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Abstract This paper mainly focuses on the front-like entire solution of a classical nonlocal dispersal equation

with ignition nonlinearity. Especially, the dispersal kernel function J may not be symmetric here. The asym-

metry of J has a great influence on the profile of the traveling waves and the sign of the wave speeds, which

further makes the properties of the entire solution more diverse. We first investigate the asymptotic behavior

of the traveling wave solutions since it plays an essential role in obtaining the front-like entire solution. Due to

the impact of f ′(0) = 0, we can no longer use the common method which mainly depends on Ikehara theorem

and bilateral Laplace transform to study the asymptotic rates of the nondecreasing traveling wave and the

nonincreasing one tending to 0, respectively, so we adopt another method to investigate them. Afterwards, we

establish a new entire solution and obtain its qualitative properties by constructing proper supersolution and

subsolution and by classifying the sign and size of the wave speeds.
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1 Introduction

In this paper, we are concerned with the following classical nonlocal dispersal equation:

ut(x, t) = (J ∗ u)(x, t)− u(x, t) + f(u(x, t)), (x, t) ∈ R2, (1.1)

where (J ∗ u)(x, t) − u(x, t) =
∫
R J(y)[u(x − y, t) − u(x, t)]dy is a nonlocal dispersal term, and f is an

ignition nonlinearity. They satisfy the following:

(J1) J ∈ C(R), J(x) > 0,
∫
R J(x)dx = 1 and ∃λ > 0 such that

∫
R J(x)e

λ|x|dx <∞.

(FI) f ∈ C2(R), f(0) = f(1) = 0, f ′(1) < 0, and there exists ρ ∈ (0, 1) such that f |[0,ρ] ≡ 0, f |(ρ,1) > 0.

It is well known that the long range dispersal phenomenon is very widespread in the natural life, so in

recent years, the nonlocal equations and systems have been widely concerned and studied by more and

more researchers. Propagation dynamics is one of the hot research topics; more precisely, it includes the
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traveling wave solution, spreading speed, entire solution and so on. Especially, the entire solution has

been widely studied because of its important theoretical and practical significance. From the perspective

of dynamical system, the solution of the initial value problem can be seen as a semi-flow or a half-orbit,

so we can only determine the state of the solution in t ∈ [0,+∞). But an entire solution can be viewed

as a full-flow or a full-orbit, so it allows us to study the information of the solution in any space point

x ∈ R and any time t ∈ R, which further helps us to understand the transient dynamics and the structure

of the global attractors. For more rich entire solutions, one can refer to [5–8, 10, 12, 17, 18] for classical

Laplace diffusion equations, and [9,11,13,14,19,23] for nonlocal dispersal equations.

Note that the above results for nonlocal equations and systems are all based on the symmetry of the

kernel function. However, as we mentioned in the previous work [16, 22], the asymmetric dispersal phe-

nomenon is very common and widespread in reality since there is a formal analogy between asymmetric-

nonlocal-dispersal equations and reaction-advection-diffusion equations [4,16]. For the entire solutions of

reaction-advection-diffusion equations, we refer to [5, 8] and the references therein.

In [16, 22], we have investigated the entire solutions of the asymmetric dispersal equation (1.1) with

monostable and bistable nonlinearities, respectively. Comparing the symmetric case [9,14], we found that

there exist new types of entire solutions due to the influence of the asymmetry of the kernel function.

In addition, catching up phenomenon between traveling wave solutions is very common and qualitative

properties of some entire solutions also become very different.

In this paper, we focus our attention on the entire solution of (1.1) with asymmetric kernel function and

ignition nonlinearity since there is no result on this issue. We use the front-like entire solution to describe

the propagation of flame since different types of entire solutions correspond to different ways of flame

propagation. What should be pointed out is that the key step to construct such an entire solution which

behaves like interactions of different traveling waves is having a precise information on the asymptotic

behaviors of the traveling wave solutions at infinity. Therefore, we take half the length of this paper to

investigate them.

A traveling wave solution of (1.1) is a special translation invariant solution of the form u(x, t) =

ϕ(ξ)(ξ = x+ ct) which satisfies {
cϕ′(ξ) = J ∗ ϕ(ξ)− ϕ(ξ) + f(ϕ(ξ)),

ϕ(−∞) = 0, ϕ(+∞) = 1,
(1.2)

where ϕ(±∞) denotes the limit of ϕ(ξ) as ξ → ±∞. For asymmetric kernel function J and bistable

or ignition nonlinearity, Coville [3] has proved the existence of the traveling wave solution ϕ and the

uniqueness of the speed c. The specific results can be stated as follows. About the traveling wave

solutions of the asymmetric equation (1.1) with monostable nonlinearity, one can refer to Coville et

al. [4], Sun et al. [15] and Yagisita [20].

Theorem 1.1 (See [3]). Assume that J satisfies (J1) and let f be of bistable or ignition type. Then

there exists a constant c ∈ R and a nondecreasing function ϕ such that (ϕ, c) is a solution of (1.2).

Moreover the speed c is unique.

In virtue of the asymmetry of the kernel function J , we cannot get a nonincreasing traveling wave

solution directly, although we can do this for the symmetric case. However, note that û(x, t) := u(−x, t)
is a solution of the following nonlocal equation:

ût(x, t) =

∫
R
J(y)û(x+ y, t)dy − û(x, t) + f(û(x, t)) (1.3)

whenever u(x, t) is a solution of (1.1). Thus the existence of the nondecreasing traveling wave solution

of (1.3) from 0 to 1 immediately implies the existence of the nonincreasing traveling wave solution

of (1.1) from 1 to 0. Therefore, by using a similar method with that in [3], we obtain a nonincreasing

front ϕ̂(ξ̂) := ϕ̂(x+ ĉt) with speed ĉ ∈ R satisfying{
ĉϕ̂′ = J ∗ ϕ̂− ϕ̂+ f(ϕ̂),

ϕ̂(−∞) = 1, ϕ̂(+∞) = 0.
(1.4)



Zhang L et al. Sci China Math October 2017 Vol. 60 No. 10 1793

But here, the two waves ϕ(ξ) and ϕ̂(ξ̂) are likely to be no longer symmetric in shape although they always

are symmetric in shape when the kernel function is symmetric.

