooth solution U−(x) exists in region Ω− = {x : 0 < x1 < s0
2 x1}, beyond the

background shock, but is still close to U−
0 .

Suppose that the shock wave S we seek is {x : σ(0) = 0, x2 = σ(x1), x1 > 0}. The domain for the

downstream flow behind S is denoted by

Ω = {x ∈ R2 : b(x1) < x2 < σ(x1), x1 > 0}. (2.5)

Then Problem 2.1 can be further reformulated into the following free boundary problem.

Problem 2.2 (Free boundary problem; see also Figure 3). Let (U−
0 , U+

0 ) be a constant transonic

solution with transonic shock S0 := {x2 = σ0(x1) = s0x1}. For any upstream flow U− for (1.1) in

domain Ω− as a small perturbation of U−
0 , find a shock S := {x2 = σ(x1)} and a solution U in Ω (see

Figure 3), which are small perturbations of S0 and U+
0 , respectively, such that

(i) U satisfies the equations in (1.1) in domain Ω;

(ii) the slip condition (2.4) holds along the wedge boundary ∂W;

(iii) the Rankine-Hugoniot conditions (2.1) as free boundary conditions hold along the shock front S.
When U+

0 corresponding to a state on arc÷SQ gives a weak supersonic shock (i.e., both the upstream and

downstream states are supersonic) (see Figure 2), the problem is denoted by Problem 2.2(SS); when U+
0

corresponding to a subsonic state on arcöTS gives a weak transonic shock (i.e., the upstream state is super-

sonic and the downstream state is subsonic) (see Figure 2), the problem is denoted by Problem 2.2(WT);

while the strong transonic shock problem corresponds to arc ÷TH, denoted by Problem 2.2(ST).

In general, the initial-boundary value type problem (see Problem 2.1) is more general than the free

boundary problem (see Problem 2.2). On the other hand, the complete solution to the free boundary

problem (see Problem 2.2) provides the global structural stability of the steady oblique shocks, as well

as more detailed structure of solutions.

3 Static stability II: Steady supersonic shocks

If the downstream flow is supersonic (i.e., U+
0 ∈÷SQ), the corresponding shock is a weaker supersonic

shock.

As indicated in Section 2, the rigorous study of the local static stability of such shock waves around

the wedge vertex for the potential flow equation was first initiated by the Fudan Nonlinear PDE Group

led by Gu and Li [29] (see also [32–35, 40–42]). For the full Euler equations, the local stability of the

supersonic shocks was established by Gu [32], Li [38, 39], and Schaeffer [51] via different approaches.

Global potential solutions were constructed in [15–17,21,22,56,57] when the wedge has certain convexity

or the wedge is a small perturbation of the straight-sided wedge with fast decay in the flow direction, whose

vertex angle is less than the detachment angle. In particular, in [57], the existence of two-dimensional

steady supersonic potential flows past piecewise smooth curved wedges, which are a small perturbation

of the straight-sided wedge, was established.
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Figure 4 The leading supersonic shock as a Lipschitz free boundary under the BV perturbations

For the free boundary problem (see Problem 2.2(SS)), the more general initial-boundary value type

problem (see Problem 2.1) has been solved for more general perturbations of both the initial data and

wedge boundary, in [12,13]. More precisely,

(i) the wedge boundary function x2 = b(x1) is a Lipschitz function, b ∈ Lip(R+), with

TV (b′(·)) < ∞, b′(0+) = 0, b(0) = 0, arctan(b′(x1)) < θsw,

so that n(x1±) = (−b′(x1±),1)√
(b′(x1±))2+1

is the outer normal vector to Γ at point x± (see Figure 4);

(ii) the upstream flow U−
I = (u−

I , p
−
I , ρ

−
I ) is a BV function (i.e., U−

I ∈ BV (R+)) satisfying that u−
I > 0,

|u−
I |2 > (c−I )

2 :=
γp−

I

ρ−
I

.

With this setup, we have the following theorem.

Theorem 3.1 (See [12,13] and Figure 4). There are ε > 0 and C > 0 such that, if

TV (U−
I (·)) + TV (b′(·)) < ε, (3.1)

then there exists a pair of functions (U(x), σ(x1)), U ∈ BVloc(R2
+) and σ′ ∈ BV (R+), such that

(i) the curve, x2 = σ(x1), is a leading shock above the wedge boundary x2 = b(x1) for any x1 > 0;

(ii) U is a global entropy solution of Problem 2.1 in Ω := {x : x2 > b1(x1), x1 > 0} with

TV {U(x1, ·) : (b(x1), σ(x1)) ∪ (σ(x1),∞)} 6 C(TV (U−
I (·)) + TV (b′(·))) for any x1 ∈ R+, (3.2)

(u, v) · n |x2=b(x1) = 0 in the trace sense; (3.3)

(iii) there exist constants s∞ and p∞ such that

lim
x1→∞

|σ′(x1)− s∞| = 0, lim
x1→∞

sup{|p(x)− p∞| : b(x1) < x2 < σ(x1)} = 0,

and

lim
x1→∞

sup

{∣∣∣∣u2(x)

u1(x)
− b′(∞)

∣∣∣∣ : b(x1) < x2 < σ(x1)

}
= 0.

