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Abstract Let p ∈ (0, 1], q ∈ (0,∞] and A be a general expansive matrix on Rn. We introduce the anisotropic

Hardy-Lorentz space Hp,q
A (Rn) associated with A via the non-tangential grand maximal function and then es-

tablish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the

radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characteriza-

tions except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.

As applications, we first prove that Hp,q
A (Rn) is an intermediate space between Hp1,q1

A (Rn) and Hp2,q2
A (Rn)

with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈ (0,∞], and also between Hp,q1
A (Rn) and Hp,q2

A (Rn) with p ∈ (0,∞)

and 0 < q1 < q < q2 � ∞ in the real method of interpolation. We then establish a criterion on the boundedness

of sublinear operators from Hp,q
A (Rn) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type

Calderón-Zygmund operators from Hp
A(Rn) to the weak Lebesgue space Lp,∞(Rn) (or to Hp,∞

A (Rn)) in the

critical case, from Hp,q
A (Rn) to Lp,q(Rn) (or to Hp,q

A (Rn)) with δ ∈ (0,
lnλ−
ln b

], p ∈ ( 1
1+δ

, 1] and q ∈ (0,∞], as

well as the boundedness of some Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,∞(Rn), where b := | detA|,

λ− := min{|λ| : λ ∈ σ(A)} and σ(A) denotes the set of all eigenvalues of A.
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1 Introduction

The study of Lorentz spaces originated from Lorentz [50, 51] in the early 1950’s. As a generalization of

Lp(Rn), Lorentz spaces are known to be the intermediate spaces of Lebesgue spaces in the real interpo-

lation method; see [14,46,61]. For a systematic treatment of Lorentz spaces as well as their dual spaces,

we refer the reader to Hunt [38], Cwikel [21] and Cwikel and Fefferman [22, 23]; see also [7, 8, 35, 65, 70].

It is well known that, due to their fine structures, Lorentz spaces play an irreplaceable role in the study

on various critical or endpoint analysis problems from many different research fields and there exist a lot

of literatures on this subject, here we only mention several recent papers from harmonic analysis (see,

for example, [56, 59, 67, 73]) and partial differential equations (see, for example, [39, 54, 62]).

On the other hand, the theory of Hardy spaces has been well developed and these spaces play an

important role in many branches of analysis and partial differential equations; see, for example, [18, 30,
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32, 36, 49, 57, 58, 68, 69, 71]. It is well known that Hardy spaces are good substitutes of Lebesgue spaces

when p ∈ (0, 1], particularly, for the study on the boundedness of maximal functions and singular integral

operators. Moreover, for the study on the boundedness of operators, the weak Hardy space H1,∞(Rn) is
also a good substitute of L1,∞(Rn). Recall that the weak Hardy spacesHp,∞(Rn) with p ∈ (0, 1) were first

introduced by Fefferman et al. [29] in 1974, which naturally appear as the intermediate spaces of Hardy

spaces Hp(Rn) with p ∈ (0, 1] via the real interpolation. Later on, to find out the biggest space from

which the Hilbert transform is bounded to the weak Lebesgue space L1,∞(Rn), Fefferman and Soria [31]

introduced the weak Hardy space H1,∞(Rn), in which they also obtained the ∞-atomic decomposition

of H1,∞(Rn) and the boundedness of some Calderón-Zygmund operators from H1,∞(Rn) to L1,∞(Rn).
In 1994, Álvarez [3] considered the Calderón-Zygmund theory related to Hp,∞(Rn) with p ∈ (0, 1], while

Liu [47] studied the weak Hardy spaces Hp,∞(Rn) with p ∈ (0, 1] on homogeneous groups. Nowadays,

it is well known that the weak Hardy spaces Hp,∞(Rn), with p ∈ (0, 1], play a key role when studying

the boundedness of operators in the critical case; see, for example, [3, 4, 25–27, 34, 77]. Moreover, it is

known that the weak Hardy spaces Hp,∞(Rn) are special cases of the Hardy-Lorentz spaces Hp,q(Rn)
which, when p = 1 and q ∈ (1,∞), were introduced and investigated by Parilov [60]. In 2007, Abu-

Shammala and Torchinsky [1] studied the Hardy-Lorentz spaces Hp,q(Rn) for the full range p ∈ (0, 1] and

q ∈ (0,∞], and obtained their ∞-atomic characterization, real interpolation properties over parameter q,

and the boundedness of singular integrals and some other operators on these spaces. In 2010, Almeida

and Caetano [2] studied the generalized Hardy spaces which include the classical Hardy-Lorentz spaces

Hp,q(Rn) investigated in [1] as special cases. To be more precise, Almeida and Caetano [2] obtained

some maximal characterizations of these generalized Hardy spaces and some real interpolation results

with function parameters and, as applications, they studied the behavior of some classical operators in

this generalized setting.

As the series of works (see, for example, [1–3, 29, 31, 47, 60]) reveal, the Hardy-Lorentz spaces (as

well the weak Hardy spaces) serve as a more subtle research object than the usual Hardy spaces when

considering the boundedness of singular integrals, especially, in some endpoint cases, due to the fact

that these function spaces own finer structures. However, the real-variable theory of these spaces is

still not complete. For example, the r-atomic, with r ∈ (1,∞), or the molecular characterizations, the

characterizations in terms of the radial or the non-tangential maximal functions, and the finite atomic

characterizations of Hardy-Lorentz spaces are still unknown.