In order to construct a proper supersolution and further obtain the existence and qualitative properties

of a front-like entire solution of (1.1), we must make clear the asymptotic behaviors of the traveling wave

solutions ϕ(ξ) and ϕ̂(ξ̂) at infinity. As ξ → +∞ (or ξ̂ → −∞), since f ′(1) < 0, we can obtain a precise

exponential decay rate of ϕ(ξ) (or ϕ̂(ξ̂)) by using similar arguments with those in [22] for the bistable

case. However, as ξ → −∞ (or ξ̂ → +∞), due to the effect of f ′(0) = 0, we cannot use the same method

anymore, so by combining the methods provided in [1,21], we find another way which is mainly based on

the constant use of a comparison principle and the construction of appropriate barrier functions. But due

to the asymmetry of the kernel function J , the details of the proof are very different. Moreover, in order

to ensure J satisfies a proper comparison principle, we give the following assumption. For this comment,

one can refer to [2, 3] for more details.

(J2) ∃ a 6 0 6 b, a ̸= b such that J(a) > 0 and J(b) > 0, which is equivalent to supp(J) ∩ R+ ̸= ∅ and

supp(J) ∩ R− ̸= ∅.
From now on, if there is no special note, we always assume the wave speeds c ̸= 0 and ĉ ̸= 0. In

Section 2, we give a special asymmetric kernel function as an example to illustrate that the assumption

is reasonable and meaningful (see Example 2.4).

Now we state our main result.

Theorem 1.2. Assume that J satisfies (J1)–(J2) and (2.3), f satisfies maxu∈[0,1] f
′(u) < 1 and (FI).

Let ϕ(x+ ct) and ϕ̂(x+ ĉt) be the monotone solutions of (1.2) and (1.4) which satisfy (4.1), respectively.

Then for any constant θ ∈ R, (1.1) admits an entire solution u(x, t) : R2 → [0, 1] satisfying

lim
t→−∞

{
sup

x6− c+ĉ
2 t

|u(x, t)− ϕ̂(x+ ĉt− θ)|+ sup
x>− c+ĉ

2 t

|u(x, t)− ϕ(x+ ct+ θ)|
}
= 0. (1.5)

In addition, there exist the positive constants C1 and C2 such that for any η > 0,

|u(x+ η, t)− u(x, t)| 6 C1η,

∣∣∣∣∂u∂t (x+ η, t)− ∂u

∂t
(x, t)

∣∣∣∣ 6 C2η. (1.6)

In addition, u(x, t) possesses different properties according to the sign and size of the speeds c and ĉ (see

Lemma 2.5).

(a) If c > 0 and ĉ > 0, then u(x, t) is increasing with respect to θ and for some constants a,N, t0 ∈ R,

lim
θ→+∞

u(x, t) = 1 uniformly for (x, t) ∈ [−a,+∞)2 ∪ (−∞, a]2, (1.7)

lim
x→+∞

sup
t>t0

|u(x, t)− 1| = 0, lim
x→−∞

sup
t6t0

|u(x, t)− 1| = 0, (1.8)

lim
t→+∞

sup
x∈[−N,+∞)

|u(x, t)− 1| = 0. (1.9)

Moreover, the traveling wave solutions ϕ and ϕ̂ propagate in the same direction and from the left of the

x-axis as t → −∞. Since c > ĉ (see Lemma 2.5), the two waves get closer and closer as time goes on,

and finally ϕ is likely to catch up ϕ̂.

(b) If c < 0 and ĉ < 0, then u(x, t) is increasing with respect to θ and

lim
θ→+∞

u(x, t) = 1 uniformly for (x, t) ∈ [−a,+∞)× (−∞, a] ∪ (−∞, a]× [−a,+∞),

lim
x→+∞

sup
t6t0

|u(x, t)− 1| = 0, lim
x→−∞

sup
t>t0

|u(x, t)− 1| = 0,

lim
t→+∞

sup
x∈(−∞,N ]

|u(x, t)− 1| = 0.

A similar statement to (a) also holds for this case, i.e., the two waves ϕ and ϕ̂ propagate in the same

direction and from the right of the x-axis as t → −∞, and they get closer and closer as time goes on,

and finally ϕ̂ is likely to catch up ϕ.
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(c) If c > 0 > ĉ, then ∂u
∂t (x, t) > 0 and u(x, t) is increasing with respect to θ and

lim
θ→+∞

u(x, t) = 1 uniformly for (x, t) ∈ [−a,+∞)2 ∪ (−∞, a]× [−a,+∞),

lim
x→±∞

sup
t>t0

|u(x, t)− 1| = 0, lim
t→+∞

sup
x∈R

|u(x, t)− 1| = 0.

Here, the two waves ϕ and ϕ̂ propagate from the opposite ends of the x-axis as t→ −∞, and are likely to

merge with each other eventually.

The remainder of this paper is organized as follows. In Section 2, we give some useful lemmas which

mainly focus on the initial value problem of (1.1) and the speeds of traveling wave solutions. Sections 3

and 4 are respectively devoted to proving the exponential behaviors of traveling wave solutions and the

existence and qualitative properties of the entire solution of (1.1). In Section 5, we give the discussion.

