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Abstract This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of

analytic functions. The effort is laid out in the Hardy space over the bidisk H2(D2). A closed subspace M

in H2(D2) is called a submodule if ziM ⊂ M (i = 1, 2). An associated integral operator (defect operator) CM

captures much information about M . Using a Krĕın space indefinite metric on the range of CM , this paper

gives a representation of M . Then it studies the group (called Lorentz group) of isometric self-maps of M with

respect to the indefinite metric, and in finite rank case shows that the Lorentz group is a complete invariant

for congruence relation. Furthermore, the Lorentz group contains an interesting abelian subgroup (called little

Lorentz group) which turns out to be a finer invariant for M .
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1 Introduction

The book [4] by Douglas and Paulsen formulated an analytic framework for studying commuting operator

tuples. In this framework, the tuple of multiplcation by coordinates (Mz1 ,Mz2 , . . . ,Mzn), as well as

their restrictions to joint invariant subspaces (called submodules), serves as a model for a large class

of commuting operator tuples. In recent years research in this framework has been one of the most

active fronts in multivariable operator theory, with encouraging developments in Hardy spaces, Bergman

spaces, Dirichlet spaces and Duray-Aveson spaces. A very notable success of this study, which started

even before [4] (see [15]), is the theory on the Hardy space over the bidisk H2(D2). In this setting, a

closed subspace M of H2(D2) is a submodule if it is invariant under multiplications by both coordinate

functions z1 and z2 (or z and w), or equivalently it is invariant under multiplcation by functions in the

algebra H∞(D2). Submodules are two-variable counterparts of shift invariant subspaces in the classical
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Hardy space H2(D), but they have much more complicated structure. One important tool in studying

submodules is the core operator defined by

CMf(z) =

∫
T2

GM (z, λ)f(λ)dm(λ), z ∈ D2, f ∈ H2(D2)

in [10], where GM (z, λ) =
kMλ (z)
kλ(z)

is the quotient of the reproducing kernel for M over the Szegö kernel

forH2(D2). A motivation behind this definition is the belief that the quotient will balance out singularities

of the reproducing kernels on the distinguished boundary T2, hence CM may be a nice operator. Indeed,

as it turns out, CM is Hilbert-Schmidt in all known examples. Moreover, it unifies some key elements in

prior studies and gives rise to a classification of submodules (see [23]). This paper is a step further along

this line.

If we let PM denote the orthogonal projection from H2(D2) onto M , then it can be shown that the

core operator of M is equal to

CM = PM − Tz1PMT
∗
z1PM − Tz2PMT

∗
z2PM + Tz1z2PMT

∗
z1z2PM .

Since CM = 0 on the complement H2(D2)⊖M , we may simply restrict CM to M and write

CM = I −Rz1R
∗
z1 −Rz2R

∗
z2 +Rz1z2R

∗
z1z2 ,

where Rf stands for the compression of Toeplitz operator Tf to M . For this reason, it is also called the

defect operator for the pair (Rz1 , Rz2). Clearly, CM is self-adjoint, and it is not hard to check that it is

a contraction. Furthermore, it is shown to be Hilbert-Schmidt for almost all submodules (see [19, 20]).

The following formula is important for this paper:

CMkλ =
kMλ
kλ

. (1.1)

This formula can be verified as follows: Since PMT
∗
z1k

M
λ = λ1k

M
λ , we have that

CMkλ = (PM − Tz1PMT
∗
z1PM − Tz2PMT

∗
z2PM + Tz1z2PMT

∗
z1z2PM )kλ

= (IM −Rz1R
∗
z1 −Rz2R

∗
z2 +Rz1z2R

∗
z1z2)k

M
λ

= (1− λ1z1 − λ2z2 + λ1λ2z1z2)k
M
λ

=
kMλ
kλ

.

Another important fact for this paper is the following decomposition of compact defect operator

(see [23]) on the orthogonal complement of kerCM :

CM =


In

D

−In−1

−D

 , (1.2)

where Ik stands for the identity matrix of size k × k, and D is an injective positive pure contraction.

Clearly, if CM is finite rank, then rankCM is odd. This fact will be used in several places in the paper.

The paper is organized into two parts. Since, for a fixed λ, 1/kλ is invertible in the algebra H∞(D2),

(1.1) implies that the range of CM generates M . The first part (see Sections 2–5) of this paper takes a

closer look at this fact and gives a representation of M through a Krĕın space constructed from CM , and

we will show that for every submodule M with rankCM = N < ∞ there exist Krĕın space operator D

and N functions φ1, . . . , φn, ψ1, . . . , ψN−n in M (these might be unbounded) such that

PM = DD♯ =
∑

16j6n
TφjT

∗
φj

−
∑

16k6N−n

Tψk
T ∗
ψk
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on span{kλ(z) : λ ∈ D2}. We would like to emphasize that this equality may be viewed as a bidisk version

of Beurling’s theorem, since in H2(D), M = θH2(D) for some inner function θ by Beurling’s theorem

(see [3]) and one checks that PM = TθT
∗
θ .

In the second part (Sections 6–9) of this paper, we consider the group G(M) of invertible operators

on M that preserve an indefinite metric for the Krĕın space. To be precise, it is the collection of

invertible operators T acting on M such that T ∗CMT = CM . It is called Lorentz group of M because of

its resemblence to the classical Lorentz group on Minkowski space-time. A classification of submodules

is given in [23] based on congruence. It will be shown that, when the defect operators are finite rank, two

submodules are congruent if and only if their associated Lorentz groups are isomorphic. In other words,

submodules can in fact be classified by their Lorentz groups. Congruence (or the Lorentz group) is a

coarse invariant for submodules. In an attempt to introduce a finer invariant to submodules, we define

the little Lorentz group G0(M), which is the set of invertible elements f in the algebra H∞(D2) such

that R∗
fCMRf = CM . Since the map f → Rf is an embedding of G0(M) into G(M), the former can be

viewed as a subgroup of the latter. G0(M) is apparently abelian, and it is nontrivial for every submodule.

Moreover, it is invariant under unitary equivalence. In fact, if two submodules are unitarily equivalent

then their little Lorentz groups are identical. The converse, however, is not true. Little Lorentz group is

computed in some well-known examples. In Section 10, we give the concluding remarks.

Krĕın spaces and Lorentz groups are new approaches in the study of submodules. In particular, it

brings group theory into the vista. Although this paper is written in the setting of H2(D2), the ideas can

be worked out as well in many other spaces of analytic functions, and it would be interesting to study

how the Lorentz groups vary with respect to the change of settings.

2 Krĕın space K⊗H2 and operator D

Let CM be the defect operator of a submodule M in H2 (short for H2(D2)). We consider the Jordan

decomposition CM = C+ − C− of CM . Now, we set H± = ranC
1/2
± and K = H+ ⊕H−. In the case, CM

has finite rank, and K is simply the range of CM . We shall introduce an indefinite inner product on K
defined as follows:⟨(

u+

u−

)
,

(
v+

v−

)⟩
K

:= ⟨u+, v+⟩ − ⟨u−, v−⟩, where

(
u+

u−

)
,

(
v+

v−

)
∈ H+ ⊕H−.

Krĕın space K ⊗H2 will play an important role in our study. One of standard references on the theory

of Krĕın spaces will be [7].

Lemma 2.1. For any F in K ⊗H2, let

F =
∑
i,j>0

(
uij

vij

)
⊗ zi1z

j
2

be the Taylor expansion of F . Then
∑
i,j>0((C

1/2
+ uij)(λ) − (C

1/2
− vij)(λ))λ

i
1λ
j
2 (λ = (λ1, λ2) ∈ D2)

converges uniformly on any compact subset in D2.

Proof. Since {∥uij∥}i,j is bounded and∑
i,j

|(C1/2
+ uij)(λ)λ

i
1λ
j
2| =

∑
i,j

|⟨C1/2
+ uij , k

M
λ ⟩λi1λ

j
2|

6 ∥kMλ ∥
∑
i,j

∥uij∥|λ1|i|λ2|j

<∞,∑
i,j>0(C

1/2
+ uij)(λ)λ

i
1λ
j
2 converges uniformly on any compact subset in D2. This concludes the proof.
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The following mapping is the key of our discussion: Define

D : F =
∑
i,j>0

(
uij

vij

)
⊗ zi1z

j
2 7→

∑
i,j>0

(C
1/2
+ uij − C

1/2
− vij)z

i
1z
j
2.

By Lemma 2.1, D is well-defined as a linear mapping from K⊗H2 to Hol(D2), the set of all holomorphic

functions on D2. The following formula is useful.

Lemma 2.2. It holds that

D

(
u

v

)
⊗ f = (C

1/2
+ u− C

1/2
− v)f.

Proof. Trivially (C
1/2
+ u− C

1/2
− v)f belongs to Hol(D2). Writing f =

∑
i,j>0 cijz

i
1z
j
2, by Lemma 2.1 we

have that

D

(
u

v

)
⊗ f = D

∑
i,j>0

(
u

v

)
⊗ cijz

i
1z
j
2

=
∑
i,j>0

(C
1/2
+ u− C

1/2
− v)cijz

i
1z
j
2

= (C
1/2
+ u− C

1/2
− v)

∑
i,j>0

cijz
i
1z
j
2

= (C
1/2
+ u− C

1/2
− v)f.