On the other hand, from 1970’s, there has been an increasing interesting in extending classical func-

tion spaces arising in harmonic analysis from Euclidean spaces to anisotropic settings and some other

domains; see, for example, [16,17,32,33,45,66,72,74,75]. The study of function spaces on Rn associated

with anisotropic dilations was originally started from these celebrated articles [15–17] of Calderón and

Torchinsky on anisotropic Hardy spaces. Since then, the theory of anisotropic function spaces was well

developed by many authors; see, for example, [32, 69, 74]. In 2003, Bownik [9] introduced and investi-

gated the anisotropic Hardy spaces associated with general expansive dilations, which were extended to

the weighted setting in [13]. For further developments of function spaces on the anisotropic Euclidean

spaces, we refer the reader to [11–13,24, 41–43,76].

To give a complete theory of Hardy-Lorentz spaces and also to establish this theory in a more general

anisotropic setting, in this paper, we systematically develop a theory of Hardy-Lorentz spaces associated

with anisotropic dilations A. To be precise, in this paper, for all p ∈ (0, 1] and q ∈ (0,∞], we introduce

the anisotropic Hardy-Lorentz spaces Hp,q
A (Rn) associated with a general expansive matrix A via the

non-tangential grand maximal function. Then we characterize Hp,q
A (Rn) in terms of the atomic and the

molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic

decompositions. All these results except the ∞-atomic characterization are new even for the classical

isotropic Hardy-Lorentz spaces on Rn. As applications, we first prove that the space Hp,q
A (Rn) is an

intermediate space between Hp1,q1
A (Rn) and Hp2,q2

A (Rn) with 0 < p1 < p < p2 <∞ and q1, q, q2 ∈ (0,∞],

and also between Hp,q1
A (Rn) and Hp,q2

A (Rn) with p ∈ (0,∞) and 0 < q1 < q < q2 � ∞ in the real method

of interpolation. We then establish a criterion on the boundedness of sublinear operators from Hp,q
A (Rn)

into a quasi-Banach space. Moreover, we obtain the boundedness of δ-type Calderón-Zygmund operators
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from Hp
A(R

n) to the weak Lebesgue space Lp,∞(Rn) (or to Hp,∞
A (Rn)) in the critical case, from Hp,q

A (Rn)
to Lp,q(Rn) (or to Hp,q

A (Rn)) with δ ∈ (0, lnλ−
ln b ], p ∈ ( 1

1+δ , 1] and q ∈ (0,∞], as well as the boundedness

of some Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,∞(Rn).

To be precise, this paper is organized as follows.

In Section 2, we first present some basic notions and notation appearing in this paper, including Lorentz

spaces and their properties and also some known facts on expansive matrixes in [9]. Then we introduce

the anisotropic Hardy-Lorentz spaces Hp,q
A (Rn), with p ∈ (0, 1] and q ∈ (0,∞], via the non-tangential

grand maximal function (see Definition 2.5 below). These anisotropic Hardy-Lorentz spaces include the

classical Hardy spaces of Fefferman and Stein [30], the classical Hardy-Lorentz spaces of Abu-Shammala

and Torchinsky [1], the anisotropic Hardy spaces of Bownik [9] and the anisotropic weak Hardy spaces of

Ding and Lan [24] as special cases. Some basic properties of Hp,q
A (Rn) are also obtained in this section

(see Propositions 2.7 and 2.8 below).

Section 3 is devoted to the atomic and the molecular characterizations of Hp,q
A (Rn). These char-

acterizations of Hp,q
A (Rn) are obtained by using the Calderón-Zygmund decomposition associated with

non-tangential grand maximal functions on anisotropic Rn from [9, p. 9, Lemma 2.7], as well as a crite-

rion for affirming some functions being in Lorentz spaces Lp,q(Rn) from [1, Lemma 1.2]. Recall that, for

the classical Hardy-Lorentz spaces Hp,q(Rn), only their ∞-atomic characterizations are known (see [1]).

Thus, the r-atomic characterizations of Hp,q
A (Rn), with r ∈ (1,∞), presented in Theorem 3.6 below are

new even for the classical Hardy-Lorentz spaces. We also point out that the molecular characterizations

in Theorem 3.9 below are new even when p = q for the anisotropic Hardy spaces Hp
A(R

n) with p ∈ (0, 1].

Moreover, the approach used to prove the r-atomic characterization in this paper is much more compli-

cated than that used to prove the ∞-atomic characterization in [1]. Indeed, in the proof of the ∞-atomic

characterization, an L∞(Rn) estimate of an infinite combination of ∞-atoms can be easily obtained by

the size condition and the finite overlapping property of ∞-atoms (see [1, p. 291]), but this approach

fails for the corresponding Lr(Rn) estimate with r ∈ (1,∞). To overcome this difficulty, we employ a

distributional estimate (see (3.23) below) instead of the Lr(Rn) estimate in this paper, which relies on

some subtle applications of the boundedness of the grand maximal function on Lr(Rn) and the finite

overlapping property of r-atoms.

In Section 4, we characterizeHp,q
A (Rn) by means of the radial and the non-tangential maximal functions

(see Theorem 4.9 below). To this end, via the Aoki-Rolewicz theorem (see [6, 63]), we first prove that

the Lp,q(Rn) quasi-norm of the tangential maximal function T
N(K,L)
ϕ (f) can be controlled by that of the

non-tangential maximal function M
(K,L)
ϕ (f) for all f ∈ S ′(Rn) (see Lemma 4.6 below), where K is the

truncation level, L is the decay level and S ′(Rn) denotes the set of all tempered distributions on Rn. Then
we obtain the boundedness of the maximal function MF(f) on Lp,q(Rn) with p ∈ (1,∞) and q ∈ (0,∞]

(see Lemma 4.7 below), whereMF(f) is defined as in (2.17) below. As a consequence of Lemma 4.7, both

the non-tangential grand maximal function and the Hardy-Littlewood maximal function given by (2.20)

are also bounded on Lp,q(Rn) (see Remark 4.8 below). We point out that Lemmas 4.6 and 4.7, Remark 4.8

and the monotone property of the non-increasing rearrangement (see [35, Proposition 1.4.5(8)]) play a

key role in proving Theorem 4.9.