2 Preliminaries

In this section, we make some preparations for getting our main results later. Since the main theorem is

proved by considering the solving sequences of Cauchy problems starting at time −n with suitable initial

values, we first consider the following Cauchy problem of (1.1):
∂u(x, t)

∂t
= (J ∗ u)(x, t)− u(x, t) + f(u(x, t)), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.
(2.1)

Definition 2.1. A function ū(x, t) is called a supersolution of (1.1) on (x, t) ∈ R × [τ, T ), τ < T , if

ū(x, t) ∈ C0,1(R× [τ, T ),R) and satisfies

∂

∂t
ū(x, t) > (J ∗ ū)(x, t)− ū(x, t) + f(ū(x, t)), ∀ (x, t) ∈ R× [τ, T ). (2.2)

Furthermore, if for any τ < T , ū is a supersolution of (1.1) on (x, t) ∈ R × [τ, T ), then ū is called

a supersolution of (1.1) on (x, t) ∈ R × (−∞, T ). Similarly, a subsolution u(x, t) can be defined by

reversing the inequality (2.2).

Lemma 2.2. Assume (J1)–(J2) and (FI) hold. Then

(i) For any u0(x) ∈ C(R, [0, 1]), (2.1) admits a unique solution u(x, t;u0) ∈ C0,1(R× [0,∞), [0, 1]).

(ii) For any pair of supersolution ū(x, t) and subsolution u(x, t) of (1.1) on R× [0,+∞) with u(x, 0) 6
ū(x, 0) and 0 6 u(x, t), ū(x, t) 6 1 for (x, t) ∈ R × [0,+∞), there holds 0 6 u(x, t) 6 ū(x, t) 6 1 for all

(x, t) ∈ R× [0,+∞).

Lemma 2.3. Assume (J1) and (FI) hold. Let u(x, t) be a solution of (2.1) with u0(x) ∈ C(R, [0, 1]).
Then there exists a constant K0 > 0, independent of x, t and u0(x), such that

|ut(x, t)|, |utt(x, t)| 6 K0 for any x ∈ R, t > 0.

In addition, if we further assume maxu∈[0,1] f
′(u) < 1 and there exists a constant K1 > 0 such that for

any η > 0, ∫
R
|J(x+ η)− J(x)|dx 6 K1η (2.3)

and

|u0(x+ η)− u0(x)| 6 K1η, (2.4)

then for any x ∈ R, t > 0 and η > 0, one has

|u(x+ η, t)− u(x, t)| 6 K2η,

∣∣∣∣∂u∂t (x+ η, t)− ∂u

∂t
(x, t)

∣∣∣∣ 6 K2η, (2.5)

where K2 is some positive constant independent of u0 and η.
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We omit the details of the proofs of Lemmas 2.2 and 2.3 because they are standard and common (see

[9, Theorem 2.4] and [11, Lemma 3.2]).

Next, we discuss the sign and size of the wave speeds. Due to the asymmetry of the kernel function J ,

the speed c of the nondecreasing traveling wave solution ϕ may be nonpositive and the speed ĉ of the

nonincreasing one ϕ̂ may be nonnegative, which are very different from the case of the symmetric kernel

function. Precisely, integrating the first equation of (1.2) from −∞ to +∞, we have

c =

∫
R

∫
R
J(y)[ϕ(ξ − y)− ϕ(ξ)]dydξ +

∫
R
f(ϕ(ξ))dξ

=

∫
R

∫
R
J(y)

∫ 1

0

ϕ′(ξ − θy)(−y)dθdydξ +
∫
R
f(ϕ(ξ))dξ

= −
∫
R
J(y)ydy +

∫
R
f(ϕ(ξ))dξ. (2.6)

Similarly,

ĉ = −
∫
R
J(y)ydy −

∫
R
f(ϕ̂(ξ̂))dξ̂. (2.7)

If J is symmetric, then
∫
R J(y)ydy = 0. It is obvious that c > 0 and ĉ < 0 since 0 6 ϕ(·), ϕ̂(·) 6 1 and

f(u) > 0 for u ∈ [0, 1]. However, if J is asymmetric, the sign and size of the integral
∫
R J(y)ydy cannot be

determined exactly, thus the signs of speeds c and ĉ are uncertain. Actually, from (2.6) and (2.7), we know

that the signs of c and ĉ partially depend on the properties of the kernel function J . More specifically,

we give an example of the asymmetric kernel functions to illustrate such dependence or influence.

Example 2.4. The kernel function given below can make c ̸= 0 and ĉ ̸= 0, i.e.,

J(x) =



2

15
e−(x−2), x > 2,

8

15
e2(x+1), x 6 −1,

4

45
x2 − 2

9
x+

2

9
, −1 < x < 2.

Through some calculations, we verify that J(x) satisfies (J1), (J2) and
∫
R J(x)xdx = 0. Then (2.6)

and (2.7) show that c ̸= 0 and ĉ ̸= 0 hold (more precisely, such a kernel function can ensure c > 0 and

ĉ < 0). In fact, more generally speaking, in the case of this paper, as long as the kernel function J(x)

satisfies (J1), (J2),
∫
R J(y)ydy ̸=

∫
R f(ϕ(ξ))dξ and

∫
R J(y)ydy ̸=

∫
R f(ϕ̂(ξ̂))dξ̂, the wave speeds c ̸= 0 and

ĉ ̸= 0 are naturally established. One of the simplest case is that J satisfies
∫
R J(y)ydy = 0 besides (J1)

and (J2).

Now we give a lemma to classify the sign of the wave speeds.

Lemma 2.5. Assume (J1) and (FI) hold. As for the signs of speeds c and ĉ, there are only three

possibilities:

(i) c > 0 and ĉ > 0;

(ii) c > 0 and ĉ < 0;

(iii) c < 0 and ĉ < 0,

which means the case of c < 0 and ĉ > 0 is impossible. Moreover, c > ĉ.