Thus we have the desired identity.

Before we state results, let us take a look at the idea of D in the classical setting H2(D). This shall

explain why it is of importance. By Beurling’s theorem, every shift invariant subspace M is of the

form θH2(D). The corresponding defect operator CM = PM − TzPMT
∗
z PM = θ ⊗ θ. Hence, CM = C+

and H+ = θ. So the map D : θ ⊗H2(D) → θH2(D) is simply the multiplication D(θ ⊗ f) = θf .

However, in the setting of H2(D2), D may not be bounded, so we will deal with it as an unbounded

operator with domain domD = {F ∈ K⊗H2 : DF ∈M}. Observe that domD is a module over H∞(D2)

with module action defined by p(u⊗ h) = u⊗ ph for p ∈ H∞(D2).

3 Basic properties of D

We shall give some basic properties of D as a linear operator from domD to M .

Theorem 3.1. Let M be a submodule of H2. Then D is a densely defined closed module map with

dense range.

Proof. First it is easy to check that D(pF ) = p(DF ) for every p ∈ [z1, z2]. Indeed, it suffices to show

the statement in the case where p is a monomial. Let

F =
∑
i,j>0

(
uij

vij

)
⊗ zi1z

j
2

be the Taylor expansion of F in K ⊗H2. Then zk1z
l
2DF belongs to M and

(zk1z
l
2DF )(λ) = λk1λ

l
2

∑
i,j>0

(C
1/2
+ uij(λ)− C

1/2
− vij(λ))λ

i
1λ
j
2

=
∑
i,j>0

(C
1/2
+ uij(λ)− C

1/2
− vij(λ))λ

i+k
1 λj+l2

=

(
D
∑
i,j>0

(
uij

vij

)
⊗ zi+k1 zj+l2

)
(λ),
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which implies that D(zk1z
l
2F ) is defined as a function in M . Therefore, zk1z

l
2F belongs to domD and

zk1z
l
2DF = D(zk1z

l
2F ). Hence D is a module map.

Now we shall show that D is densely defined. For any (aC
1/2
+ kλ, bC

1/2
− kµ) in K where a and b are in C,

λ and µ are in D2, and any f in H∞, by Lemma 2.2,

D

(
aC

1/2
+ kλ

bC
1/2
− kµ

)
⊗ f = (aC+kλ − bC−kµ)f

is a function in M . Hence D is densely defined. Furthermore, considering the case where f = kλ and

λ = µ, by Lemma 2.2 and (1.1), we have that

D

(
C

1/2
+ kλ

C
1/2
− kλ

)
⊗ kλ = (C+kλ − C−kλ)kλ = (CMkλ)kλ = kMλ .

Hence the range of D is dense in M .

Next, we shall show that D is closed. Suppose that Fn is in domD, Fn → F in K⊗H2 and DFn → g

in M . Setting

Fn =
∑(

u
(n)
ij

v
(n)
ij

)
⊗ zi1z

j
2 and F =

∑(
uij

vij

)
⊗ zi1z

j
2,

we have that u
(n)
ij → uij in H+ and v

(n)
ij → vij in H− as n→ ∞. Hence we have that

(DFn)(λ) =
∑

((C
1/2
+ u

(n)
ij )(λ)− (C

1/2
− v

(n)
ij )(λ))λi1λ

j
2

→
∑

((C
1/2
+ uij)(λ)− (C

1/2
− vij)(λ))λ

i
1λ
j
2

= (DF )(λ)

by Lemma 2.1 and the Lebesgue dominated convergence theorem. Furthermore, since (DFn)(λ) → g(λ),

we have that (DF )(λ) = g(λ) for any λ in D2. Hence F belongs to domD and DF = g, i.e., D is closed.

This concludes the proof.

Let {e+,j}j (resp. {e−,j}j) be an orthonormal basis of H+ (resp. H−). Furthermore, we set

φj = D

(
e+,j

0

)
⊗ 1 and ψj = D

(
0

e−,j

)
⊗ 1,

i.e.,

φj = C
1/2
+ e+,j and ψj = −C1/2

− e−,j .

In particular, if C is compact, we will choose eigenvectors of C+ (resp. C−) as {e+,j}j (resp. {e−,j}j).
In this case, we have the following:

φj = λ
1/2
+,je+,j and ψj = −λ1/2−,je−,j ,

where λ+,j (resp. λ−,j) denotes an eigenvalue of C+ (resp. C−).

Corollary 3.2. Let M be a submodule of H2. If CM is of finite rank and ranCM is contained in H∞,

then we have the following:

(1) φj and ψj are bounded;

(2) D is bounded.

Proof. Since φj = C
1/2
+ e+,j ∈ ranCM , (1) is trivial. We shall show (2). For any F in K ⊗H2, let

∞∑
i,j=0

(
uij

vij

)
⊗ zi1z

j
2
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be the Taylor expansion of F . Then F can be rewritten as follows:

F =
∞∑

i,j=0

{
m∑
k=1

c
(k)
ij

(
e+,k

0

)
⊗ zi1z

j
2 +

n∑
l=1

d
(l)
ij

(
0

e−,l

)
⊗ zi1z

j
2

}

=

m∑
k=1

∞∑
i,j=0

c
(k)
ij

(
e+,k

0

)
⊗ zi1z

j
2 +

n∑
l=1

∞∑
i,j=0

d
(l)
ij

(
0

e−,l

)
⊗ zi1z

j
2

=
m∑
k=1

(
e+,k

0

)
⊗ fk +

n∑
l=1

(
0

e−,l

)
⊗ gl,

where we should note that fk and gl are in H2. Hence we have that

DF =

m∑
k=1

φkfk +

n∑
l=1

ψlgl ∈M

by Lemma 2.2. Therefore, by Theorem 3.1 and the closed graph theorem for Krĕın spaces (see [7, p. 147]),

D is bounded.

Remark 3.3. Two assumptions of Corollary 3.2, that CM is of finite rank and ranC is contained

in H∞, are satisfied in many concrete examples.

4 A representation of PM

Let D♯ denote the Krĕın space adjoint of D. Then D♯kMλ is calculated as follows.

Lemma 4.1. If M is a submodule, then kMλ belongs to domD♯ and

D♯kMλ =

(
C

1/2
+ kλ

C
1/2
− kλ

)
⊗ kλ.

Proof. Since⟨
kMλ , D

(
C

1/2
+ u

C
1/2
− v

)
⊗ zi1z

j
2

⟩
= ⟨kMλ , (C+u− C−v)z

i
1z
j
2⟩

= ⟨kMλ , zi1z
j
2C+u⟩ − ⟨kMλ , zi1z

j
2C−v⟩

= ⟨C1/2
+ λ1

i
λ2
j
kMλ , C

1/2
+ u⟩ − ⟨C1/2

− λ1
i
λ2
j
kMλ , C

1/2
− u⟩

=

⟨(
C

1/2
+ λ1

i
λ2
j
kMλ

C
1/2
− λ1

i
λ2
j
kMλ

)
⊗ zi1z

j
2,

(
C

1/2
+ u

C
1/2
− v

)
⊗ zi1z

j
2

⟩
K⊗H2

,

by the orthogonality of {zi1z
j
2 : i, j > 0}, we have that

D♯kMλ =
∑
i,j>0

(
C

1/2
+ λ1

i
λ2
j
kλ

C
1/2
− λ1

i
λ2
j
kλ

)
⊗ zi1z

j
2

=
∑
i,j>0

(
C

1/2
+ kλ

C
1/2
− kλ

)
⊗ λ1

i
λ2
j
zi1z

j
2

=

(
C

1/2
+ kλ

C
1/2
− kλ

)
⊗ kλ.

This completes the proof.
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In the following argument, we shall identify D♯ with the following operator matrix:(
D♯ 0

0 0

)
on domD♯ ⊕M⊥ ⊂ H2.

Next, we shall show that PM is factorized with D.

Lemma 4.2. Let M be a submodule of H2. Then PM = DD♯ on the linear space generated by

reproducing kernels.

Proof. By Lemma 4.1 and (1.1), we have that

DD♯kλ = D

(
C

1/2
+ kλ

C
1/2
− kλ

)
⊗ kλ = (CMkλ)kλ = kMλ = PMkλ.

Thus we have the conclusion.

Let Tφj denote the Toeplitz operator with symbol φj . We note that Tφj might be unbounded. Indeed,

it is known that there exist submodules which contain no bounded functions other than 0 (see [15, p. 71]).

In [23], it was shown that the rank of CM is odd if it is finite. The next theorem shows us that Krĕın

space operators appear naturally in our problems.