In Section 5, we obtain the finite atomic decomposition characterizations of Hp,q
A (Rn). In what follows,

C∞
c (Rn) denotes the space of all smooth functions with compact supports. For any admissible anisotropic

triplet (p, r, s), via proving that Hp,q
A (Rn) ∩ Lr(Rn), with r ∈ [1,∞], and Hp,q

A (Rn) ∩ C∞
c (Rn) are dense

in Hp,q
A (Rn) (see Lemma 5.2 below), we establish the finite atomic decomposition characterizations of

Hp,q
A (Rn) (see Theorem 5.7 below). This extends [53, Theorem 3.1 and Remark 3.3] and [37, Theorem 5.6]

to the present setting of anisotropic Hardy-Lorentz spaces.

Section 6 is devoted to the interpolation of Hp,q
A (Rn) and the boundedness of Calderón-Zygmund op-

erators. As an application, in Subsection 6.1, we show that Hp,q
A (Rn) is an intermediate space between

Hp1,q1
A (Rn) and Hp2,q2

A (Rn) with 0 < p1 < p < p2 <∞ and q1, q, q2 ∈ (0,∞], and also between Hp,q1
A (Rn)

and Hp,q2
A (Rn) with p ∈ (0,∞) and 0 < q1 < q < q2 � ∞ in the sense of real interpolation (see Theo-

rem 6.1 below), whose isotropic version includes [1, Theorem 2.5] as a special case (see Remark 6.7(ii)

below). In Subsection 6.2, by using the atomic characterization of Hp
A(R

n), we first obtain the bound-
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edness of δ-type Calderón-Zygmund operators from Hp
A(R

n) to the weak Lebesgue space Lp,∞(Rn) (or

to Hp,∞
A (Rn)) in the critical case (see Theorem 6.8 below). In this case, even for the classical isotropic

setting, δ-type Calderón-Zygmund operators are not bounded from Hp(Rn) to itself. Moreover, for all

p ∈ (0, 1] and q ∈ (p,∞], employing the atomic characterizations of Hp,q
A (Rn), we also obtain the bound-

edness of some Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,∞(Rn) (see Theorem 6.11 below). In

addition, as an application of the finite atomic decomposition characterizations for Hp,q
A (Rn) (see Theo-

rem 5.7 below) obtained in Section 5, we establish a criterion on the boundedness of sublinear operators

from Hp,q
A (Rn) into a quasi-Banach space (see Theorem 6.13 below), which is of independent interest;

by this criterion, we further conclude that, if T is a sublinear operator and maps all (p, r, s)-atoms with

r ∈ (1,∞) (or all continuous (p,∞, s)-atoms) into uniformly bounded elements of some quasi-Banach

space B, then T has a unique bounded sublinear extension from Hp,q
A (Rn) into B (see Corollary 6.14

below). This extends the corresponding results of Meda et al. [53], Yang and Zhou [79] and Grafakos et

al. [37] to the present setting. Finally, via the criterion established in Theorem 6.13, we also obtain the

boundedness of δ-type Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,q(Rn) (or to Hp,q

A (Rn)) with

δ ∈ (0, lnλ−
ln b ], p ∈ ( 1

1+δ , 1] and q ∈ (0,∞] (see Theorem 6.16 below).

We point out that we also obtain the Littlewood-Paley characterizations of anisotropic Hardy-Lorentz

spaces Hp,q
A (Rn), respectively, in terms of the Lusin-area functions, the Littlewood-Paley g-functions or

the g∗λ-functions; to restrict the length of this article, we present these characterizations in [48]. More

applications of these anisotropic Hardy-Lorentz spaces Hp,q
A (Rn) are expectable.

Finally, we make some conventions on notation. Throughout this paper, we always let N := {1, 2, . . .}
and Z+ := {0}∪N. We denote by C a positive constant which is independent of the main parameters, but

its value may change from line to line. Constants with subscripts, such as C1, are the same in different

occurrences. We also use C(α,β,...) to denote a positive constant depending on the indicated parameters α,

β, . . . For any multi-index β := (β1, . . . , βn) ∈ Zn+, let |β| := β1 + · · ·+ βn and ∂β := ( ∂
∂x1

)β1 · · · ( ∂
∂xn

)βn .

We use f � g to denote f � Cg and, if f � g � f , then we write f ∼ g. For every index r ∈ [1,∞], we

use r′ to denote its conjugate index, i.e., 1/r+1/r′ = 1. Moreover, for any set F ⊂ Rn, we denote by χF
its characteristic function, by F � the set Rn \ F , and by �F the cardinality of F . The symbol �s	, for
any s ∈ R, denotes the biggest integer less than or equal to s.

2 Anisotropic Hardy-Lorentz spaces

In this section, we introduce the anisotropic Hardy-Lorentz spaces via grand maximal functions and give

out some basic properties of these spaces.