Proof. If c < 0, (2.6) implies
∫
R f(ϕ(ξ))dξ <

∫
R J(y)ydy. Then from (2.7), we get

ĉ < −
∫
R
f(ϕ(ξ))dξ −

∫
R
f(ϕ̂(ξ̂))dξ̂.

Combining (2.6) and (2.7) with the properties of ϕ(·), ϕ̂(·) and f |[ρ,1] > 0, we conclude that ĉ < 0.

Similarly, from (2.6) and (2.7), one has c− ĉ =
∫
R f(ϕ(ξ))dξ +

∫
R f(ϕ̂(ξ̂))dξ̂ which yields c > ĉ.
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3 Asymptotic behaviors of traveling wave solutions

In the front part of this subsection, we prove the following asymptotic behaviors of traveling waves.

Theorem 3.1. Assume (J1)–(J2) and (FI) hold. Let ϕ(x+ ct) and ϕ̂(x+ ĉt) be the nondecreasing and

nonincreasing solutions of (1.2) and (1.4), respectively. Then the following conclusions hold:

(i) As for ϕ(x+ ct), one has the following:

(a) There exist two positive constants A0 and µ1 such that 0 < ϕ′(ξ) 6 A0e
µ1ξ for ξ 6 0.

(b) There exist positive constants A2 6 A1 and µ2 > µ1 such that A2e
µ2ξ 6 ϕ(ξ) 6 A1e

µ1ξ for

ξ 6 0.

(c) There exist two constants A3 > 0 and µ21 < 0 such that

lim
ξ→+∞

(1− ϕ(ξ))e−µ21ξ = A3, lim
ξ→+∞

ϕ′(ξ)e−µ21ξ = −A3µ21.

(ii) As for ϕ̂(x+ ĉt), one has the following:

(a) There exist two positive constants Â0 and µ̂1 such that |ϕ̂′(ξ̂)| 6 Â0e
−µ̂1ξ̂ for ξ̂ > 0.

(b) There exist positive constants Â2 6 Â1 and µ̂2 > µ̂1 such that Â2e
−µ̂2ξ̂ 6 ϕ̂(ξ̂) 6 Â1e

−µ̂1ξ̂ for

ξ̂ > 0.

(c) There exist positive constants Â3 and µ̂22 such that

lim
ξ̂→−∞

(1− ϕ̂(ξ̂))e−µ̂22ξ̂ = Â3, lim
ξ̂→−∞

ϕ̂′(ξ̂)e−µ̂22ξ̂ = −Â3µ̂22.

To obtain the precise exponential asymptotic behaviors of ϕ(ξ) as ξ → +∞ and ϕ̂(ξ̂) as ξ̂ → −∞
(described as (c) of (i) and (ii) in Theorem 3.1), we use a similar argument with [22, Lemma 3.4] since

f ′(1) < 0. But as ξ → −∞ for ϕ(ξ) and ξ̂ → +∞ for ϕ̂(ξ̂), we can no longer use the same method due

to the fact f ′(0) = 0. Here, we adopt a proper comparison principle which can be proved by similar

arguments to [2, Theorem 3.1] or [1, Theorem 1.5.1] and construct appropriate barrier functions to prove

Theorem 3.1. The comparison principle is stated as follows.

Theorem 3.2. Assume J satisfies (J1)–(J2), a(x) ∈ C(R, [0,+∞)) and b(x) ∈ L∞(R) ∩ C(R). Let u

and v be two smooth functions (C1(R)) and ω be a connected subset of R. Assume that u and v satisfy

the following conditions:

Lu = J ∗ u− u− a(x)u− b(x)u′ 6 0 in ω ⊂ R,
Lv = J ∗ v − v − a(x)v − b(x)v′ > 0 in ω ⊂ R,
u > ̸≡ v in R− ω,

if ω is an unbounded domain, also assume that lim
±∞

(u− v) > 0.

Then u > v in R.
Now define four complex functions Fi(µ) and F̂i(µ) for i = 1, 2 by

F1(µ) =

∫
R
J(−y)eµydy − 1− cµ+ f ′(0) =

∫
R
J(−y)eµydy − 1− cµ,

F2(µ) =

∫
R
J(−y)eµydy − 1− cµ+ f ′(1),

F̂1(µ̂) =

∫
R
J(y)eµ̂ydy − 1 + ĉµ̂,

F̂2(µ̂) =

∫
R
J(y)eµ̂ydy − 1 + ĉµ̂+ f ′(1).

Then the following lemma holds.

Lemma 3.3. Assume J satisfies (J1) and (J2). Then the following conclusions hold:
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(i) The equation F1(µ) = 0 (or F̂1(µ̂) = 0) has a positive real root µ1 (or µ̂1) such that

F1(µ) (or F̂1(µ̂))

{
< 0 for µ ∈ (0, µ1) (or µ̂ ∈ (0, µ̂1)),

> 0 for µ > µ1 (or µ̂ > µ̂1).

(ii) The equation F2(µ) = 0 (or F̂2(µ̂) = 0) has two real roots µ21 < 0 (or µ̂21 < 0) and µ22 > 0 (or

µ̂22 > 0) such that

F2(µ) (or F̂2(µ̂))


> 0 for µ < µ21 (or µ̂ < µ̂21),

< 0 for µ ∈ (µ21, µ22) (or µ̂ ∈ (µ̂21, µ̂22)),

> 0 for µ > µ22 (or µ̂ > µ̂22).

(3.1)

Proof. (i) Direct computations show that F1(0) = 0 and

F ′
1(µ) =

∫
R
J(−y)yeµydy − c, F ′′

1 (µ) =

∫
R
J(−y)y2eµydy > 0.

From (2.6), we have

F ′
1(0) =

∫
R
J(−y)ydy −

∫
R
J(−y)ydy −

∫
R
f(ϕ(ξ))dξ < 0.