Theorem 4.3. Let M be a submodule of H2 with rankCM = 2N + 1 < ∞. Then there exist 2N + 1

functions φ1, . . . , φN+1, ψ1, . . . , ψN in M such that

(1) PM = DD♯ =
∑N+1
j=1 TφjT

∗
φj

−
∑N
k=1 Tψk

T ∗
ψk

on the linear space generated by reproducing kernels;

(2)
∑N+1
j=1 |φj(λ)|2 −

∑N
k=1 |ψk(λ)|2 → 1 as λ tends radially to T2 a.e., where T denotes the unit circle

{eiθ : θ ∈ [0, 2π)}.
Proof. Let ⊗ denote the Schatten form. Then CM is represented as follows:

CM =
N+1∑
j=1

φj ⊗ φj −
N∑
k=1

ψk ⊗ ψk.

Hence, we have that

kMλ = (CMkλ)kλ

=

(N+1∑
j=1

φj(λ)φj −
N∑
k=1

ψk(λ)ψk

)
kλ

=

(N+1∑
j=1

TφjT
∗
φj

−
N∑
k=1

Tψk
T ∗
ψk

)
kλ.

Hence, by Lemma 4.1, we have (1). By (1) and [10, Theorem 2.1], we have (2).

Corollary 4.4. Let M be a submodule of H2. If rankCM = 2N + 1 and ranCM is contained in H∞,

then
∑N+1
j=1 φjH

2 +
∑N
k=1 ψkH

2 is a dense subspace of M .

Proof. By Corollary 3.2 and Theorem 4.3, we have the conclusion.

Corollary 4.5. Let M be a submodule of H2. If rankCM = 2N + 1 and ranCM is contained in H∞,

then the following two identities hold:

PM =

N+1∑
j=1

TφjT
∗
φj

−
N∑
k=1

Tψk
T ∗
ψk
,

IH2 =
N+1∑
j=1

T ∗
φj
Tφj

−
N∑
k=1

T ∗
ψk
Tψk

.
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Proof. By Corollary 3.2 and Theorem 4.3, we have the first identity. Let f be any function in H2,

and m denote the normalized Lebesgue measure on T2. Then, by Theorem 4.3(ii), we have that⟨( N∑
j=0

T ∗
φj
Tφj −

N∑
k=1

T ∗
ψk
Tψk

)
f, f

⟩
=

N∑
j=0

∥Tφjf∥2 −
N∑
k=1

∥Tψk
f∥2

=
N∑
j=0

∫
T2

|φjf |2dm−
N∑
k=1

∫
T2

|ψkf |2dm

=

∫
T2

( N∑
j=0

|φj |2 −
N∑
k=1

|ψk|2
)
|f |2dm

=

∫
T2

|f |2dm

= ⟨f, f⟩.

By the polarization identity we have the second identity.

Corollary 4.6. Let M be a submodule of H2 with rankCM = 2N + 1 <∞. Then λ is a zero of M if

and only if
∑N+1
j=1 |φj(λ)|2 −

∑N
k=1 |ψk(λ)|2 = 0.

Proof. By Theorem 4.3, the Berezin transform of PM is
∑N+1
j=1 |φj(λ)|2−

∑N
k=1 |ψk(λ)|2. This concludes

the proof.

5 Examples

We shall compute some examples. Throughout this section, ⊗ will denote the Schatten form.

Example 5.1. If M = z1H
2 + z2H

2, then it is easy to see that

CM = z1 ⊗ z1 + z2 ⊗ z2 − z1z2 ⊗ z1z2,

C+ = z1 ⊗ z1 + z2 ⊗ z2 and C− = z1z2 ⊗ z1z2.

By Theorem 4.3, we have that

PM = Tz1T
∗
z1 + Tz2T

∗
z2 − Tz1z2T

∗
z1z2 .

More generally, the submodule M = q1H
2 + q2H

2, where q1 = q1(z1) and q2 = q2(z2) are one variable

inner functions, is well-studied (see [12,13]). Then the defect operator of M is calculated as follows (see

[21]):

CM = q1 ⊗ q1 + q2 ⊗ q2 − q1q2 ⊗ q1q2,

and

σ(CM ) = {0, 1,±
√

(1− |q1(0)|2)(1− |q2(0)|2)}.

Eigenfunctions can be also described, however they are complicated.

Example 5.2. This example computes a rank 3 defect operator of another type. Fix the following

notation:

Krw(z) =

√
1− r2

1− rwz
, 0 6 r < 1.

Then it is easy to check that {zjwKrw(z)}j∈Z is an orthonormal system in L2(T). Now, we set

L = H2 ⊕
∞⊕
j=0

CzjwKrw(z).
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Then L is invariant under the multiplication of z and w in L2. Indeed, trivially L is invariant under the

multiplication of z, and for any j > 0 we have that

wzjwKrw(z) = zjKrw(z)

= zj(
√
1− r2 + rzwKrw(z))

=
√

1− r2zj + rzj+1wKrw(z),

i.e., L is invariant under the multiplication of w. This type of invariant subspace was discovered by Izuchi

and Ohno [14]. Furthermore, there exists an inner function θ such that

M = θ

(
H2 ⊕

∞⊕
j=0

CzjwKrw(z)

)
is a submodule inH2. This type of submodule was discussed by Izuch [11] in detail. We shall calculate CM .

Setting Lz = PLMz |L, trivially we have that Rz =MφLzM
∗
φ. Hence, it suffices to deal with Lz and Lw

on L. First observe that

CL = IL − LzL
∗
z − LwL

∗
w + LzLwL

∗
zL

∗
w

= IL − LzL
∗
z − Lw(IL − LzL

∗
z)L

∗
w.

Now, it is easy to see that IL − LzL
∗
z is the orthogonal projection onto H2(w) ⊕ CwKrw(z). Moreover,

Lw(IL − LzL
∗
z)L

∗
w is the orthogonal projection onto wH2(w)⊕ CKrw(z). Hence, we have that

CL = 1⊗ 1 + wKrw ⊗ wKrw −Krw ⊗Krw.

This concludes that

CM = φ⊗ φ+ φwKrw ⊗ φwKrw − φKrw ⊗ φKrw.

Example 5.3. H2(z1) denotes the Hardy space over D with variable z1. Let {qj}j>0 be an inner

sequence, which is a sequence of inner functions in H2(z1) such that every qj/qj+1 is also inner. Then

M =
∑
j>0

⊕qjH2(z1)z
j
2

is a submodule in H2(D2) (see [16,17] for details). The defect operator of M is calculated as follows:

CM = q0 ⊗ q0 ⊕
∞∑
j=1

⊕(qjz
j
2 ⊗ qjz

j
2 − qj−1z

j
2 ⊗ qj−1z

j
2).

Lemma 5.4. If (qj−1/qj)(0) ̸= 0, then

qj ⊗ qj − qj−1 ⊗ qj−1 = αje+,j ⊗ e+,j − αje−,j ⊗ e−,j

gives the spectral resolution, where we set αj =
√
1− |(qj−1/qj)(0)|2,

e+,j =
qj−1 − 1

αj
Tz1qjT

∗
z1qjqj−1√

2(1− αj)
and e−,j =

qj−1 +
1
αj
Tz1qjT

∗
z1qjqj−1√

2(1 + αj)
.

Proof. Since

qj ⊗ qj − qj−1 ⊗ qj−1 = Tqj

(
1⊗ 1− qj−1

qj
⊗ qj−1

qj

)
T ∗
qj ,

it suffices to see the spectral resolution of A = 1 ⊗ 1 − q ⊗ q, where q is an inner function with

q(0) ̸= 0 in H2(D). A has the following matrix representation with respect to orthonormal system

{1, Tz1T ∗
z1q/∥Tz1T

∗
z1q∥}: (

α2 −αq(0)
−αq(0) −α2

)
where α =

√
1− |q(0)|2.

By elementary linear algebra, we have the conclusion.
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For simplicity, we assume that (qj−1/qj)(0) ̸= 0 for every j > 1. By Lemma 5.4, we have that

CM = q0 ⊗ q0 +
∞∑
j=1

(αje+,jz
j
2 ⊗ e+,jz

j
2 − αje−,jz

j
2 ⊗ e−,jz

j
2).

Hence, if C is of finite rank, then we have that

C+ = q0 ⊗ q0 ⊕
n∑
j=1

⊕αje+,jzj2 ⊗ e+,jz
j
2 and C− =

n∑
j=1

⊕αje−,jzj2 ⊗ e−,jz
j
2.

By Theorem 4.3, we have that

PM = Tq0T
∗
q0 +

n∑
j=1

αjTe+,jz
j
2
T ∗
e+,jz

j
2

−
n∑
j=1

αjTe−,jz
j
2
T ∗
e−,jz

j
2

.

6 Lorentz group

A prototype of Krĕın space is the four-dimensional space-time R4, where the indefinite metric is the

Minkowski metric given by the indefinite inner product

(u, v) = u1v1 + u2v2 + u3v3 − u4v4.