First we recall the definition of Lorentz spaces. Let p ∈ (0,∞) and q ∈ (0,∞]. The Lorentz

space Lp,q(Rn) is defined to be the space of all measurable functions f with finite Lp,q(Rn) quasi-norm
‖f‖Lp,q(Rn) given by

‖f‖Lp,q(Rn) :=

⎧⎪⎪⎨⎪⎪⎩
[
q

p

∫ ∞

0

{t 1
p f∗(t)}q dt

t

] 1
q

, when q ∈ (0,∞),

sup
t∈(0,∞)

[t
1
p f∗(t)], when q = ∞,

where f∗ denotes the non-increasing rearrangement of f , namely,

f∗(t) := {α ∈ (0,∞) : df (α) � t}, t ∈ (0,∞).

Here and hereafter, for any α ∈ (0,∞), df (α) := |{x ∈ Rn : |f(x)| > α}|. It is well known that, if

q ∈ (0,∞), then

‖f‖Lp,q(Rn) ∼
{∫ ∞

0

αq−1[df (α)]
q
p dα

} 1
q

∼
{∑
k∈Z

[2k{df (2k)}
1
p ]q

} 1
q

(2.1)
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and

‖f‖Lp,∞(Rn) ∼ sup
α∈(0,∞)

{α[df (α)]
1
p } ∼ sup

k∈Z

{2k[df (2k)]
1
p }, (2.2)

where the implicit equivalent positive constants are independent of f ; see [35]. By [35, Remark 1.4.7],

for all p, r ∈ (0,∞), q ∈ (0,∞] and all measurable functions g, we have

‖|g|r‖Lp,q(Rn) = ‖g‖rLpr,qr(Rn). (2.3)

Now let us recall the notion of expansive matrixes (see, for example, [9]).

Definition 2.1. An expansive matrix (for short, a dilation) is an n × n real matrix A such that all

eigenvalues λ of A satisfy |λ| > 1.

Throughout this paper, we always let A be a fixed dilation and b := | detA|. By [9, p. 6, (2.7)], we

know that b ∈ (1,∞). Let λ− and λ+ be positive numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} � max{|λ| : λ ∈ σ(A)} < λ+,

where σ(A) denotes the set of all eigenvalues of A. Then there exists a positive constant C, independent

of x and j, such that, for all x ∈ Rn, when j ∈ Z+,

C−1(λ−)j |x| � |Ajx| � C(λ+)
j |x| (2.4)

and, when j ∈ Z \ Z+,

C−1(λ+)
j |x| � |Ajx| � C(λ−)j |x|. (2.5)

In the case when A is diagonalizable over C, we can even take

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we need to choose them sufficiently close to these equalities according to what we need in our

arguments.

It was proved in [9, p. 5, Lemma 2.2] that, for a given dilation A, there exist an open ellipsoid Δ and

r ∈ (1,∞) such that Δ ⊂ rΔ ⊂ AΔ, and one can additionally assume that |Δ| = 1, where |Δ| denotes
the n-dimensional Lebesgue measure of the set Δ. Let Bk := AkΔ for all k ∈ Z. An ellipsoid x+Bk for

some x ∈ Rn and k ∈ Z is called a dilated ball. Let B be the set of all such dilated balls, namely,

B := {x+Bk : x ∈ Rn, k ∈ Z}. (2.6)

Then Bk is open, Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk. Throughout this paper, let τ be the minimal integer

such that rτ � 2. Then, for all k ∈ Z, it holds true that

Bk +Bk ⊂ Bk+τ , (2.7)

Bk + (Bk+τ )
� ⊂ (Bk)

�, (2.8)

where E + F denotes the algebraic sum {x+ y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn.

Define the step homogeneous quasi-norm ρ on Rn associated to A and Δ as

ρ(x) :=

{
bj , when x ∈ Bj+1\Bj,
0, when x = �0n, here and hereafter, �0n = (0, . . . , 0) ∈ Rn.

(2.9)

Obviously, for all k ∈ Z, Bk = {x ∈ Rn : ρ(x) < bk}. By (2.7) and (2.8), we know that, for all x, y ∈ Rn,

max{1, ρ(x+ y)} � bτ (max{1, ρ(x)})(max{1, ρ(y)}) (2.10)

and, for all j ∈ Z+ and x ∈ Rn, max{1, ρ(Ajx)} � bj max{1, ρ(x)}; see [9, p. 8]. Moreover, (Rn, ρ, dx) is
a space of homogeneous type in the sense of Coifman and Weiss [19, 20], here and hereafter, dx denotes

the n-dimensional Lebesgue measure.

Recall that the homogeneous quasi-norm induced by A was introduced in [9, p. 6, Definition 2.3] as

follows.
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Definition 2.2. A homogeneous quasi-norm associated with a dilation A is a measurable mapping

ρ : Rn → [0,∞] satisfying that

(i) ρ(x) = 0 ⇔ x = �0n;

(ii) ρ(Ax) = bρ(x) for all x ∈ Rn;
(iii) there exists a positive constant H ∈ [1,∞) such that, for all x, y ∈ Rn,

ρ(x+ y) � H [ρ(x) + ρ(y)].

In the standard dyadic case A := 2In×n, ρ(x) := |x|n for all x ∈ Rn is an example of the homogeneous

quasi-norm associated with A, here and hereafter, In×n denotes the n×n unit matrix and |·| the Euclidean
norm in Rn. It was proved in [9, p. 6, Lemma 2.4] that all homogeneous quasi-norms associated with A

are equivalent. Therefore, in what follows, we always use the step homogeneous quasi-norm induced by

the given dilation A for convenience.

A C∞(Rn) function ϕ is said to belong to the Schwartz class S(Rn) if, for every integer � ∈ Z+ and

multi-index α,

‖ϕ‖α,	 := sup
x∈Rn

[ρ(x)]	|∂αϕ(x)| <∞.