Moreover, the entropy solution U = U(x) is stable with respect to the initial BV perturbation in L1

and unique in a broader class—the class of viscosity solutions.

This theorem indicates that the leading steady supersonic oblique shock-front emanating from the

wedge vertex is nonlinearly stable in structure, although there may be many weaker waves and vortex

sheets between the leading supersonic shock-front and the wedge boundary or the x2-axis, where the

initial condition is assigned, under the BV perturbation of both the upstream flow and the slope of the

wedge boundary, as long as the wedge vertex angle is less than the sonic angle θsw. Moreover, the steady

supersonic shock for the wedge problem is nonlinearly stable in L1 under the BV perturbation. This

asserts that the steady supersonic oblique shock should be physically admissible, as observed from the

experimental results.
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More specifically, in [13], in order to establish the global existence of solutions for the constant Cauchy

data U−
I = U−

0 , we first developed a modified Glimm scheme and identified a Glimm-type functional by

incorporating the curved wedge boundary and the strong shock naturally, and by tracing the interactions

not only between the wedge boundary and weak waves but also the interaction between the strong shock

and weak waves. Some detailed interaction estimates are carefully made to ensure that the Glimm-type

functional monotonically decreases in the flow direction. In particular, one of the essential estimates is

on the strengths of the reflected waves for (1.1) in the interaction between the strong shock and weak

waves; and the second essential estimate is the interaction estimate between the wedge boundary and

weak waves. Another essential estimate is on tracing the approximate strong shocks in order to establish

the nonlinear stability and asymptotic behavior of the strong shock emanating from the wedge vertex

under the wedge perturbation.

In [12], based on the understanding of the problem in [13], we further established the L1 well-posedness

for Problem 2.1 when the total variation of both the boundary slope function and the Cauchy data

(upstream flow) is small. We first obtained the existence of solutions in BV when the upstream flow U−
I

has small total variation by the wave front tracking method and then established the L1-stability of

the solutions with respect to the upstream flows. In particular, we incorporated the nonlinear waves

generated from the wedge boundary to develop a Lyapunov functional between two solutions containing

the strong shock fronts, which is equivalent to the L1-norm, and proved that the functional decreases in

the flow direction. Then the L1-stability was established, which implies the uniqueness of the solutions

by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of

viscosity solutions, was also obtained.

4 Static stability III: Weak and strong transonic shocks

For transonic (i.e., supersonic-subsonic) shocks, there are two cases—the transonic shock with the subsonic

state corresponding to arc öTS (which is a weaker shock) and the one corresponding to arc÷TH (which is

a stronger shock) (see Figure 2). The strong shock case was first studied in [21] for the potential flow. In

[28], the full Euler equations were studied with a uniform Bernoulli constant for both weak and strong

transonic shocks. Because the framework is a weighted Sobolev space, the asymptotic behavior of the

shock slope or subsonic solution was not derived. In [55], the Hölder norms were used for the estimates

of solutions of the full Euler equations with the assumption on the sharpness of the wedge angle, which

means that the subsonic state is near point H in the shock polar. In [6], the weaker transonic shock,

which corresponds to arc öTS, was investigated; and the existence, uniqueness, stability, and asymptotic

behavior of subsonic solutions were obtained. In [6, 55], a potential function is used to reduce the

full Euler equations to one elliptic equation in the subsonic region. The method was first proposed in

[5] and has the advantage of integrating the conservation properties of the Euler system into a single

elliptic equation. However, working on the potential function requires at least the Lipschitz estimate

of the potential function to keep the subsonicity of the flow. In the recent paper [7], we have directly

employed the decomposition of the full Euler equations into two algebraic equations and a first-order

elliptic system of two equations and have established the stability and asymptotic behavior of transonic

flows for Problems 2.2(WT)–2.2(ST) in a weighted Hölder space.

To state the results, following [7], we need to introduce the weighed Hölder norms in the subsonic

domain Ω, where Ω is either a truncated triangular domain or an unbounded domain with the vertex at

origin O and one side as the wedge boundary. There are two weights: One is the distance function to

origin O and the other is to the wedge boundary ∂W. For any x,x′ ∈ Ω, define

δox := min(|x|, 1), δox,x′ := min(δox, δ
o
x′), δwx := min(dist(x, ∂W), 1), δwx,x′ := min(δwx , δ

w
x′),

∆x := |x|+ 1, ∆x,x′ := min(∆x,∆x′), ∆̃x := dist(x, ∂W) + 1, ∆̃x,x′ := min(∆̃x, ∆̃x).