Here, the metric matrix is

C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

The Lorentz transform is the collection of invertible 4×4 matrices T that preserves the Minkowski metric,

e.g., (Tu, Tv) = (u, v), or equivalently T ∗CT = C. This notion can be generalized to the Krĕın spaces

with more general metric matrices. For example, every non-singular n × n Hermitian matrix C induces

an indefinite inner product on Cn defined by (u, v)C = ⟨Cu, v⟩. The associated Lorentz group G(Cn) is
thus the collection of non-singular matrices T such that T ∗CT = C. Since C is congruent to its signature

matrix Ip ⊕ (−Iq), where p is the number of positive eigenvalues and q is the number of negative ones,

G(Cn) is easily verified to be isomorphic to the so-called pseudo-unitary group U(p, q) (see [2]). Hence up

to isomorphism G(Cn) is completely determined by C’s signature. Things are more complicated if C is

an Hermitian operator on an infinite dimensional Hilbert space, for example the case here when C is the

defect operator for a submodule. Nonetheless the notion of Lorentz group still makes good sense. For an

algebra B, B−1 will denote the set of invertible elements in B.
Definition 6.1. Let M be a submodule of H2(D2) and denote B(M) the set of all bounded linear

operators on M . Then we call

G(M) = {g ∈ B−1(M) : g∗CMg = CM},

the Lorentz group of M .

We first verify that G(M) is indeed a group. For g ∈ G(M), it is easy to check (g∗)−1CM (g)−1 = CM ,

so g−1 is in G(M). For g1, g2 ∈ G(M), we have

(g1g2)
∗CM (g1g2) = g2

∗(g1
∗CMg1)g2

= g2
∗CMg2

= CM ,
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and it follows that G(M) is a multiplicative group.

Before we make a study of G(M), let us take a closer look at the operators T ∈ B(M) that satisfies the

equation T ∗CMT = CM . Assume CM is compact and CM =
∑
j ηjϕj ⊗ ϕj is its spectral decomposition,

where {ϕj} is an orthonormal basis for K formed by eigenvectors with corresponding eigenvalues ηj .

Then CM ’s integral kernel is

GM (λ, z) =
∑
j

ηjϕj(λ)ϕj(z).

The following proposition provides a description of T .

Proposition 6.2. Assume CM is compact. Then T ∗CMT = CM if and only if∑
j

ηjT ∗ϕj(λ)T
∗ϕj(z) = GM (λ, z).

Proof. If ∑
j

ηjT ∗ϕj(λ)T
∗ϕj(z) = GM (λ, z),

then

CMf(z) =

∫
T2

GM (z, λ)f(λ)dm(λ)

=
∑
j

ηj

∫
T2

T ∗ϕj(λ)T
∗ϕj(z)f(λ)dm(λ)

=
∑
j

ηj⟨f, T ∗ϕj⟩T ∗ϕj(z)

= T ∗
(∑

j

ηj⟨Tf, ϕj⟩ϕj(z)
)

= T ∗CMTf(z).

Tracing the above arguments from the bottom up and use the fact that GM is uniquely determined

by CM , we have ∑
j

ηjT ∗ϕj(λ)T
∗ϕj(z) = GM (λ, z).

This completes the proof.

Recall that two submodules M1 and M2 are said to be congruent if there is a bounded invertible

operator J : M2 →M1 such that the defect operators satisfy

CM1 = JCM2J
∗.

Congruence relation was introduced in [20] in an attempt to classify submodules. Lorentz group is

invariant under congruence relation.

Proposition 6.3. If two submodules M1 and M2 are congruent, then their Lorentz groups G(M1)

and G(M2) are isomorphic.

Proof. Suppose that M1 and M2 are congruent, and we let CM1 and CM2 be their defect operators.

Then there is a bounded invertible operator J :M2 →M1 such that

CM1 = JCM2J
∗.

Let us define

φ : G(M1) 7→ G(M2),

g 7→ J∗g(J∗)−1.
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For any g ∈ G(M1), we have

φ∗(g)CM2φ(g) = J−1g∗JCM2J
∗g(J∗)−1

= J−1g∗CM1
g(J∗)−1

= J−1CM1(J
∗)−1

= CM2 .

So it is well-defined. It is clear that φ is invertible and

φ(g1g2) = J∗g1g2(J
∗)−1

= J∗g1(J
∗)−1J∗g2(J

∗)−1

= φ(g1)φ(g2).

Hence, G(M1) and G(M2) are isomorphic.

If CM is of finite rank, then G(M) can be determined. First, consider general block matrices

T =

(
T0 0

0 0

)
and A =

(
A11 A12

A21 A22

)
,

where T0 is an invertible Hermitian matrix and A is an operator. Then one computes easily that A∗TA

= T if and only if

A∗
11T0A11 = T0, A∗

11T0A12 = 0, A∗
12T0A12 = 0. (6.1)

Since A11 and T0 are finite matrices and T0 is invertible, A11 is invertible by the first equation, which by

the second identity implies A12 = 0. If A is invertible then A22 is invertible, but there is no restriction

on A21.

If CM is finite rank with rank 2p+1, we can decompose M as M = K⊕ kerCM , where K is now equal

to the range of CM . In addition, CM is then congruent to

T =

(
Ip+1 ⊕−Ip 0

0 0

)
.

So by (6.1), A∗TA = T if and only if A11 ∈ U(p+ 1, p) and A22 ∈ B−1(kerCM ). It is not hard to check

that the space zwM ⊂ kerCM , hence B−1(kerCM ) is isomorphic to B−1(H), where H is any separable

complex Hilbert space. In conclusion we have the following.

Proposition 6.4. If CM has rank 2p+ 1, then G(M) is isomorphic to the group(
U(p+ 1, p) 0

B(C2p+1,H) B−1(H)

)
.

The following corollary is immediate.

Corollary 6.5. If CM1 and CM2 are finite rank, then G(M1) and G(M2) are isomorphic if and only if

rankCM1 = rankCM2 .

The situation when CM is of infinite rank seems rather complicated. It was known that CM is Hilbert-

Schmidt in almost all examples (see [20]). So the decreasing speed of CM ’s eigenvalues is of importance

here. Indeed it is shown in [18,20] that if λj are the eigenvalues of CM1 and ηj are the eigenvalues of CM1 ,

both arranged such that |λj | and |ηj | are decreasing, then CM1 and CM2 are congruent if and only if

the ratio
|λj |
|ηj | are bounded above and below by positive constants. So if we let σ1(t) =

∑
j |λj |tj and

σ2(t) =
∑
j |ηj |tj , then σ1 and σ2 have the same radius of convergence. Now we are in position to state

a conjecture.

Conjecture. If G(M1) and G(M2) are isomorphic, then σ1 and σ2 have the same radius of convergence.
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Observe that the conjecture is trivial when CM is of finite rank because f is a polynomial in this case.

In the remaining part of this section, we show that when CM is finite rank there is an element in G(M)

of order 2. This fact will be used later. It is sufficient to construct such a matrix on K. Then we extend

it to M by simply adding the identity operator on kerCM . On K, we have by (1.2)

CM =


In

D

−In−1

−D

 .

Let

T =


In

D

In−1

D

 , J =

(
J2n

J2n−1

)
, I ′ =

(
I2n

−I2n−1

)
,

where

Jk =


1

. .
.

1


k×k

.

It is easy to see J2 = I. Since CM is finite rank, it is invertible on K, and hence so is T . We set

K = T−1/2JT 1/2, and verify that

K∗CK = T
1
2 JT− 1

2CT
−1
2 JT

1
2

= T
1
2 JI ′JT

1
2

= T
1
2 I ′T

1
2 = C.

It is easy to see that K2 = I and K ̸= I when n > 1. Hence K ⊕ IkerCM
is an element in G(M) of

order 2. The existence of such K in G(M) will be used to show the difference between the Lorentz group

and the little Lorentz group (to be defined later). The map φ(g) = KgK defines an inner automorphism

of G(M). We give an interesting example below.

Example 6.6. Let M = q1(z1)H
2(D2) + q2(z2)H

2(D2) be as in Example 5.1. It is computed in [21]

that on K,

CM =


1

η

−η

 ,

where η = (1− |q1(0)|2)1/2(1− |q2(0)|2)1/2. By the construction of K and φ, one checks that φ : G 7→ G
has the form

φ


g11 g12 g13

g21 g22 g23

g31 g32 g33

 =


g22 ηg21

√
ηg23

g12
η g11

g13√
η

g32√
η

√
ηg31 g33

 .

In particular, if both q1 and q2 vanish at 0, then η = 1 and

φ


g11 g12 g13

g21 g22 g23

g31 g32 g33

 =


g22 g21 g23

g12 g11 g13

g32 g31 g33

 .
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7 Subgroups in (H∞)−1

In preparation for the definition of little Lorentz group in the next section, we look into some subgroups

in (H∞(D))−1 and (H∞(D2))−1 in this section. We believed it was a well-studied subject because both

are classical commutative groups of analytic functions. But to our surprise, there is not much in the

literature. However, this section makes no attempt to do a general study. Instead, it looks into some

subgroups that are relevant to the discussion in later sections.