The dual space of S(Rn), namely, the space of all tempered distributions on Rn equipped with the weak-∗
topology, is denoted by S′(Rn). For any N ∈ Z+, define SN (Rn) as

SN (Rn) := {ϕ ∈ S(Rn) : ‖ϕ‖α,	 � 1, |α| � N, � � N},

equivalently,

ϕ ∈ SN (Rn) ⇔ ‖ϕ‖SN(Rn) := sup
|α|�N

sup
x∈Rn

[|∂αϕ(x)|max{1, [ρ(x)]N}] � 1. (2.11)

In what follows, for ϕ ∈ S(Rn), k ∈ Z and x ∈ Rn, let ϕk(x) := b−kϕ(A−kx).

Definition 2.3. Let ϕ ∈ S(Rn) and f ∈ S ′(Rn). The non-tangential maximal function Mϕ(f) of f

with respect to ϕ is defined as

Mϕ(f)(x) := sup
y∈x+Bk,k∈Z

|f ∗ ϕk(y)|, ∀x ∈ Rn. (2.12)

The radial maximal function M0
ϕ(f) of f with respect to ϕ is defined as

M0
ϕ(f)(x) := sup

k∈Z

|f ∗ ϕk(x)|, ∀x ∈ Rn. (2.13)

For N ∈ N, the non-tangential grand maximal function MN (f) of f ∈ S ′(Rn) is defined as

MN (f)(x) := sup
ϕ∈SN(Rn)

Mϕ(f)(x), ∀x ∈ Rn (2.14)

and the radial grand maximal function M0
N(f) of f ∈ S ′(Rn) is defined as

M0
N(f)(x) := sup

ϕ∈SN (Rn)

M0
ϕ(f)(x), ∀x ∈ Rn.

The following proposition is just [9, p. 17, Proposition 3.10].

Proposition 2.4. For every given N ∈ N, there exists a positive constant C(N), depending only on N ,

such that, for all f ∈ S ′(Rn) and x ∈ Rn,

M0
N(f)(x) �MN (f)(x) � C(N)M

0
N(f)(x).

We now introduce the notion of anisotropic Hardy-Lorentz spaces.
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Definition 2.5. Suppose p ∈ (0,∞), q ∈ (0,∞] and

N(p) :=

⎧⎨⎩
⌊(

1

p
− 1

)
ln b

lnλ−

⌋
+ 2, when p ∈ (0, 1],

2, when p ∈ (1,∞).

For every N ∈ N ∩ [N(p),∞), the anisotropic Hardy-Lorentz space Hp,q
A (Rn) is defined by

Hp,q
A (Rn) := {f ∈ S ′(Rn) : MN(f) ∈ Lp,q(Rn)}

and, for any f ∈ Hp,q
A (Rn), let ‖f‖Hp,q

A (Rn) := ‖MN(f)‖Lp,q(Rn).

Remark 2.6. Even though the quasi-norm of Hp,q
A (Rn) in Definition 2.5 depends on N , it follows from

Theorem 3.6 below that the spaceHp,q
A (Rn) is independent of the choice ofN as long as N ∈ N∩[N(p),∞).

Obviously, when p = q, Hp,q
A (Rn) becomes the anisotropic Hardy space Hp

A(R
n) introduced by

Bownik [9] and, when q = ∞, Hp,q
A (Rn) is the anisotropic weak Hardy space Hp,∞

A (Rn) investigated

by Ding and Lan [24].

Now let us give some basic properties of Hp,q
A (Rn).

Proposition 2.7. Let p ∈ (0,∞), q ∈ (0,∞] and N ∈ N ∩ [N(p),∞). Then Hp,q
A (Rn) ⊂ S ′(Rn) and

the inclusion is continuous.

Proof. Let f ∈ Hp,q
A (Rn). Then, for any ϕ ∈ S(Rn) and x ∈ B0, we have

β := |〈f, ϕ〉| = |f ∗ ϕ̃(�0n)| �Mϕ̃(f)(x), (2.15)

where ϕ̃(·) := ϕ(−·) and Mϕ̃ is as in (2.12) with ϕ replaced by ϕ̃. Notice that, for q ∈ (0,∞], by the

definitions of Mϕ̃ and MN ,

‖Mϕ̃(f)‖Lp,q(Rn) � ‖ϕ̃‖SN(Rn)‖MN(f)‖Lp,q(Rn) = ‖ϕ̃‖SN (Rn)‖f‖Hp,q
A (Rn).

Thus, to show Proposition 2.7, it suffices to prove that β � ‖Mϕ̃(f)‖Lp,q(Rn).

To this end, by (2.15) and (2.1), for q ∈ (0,∞), we have

β �
{ ∑
k∈Z, k<log2 β

2kq
} 1

q

∼
{ ∑
k∈Z, k<log2 β

2kq|{x ∈ B0 : βχB0(x) > 2k}|
q
p

} 1
q

�
{∑
k∈Z

2kq|{x ∈ B0 : Mϕ̃(f)(x) > 2k}|
q
p

} 1
q

� ‖Mϕ̃(f)‖Lp,q(Rn). (2.16)

Similar to (2.16), we also conclude that

β � ‖Mϕ̃(f)‖Lp,∞(Rn).

This finishes the proof of Proposition 2.7.

Proposition 2.8. For all p ∈ (0,∞), q ∈ (0,∞] and N ∈ N ∩ [N(p),∞), Hp,q
A (Rn) is complete.