Let α ∈ (0, 1), τ, l, γ1, γ2 ∈ R with γ1 > γ2, and let k be a nonnegative integer. Let k = (k1, k2) be an
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integer-valued vector, where k1, k2 > 0, |k| = k1 + k2, and Dk = ∂k1
x1
∂k2
x2
. We define

[f ]
(γ1;O)(γ2;∂W)
k,0;(τ,l);Ω = sup

x∈Ω
|k|=k

{(δox)max{γ1+min{k,−γ2},0}(δwx )
max{k+γ2,0} ∆τ

x∆̃
l+k
x |Dkf(x)|}, (4.1)

[f ]
(γ1;O)(γ2;∂W)
k,α;(τ,l);Ω = sup

x,x′∈Ω
x ̸=x′,|k|=k

{
(δox,x′)max{γ1+min{k+α,−γ2},0}(δwx,x′)max{k+α+γ2,0}∆τ

x,x′

× ∆̃l+k+α
x,x′

|Dkf(x)−Dkf(x′)|
|x− x′|α

}
, (4.2)

∥f∥(γ1;O)(γ2;∂W)
k,α;(τ,l);Ω =

k∑
i=0

[f ]
(γ1;O)(γ2;∂W)
i,0;(τ,l);Ω + [f ]

(γ1;O)(γ2;∂W)
k,α;(τ,l);Ω . (4.3)

For a vector-valued function f = (f1, f2, . . . , fn), we define ∥f∥(γ1;O)(γ2;∂W)
k,α;(τ,l);Ω =

∑n
i=1 ∥fi∥

(γ1;O)(γ2;∂W)
k,α;(τ,l);Ω .

Let

C
k,α;(τ,l)
(γ1;O)(γ2;∂W)(Ω) = {f : ∥f∥(γ1;O)(γ2;∂W)

k,α;(τ,l);Ω < ∞}. (4.4)

The requirement that γ1 > γ2 in the definition above means that the regularity up to the wedge

boundary is no worse than the regularity up to the wedge vertex. When γ1 = γ2, the δo-terms disappear

so that (γ1, O) can be dropped in the superscript. If there is no weight (γ2, ∂W) in the superscript, the

δ-terms for the weights should be understood as (δox)
max{k+γ1,0} and (δox)

max{k+α+γ1,0} in (4.1) and (4.2),

respectively. Moreover, when no weight appears in the superscripts of the seminorms in (4.1) and (4.2),

it means that neither δo nor δw is present. For a function of one variable defined on (0,∞), the weighted

norm ∥f∥(γ2;0)
k,α;(l);R+ is understood in the same as the definition above with the weight to {0} and the decay

at infinity.

Since the variables in U are expected to have different levels of regularity, we distinguish these variables

by defining U1 = (u1, ρ) and U2 = (w, p) for w = u2

u1
. Let U+

10 and U+
20 be the corresponding background

subsonic states.

Theorem 4.1 (See [7]). There are positive constants α, β, C0 and ε, depending only on the background

states (U−
0 , U+

0 ), such that there exists a solution (U, σ) for either of Problems 2.2(WT) and 2.2(ST) such

that (U, σ) satisfies the following estimates:

(i) For Problem 2.2(WT),

∥U1 − U+
10∥

(−α;∂W)
2,α;(0,1+β);Ω + ∥U2 − U+

20∥
(−α;O)(−1−α;∂W)
2,α;(1+β,0);Ω + ∥σ′ − s0∥(−α;0)

2,α;(1+β);R+

6 C0(∥U− − U−
0 ∥2,α;(1+β,0);Ω− + ∥b′∥(−α;0)

1,α;(1+β);R+), (4.5)

provided that ∥U− − U−
0 ∥2,α;(1+β,0);Ω− + ∥b′∥(−α;0)

1,α;(1+β);R+ < ε.

(ii) For Problem 2.2(ST),

∥U1 − U+
10∥

(−1−α;∂W)
2,α;(0,β);Ω + ∥U2 − U+

20∥
(−1−α;O)
2,α;(β,0);Ω + ∥σ′ − s0∥(−1−α;0)

2,α;(β);R+

6 C0(∥U− − U−
0 ∥2,α;(β);Ω− + ∥b′∥(−1−α;0)

2,α;(β);R+), (4.6)

provided that ∥U− −U−
0 ∥2,α;(β,0);Ω− + ∥b′∥(−α−1;0)

2,α;(β);R+ < ε. The solution (U, σ) is unique within the class of

solutions such that the left-hand side of (4.5) for Problem 2.2(WT) or (4.6) for Problem 2.2(ST) is less

than C0ε.

The dependence of constants α, β,C0 and ε in Theorem 4.1 is as follows: α and β depend on U−
0

and U+
0 , but are independent of C0 and ε; C0 depends on U−

0 , U+
0 , α and b, but are independent of ε;

and ε depends on all U−
0 , U+

0 , α, β and C0.