First of all, the set of nonzero complex numbers C× is a trivial subgroup in (H∞)−1, so we only

look at subgroups in (H∞(Di))−1/C×, i = 1, 2. In addition, we observe that if J is an ideal in H∞,

then G(J) := (1 + J) ∩ (H∞)−1 is a group. To see it, we let 1 + f and 1 + g be in the set. Clearly,

(1 + f)(1 + g) ∈ G(J). Furthermore, (1 + f)−1 = 1− f(1 + f)−1, which is in G(J).
Now we consider the ideal

Jn = {f ∈ H∞(D) : f (k)(0) = 0, 0 6 k 6 n},

where f (k) stands for the k-th derivative of f , and set Gn = G(Jn). On D2, similar subgroups can be

defined. For non-negative integers n1 and n2, we let

Jn1,n2 =

{
f ∈ H∞(D2) :

∂if

∂zi

∣∣∣∣
(0,0)

= 0,
∂jf

∂wj

∣∣∣∣
(0,0)

= 0, 0 6 i 6 n1, 0 6 j 6 n2

}
,

and set Gn1,n2 = (1 + Jn1,n2) ∩ (H∞(D2))−1.

Clearly, Gn is a subgroup in Gn−1 for each n > 1. However, they are all isomorphic to each other.

Theorem 7.1. G0 is isomorphic to Gn for each n > 1.

Proof. We prove the case n = 1. The other cases are similar. For φ ∈ G0, define ρ(φ) = φ(z)
z

= ez logφ(z). First of all, since φ is nonvanishing and D is contractable to a point, logφ is well-defined

and analytic. It is clear that ρ(1) = 1z = 1. In addition, ρ is a homomorphism, since

ρ(φ1φ2) = (φ1(z)φ2(z))
z

= φ1(z)
zφ2(z)

z

= ρ(φ1)ρ(φ2).

To check ρ(φ) is in (H∞)−1, we verify that it is bounded above and below by positive numbers. Let

z = x+ iy. Then

|ρ(φ)| = eRe[z logφ(z)]

= eRe{(x+iy)[log |φ(z)|+iArgφ(z)]}

= ex log |φ(z)|−yArgφ(z).

Since φ(z) is in (H∞(D))−1, there exist constants 0 < m < 1 and M > 1, such that m 6 |φ(z)| 6 M

on D. Since |x| < 1, we have

Min{logm,− logM} 6 x log |φ(z)| 6 Max{logM,− logm},

Min

{
m,

1

M

}
6 ex log |φ(z)| 6 Max

{
M,

1

m

}
.

Since |y| < 1, |Argφ(z)| 6 2π, −2π 6 yArgφ(z) 6 2π and e−2π 6 e−yArgφ(z) 6 e2π, we have

Min

{
m,

1

M

}
· e−2π 6 |ρ(φ)| 6 Max

{
M,

1

m

}
· e2π.

It follows that ρ(φ) ∈ H∞(D) and ρ−1(φ) = ρ( 1
φ ) ∈ H∞(D), e.g., ρ(φ) ∈ (H∞)−1.
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Moreover, ρ(φ)(0) = φ(0)0 = 10 = 1, and

ρ(φ)′(z) = ez logφ(z)
{
logφ(z) +

zφ′(z)

φ(z)

}
,

so ρ(φ)′(0) = 0. Hence ρ(φ) ∈ G1, and ρ is well-defined.

Furthermore, since ρ(φ) = 1 if and only if logφ(z) = 0, or equivalently, φ(z) = 1 on D. Hence ρ is

injective.

Lastly, we will show that ρ is a surjective. For any φ̃ ∈ G1, let us consider φ = e
log φ̃

z . Since φ̃ = 1+z2h

for some h ∈ H∞(D), log φ̃ = z2h+ o(z2). Hence φ(z) = ezh+o(z), in particular φ(0) = 1. So there exists

0 < ε < 1 such that when |z| < ε, |φ(z)| > 1
2 . When ε 6 |z| < 1,

|φ(z)| = eRe{ log φ̃
z }

= eRe{ log |̃φ|+iArg log φ̃
x+iy }

= e
Re{ (log |̃φ|+iArg log φ̃)(x−iy)

x2+y2 }

= e
x log |̃φ|+yArg log φ̃

x2+y2 .

Since φ̃ ∈ G1, there exist positive constants k and K, such that k 6 |φ̃| 6 K. So

Min{log k,− logK}
ε2

6 x log |̃φ|
x2 + y2

6 Max{logK,− log k}
ε2

,

and

−2π

ε2
6 yArg log φ̃

x2 + y2
6 2π

ε2
.

Hence |φ(z)| is bounded above and below by positive constants, e.g., φ ∈ (H∞(D))−1, and hence φ ∈ G0.

This shows ρ is a surjective, and it concludes that ρ is an isomorphism from G0 to G1.

For φ ∈ G0, if we let ρn(φ) = φ(z)
zn

= ez
n logφ(z), then using polar coordinate and similar arguments,

we can show that ρn is an isomorphism from G0 to Gn.

The same map ρ can be defined from G0,0 to G1,0, and its well-definedness and injectivity still hold.

However, the map fails to be onto. For example, 1 + 0.5w is in {G1,0} but not in the range of ρ, as is

easily seen from the power series of ρ(φ).

Since the groups Gn and Gm,n are multiplicative, it is sometimes more informative to see their additive

counterparts. Let L∞
R (T) be the set of real-valued functions in L∞(T). Clearly, it is an additive abelian

group. The following lemma from [8] gives a group homomorphism from G0 to L∞
R (T).

Lemma 7.2. There is a surjective group homomorphism ρ from (H∞(D))−1 to L∞
R (T) with ker ρ = T.

Proof. The main idea of its proof is to consider the map ρ defined by ρ(f(z)) = log |f∗(θ)|, where
|f∗(θ)| is the radial limit. It is not hard to check ρ is a group homomorphism with ker ρ = T. For

surjectivity, for each g(θ) ∈ L∞
R (T), let

f(z) = exp

(
1

2π

∫
T

eiθ + z

eiθ − z
g(θ)dθ

)
.

For simplicity, we set c = 1
2π in the sequel. Then verify that f ∈ (H∞(D))−1, and

log |f(z)| = log

[
exp

(
c

∫
T
Pr(θ)g(θ)dθ

)]
= c

∫
T
Pr(θ)g(θ)dθ,

so ρ(f(z)) = log |f∗(θ)| = g(θ). This idea of proof will be generalized to D2 later.
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It follows from Lemma 7.2 that (H∞(D))−1/T is isomorphic to L∞
R (T). Now consider the following

chain of subgroups of L∞
R (T):

Nn =

{
g(θ) ∈ L∞

R (T) :
∫
T
g(θ)e−ikθdθ = 0, k = 0, 1, 2, . . . , n

}
.

Clearly, Nn+1 ⊆ Nn for any n > 0.

Proposition 7.3. The restriction of ρ to Gn is an isomorphism from Gn to Nn.

Proof. It is clear that ker(ρ |Gn) = 1, since ker ρ = T and f(0) = 1 in Gn.
For each g(θ) ∈ Nn, as in the proof of Lemma 7.2, there exists some f(z) ∈ (H∞(D))−1 satisfying

f(z) = exp

(
c

∫
T

eiθ + z

eiθ − z
g(θ)dθ

)
,

f(0) = exp

(
c

∫
T
g(θ)dθ

)
.

Then

f ′(z) = exp

(
c

∫
T

eiθ + z

eiθ − z
g(θ)dθ

)
·c
∫
T

2eiθ

(eiθ − z)2
g(θ)dθ,

f ′(0) = exp

(
c

∫
T
g(θ)dθ

)
· c
∫
T
2e−iθg(θ)dθ,

f ′′(z) = exp

(
c

∫
T

eiθ + z

eiθ − z
g(θ)dθ

)
·
{[
c

∫
T

2eiθ

(eiθ − z)2
g(θ)dθ

]2
+ c

∫
T

4eiθ

(eiθ − z)3
g(θ)dθ

}
,

f ′′(0) = exp

(
c

∫
T
g(θ)dθ

)
·
{[
c

∫
T
2e−iθg(θ)dθ

]2
+ c

∫
T
4e−2iθ · g(θ)dθ

}
,

and in general,

f (n)(z) = exp

(
c

∫
T

eiθ + z

eiθ − z
g(θ)dθ

)
·
{[
c

∫
T

2eiθ

(eiθ − z)2
g(θ)dθ

]n
+ · · ·+ c

∫
T

2n!eiθ

(eiθ − z)(n+1)
g(θ)dθ

}
,

f (n)(0) = exp

(
c

∫
T
g(θ)dθ

)
·
{[
c

∫
T
2e−iθg(θ)dθ

]n
+ · · ·+ c

∫
T
2n!e−inθg(θ)dθ

}
.

Inductively, it shows that f(0) = 1, f (k)(0) = 0 for all k 6 n is equivalent to
∫
g(θ)e−ikθdθ = 0 for all

k 6 n.