Moreover, from (J2) we know that J(y) ̸≡ 0 in R−, then

F1(µ) =

∫ 0

−∞
J(−y)eµydy +

∫ +∞

0

J(−y)eµydy − 1− cµ→ +∞ as µ→ +∞.

Therefore, there exists a positive constant µ1 such that F1(µ1) = 0. Other conclusions can be proved

similarly and we omit the details.

Proof of Theorem 3.1. We only prove (i) since (ii) can be proved by similar arguments.

(a) The conclusion ϕ′(ξ) > 0 can be obtained directly from the monotonicity of ϕ which was proved

by Coville [2]. Let ψ(ξ) = A0e
µ1ξ and L be the following integro-differential operator:

Lu = J ∗ u− u− cu′. (3.2)

A quick computation shows that ψ satisfies

Lψ(ξ) = A0

∫
R
J(y)eµ1(ξ−y)dy − ψ(ξ)− cµ1ψ(ξ)

= ψ(ξ)

(∫
R
J(−y)eµ1ydy − 1− cµ1

)
= 0.

Recalling from [3, Lemma 2.1], we know that ϕ′(ξ) → 0 as ξ → ±∞. Then by taking A0 = ∥ϕ′∥∞,

we achieve ψ(ξ) > ϕ′(ξ) on R+. According to the translation invariance, without loss of generality, we

can assume ϕ(0) = ρ. Then by the monotonicity of ϕ(ξ) and the first equation of (1.2), we have Lϕ = 0

on R−. Now by using Theorem 3.2 with ϕ′ and ψ on R−, we obtain the desired inequality

ϕ′(ξ) 6 ∥ϕ′∥∞eµ1ξ for ξ 6 0, (3.3)

which ends the proof of (a).

(b) Due to ϕ(−∞) = 0 and ϕ(+∞) = 1, one has the following asymptotic behavior of ϕ by integrat-

ing (3.3) from −∞ to ξ with ξ 6 0,

ϕ(ξ) 6 A1e
µ1ξ for ξ 6 0,
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where A1 = ∥ϕ′∥∞/µ1.

To complete the proof, we just need to establish the following inequality:

A2e
µ2ξ 6 ϕ(ξ) (3.4)

for ξ 6 0 and some positive constants A2 and µ2.

Define a function φ1(ξ, µ) for µ > 0 by

φ1(ξ, µ) :=


ρ

2
eµξ for ξ 6 0,

ρ

2
for ξ > 0.

(3.5)

Redefine L as the following operator:

Lu = J ∗ u− u− cu′ − ku.

Choose k > 0 such that −k < f(u)
u < k for any u ∈ [0, 1]. Such a k exists because f is Lipschitz continuous

on [0, 1]. Now we compute Lφ1 for ξ 6 0,

Lφ1(ξ, µ) = φ1(ξ, µ)

[
e−µξ

∫ ξ

−∞
J(y)dy +

∫ +∞

ξ

J(y)e−µydy − 1− cµ− k

]
> φ1(ξ, µ)

[
e−µξ

∫ ξ

−∞
J(y)dy +

∫ 0

ξ

J(y)e−µydy − 1− cµ− k

]
. (3.6)

Since supp(J) ̸⊂ R+, we can choose r and µ2 large enough such that∫ 0

−r

J(y)e−µ2ydy − 1− cµ2 − k > 0. (3.7)

Then from (3.6) and (3.7), for ξ 6 −r we get

Lφ1(ξ, µ2) > φ1(ξ, µ2)

[
e−µ2ξ

∫ ξ

−∞
J(y)dy +

∫ 0

−r

J(y)e−µ2ydy − 1− cµ2 − k

]
> 0. (3.8)

Note that ϕ and any translation of ϕ satisfy the following relationship on R:

Lϕ = J ∗ ϕ− ϕ− cϕ′ − kϕ = −
(
f(ϕ)

ϕ
+ k

)
ϕ 6 0.

Assume that ϕ(−r) = ρ
2 . Then φ1(ξ, µ2) 6 ρ

2 6 ϕ(ξ) for ξ > −r since ϕ is nondecreasing. Now by using

Theorem 3.2 with ϕ and φ1 on (−∞,−r), one has φ1(ξ, µ2) 6 ϕ on R, and then (b) is proved by taking

A2 = min{ρ
2 , A1}.

The main idea of the proof of (c) and [4, Section 5] is almost the same except for some detailed

estimates, so we will not repeat it here. The proof is complete.

Theorem 3.1 has given some exponential estimates of ϕ(ξ) as ξ → −∞ and ϕ̂(ξ) as ξ → +∞, but in

order to obtain the entire solution that we desired, we need to further research the asymptotic behaviors

of ϕ′(ξ)/ϕ(ξ) as ξ → −∞ and ϕ̂′(ξ̂)/ϕ̂(ξ̂) as ξ̂ → +∞. The main idea comes from Zhang et al. [21], which

is used efficiently to investigate the detailed asymptotic behavior of the traveling wave solution for the

nonlocal dispersal equations with degenerate monostable nonlinearity. However in this paper, due to the

asymmetry of the kernel function, we cannot determine the signs of c and ĉ exactly, which further makes

the details more difficult and complex. Firstly, we prove the following essential lemma.

Lemma 3.4. Assume J satisfies (J1)–(J2). Let c ≠ 0 and B(ξ) be a continuous function having finite

limits at infinity, B(±∞) := limx→±∞B(x), and z(·) be a measurable function satisfying

cz(x) =

∫
R
J(y)e

∫ x−y
x

z(s)dsdy +B(x), x ∈ R. (3.9)

Then z is uniformly continuous and bounded. Moreover, µ± = limx→±∞ z(x) exist and are real roots of

the characteristic equation cµ =
∫
R J(y)e

−µydy +B(±∞).
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Proof. We discuss it by dividing into two cases: (i) c > 0; (ii) c < 0.