Proof. To prove that Hp,q
A (Rn) is complete, it suffices to show that, for any sequence {fk}k∈N ⊂

Hp,q
A (Rn) such that ‖fk‖Hp,q

A (Rn) � 2−k for k ∈ N, the series {
∑m
k=1 fk}m∈N converges in Hp,q

A (Rn). Since
{
∑m
k=1 fk}m∈N is a Cauchy sequence in Hp,q

A (Rn), from Proposition 2.7, it follows that {
∑m
k=1 fk}m∈N

is also a Cauchy sequence in S ′(Rn) which, together with the completeness of S ′(Rn), implies that there

exists some f ∈ S ′(Rn) such that
∑m

k=1 fk converges to f in S ′(Rn) asm→ ∞. Thus, for any ϕ ∈ S(Rn),
the series

∑m
k=1 fk ∗ ϕ(x) converges pointwise to f ∗ ϕ(x) for all x ∈ Rn as m → ∞. Therefore, for all

x ∈ Rn, we have

MN(f)(x) �
∑
k∈N

MN (fk)(x).
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By this and the Aoki-Rolewicz theorem (see [6, 63]), we know that there exists υ ∈ (0, 1] such that

‖MN(f)‖υLp,q(Rn) �
∥∥∥∥∑
k∈N

MN(fk)

∥∥∥∥υ
Lp,q(Rn)

�
∑
k∈N

‖MN(fk)‖υLp,q(Rn).

From this, it follows that, for all m ∈ N,∥∥∥∥f −
m∑
k=1

fk

∥∥∥∥
Hp,q

A (Rn)

=

∥∥∥∥ ∞∑
k=m+1

fk

∥∥∥∥
Hp,q

A (Rn)

=

∥∥∥∥MN

( ∞∑
k=m+1

fk

)∥∥∥∥
Lp,q(Rn)

�
[ ∞∑
k=m+1

‖MN(fk)‖υLp,q(Rn)

] 1
υ

�
( ∞∑
k=m+1

2−kυ
) 1

υ

∼ 2−m → 0 as m→ ∞.

Thus,
∑m

k=1 fk → f in Hp,q
A (Rn) as m→ ∞. This finishes the proof of Proposition 2.8.

The following Proposition 2.9 is just [9, p. 13, Theorem 3.6].

Proposition 2.9. For any given s ∈ (1,∞), let

F := {ϕ ∈ L∞(Rn) : |ϕ(x)| � [1 + ρ(x)]−s, ∀x ∈ Rn}.

For p ∈ [1,∞] and f ∈ Lp(Rn), the maximal function associated with F , MF (f), is defined by setting

MF(f)(x) := sup
ϕ∈F

Mϕ(f)(x), ∀x ∈ Rn. (2.17)

Then there exists a positive constant C(s), depending on s, such that, for all λ ∈ (0,∞) and f ∈ L1(Rn),

|{x ∈ Rn :MF(f)(x) > λ}| � C(s)‖f‖L1(Rn)/λ (2.18)

and, for all p ∈ (1,∞] and f ∈ Lp(Rn),

‖MF(f)‖Lp(Rn) �
C(s)

1− 1/p
‖f‖Lp(Rn). (2.19)

Remark 2.10. Clearly, by Proposition 2.9, we know that the non-tangential grand maximal function

MN (f), defined in (2.14), and the Hardy-Littlewood maximal function MHL(f), defined by setting, for

all f ∈ L1
loc(R

n) and x ∈ Rn,

MHL(f)(x) := sup
k∈Z

sup
y∈x+Bk

1

|Bk|

∫
y+Bk

|f(z)| dz = sup
x∈B∈B

1

|B|

∫
B

|f(z)| dz, (2.20)

where B is as in (2.6), satisfy (2.18) and (2.19).

3 Atomic and molecular characterizations of Hp,q
A (Rn)

In this section, we establish the atomic and the molecular characterizations of Hp,q
A (Rn).

3.1 Atomic characterizations of Hp,q
A (Rn)

In this subsection, by using the Calderón-Zygmund decomposition associated with the non-tangential

grand maximal function on anisotropic Rn established in [9], we obtain the atomic characterizations of

Hp,q
A (Rn).
We begin with the following notion of anisotropic (p, r, s)-atoms from [9, p. 19, Definition 4.1].
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Definition 3.1. An anisotropic triplet (p, r, s) is said to be admissible if p ∈ (0, 1], r ∈ (1,∞] and s ∈ N
with s � �(1/p − 1) ln b/ lnλ−	. For an admissible anisotropic triplet (p, r, s), a measurable function a

on Rn is called an anisotropic (p, r, s)-atom if

(i) supp a ⊂ B, where B ∈ B and B is as in (2.6);

(ii) ‖a‖Lr(Rn) � |B|1/r−1/p;

(iii)
∫
Rn a(x)x

α dx = 0 for any α ∈ Zn+ with |α| � s.

Throughout this paper, an anisotropic (p, r, s)-atom is simply called a (p, r, s)-atom. Now, via (p, r, s)-

atoms, we give the definition of the anisotropic atomic Hardy-Lorentz space Hp,r,s,q
A (Rn) as follows.

Definition 3.2. For an anisotropic triplet (p, r, s) as in Definition 3.1, q ∈ (0,∞] and a dilation A, the

anisotropic atomic Hardy-Lorentz space Hp,r,s,q
A (Rn) is defined to be the set of all distributions f ∈ S ′(Rn)

satisfying that there exist a sequence of (p, r, s)-atoms, {aki }i∈N, k∈Z, supported on {xki +Bki }i∈N, k∈Z ⊂ B,

respectively, and a positive constant C̃ such that∑
i∈N

χxk
i +B

k
i
(x) � C̃

for all x ∈ Rn and k ∈ Z, and
f =

∑
k∈Z

∑
i∈N

λki a
k
i in S ′(Rn),

where λki ∼ 2k|Bki |1/p for all k ∈ Z and i ∈ N with the implicit equivalent positive constants independent

of k and i.