Things become more complicated in two variables. It is well known that every real harmonic function

in D is the real part of a holomorphic function. However, a distinction arises in bidisk. For example, zw̄

is harmonic in each variable, but it is not the real part of any holomorphic function. We use RP (D2) to

denote the class of all functions in D2, which are real parts of holomorphic functions. For f ∈ H2(D2),

define

f∗(t) = lim
r1,r2→1−

f(r1t1, r2t2)

at every t ∈ T2 where this radial limit exists, and we let P (log |f∗|) be the Poisson integral of log |f∗|
(which is in L1(T2)). If f does not vanish on D2, then we let u[f ] be the least 2-harmonic majorant of

log |f |. We refer the readers to [15] for details. Now we consider P (L∞
R (T2)) ∩ RP (D2). The following

fact is analogous to Lemma 7.2.

Lemma 7.4. (H∞(D2))−1/T is isomorphic to P (L∞
R (T2)) ∩ RP (D2).
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Proof. For f ∈ (H∞(D2))−1, we define Ψ(f) = P (log |f∗|). Clearly, P (log |f∗|) ∈ P (L∞
R (T2)). We

need to show that P (log |f∗|) ∈ RP (D2). By [15, p. 46, Theorem 3.3.5],

u[f ] = P (log |f∗|+ dσf ),

for some real singular measure dσf 6 0. Since f ∈ (H∞(D2))−1, |f(z)| is bounded away from 0. Hence

log f is holomorphic, which in particular implies u[f ] = log |f | ∈ RP (D2). It then only remains to show

that dσf = 0. To this end, one observes that

0 = log |f |+ log |f−1|
= u[f ] + u[f−1]

= P (log |f∗|+ dσf + log |(f−1)∗|+ dσf−1)

= P (dσf + dσf−1).

Since both dσf and dσf−1 are non-positive, this implies dσf = dσf−1 = 0. Therefore, P (log |f∗|) =

u[f ] = log |f | ∈ RP (D2), e.g., Ψ is well-defined. It is easy to see that Ψ is a homomorphism. Moreover,

P (log |f∗|) = 0 if and only if |f | ≡ 1 on D2, which means f is a constant of modulus 1, so kerΨ = T.
To see Ψ is surjective, we let u = P [g] for some function g ∈ L∞

R (T2). Then u is bounded and 2-

harmonic. And by maximum principle ∥u∥∞,D 6 ∥g∥∞. If in addition, u ∈ RP (D2), then there exists

a unique real valued function v (called u’s harmonic conjugate) with v(0) = 0, such that u + iv is

holomorphic. Let f = eu+iv. Then ∥f∥∞ = ∥eu+iv∥∞ = e∥u∥∞ , and |f(z)| = eu(z) > e−∥u∥∞ . Hence

f ∈ (H∞(D2))−1, so |f∗| exists almost everywhere on T2 and log |f∗| = u∗ = g a.e. on T2. So Ψ(f) = u,

and it concludes that Ψ is surjective.

Now let us consider the following chain of additive subgroups:

Nn1,n2 =

{
g ∈ L∞

R (T2) : P [g] ∈ RP and

∫
T2

g(ξ)ξ̄i
kidm(ξ) = 0, 0 6 ki 6 ni, i = 1, 2

}
,

where dm(ξ) stands for the normalized Lebesgue measure on T2.

Proposition 7.5. The restriction of Ψ to Gn1,n2 is an isomorphism from Gn1,n2 to Nn1,n2 .

Proof. Assume f ∈ Gn1,n2 . First, by direct computation, we see that f(0, 0) = 1 and ∂kf
∂zk

|(0,0) = 0, 1 6
k 6 n1 if and only if ∂

k log f
∂zk

|(0,0) = 0, 0 6 k 6 n1.

We write log f = log |f | + iArgf := u + iv. Note that v(0, 0) = 0 and u = Ψ(f) by the proof of

Lemma 7.4. Since log f is holomorphic, ∂u∂z̄ + i∂v∂z̄ = 0, by taking conjugate we have ∂u
∂z − i∂v∂z = 0 on D2.

Hence,
∂k log f

∂zk
=
∂ku

∂zk
+ i

∂kv

∂zk
= 2

∂ku

∂zk
.

So in particular ∂k log f
∂zk

|(0,0) = 0 if and only if ∂
ku
∂zk

|(0,0) = 0. Since

u(z, w) = P [log |f∗|] =
∫
T2

(1− |z|2)(1− |w|2)
|1− zξ̄1|2|1− wξ̄2|2

log |f∗(ξ)|dm(ξ),

we have
∂ku

∂zk
(z, w) = k!

∫
T2

(1− |z|2)(1− |w|2)
(1− zξ̄1)k+1(1− z̄ξ1)|1− wξ̄2|2

(log |f∗(ξ)|)ξ̄1
k
dm(ξ),

which implies
∂ku

∂zk
(0, 0) = k!

∫
T2

(log |f∗(ξ)|)ξ̄1
k
dm(ξ).

Therefore, f(0, 0) = 1 and ∂kf
∂zk

|(0,0) = 0, 1 6 k 6 n1 if and only if∫
T2

(log |f∗(ξ)|)ξ̄1
k
dm(ξ) = 0, 0 6 k 6 n1.
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Parallelly, f(0, 0) = 1 and ∂kf
∂wk |(0,0) = 0, 1 6 k 6 n2 if and only if∫

T2

(log |f∗(ξ)|)ξ̄2
k
dm(ξ) = 0, 0 6 k 6 n2.

By Lemma 7.4, Ψ is already an isomorphism from (H∞(D2))−1/T to P (L∞
R (T2)) ∩ RP , and Ψ is an

isomorphism from Gn1,n2 to Nn1,n2 .

8 Little Lorentz group

A natural question about Lorentz group G(M) is whether it contains a nontrivial abelian subgroup, and

if it does, whether the subgroup is an invariant for submodules. The following notion seems natural. We

recall that Rφ is the restriction of multiplication by φ to M .

Definition 8.1. Let M be a submodule of H2(D2). Then

G0(M) = {φ ∈ (H∞(D2))−1 : Rφ
∗CMRφ = CM}

is called the little Lorentz group of M .

Clearly, if we identify φ with Rφ then G0(M) can be viewed as an abelian subgroup of G(M).

Proposition 8.2. G0(M) is non-trivial for any M and it is a proper subgroup in G(M).

Proof. First, using the fact that CM = I − RzR
∗
z − RwR

∗
w + RzRwR

∗
zR

∗
w it is not hard to check that

zwM ⊂ kerCM , or equivalently zwK is orthogonal to M . Fixing an |α| < 1 and letting φ = 1 + αzw

∈ (H∞(D2))−1, then we have

Rφ
∗CMRφg = Rφ

∗CM (g + αzwg)

= Rφ
∗CMg

= PM (1 + αzw)CMg

= CMg,

for any g ∈M . So G0(M) is always non-trivial. The fact that it is proper in G(M) is not hard to see. But

it has interesting details. We consider three cases. If CM is of rank 1, then M is of the form θH2(D2)

for some inner function θ, and we shall compute G0(M) in the next example, and it will be evident that

it is proper. If 1 < rankCM <∞, then G(M) contains a nontrivial element of order 2 by Section 5 which

is of course not in G0(M). Hence the latter is proper in the former. In the case rankCM = ∞, we have

no interesting element to display but just resort to the trivial one IK ⊕−IkerC . It is clearly in G(M) and

of order 2.

Now we compute some examples.

Example 8.3. Consider M = θH2(D2) for some inner function θ. Since

KM (λ, η; z, w) =
θ(λ, η)θ(z, w)

(1− λz)(1− ηw)
,

GM (λ, z) = θ(λ)θ(z), and hence CMf = ⟨f, θ⟩θ. By Proposition 6.2, T ∗CMT = CM if and only if

T ∗θ = ηθ, where |η| = 1. In other words, G(M) is the group of all T ∈ B−1(M) such that T ∗ fixes θ up

to a unimodular scalar. In particular, it is non-abelian. Let f = θh ∈M for some h ∈ H2(D2). Then

CMf = ⟨θh, θ⟩θ = h(0, 0)θ.

In addition,

Rφ
∗CMRφf = Rφ

∗(⟨φθh, θ⟩θ)
= φ(0, 0)h(0, 0)PM (φθ)

= |φ(0, 0)|2h(0, 0)θ.
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Since Rφ
∗CMRφ = CM , we have G0(M) = {φ ∈ (H∞(D2))−1 : |φ(0, 0)| = 1}, which is T× G0,0.

Now we take another look at the submodule in Example 5.1, i.e.,

M = p(z)H2(D2) + q(w)H2(D2),

where q(z) and q(w) are nontrival one-variable inner functions. In this case rankCM = 3 and

CMf = ⟨f, p⟩p+ ⟨f, q⟩q − ⟨f, pq⟩pq.

To make the computation simpler, we assume that p(0) = q(0) = 0, in which case {p, q, pq} is an

orthonormal basis for K. To proceed, we need to introduce two evaluation operators mapping H2(D2)

into H2(D). Define

L(0)h = h(0, w), R(0)h = h(z, w), h ∈ H2(D2).