The difference in the results of the two problems is that the solution of Problem 2.2(WT) has less

regularity at corner O and decays faster with respect to |x| (or the distance from the wedge boundary)

than the solution of Problem 2.2(ST).
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To achieve these, the main strategy is to use the physical variables to do the estimates, instead of the

potential function. The advantage of this method is that only the lower regularity (i.e., the C0-estimate)

is enough to guarantee the subsonicity. Furthermore, directly estimating the physical state function U

also yields a better asymptotic decay rate: For weaker transonic shocks, in our earlier paper [6], the decay

rate of the velocity is only |x|−β; while, as indicated in (4.5) here, the subsonic solution decays to a limit

state at rate |x|−β−1.

More precisely, we have first used the Lagrangian coordinates to straighten the streamlines. The

reason for this is that the Bernoulli variable and entropy are conserved along the streamlines. Using the

streamline as one of the coordinates simplifies the formulation, especially for the asymptotic behavior of

the solution. Then we have decomposed the Euler system into two algebraic equations and two elliptic

equations, as in [20, 28]. Differentiating the two elliptic equations yields a second-order elliptic equation

in divergence form for the flow direction w = u2

u1
. Given U for the coefficients in the equation, we can

solve for a new variable w̃. Once we have solved for w̃ and obtained the desired estimates, the rest

variables have then been updated so that a map δŨ = Q(δU) has been constructed, where δU and δŨ

are the perturbations from the background subsonic state. The estimates based on our method do not

yield the contraction for Q. Therefore, the Schauder fixed point argument has been employed to obtain

the existence of the subsonic solution. For the uniqueness, we have taken the difference of two solutions

and have estimated the difference by using the weighted Hölder norms with less decay rate.

One point we should emphasize here is that the decay pattern is different from the potential flow.

In a potential flow, the decay is with respect to |x|. For example, if φ converges to φ0 at rate |x|−β,

then ∇φ converges at rate |x|−β−1. For the Euler equations, because the Bernoulli variable and the

entropy are constant along the streamlines, U1 = (u1, ρ) does not converge to the background state

along the streamlines, but does converge only across the streamlines away from the wedge. Therefore,

when the elliptic estimates are performed, the scaling is with respect to the distance from the wedge,

rather than |x|. This results in the following decay pattern: In Lagrangian coordinates y, there exists

an asymptotic limit U∞ = (u∞
1 , 0, p+0 , ρ

∞); U converges to U∞ at rate |y|−β, but ∇U converges at rate

|y|−β(y2 + 1)−1, i.e., the extra decay for the gradient of the solution is only along the y2-direction.

It would also be interesting to investigate the stability problems under more general perturbations, say

the BV perturbation of both the upstream flow and the slope of the wedge boundary.

5 Dynamic stability: Self-similar transonic shocks and existence of Prandtl-
Meyer configurations for potential flow

Since both weak and strong steady shock solutions are stable in the steady regime, the static stability

analysis alone is not able to single out one of them in this sense, unless an additional condition is posed on

the speed of the downstream flow at infinity. Then the dynamic stability analysis becomes more significant

to understand the non-uniqueness issue of the steady oblique shock solutions. However, the problem for

the dynamic stability of the steady shock solutions for supersonic flow past solid wedges involves several

additional mathematical difficulties. The recent efforts have been focused on the construction of the

global Prandtl-Meyer configurations in the self-similar coordinates for potential flow.

The compressible potential flow is governed by the conservation law of mass and the Bernoulli law

∂tρ+∇x · (ρ∇xΦ) = 0, (5.1)

∂tΦ+
1

2
|∇xΦ|2 + h(ρ) = B (5.2)

for density ρ and velocity-potential Φ, where B is the Bernoulli constant determined by the upstream

flow and/or boundary conditions, and h(ρ) is given by h(ρ) =
∫ ρ

1
p′(ϱ)
ϱ dϱ =

∫ ρ

1
c2(ϱ)
ϱ dϱ for the sound

speed c(ρ) and pressure p. For an ideal polytropic gas, by scaling without loss of generality, the sound

speed c and pressure p are given by

p(ρ) =
ργ

γ
, c2(ρ) = ργ−1, h(ρ) =

ργ−1 − 1

γ − 1
(5.3)
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Figure 5 The shock polar in the u-plane

for the adiabatic component γ > 1.

By (5.2)–(5.3), ρ can be expressed as

ρ(∂tΦ,∇xΦ) = h−1

(
B − ∂tΦ− 1

2
|∇xΦ|2

)
. (5.4)

Then System (5.1)–(5.2) can be rewritten as

∂tρ(∂tΦ,∇xΦ) +∇x · (ρ(∂tΦ,∇xΦ)∇xΦ) = 0 (5.5)

with ρ(∂tΦ,∇xΦ) determined by (5.4).

As we discussed earlier, if a supersonic flow with a constant density ρ0 > 0 and a velocity u0 = (u10, 0),

u10 > c0 := c(ρ0), impinges toward wedge W in (1.7), and if θw is less than the detachment angle θdw, then

the well-known shock polar analysis shows that there are two different steady weak solutions: The steady

weak shock solution Φ̄ and the steady strong shock solution, both of which satisfy the entropy condition

and the slip boundary condition (see Figure 5).