(i) c > 0. Let w(x) = emx+
∫ x
0

z(s)ds for some constant m. Then

cw′(x) = (cm+B(x))w(x) +

∫
R
J(y)emyw(x− y)dy. (3.10)

Choosing m = ∥B(x)∥L∞(R)/c, we get w′(x) > 0. Integrating (3.10) over [x− δ, x], one has

cw(x) > cω(x)− cw(x− δ)

>
∫
R
J(y)emy

∫ x

x−δ

w(s− y)dsdy

> δ

∫
R
J(y)emyw(x− δ − y)dy

> δ

∫ −2δ

−∞
J(y)emyw(x− δ − y)dy

> δw(x+ δ)

∫ −2δ

−∞
J(y)emydy.

Since supp(J) ̸⊂ R+ from (J2), we can choose δ > 0 such that
∫ −2δ

−∞ J(y)emydy > 0. Let M1 :=∫ −2δ

−∞ J(y)emydy and (J1) ensures M1 < +∞. Then we have

w(x+ δ)

w(x)
6 c

δM1
. (3.11)

Similarly, integrating (3.10) over [x, x+ δ], we obtain

cw(x+ δ) > cω(x+ δ)− cw(x) > δ

∫
R
J(y)emyw(x− y)dy,

which implies

c
w(x+ δ)

w(x)
> δ

∫
R
J(y)emyw(x− y)

w(x)
dy. (3.12)

Note that

cz(x) =

∫
R
J(y)emyw(x− y)

w(x)
dy +B(x).

By combining (3.11) with (3.12), we obtain z(·) ∈ L∞(R).
(ii) c < 0. From (3.10) we know that w′(x) 6 0. Integrating (3.10) on [x, x+ δ], one has

−cw(x) > cω(x+ δ)− cw(x)

> δ

∫
R
J(y)emyw(x+ δ − y)dy

> δ

∫ +∞

2δ

J(y)emyw(x+ δ − y)dy

> δw(x− δ)

∫ +∞

2δ

J(y)emydy.

Letting M2 :=
∫ +∞
2δ

J(y)emydy, from (J1) and (J2), we get 0 < M2 < +∞. Then

w(x− δ)

w(x)
6 −c
δM2

.

Similarly, we have

−cw(x− δ)

w(x)
> δ

∫
R
J(y)emyw(x− y)

w(x)
dy,
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which yields ∫
R
J(y)emyw(x− y)

w(x)
dy 6 c2

δ2M2
.

Therefore z(x) is bounded. (3.9) implies that z is uniformly continuous. The rest conclusion can be

proved by using a completely similar argument with that of [21, Proposition 3.7], because the rest proof

does not depend on the sign of c and the symmetry of the kernel function J , so we omit the details. The

proof is complete.

Based on the above discussions, we obtain the following lemma.

Lemma 3.5. Let ϕ(ξ) and ϕ̂(ξ̂) be the solutions of (1.2) and (1.4), respectively. Then they satisfy

lim
ξ→−∞

ϕ′(ξ)

ϕ(ξ)
= {0, µ1}, lim

ξ̂→+∞

ϕ̂′(ξ̂)

ϕ̂(ξ̂)
= {0,−µ̂1}, (3.13)

where µ1 and µ̂1 are defined in Lemma 3.3.

Proof. From Theorem 3.1, one knows that ϕ(ξ) > 0 for any ξ ∈ R, so we can define

z(ξ) :=
ϕ′(ξ)

ϕ(ξ)
.

Dividing the first equation of (1.2) by ϕ(ξ), one has

cz(ξ) =

∫
R
J(y)e

∫ ξ−y
ξ

z(s)dsdy +B(ξ),

where B(ξ) = −1 + f(ϕ(ξ))
ϕ(ξ) . Then the front part of (3.13) follows from B(−∞) = −1 and Lemmas 3.3

and 3.4. The conclusion for ϕ̂(ξ̂) can be discussed similarly.

4 Entire solutions

In this section, we focus our attention on the new entire solution of (1.1) except traveling wave solutions

by combining the nondecreasing traveling wave ϕ(x+ ct) with the nonincreasing one ϕ̂(x+ ĉt). In order

to construct a proper supersolution, we require ϕ and ϕ̂ to satisfy the following condition:

kϕ(ξ) 6 ϕ′(ξ) for ξ 6 0 and ϕ̂′(ξ̂) 6 −k̂ϕ̂(ξ̂) for ξ̂ > 0 (4.1)

with some positive constants k and k̂. Actually, (4.1) is easy to be satisfied, e.g., from Lemma 3.5, if ϕ

and ϕ̂ satisfy

lim
ξ→−∞

ϕ′(ξ)

ϕ(ξ)
= µ1, lim

ξ̂→+∞

ϕ̂′(ξ̂)

ϕ̂(ξ̂)
= −µ̂1,

then (4.1) can be ensured by combining Theorem 3.1. The simplest case is that the kernel function J has

a compact support and the radius of the compact support is very small, such as supp(J) ⊂ [−a, b] with
0 < a, b ≪ 1. Without loss of generality, assume a < b. Note that ϕ(ξ) is smooth. Then the Taylor’s

formula yields that

J ∗ ϕ(ξ)− ϕ(ξ) =

∫
R
J(y)[ϕ(ξ − y)− ϕ(ξ)]dy

=
1

2

∫
R
J(y)y2dyϕ′′(ξ)−

∫
R
J(y)ydyϕ′(ξ) + o(b2) as b→ 0.