Moreover, for all f ∈ Hp,r,s,q
A (Rn), define

‖f‖Hp,r,s,q
A (Rn) := inf

{[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

: f =
∑
k∈Z

∑
i∈N

λki a
k
i

}
with the usual interpretation for q = ∞, where the infimum is taken over all decompositions of f as

above.

In order to establish the atomic decomposition of Hp,q
A (Rn), we need the following several technical

lemmas, which are [9, p. 9, Lemma 2.7; p. 19, Theorem 4.2] and [1, Lemma 1.2], respectively.

Lemma 3.3. Suppose that Ω ⊂ Rn is open and |Ω| < ∞. For any d ∈ Z+, there exist a sequence of

points, {xj}j∈N ⊂ Ω, and a sequence of integers, {�j}j∈N ⊂ Z, such that

(i) Ω =
⋃
j∈N

(xj +B	j );

(ii) {xj +B	j−τ}j∈N are pairwise disjoint, where τ is as in (2.7) and (2.8);

(iii) for every j ∈ N, (xj +B	j+d) ∩Ω� = ∅, but (xj +B	j+d+1) ∩ Ω� �= ∅;
(iv) if (xi +B	i+d−2τ ) ∩ (xj +B	j+d−2τ ) �= ∅, then |�i − �j| � τ ;

(v) for all i ∈ N, �{j ∈ N : (xi +B	i+d−2τ )∩ (xj +B	j+d−2τ ) �= ∅} � L, where L is a positive constant

independent of Ω, f and i.

Lemma 3.4. Let (p, r, s) be an admissible anisotropic triplet as in Definition 3.1 and N ∈ N∩[N(p),∞).

Then there exists a positive constant C, depending only on p and r, such that, for all (p, r, s)-atoms a,

‖MN (a)‖Lp(Rn) � C.

Lemma 3.5. Suppose that p ∈ (0,∞), q ∈ (0,∞], {μk}k∈Z is a non-negative sequence of complex

numbers such that {2kμk}k∈Z ∈ �q and ϕ is a non-negative function having the following property: There

exists δ ∈ (0,min{1, q/p}) such that, for any k0 ∈ N, ϕ � ψk0 + ηk0 , where ψk0 and ηk0 are functions,

depending on k0 and satisfying

2k0p[dψk0
(2k0)]δ � C̃

k0−1∑
k=−∞

[2k(μk)
δ]p and 2k0δpdηk0 (2

k0) � C̃

∞∑
k=k0

[2kδμk]
p
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for some positive constant C̃ independent of k0. Then ϕ ∈ Lp,q(Rn) and

‖ϕ‖Lp,q(Rn) � C‖{2kμk}k∈Z‖	q ,

where C is a positive constant independent of ϕ and {μk}k∈Z.

Now, it is a position to state the main result of this subsection.

Theorem 3.6. Let (p, r, s) be an admissible anisotropic triplet as in Definition 3.1, q ∈ (0,∞] and

N ∈ N ∩ [N(p),∞). Then Hp,q
A (Rn) = Hp,r,s,q

A (Rn) with equivalent quasi-norms.

Proof. First, we show that

Hp,q
A (Rn) ⊂ Hp,r,s,q

A (Rn). (3.1)

Observe that, by Definition 3.1, for any r ∈ (1,∞), a (p,∞, s)-atom is also a (p, r, s)-atom and hence

Hp,∞,s,q
A (Rn) ⊂ Hp,r,s,q

A (Rn). Thus, to prove (3.1), we only need to show that

Hp,q
A (Rn) ⊂ Hp,∞,s,q

A (Rn). (3.2)

Now we prove (3.2) by three steps.

Step 1. To show (3.2), for any f ∈ Hp,q
A (Rn), ϕ ∈ S(Rn) with

∫
Rn ϕ(x) dx = 1, and m ∈ N, let

f (m) := f ∗ ϕ−m. Then, by [9, p. 15, Lemma 3.8], we have f (m) → f in S ′(Rn) as m → ∞. Moreover,

by [9, p. 39, Lemma 6.6], we know that, for all m ∈ N and x ∈ Rn,

MN+2(f
(m))(x) � C(N,ϕ)MN (f)(x), (3.3)

where C(N,ϕ) is a positive constant depending on N and ϕ, but independent of f . Therefore, f (m) ∈
Hp,q
A (Rn) and ‖f (m)‖Hp,q

A (Rn) � ‖f‖Hp,q
A (Rn) with the implicit positive constant independent of m and f .

In what follows of this step, we show that, for any m ∈ N,

f (m) =
∑
k∈Z

∑
i∈N

hm,ki in S ′(Rn), (3.4)

where, for all m, i ∈ N and k ∈ Z, hm,ki is a (p,∞, s)-atom multiplied by a constant depending on k and i

but, independent of f and m.

To show (3.4), we borrow some ideas from the proof of [9, p. 38, Theorem 6.4]. For k ∈ Z and

N ∈ N ∩ [N(p),∞), let

Ωk := {x ∈ Rn :MN(f)(x) > 2k}.