Then the dynamic stability of the weak transonic shock solution for potential flow can be formulated

as the following problem.

Problem 5.1 (Initial-boundary value problem). Given γ > 1, fix (ρ0, u10) with u10 > c0. For a fixed

θw ∈ (0, θdw), let W be given by (1.7). Seek a global weak solution Φ ∈ W 1,∞
loc (R+ × (R2 \ W )) of (5.5)

with ρ determined by (5.4) and B =
u2
10

2 + h(ρ0) so that Φ satisfies the initial condition at t = 0,

(ρ,Φ) |t=0 = (ρ0, u10x1) for x ∈ R2 \W, (5.6)

and the slip boundary condition along the wedge boundary ∂W , i.e.,

∇xΦ · nw |∂W = 0, (5.7)

where nw is the exterior unit normal to ∂W .

In particular, we seek a solution Φ ∈ W 1,∞
loc (R+ × (R2 \W )) that converges to the steady weak oblique

shock solution Φ̄ corresponding to the fixed parameters (ρ0, u10, γ, θw) with ρ̄ = h−1(B − 1
2 |∇Φ̄|2), when

t → ∞, in the following sense: For any R > 0, Φ satisfies

lim
t→∞

∥(∇xΦ(t, ·)−∇xΦ̄, ρ(t, ·)− ρ̄)∥L1(BR(0)\W ) = 0 (5.8)

for ρ(t,x) given by (5.4).

Since the initial data function in (5.6) does not satisfy the boundary condition (5.7), a boundary layer

is generated along the wedge boundary starting at t = 0, which forms the Prandtl-Meyer configuration,

as proved in [1, 2].

Notice that the initial-boundary value problem, Problem 5.1, is invariant under the scaling

(t,x) → (αt, αx), (ρ,Φ) →
(
ρ,

Φ

α

)
for α ̸= 0.
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Thus, we seek self-similar solutions in the form of

ρ(t,x) = ρ(ξ), Φ(t,x) = tϕ(ξ) for ξ =
x

t
.

Then the pseudo-potential function φ = ϕ − 1
2 |ξ|

2 satisfies the following Euler equations for self-similar

solutions:

div(ρDφ) + 2ρ = 0,
ργ−1 − 1

γ − 1
+

(
1

2
|Dφ|2 + φ

)
= B, (5.9)

where the divergence div and gradient D are with respect to ξ. From this, we obtain the following

equation for the pseudo-potential function φ(ξ):

div(ρ(|Dφ|2, φ)Dφ) + 2ρ(|Dφ|2, φ) = 0 (5.10)

for

ρ(|Dφ|2, φ) =
(
B0 − (γ − 1)

(
1

2
|Dφ|2 + φ

)) 1
γ−1

, (5.11)

where we have set B0 := (γ − 1)B + 1. Then we have

c2(|Dφ|2, φ) = B0 − (γ − 1)

(
1

2
|Dφ|2 + φ

)
. (5.12)

(5.10) is an equation of mixed elliptic-hyperbolic type. It is elliptic if and only if

|Dφ| < c(|Dφ|2, φ). (5.13)

As the upstream flow has the constant velocity (u10, 0), the corresponding pseudo-potential φ0 has the

expression of

φ0 = −1

2
|ξ|2 + u10ξ1. (5.14)

Problem 5.1 can then be reformulated as the following boundary value problem in the domain:

Λ := R2
+ \ {ξ : ξ2 6 ξ1 tan θw, ξ1 > 0}

in the self-similar coordinates ξ, which corresponds to domain {(t,x) : x ∈ R2
+ \ W, t > 0} in the

(t,x)-coordinates.

Problem 5.2 (Boundary value problem). Seek a solution φ of equation (5.10) in the self-similar

domain Λ with the slip boundary condition:

Dφ · n |∂Λ = 0, (5.15)

and the asymptotic boundary condition at infinity:

φ− φ0 → 0 (5.16)

along each ray Rθ := {ξ1 = ξ2 cot θ, ξ2 > 0} with θ ∈ (θw, π) as ξ2 → ∞ in the sense that

lim
R→∞

∥φ− φ0∥C(Rθ\BR(0)) = 0. (5.17)

In particular, we seek a weak solution of Problem 5.2 with two types of Prandtl-Meyer configurations

whose occurrence is determined by the wedge angle θw for the two different cases: One contains a straight

weak oblique shock attached to the wedge vertex O, and the oblique shock is connected to a normal shock

through a curved shock when θw < θsw, as shown in Figure 6; the other contains a curved shock attached

to the wedge vertex and connected to a normal shock when θsw 6 θw < θdw, as shown in Figure 7, in which

the curved shock Γshock is tangential to a straight weak oblique shock S0 at the wedge vertex.
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Figure 6 Self-similar solutions for θw ∈ (0, θsw) in the self-similar coordinates ξ (see [1])

Figure 7 Self-similar solutions for θw ∈ [θsw, θdw) in the self-similar coordinates ξ (see [1])