The evaluation operators were defined and studied in [22], and they played important roles in proving

the Hilbert-Schmidtness of CM (see [19, 20]). For simplicity, we denote L(0) by L and R(0) by R when

there is no confusion. Note that R and Rφ are different operators. It is easy to see that L(φh) = LφLh,

and R(φh) = RφRh. Also recall that Tf stands for the Toeplitz operator. We state the result as follows.

Theorem 8.4. Assume M , p and q are as above. Consider φ ∈ (H∞)−1 with φ(0, 0) = 1. Then

φ ∈ G0(M) if and only if

T ∗
Lφq = q, T ∗

Rφp = p.

Proof. For f = ph1 + qh2 ∈M , where h1 and h2 are arbitrary functions in H2(D2), we have

CMf = ⟨ph1 + qh2, p⟩p+ ⟨ph1 + qh2, q⟩q − ⟨ph1 + qh2, pq⟩pq
= (h1(0, 0) + q(0)⟨Rh2, p⟩)p+ (h2(0, 0) + p(0)⟨Lh1, q⟩)q

− (⟨Lh1, q⟩+ ⟨Rh2, p⟩)pq
= h1(0, 0)p+ h2(0, 0)q − (⟨Lh1, q⟩+ ⟨Rh2, p⟩)pq.

Then

R∗
φCMRφf = R∗

φCM (φf)

= h1(0, 0)R
∗
φp+ h2(0, 0)R

∗
φq − (⟨L(φh1), q⟩+ ⟨R(φh2), p⟩)R∗

φpq. (8.1)

Observe that in order that R∗
φCMRφ = CM , K should be invariant under R∗

φ. Hence, R∗
φp, R

∗
φq and

R∗
φ(pq) are linear combinations of p, q and pq. Since {p, q, pq} is an orthonormal basis ofK and φ(0, 0) = 1,

one verifies that

R∗
φp = p,

R∗
φq = q,

R∗
φpq = ⟨q, Lφ⟩p+ ⟨p,Rφ⟩q + pq.

Putting these into (8.1), we have

R∗
φCMRφf

= h1(0, 0)p+ h2(0, 0)q − (⟨L(φh1), q⟩+ ⟨R(φh2), p⟩)(⟨q, Lφ⟩p+ ⟨p,Rφ⟩q + pq)

= [h1(0, 0)− (⟨L(φh1), q⟩+ ⟨R(φh2), p⟩)⟨q, Lφ⟩]p
+ [h2(0, 0)− (⟨L(φh1), q⟩+ ⟨R(φh2), p⟩)⟨p,Rφ⟩]q
− (⟨L(φh1), q⟩+ ⟨R(φh2), p⟩)pq.

Comparing the coefficients of pq in CMf with those in R∗
φCMRφf , we have

⟨L(φh1), q⟩+ ⟨R(φh2), p⟩ = ⟨Lh1, q⟩q + ⟨Rh2, p⟩.
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Since h1 and h2 are arbitrary, we have

⟨L(φh1), q⟩ = ⟨Lh1, q⟩,
⟨R(φh2), p⟩ = ⟨Rh2, p⟩,

or equivalently,

L(φ− 1)Lh1 ⊥ q, R(φ− 1)Rh2 ⊥ p, ∀h1, h2 ∈ H2(D2).

Since L(H2(D2)) = H2(D) and R(H2(D2)) = H2(D) (in different variables), the Toeplitz operators satisfy

T ∗
Lφ−1q = 0, T ∗

Rφ−1p = 0,

e.g.,

T ∗
Lφq = q, T ∗

Rφp = p. (8.2)

For the other direction, if (8.2) holds, then tracing the above arguments upward, we have

⟨L(φh1), q⟩ = ⟨Lh1, q⟩,
⟨R(φh2), p⟩ = ⟨Rh2, p⟩,

for every h1, h2 ∈ H2(D2). Hence, the coefficients of pq in CMf and those in R∗
φCMRφf agree. In

particular, if we set h1 = h2 = 1 in the above two equations, then they imply

⟨Lφ, q⟩ = q(0) = 0

and

⟨Rφ, p⟩ = p(0) = 0.

Putting these into R∗
φCMRφf we see that the coefficients of p and q agree with those in CMf . Hence

φ ∈ G0(M).

It is worth noting that in Theorem 8.4 if we write φ = 1 + τ , then T ∗
Lτq = 0 and T ∗

Rτp = 0. It is not

hard to check that the set of τ satisfying these equations forms an ideal, say J in H∞. Then by the

remarks preceding Theorem 7.1, (1 + J) ∩ (H∞)−1 is indeed a group.

Example 8.5. Let us consider a concrete situation where p = zm and q = wn, where m and n are

positive integers. By Theorem 8.4, φ = 1+ τ is in G0 if and only if T ∗
Lτw

n = 0 and T ∗
Rτz

m = 0. We write

τ(z, w) = Rτ(z)+wη for some η ∈ H∞. Then T ∗
Rτz

m = 0 if and only if ⟨zm, (Rτ)h⟩ = 0 for all h ∈ H2(D),
and this happens if and only if Rτ has a factor zk for some k > m. Since τ(z, w) = Rτ(z) + wη, this is

the case if and only if ∂
iτ
∂zi |(0,0) = 0, for all 0 6 i 6 m. Likewise, T ∗

Lτw
n = 0 if and only if ∂iτ

∂wi |(0,0) = 0,

for all 0 6 i 6 n. In conclusion, G0(M) = T× Gm,n for the submodule M = zmH2(D2) + wnH2(D2).

9 Little Lorentz group and unitary equivalence

In this section, we study the relationship between little Lorentz group and unitary equivalence. First,

two submodules M1 and M2 are said to be unitarily equivalent if there is a unitary module map between

them. Unitary equivalence is well studied (see [1, 5, 6, 9]). We will prove that little Lorentz group is an

invariant under unitary equivalence of submodules. However, it is not a complete invariant, as we shall

see through a somewhat complicated example.

Proposition 9.1. If two submodules M1 and M2 are unitarily equivalent, then G0(M1) = G0(M2).

Proof. Suppose U :M1 →M2 is a unitary module map. For φ ∈ H∞, we let Riφ denote the restrictions

of Tφ to submodules Mi, where i = 1, 2. Then UR1
φ = R2

φU , and therefore

CM1 = I −R1
z(R

1
z)

∗ −R1
w(R

1
w)

∗
+R1

zR
1
w(R

1
z)

∗
(R1

w)
∗

= I − U∗R2
z(R

2
z)

∗
U − U∗R2

w(R
2
w)

∗
U + U∗R2

zR
2
w(R

2
z)

∗
(R2

w)
∗
U

= U∗(I −R2
zR

2
z −R2

w(R
2
w)

∗
+R2

zR
2
w(R

2
z)

∗
(R2

w)
∗
)U

= U∗CM2U.
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For every φ ∈ G0(M2), we have R2
φ
∗
CM2R

2
φ = CM2 . Therefore,

(R1
φ)

∗CM1R
1
φ = (R1

φ)
∗U∗CM2UR

1
φ

= U∗(R2
φ)

∗CM2R
2
φU

= U∗CM2U = CM1 .

Hence, φ ∈ G0(M1). Similarly, for any φ ∈ G0(M1), φ is also in G0(M2).

However, the converse of Proposition 9.1 is not true. Let us take another look at Example 5.2. Let

M = θ

(
H2(D2)⊕

∞⊕
j=0

CzjwKrw(z)

)
,

where

Krw(z) =

√
1− r2

1− rwz
, 0 6 |r| < 1

and θ is an inner function satisfying θ/(w − rz) ∈ H2(D2).

Lemma 9.2. M is not unitarily equivalent to M1,1 := zH2(D2) + wH2(D2).

Proof. Denote h = θ/(w − rz). Agrawal et al. [1] proved that two submodules M1 and M2 satisfying

M2 ⊆ M1 are unitarily equivalent if and only if M2 = ηM1, for some inner function θ. Without loss of

generality, let h(0, 0) ̸= 0. In [21], it is shown that if M is a submodule that contains two nontrivial one

variable functions, then a submodule N is unitarily equivalent toM if and only if N = ηM for some inner

function η. Hence, if M1,1 is unitarily equivalent to M , we have M = ηM1,1. So for any f ∈ H2(D2),

there exist f1 ∈ H2(D2) and f2 ∈ H2(D2)⊖ zH2(D2), such that(
h(w − rz)f +

∞∑
j=0

ajz
jh

)
= η(zf1 + wf2).

However, this is not true when a0 ̸= 0, contradiction.

The next fact is a bit unexpected. It indicates that this submodule has the same little Lorent group

as that of M1,1 (see Example 8.5).

Proposition 9.3. For the submodule M in Example 5.2, G0(M) = T× G1,1.

Proof. In Example 5.2, we have that

CM = θ ⊗ θ + θwKrw(z)⊗ θwKrw(z)− θKrw(z)⊗ θKrw(z).

Consider f = θh1 +
∑∞
j=0 θajz

jwKrw(z) ∈M, where h1 ∈ H2(D2).