Then for ξ ≪ −1 and b≪ 1 small enough, from (1.2) and (FI), one has

cϕ′(ξ) =
1

2

∫
R
J(y)y2dyϕ′′(ξ)−

∫
R
J(y)ydyϕ′(ξ),
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which implies

lim
ξ→−∞

ϕ′(ξ)

ϕ(ξ)
= lim

ξ→−∞

ϕ′′(ξ)

ϕ′(ξ)
=

2[c+
∫
R J(y)ydy]∫

R J(y)y
2dy

̸= 0.

Then combining Lemma 3.5, we get limξ→−∞
ϕ′(ξ)
ϕ(ξ) = µ1. Similarly, limξ̂→+∞

ϕ̂′(ξ̂)

ϕ̂(ξ̂)
= −µ̂1.

From (FI), we can modify f(u) on u ∈ (1,+∞) such that f ′(u) < f ′(0) = 0 for any u ∈ (1, 2). Then

by the continuity of f ′(u) and f ′(1) < 0, there exists m0 ∈ (0, 1) so that

f ′(u) < f ′(0) for any u ∈ (1−m0, 2). (4.2)

In the remainder of this paper, we always assume ϕ(ξ) and ϕ̂(ξ̂) satisfy

ϕ(ξ) > 1−m0 for any ξ > 0, (4.3)

ϕ̂(ξ̂) > 1−m0 for any ξ̂ 6 0. (4.4)

Indeed, (4.3) and (4.4) can be ensured by translating ϕ(ξ) and ϕ̂(ξ̂) along the x-axis appropriately.

We start with the following ordinary differential problem which plays an important role in the con-

struction of the supersolution: {
p′(t) = c0 +Neσp(t), t < 0,

p(0) < 0,
(4.5)

where c0, N and σ are positive constants and will be chosen later. (4.5) can be solved explicitly as

p(t)− c0t− ω = − 1

σ
ln

{
1− r

1 + r
ec0σt

}
, r =

N

c0
eσp(0),

with

ω := p(0)− 1

σ
ln

{
1 +

N

c0
eσp(0)

}
. (4.6)

Then p(t) 6 0 for t 6 0 and there exists some positive constant K such that

0 < p(t)− c0t− ω 6 Kec0σt for t 6 0. (4.7)

Now we are ready to construct a supersolution of (1.1). It follows from Lemma 2.5 that c > ĉ.

Lemma 4.1. Assume that (J1)–(J2) and (FI) hold. Let ϕ(x+ ct) and ϕ̂(x+ ĉt) be the traveling wave

solutions of (1.1) satisfying (1.2), (1.4) and (4.1), respectively. Furthermore, set c̄ = c+ĉ
2 and c0 = c−ĉ

2 .

Then for the solution p(t) of (4.5) with N > N∗ (it will be given later) and σ := min{µ1, µ̂1}, the function

ū(x, t) = ϕ(x+ c̄t+ p(t)) + ϕ̂(x+ c̄t− p(t))

is a supersolution of (1.1) on t ∈ (−∞, 0].

Proof. Define

L(u)(x, t) := ut(x, t)− (J ∗ u− u)(x, t)− f(u(x, t)).

The remaining work is to verify L(ū)(x, t) > 0 for (x, t) ∈ R × (−∞, 0]. For simplification, we write

ϕ(x+ c̄t+ p(t)) and ϕ̂(x+ c̄t− p(t)) as ϕ and ϕ̂, respectively. Direct calculations show that

L(ū) = (c̄+ p′)ϕ′ + (c̄− p′)ϕ̂′ − (J ∗ ϕ− ϕ)− (J ∗ ϕ̂− ϕ̂)− f(ϕ+ ϕ̂)

= (c̄+ p′ − c)ϕ′ + (c̄− p′ − ĉ)ϕ̂′ − [f(ϕ+ ϕ̂)− f(ϕ)− f(ϕ̂)]

= (ϕ′ − ϕ̂′)[Neσp − F (x, t)], (4.8)

where

F (x, t) =
f(ϕ+ ϕ̂)− f(ϕ)− f(ϕ̂)

ϕ′ − ϕ̂′
.
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Next, we study it by dividing R into three regions.

(i) p(t) 6 x + c̄t 6 −p(t). Then x + c̄t + p(t) 6 0 and x + c̄t − p(t) > 0 for t 6 0. Recalling that

ϕ, ϕ̂ ∈ [0, 1], f(0) = 0 and f ∈ C2(R), one has

f(ϕ+ ϕ̂)− f(ϕ)− f(ϕ̂) =

∫ 1

0

f ′(ϕ+ sϕ̂)ϕ̂ds−
∫ 1

0

f ′(sϕ̂)ϕ̂ds 6 Lϕϕ̂,

with L := maxs∈[0,2] f
′′(s). From Theorem 3.1 and (4.1), for 0 6 x+ c̄t 6 −p(t), we obtain

F (x, t) 6 Lϕϕ̂

ϕ′ − ϕ̂′
6 Lϕ̂

ϕ′/ϕ
6 LÂ1e

−µ̂1(x+c̄t−p(t))

k
6 LÂ1

k
eµ̂1p(t). (4.9)

Similarly, for p(t) 6 x+ c̄t 6 0, we get

F (x, t) 6 Lϕ

−ϕ̂′/ϕ̂
6 LA1e

µ1(x+c̄t+p(t))

k̂
6 LA1

k̂
eµ1p(t). (4.10)

(ii) −∞ < x+ c̄t 6 p(t). Combining (4.2) and (4.4) with x+ c̄t− p(t) 6 0 for t 6 0, one has

f(ϕ+ ϕ̂)− f(ϕ)− f(ϕ̂) =

∫ 1

0

f ′(ϕ̂+ sϕ)ϕds−
∫ 1

0

f ′(sϕ)ϕds

6 ϕ

∫ 1

0

|f ′(0)− f ′(sϕ)|ds 6 Lϕ2.