A shock is a curve across which Dφ is discontinuous. If Ω+ and Ω− (:= Ω \ Ω+) are two nonempty

open subsets of Ω ⊂ R2, and S := ∂Ω+ ∩Ω is a C1-curve where Dφ has a jump, then φ ∈ W 1,1
loc ∩C1(Ω±

∪ S)∩C2(Ω±) is a global weak solution of (5.10) in Ω if and only if φ is in W 1,∞
loc (Ω) and satisfies (5.10)

and the Rankine-Hugoniot condition on S,

[ρ(|Dφ|2, φ)Dφ · ν]S = 0, (5.18)

where [F ]S is defined by [F (ξ)]S := F (ξ) |
Ω−−F (ξ) |

Ω+ for ξ ∈ S. Note that the condition, φ ∈ W 1,∞
loc (Ω),

requires that

[φ]S = 0. (5.19)

The front, S, is called a shock if density ρ increases in the flow direction across S. A piecewise smooth

solution whose discontinuities are all shocks is called an entropy solution.

To seek a global entropy solution of Problem 5.2 with the structure of Figure 6 or Figure 7, one needs

to compute the pseudo-potential function φ0 below S0.

Given M0 > 1, ρ1 and u1 are determined by using the shock polar in Figure 5 for steady potential

flow. For any wedge angle θw ∈ (0, θsw), line u2 = u1 tan θw and the shock polar intersect at a point u1

with |u1| > c1 and u11 < u10; while, for any wedge angle θw ∈ [θsw, θ
d
w), they intersect at a point u1 with

u11 > u1d and |u1| < c1. The intersection state u1 is the velocity for steady potential flow behind an

oblique shock S0 attached to the wedge vertex with angle θw. The strength of shock S0 is relatively weak

compared to the other shock given by the other intersection point on the shock polar, which is a weak

oblique shock, and the corresponding state u1 is a weak state.

We also note that states u1 depend smoothly on u10 and θw, and such states are supersonic when

θw ∈ (0, θsw) and subsonic when θw ∈ [θsw, θ
d
w).

Once u1 is determined, by (5.14) and (5.19), the pseudo-potentials φ1 and φ2 below the weak oblique

shock S0 and the normal shock S1 are respectively in the form of

φ1 = −1

2
|ξ|2 + u1 · ξ, φ2 = −1

2
|ξ|2 + u2 · ξ + k2 (5.20)

for constant states u1 and u2, and constant k2. Then it follows from (5.11) and (5.20) that the corre-

sponding densities ρ1 and ρ2 below S0 and S1 are constants, respectively. In particular, we have

ργ−1
1 = ργ−1

0 +
γ − 1

2
(u2

10 − |u1|2). (5.21)
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Then Problem 5.2 can be reformulated into the following free boundary problem.

Problem 5.3 (Free boundary problem). For θw ∈ (0, θdw), find a free boundary (curved shock) Γshock

and a function φ defined in domain Ω, as shown in Figures 6–7, such that φ satisfies

(i) (5.10) in Ω;

(ii) φ = φ0 and ρDφ · ns = ρ0Dφ0 · ns on Γshock;

(iii) φ = φ̂ and Dφ = Dφ̂ on Γ1
sonic∪Γ2

sonic when θw ∈ (0, θsw) and on Γ2
sonic∪{O} when θw ∈ [θsw, θ

d
w)

for φ̂ := max(φ1, φ2);

(iv) Dφ · n = 0 on Γwedge,

where ns and n are the interior unit normals to Ω on Γshock and Γwedge, respectively.

Let φ be a solution of Problem 5.3 such that Γshock is a C1-curve up to its endpoints and φ ∈ C1(Ω).

To obtain a solution of Problem 5.2 from φ, we have two cases.

For θw ∈ (0, θsw), we divide the half-plane {ξ2 > 0} into five separate regions. Let ΩS be the unbounded

domain below curve S0 ∪ Γshock ∪ S1 and above Γwedge (see Figure 6). In ΩS , let Ω1 be the bounded open

domain enclosed by S0,Γ
1
sonic and {ξ2 = 0}. Set Ω2 := ΩS \ (Ω1 ∪ Ω). Define a function φ∗ in {ξ2 > 0} by

φ∗ =


φ0 in Λ ∩ {ξ2 > 0} \ ΩS ,

φ1 in Ω1,

φ in Γ1
sonic ∪ Ω ∪ Γ2

sonic,

φ2 in Ω2.