We have that

CMf =

⟨
θh1 +

∞∑
j=0

θajz
jwKrw(z), θ

⟩
θ

+

⟨
θh1 +

∞∑
j=0

θajz
jwKrw(z), θwKrw(z)

⟩
θwKrw(z)

−
⟨
θh1 +

∞∑
j=0

θajz
jwKrw(z), θKrw(z)

⟩
θKrw(z)

= h1(0, 0)θ +

⟨ ∞∑
j=0

ajz
jKrw(z),Krw(z)

⟩
θwKrw(z)

−
(
h1(0, 0)

√
1− r2 +

⟨
θh1 +

∞∑
j=0

ajz
jwKrw(z),Krw(z)

⟩
θKrw(z)

)
= h1(0, 0)θ + a0θwKrw(z)− (h1(0, 0)

√
1− r2 + a1r)θKrw(z).



766 Wu Y et al. Sci China Math April 2018 Vol. 61 No. 4

It follows that

CMRφf =

⟨
φθh1 +

∞∑
j=0

φθajz
jwKrw(z), θ

⟩
θ

+

⟨
φθh1 +

∞∑
j=0

φθajz
jwKrw(z), θwKrw

⟩
θwKrw(z)

−
⟨
φθh1 +

∞∑
j=0

φθajz
jwKrw(z), θKrw

⟩
θKrw(z)

= φ(0, 0)h1(0, 0)θ +

⟨ ∞∑
j=0

φajz
jKrw(z),Krw

⟩
θwKrw(z)

− φ(0, 0)h1(0, 0)
√
1− r2θKrw(z)−

⟨ ∞∑
j=0

φajz
jwKrw(z),Krw(z)

⟩
θKrw(z)

+
∂φ

∂w
(0, 0)a0

√
1− r2θ.

Using the fact that K is the reproducing kernel, we have

CMRφf = φ(0, 0)h1(0, 0)θ + φ(0, 0)a0θwKrw(z)

−
(
φ(0, 0)a1r +

∂φ

∂w
(0, 0)a0 + φ(0, 0)h1(0, 0)

√
1− r2 + a0

∂φ

∂z
(0, 0)r

)
θKrw(z)

+
∂φ

∂w
(0, 0)a0

√
1− r2θ.

In order to compute R∗
φCMRφf , we verify that

R∗
φθ =

∑
i,j

⟨φθ, θziwj⟩θziwj +
∑
j

⟨φθ, θzjwKrw(z)⟩θzjwKrw(z)

= φ(0, 0)θ +
∂φ

∂w
(0, 0)

√
1− r2θwKrw(z),

R∗
φθwKrw =

∑
i,j

⟨φθwKrw, θz
iwj⟩θziwj +

∑
j

⟨φθwKrw, θz
jwKrw(z)⟩θzjwKrw(z)

= φ(0, 0)θwKrw

and

R∗
φθKrw =

∑
i,j

⟨φθKrw, θz
iwj⟩θziwj +

∑
j

⟨φθKrw, θz
jwKrw(z)⟩θzjwKrw(z)

= φ(0, 0)
√
1− r2θ + φ(0, 0)rθzwKrw +

∂φ

∂z
(0, 0)rθwKrw +

∂φ

∂w
(0, 0)θwKrw.

Since R∗
φCMRφf = CMf , and θ, θwKrw and θ

∑∞
n=1

√
1− r2(rwz)n are orthogonal, by comparing the

corresponding coefficients, we have that for the coefficients of θ,

h1(0, 0)r
2 − a1r

√
1− r2

= |φ(0, 0)|2h1(0, 0)r2 − |φ(0, 0)|2a1r
√
1− r2 − φ(0, 0)

∂φ

∂z
(0, 0)a0r

√
1− r2;

for the coefficients of θwKrw,

a0 = |φ(0, 0)|2a0 −
∣∣∣∣ ∂φ∂w (0, 0)

∣∣∣∣2a0r2 − ∣∣∣∣∂φ∂z (0, 0)
∣∣∣∣2a0r2 − ∂φ

∂w
(0, 0)

∂φ

∂z
(0, 0)a0r

− ∂φ

∂z
(0, 0)

∂φ

∂w
(0, 0)a0r − φ(0, 0)

∂φ

∂z
(0, 0)a1r

2 − φ(0, 0)
∂φ

∂w
(0, 0)a1r



Wu Y et al. Sci China Math April 2018 Vol. 61 No. 4 767

− φ(0, 0)
∂φ

∂z
(0, 0)h1(0, 0)r

√
1− r2;

and for the coefficients of θ
∑∞
n=1

√
1− r2(rwz)n,

h1(0, 0)
√
1− r2 + a1r

= |φ(0, 0)|2h1(0, 0)
√

1− r2 + |φ(0, 0)|2a1r + φ(0, 0)
∂φ

∂z
(0, 0)a0r + φ(0, 0)

∂φ

∂w
(0, 0)a0.

By choosing a0 = 0 and a1 = 0, we get |φ(0, 0)| = 1 from the last equality. Plugging it back into the

last equation, and using the fact that a0 and a1 are arbitrary, we have ∂φ
∂z (0, 0) = 0 and ∂φ

∂w (0, 0) = 0.

Conversely, if |φ(0, 0)| = 1, ∂φ∂z (0, 0) = 0 and ∂φ
∂w (0, 0) = 0, then one checks that all equations above hold.

In conclusion, G0(M) = T× G1,1.

10 Concluding remarks

The goal of this paper is to introduce Krĕın space, Lorentz group and little Lorentz group into the study

of submodules in H2(D2). Clearly, the defect operator CM is a pivot in this attempt. CM can be defined

for many other reproducing kernel Hilbert spaces, so at least some parallel work can be done in more

general settings. How will the Lorentz group and the little Lorents group change with respect to the

change of settings is an appealing question, and some work is on the horizon. However, we conclude this

paper by posting some more immediate problems.

(1) Since the defect operator may be non-compact (albeit hard to find), will G(M) and G0(M) be able

to detect the non-compactness of CM?

(2) For an ideal J ⊂ H∞, is the rank of J an invariant for the group G(J)?
(3) Is G0(M) maximal abelian in G(M)?

(4) Is the converse of Proposition 5.3 true?
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5 Douglas R G, Paulsen V I, Sah C, et al. Algebraic reduction and rigidity for Hilbert modules. Amer J Math, 1995,

117: 75–92

6 Douglas R G, Sarkar J. On unitarily equivalent submodules. Indiana Univ Math J, 2008, 57: 2729–2743

7 Dritschel M A, Rovnyak J. Operators on indefinite inner product spaces. In: Lectures on Operator Theory and Its

Applications. Fields Institute Monographs, vol. 3. Providence: Amer Math Soc, 1996, 141–232

8 Garnett J. Bounded Analytic Functions, 1st ed. New York: Springer-Verlag, 2007

9 Guo K Y. Characteristic spaces and rigidity for analytic Hilbert modules. J Funct Anal, 1999, 163: 133–151

10 Guo K Y, Yang R W. The core function of submodules over the bidisk. Indiana Univ Math J, 2004, 53: 205–222

11 Izuchi K J, Izuchi K H. Rank-one commutators on invariant subspaces of the Hardy space on the bidisk. J Math Anal

Appl, 2006, 316: 1–8

12 Izuchi K J, Nakazi T, Seto M. Backward shift invariant subspaces in the bidisc II. J Operator Theory, 2004, 51: 361–376

13 Izuchi K J, Nakazi T, Seto M. Backward shift invariant subspaces in the bidisc III. Acta Sci Math (Szeged), 2004, 70:

727–749

14 Izuchi K J, Ohno S. Selfadjoint commutators and invariant subspaces on the torus. J Operator Theory, 1994, 31:

189–204



768 Wu Y et al. Sci China Math April 2018 Vol. 61 No. 4

15 Rudin W. Function Theory in Polydiscs. New York-Amsterdam: Benjamin, 1969

16 Seto M. Infinite sequences of inner functions and submodules in H2(D2). J Operator Theory, 2009, 61: 75–86

17 Seto M, Yang R W. Inner sequence based invariant subspaces in H2(D2). Proc Amer Math Soc, 2007, 135: 2519–2526

18 Wu Y. Lorentz group of submodules in H2(D2). Dissertation. Albany: State University of New York at Albany, 2015

19 Yang R W. Operator theory in the Hardy space over the bidisk (III). J Funct Anal, 2001, 186: 521–545

20 Yang R W. The core operator and congruent submodules. J Funct Anal, 2005, 228: 469–489

21 Yang R W. Hilbert-Schmidt submodules and issues of unitary equivalence. J Operator Theory, 2005, 53: 169–184

22 Yang R W. Operator theory in the Hardy space over the bidisk (II). Integral Equations Operator Theory, 2006, 56:

431–449

23 Yang R W. A note on classification of submodules in H2(D2). Proc Amer Math Soc, 2009, 137: 2655–2659


	Introduction
	Kreĭn space KH2 and operator D
	Basic properties of D
	A representation of PM
	Examples
	Lorentz group
	Subgroups in (H)-1
	Little Lorentz group
	Little Lorentz group and unitary equivalence
	Concluding remarks