Then

F (x, t) 6 Lϕ2

ϕ′ − ϕ̂′
6 Lϕ

ϕ′/ϕ
6 LA1e

µ1(x+c̄t+p(t))

k
6 LA1

k
eµ1p(t). (4.11)

(iii) −p(t) 6 x+ c̄t 6 +∞. Similarly, from (4.2), (4.3) and x+ c̄t+ p(t) > 0, we have f(ϕ+ ϕ̂)− f(ϕ)

− f(ϕ̂) 6 Lϕ̂2 and

F (x, t) 6 Lϕ̂2

ϕ′ − ϕ̂′
6 Lϕ̂

−ϕ̂′/ϕ̂
6 LÂ1e

−µ̂1(x+c̄t−p(t))

k̂
6 LÂ1

k̂
eµ̂1p(t). (4.12)

Now by taking

N > N∗ := max

{
LÂ1

k
,
LA1

k̂
,
LA1

k
,
LÂ1

k̂

}
, σ := min{µ1, µ̂1}

and combining (4.9)–(4.12) with (4.8), we conclude that

L(ū) = (ϕ′ − ϕ̂′)(Neσp − F (x, t)) > 0.

The proof is complete.

Proof of Theorem 1.2. For any n ∈ N, consider the following Cauchy problem:
∂un
∂t

(x, t) = (J ∗ un)(x, t)− un(x, t) + f(un(x, t)), (x, t) ∈ R× (−n,+∞),

un(x,−n) := u(x,−n) = max{ϕ(x− cn+ ω), ϕ̂(x− ĉn− ω)}, x ∈ R.
(4.13)

Lemma 2.2 shows that (4.13) has a unique classical solution un(x, t) satisfying

u(x, t) = max{ϕ(x+ ct+ ω), ϕ̂(x+ ĉt− ω)} 6 un(x, t) 6 1 (4.14)

for any (x, t) ∈ R× [−n,+∞) and n ∈ N. Furthermore,

un(x,−n) = max{ϕ(x− cn+ ω), ϕ̂(x− ĉn− ω)} 6 ϕ(x− c̄n+ p(−n)) + ϕ̂(x− c̄n− p(−n))
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for any x ∈ R. Then it follows from Lemmas 2.2 and 4.1 that un(x, t) 6 ū(x, t) for any n ∈ N and

(x, t) ∈ R × [−n, 0]. Moreover, |ϕ′| 6 2+M
|c| and |ϕ̂′| 6 2+M

|ĉ| with M := maxu∈[0,1] f(u). Then according

to Lemma 2.3 and Arzela-Ascoli theorem, there exists a function u(x, t) and a subsequence {uni(x, t)}
of {un(x, t)} such that uni(x, t) and

∂
∂tuni(x, t) converge uniformly in any compact set S ⊂ R2 to u(x, t)

and ∂
∂tu(x, t) as i→ +∞, respectively. From the equation satisfied by uni(x, t), it is clear that u(x, t) is

an entire solution of (1.1) and satisfies

u(x, t) 6 u(x, t) 6 ū(x, t) for (x, t) ∈ R× (−∞, 0],

u(x, t) 6 u(x, t) 6 1 for (x, t) ∈ R2.

Moreover, by using Theorem 3.1 and (4.7), for x > −c̄t and t 6 0, one has

u(x, t)− ϕ(x+ ct+ ω) 6 ϕ(x+ c̄t+ p(t)) + ϕ̂(x+ c̄t− p(t))− ϕ(x+ ct+ ω)

6 sup
ξ∈R

|ϕ′(ξ)|(p(t)− c0t− ω) + Â1e
−µ̂1(x+c̄t−p(t))

6 K sup
ξ∈R

|ϕ′(ξ)|ec0σt + Â1e
µ̂1p(t).

Similarly, for x 6 −c̄t and t 6 0, one has

u(x, t)− ϕ̂(x+ ĉt− ω) 6 K sup
ξ̂∈R

|ϕ̂′(ξ̂)|ec0σt +A1e
µ1p(t).

Then (4.7) implies (1.5) of Theorem 1.2. (1.6) can be proved directly by Lemma 2.3.

Next, we prove the entire solution u(x, t) is increasing with respect to ω. Note that the traveling wave ϕ

is nondecreasing and ϕ̂ is nonincreasing. It follows that the functions un(x,−n) are nondecreasing in ω

for any n ∈ N, when the other parameters are fixed. Then un(x, t), even u(x, t) is nondecreasing in ω.

Furthermore, they are increasing in ω from the strong maximum principle established in [2].

The above entire solution established is only for the case θ = ω with ω defined by (4.6). For more

general θ ∈ R, we define ũ(x, t) = u(x+ x0, t+ t0) with

x0 =
(c+ ĉ)(ω − θ)

c− ĉ
, t0 =

2(θ − ω)

c− ĉ
.

Denote ũ(x, t) by u(x, t). Then u(x, t) is the entire solution we desired. The rest of the proof is straight-

forward and mainly depends on the properties of the subsolution u(x, t) defined in (4.14), so we omit the

details. The proof is complete.

5 Discussion

In this paper, we have obtained a new entire solution of the nonlocal dispersal equation (1.1) with

asymmetric kernel function and ignition nonlinearity, but we only consider the interactions of the traveling

wave solutions with non-zero speeds. However, from the discussion of Section 2, we know that there are

special dispersal kernel functions and nonlinearities, which can make c = 0 or ĉ = 0. Therefore, it is

natural to ask if there exist some new entire solutions when at least one of c and ĉ is equal to zero. We

guess that there might exist some entire solutions that come from the interactions of two steady state

waves or one traveling wave with non-zero speed and one steady state wave, while it seems very different

and difficult to mathematically prove this, and we leave it as a further investigation.
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