(5.22)

By (5.19) and (iii) of Problem 5.3, φ∗ is continuous in {ξ2 > 0} \ ΩS and C1 in ΩS . In particular, φ∗ is

C1 across Γ1
sonic ∪ Γ2

sonic. Moreover, using (i)–(iii) of Problem 5.3, we obtain that φ∗ is a global entropy

solution of equation (5.10) in Λ ∩ {ξ2 > 0}.
For θw ∈ [θsw, θ

d
w), region Ω1 ∪ Γ1

sonic in φ∗ reduces to one point {O}, and the corresponding φ∗ is a

global entropy solution of (5.10) in Λ ∩ {ξ2 > 0}.
The first rigorous unsteady analysis of the steady supersonic weak shock solution as the long-time

behavior of an unsteady flow is due to Elling and Liu [27], in which they succeeded in establishing a

stability theorem for an important class of physical parameters determined by certain assumptions for

the wedge angle θw less than the sonic angle θsw ∈ (0, θdw) for potential flow.

Recently, in [1, 2], we have successfully removed the assumptions in Elling-Liu’s theorem [27] and

established the stability theorem for the steady (supersonic or transonic) weak shock solutions as the

long-time asymptotics of the global Prandtl-Meyer configurations for unsteady potential flow for all the

admissible physical parameters even up to the detachment angle θdw (beyond the sonic angle θsw < θdw).

The global Prandtl-Meyer configurations involve two types of transonic transition—discontinuous and

continuous hyperbolic-elliptic phase transitions for the fluid fields (transonic shocks and sonic circles).

To establish this theorem, we have first solved the free boundary problem (see Problem 5.3), involving

transonic shocks, for all wedge angles θw ∈ (0, θdw) by employing the new techniques developed in [11] to

obtain the monotonicity properties and uniform a priori estimates for admissible solutions. Therefore,

we have achieved the existence of a self-similar weak solution with higher regularity to Problem 5.1 for

all wedge angles θw up to the detachment angle θdw.

More precisely, to solve this free boundary problem, we have followed the approach introduced in [11].

We have first defined a class of admissible solutions φ, which are the solutions of Prandtl-Meyer config-

uration, such that, when θw ∈ (0, θsw), (5.10) is strictly elliptic for φ in Ω \ (Γ1
sonic ∪ Γ2

sonic), max{φ1, φ2}
6 φ 6 φ0 holds in Ω, and the following monotonicity properties hold:

D(φ0 − φ) · eS1 > 0, D(φ0 − φ) · eS0 6 0 in Ω, (5.23)

where eS0 and eS1 are the unit tangential directions to lines S0 and S1, respectively, pointing to the

positive ξ1-direction. The monotonicity properties in (5.23) are the key to ensure that the shock is

a Lipschitz graph in a cone of directions, so that the geometry of the problem is fixed, among other
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consequences. For θw ∈ [θsw, θ
d
w), admissible solutions have been defined similarly, with corresponding

changes to the structure of subsonic reflection solutions.

Another key step for solving Problem 5.3 is to derive uniform a priori estimates for admissible solutions

for any wedge angle θw ∈ [0, θdw − ε] for each ε > 0. In particular, for fixed γ > 1, u10 > 0 and ε > 0, it

has been proved that there exists a constant C > 0 depending only on γ, u10 and ε > 0 such that, for any

θ ∈ (0, θdw − ε], a corresponding admissible solution φ satisfies dist(Γshock, Bc0(u10, 0)) > C−1 > 0. This

inequality plays an essential role to achieve the ellipticity of (5.10) in Ω. Once the ellipticity is achieved,

then we can obtain various apriori estimates of φ, so that the Leray-Schauder degree argument can be

employed to obtain the existence for each θw ∈ [0, θdw − ε] in the class of admissible solutions, starting

from the unique normal solution for θw = 0. Since ε > 0 is arbitrary, the existence of a weak solution for

any θw ∈ (0, θdw) can be established.

More details can be found in [1, 2] (see also [11]).

More recently, we have also established the strict convexity of the curved transonic part of the free

boundary in the Prandtl-Meyer configurations described above1). In order to prove the convexity, we

employ the global properties of admissible solutions, including the existence of the cone of monotonicity

discussed above.

The existence results in [1, 2] indicate that the steady weak supersonic/transonic shock solutions are

the asymptotic limits of the dynamic self-similar solutions, the Prandtl-Meyer configurations, in the sense

of (5.17) in Problem 5.1.

On the other hand, it is shown in [2, 26] that, for each γ > 1, there is no self-similar strong Prandtl-

Meyer configuration for the unsteady potential flow in the class of admissible solutions (see [2]). This

means that the situation for the dynamic stability of the strong steady oblique shocks is more sensitive.

6 Further problems and remarks

In Sections 1–5, we have surveyed some recent developments on the static stability of the weak and

strong steady shock solutions for the wedge problem; we have also presented the recent results on the

dynamic stability of the weak steady supersonic/transonic shock solutions for potential flow. These

indicate that the weak supersonic/transonic oblique shocks are both stable, and it is more sensitive

for the dynamic stability of the steady strong transonic shocks, which require further mathematical

understanding. Moreover, there are many other open problems in this direction, which require further

investigations.

When the deviation of vorticity become significant, the full Euler equations are required. It is still open

how the Prandtl-Meyer configurations can be constructed for the full Euler flow. As seen in Section 5,

we have understood the mathematical difficulties relatively well for the transonic shocks, the Kelydsh

degeneracy near the sonic arcs, and the corner between the transonic shock and the sonic arcs for the

nonlinear second-order elliptic equations, as well as a one-point singularity at the wedge vertex between

the attached shock and the wedge boundary for the transition of state (1) from the supersonic to subsonic

states when the wedge angle increases across the sonic angle up to the detachment angle. On the other

hand, when the flow is pseudo-subsonic, the system consists of two transport-type equations and two

nonlinear equations of mixed hyperbolic-elliptic type. Therefore, in general, the full Euler system is of

composite-mixed hyperbolic-elliptic type (see [11]). Then the following two new features for this problem

for the isentropic and/or full Euler equations still need to be understood:

(i) Solutions of transport-type equations with rough coefficients and stationary transport velocity;

(ii) estimates of the vorticity of the pseudo-velocity.

Indeed, a similar calculation as in [52] has shown difficulties in estimating the vorticity. It is possible

that the vorticity has some singularities in the region, perhaps near the wedge boundary and/or corner.

In fact, even for potential flow, for the wedge angle θw ∈ (θsw, θ
d
w), the second derivatives of the velocity

potential, i.e., the first derivatives of the velocity, may blow up at the wedge corner.

1) Chen G-Q, Feldman M, Xiang W. Convexity of self-similar transonic shock waves for potential flow. 2017
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For the global stability of three or higher dimensional (M-D) transonic shocks in steady supersonic flow

past M-D wedges, the situation is much more sensitive than that for the 2-D case, which requires more

careful rigorous mathematical analysis. In [9], we developed a nonlinear approach and employed it to

establish the stability of weak shock solutions containing a transonic shock for potential flow with respect

to the M-D perturbation of the wedge boundary in appropriate function spaces. To achieve this, we first

formulated the stability problem as an M-D free boundary problem for nonlinear elliptic equations. Then

we introduced the partial hodograph transformation to reduce the free boundary problem into a fixed

boundary value problem near a background solution with fully nonlinear boundary conditions for second-

order nonlinear elliptic equations in an unbounded domain in M-D. To solve this reduced problem, we

linearized the nonlinear problem on the background shock solution and then, after solving this linearized

elliptic problem, we developed a nonlinear iteration scheme that was proved to be contractive, which

implies the convergence of the scheme to yield the desired results. It would be interesting to investigate

further problems for the stability of M-D shocks in steady supersonic flow past M-D wedges. In this

regard, we notice that an instability result has been observed in [37].

Conical flow (i.e., cylindrically symmetric flow with respect to an axis) occurs in many physical situa-

tions. For example, it occurs at the conical nose of a projectile facing a supersonic stream of air (see [23]).

The global stability of conical supersonic shocks has been studied in [43] in the class of BV solutions

when the cone vertex angle is small, and [19, 22] in the class of smooth solutions away from the conical

shock when the perturbed cone is sufficiently close to the straight-sided cone. The stability of transonic

shocks in 3-D steady flow past a perturbed cone had been a longstanding open problem. For the 2-D

wedge case, the equations do not involve such singular terms, and the flow past the straight-sided wedge

is piecewise constant. However, for the 3-D conical case, the governing equations have a singularity at

the cone vertex and the flow past the straight-sided cone is self-similar, but no longer piecewise constant.

These cause additional difficulties for the stability problem. In [8], we developed techniques to handle the

singular terms in the equations and the singularity of the solutions. Our main results indicate that the

self-similar transonic shock is conditionally stable with respect to the conical perturbation of the cone

boundary and the upstream flow in appropriate function spaces, i.e., it was proved that the transonic

shock and downstream flow in our solutions are close to the unperturbed self-similar transonic shock and

downstream flow under the conical perturbation, and the slope of the shock asymptotically tends to the

slope of the unperturbed self-similar shock at infinity. These results were obtained by first formulating

the stability problem as a free boundary problem and introducing a coordinate transformation to reduce

the free boundary problem into a fixed boundary value problem for a singular nonlinear elliptic system.

Then we developed an iteration scheme that consists of two iteration mappings: One is for an iteration

of approximate transonic shocks, and the other is for an iteration of the corresponding boundary value

problems for the singular nonlinear systems for given approximate shocks. To ensure the well-definedness

and contraction property of the iteration mappings, it is essential to establish the well-posedness for a

corresponding singular linearized elliptic equation, especially the stability with respect to the coefficients

of the equation, and to obtain the estimates of its solutions reflecting their singularity at the cone vertex

and decay at infinity. The approach is to employ key features of the equation, to introduce appropriate

solution spaces, and to apply a Fredholm-type theorem in [48] to establish the existence of solutions by

showing the uniqueness in the solution spaces.

Another important direction is to analyze the detached shocks off the wedge when the supersonic flow

onto the wedge whose angle is larger than the detachment angle.

Finally, many fundamental problems in this direction are still wide open, and their solution requires

further new techniques, approaches and ideas, which deserve our special attention.
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