Then Ωk is open. Applying Lemma 3.3 to Ωk with d = 6τ , we obtain a sequence {xki }i∈N ⊂ Ωk and a

sequence of integers, {�ki }i∈N, satisfying, with τ and L same as in Lemma 3.3,

Ωk =
⋃
i∈N

(xki +B	ki ), (3.5)

(xki +B	ki −τ ) ∩ (xkj +B	kj−τ ) = ∅ for all i, j ∈ N with i �= j, (3.6)

(xki +B	ki +6τ ) ∩ Ω�
k = ∅, (xki +B	ki +6τ+1) ∩ Ω�

k �= ∅ for all i ∈ N,

if (xki +B	ki +4τ ) ∩ (xkj +B	kj+4τ ) �= ∅, then |�ki − �kj | � τ,

�{j ∈ N : (xki +B	ki +4τ ) ∩ (xkj +B	kj+4τ ) �= ∅} � L for all i ∈ N. (3.7)

Fix θ ∈ S(Rn) such that supp θ ⊂ Bτ , 0 � θ � 1, and θ ≡ 1 on B0. For each i ∈ N, k ∈ Z and all

x ∈ Rn, define θki (x) := θ(A−	ki (x− xki )) and

ζki (x) :=
θki (x)

Σj∈Nθkj (x)
.
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Then ζki ∈ S(Rn), supp ζki ⊂ xki +B	ki +τ , 0 � ζki � 1, ζki ≡ 1 on xki +B	ki −τ by (3.6), and
∑

i∈N
ζki = χΩk

.

Therefore, the family {ζki }i∈N forms a smooth partition of unity on Ωk.

For � ∈ Z+, let P	(Rn) denote the linear space of all polynomials on Rn with degree not more than �.

For each i and P ∈ P	(Rn), define

‖P‖i,k :=

[
1∫

Rn ζ
k
i (x)dx

∫
Rn

|P (x)|2ζki (x)dx
]1/2

, (3.8)

which induces a finite dimensional Hilbert space (P	(Rn), ‖ · ‖i,k). For each i, via

Q �→ 1∫
Rn ζki (x)dx

〈f (m), Qζki 〉, Q ∈ P	(Rn),

the function f (m) induces a linear bounded functional on P	(Rn). By the Riesz lemma, there exists a

unique polynomial Pm,ki ∈ P	(Rn) such that, for all Q ∈ P	(Rn),

1∫
Rn ζ

k
i (x)dx

〈f (m), Qζki 〉 =
1∫

Rn ζ
k
i (x)dx

〈Pm,ki , Qζki 〉 =
1∫

Rn ζ
k
i (x)dx

∫
Rn

Pm,ki (x)Q(x)ζki (x)dx.

For every i ∈ N, k ∈ Z and m ∈ N, define a distribution

bm,ki := [f (m) − Pm,ki ]ζki .

From the fact that, for all k ∈ Z and x ∈ Rn,
∑
i∈N

χxk
i +B�k

i
+4τ

(x) � L and supp bm,ki ⊂ xki +B	ki +4τ , it

follows that {
∑I

i=1 b
m,k
i }I∈N converges in S ′(Rn). Let

gm,k := f (m) −
∑
i∈N

bm,ki = f (m) −
∑
i∈N

[f (m) − Pm,ki ]ζki = f (m)χΩ�
k
+
∑
i∈N

Pm,ki ζki .

Notice that, for any k ∈ Z and x ∈ Rn, the number i satisfying ζki (x) �= 0 is less than L, where L is the

same as in (3.7). Therefore, by a proof similar to that of [9, p. 25, Lemma 5.3], we easily conclude that,

for all x ∈ Rn, ∣∣∣∣∑
i∈N

Pm,ki (x)ζki (x)

∣∣∣∣ � 2k,

where the implicit positive constant is independent of k. Clearly, by (3.3), for all x ∈ Rn, we have

|f (m)(x)χΩ�
k
(x)| �MN(f)(x)χΩ�

k
(x) � 2k,

where the implicit positive constants are independent of k. Thus, ‖gm,k‖L∞(Rn) � 2k and ‖gm,k‖L∞(Rn)

→ 0 as k → −∞.

Following the proof of [9, p. 31, Lemma 5.7], we conclude that, for any k ∈ Z and p0 ∈ (0, p) satisfying

�(1/p0 − 1) ln b/ lnλ−	 � s,∫
Rn

[
MN

(∑
i∈N

bm,ki

)
(x)

]p0
dx �

∫
Ω̃k

[MN(f
(m))(x)]p0 dx, (3.9)

where

Ω̃k := {x ∈ Rn :MN (f (m))(x) > 2k}.

Since f (m) ∈ Hp,q
A (Rn), it follows that there exists an integer k0 such that, for any k ∈ [k0,∞) ∩ Z,

|Ω̃k| <∞. Noticing that, for all α ∈ (0,∞),

|Ω̃k ∩ {x ∈ Rn :MN (f (m))(x) > α}| � min{|Ω̃k|, α−p‖MN (f (m))‖pLp,∞(Rn)},

we have ∫
Ω̃k

[MN (f (m))(x)]p0 dx =

∫ ∞

0

p0α
p0−1|{x ∈ Ω̃k : MN(f

(m))(x) > α}| dα
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�
∫ γ

0

p0|Ω̃k|αp0−1 dα+

∫ ∞

γ

p0α
p0−p−1‖MN(f

(m))‖pLp,∞(Rn) dα

=
p

p− p0
|Ω̃k|1−p0/p‖MN(f

(m))‖p0Lp,∞(Rn)

� |Ω̃k|1−p0/p‖MN(f
(m))‖p0Lp,q(Rn), (3.10)

where

γ := ‖MN(f
(m))‖Lp,∞(Rn)|Ω̃k|−1/p.

By (3.9) and (3.10), we find that∥∥∥∥∑
i∈N

bm,ki

∥∥∥∥
H

p0
A (Rn)

:=

∥∥∥∥MN

(∑
i∈N

bm,ki

)∥∥∥∥
Lp0(Rn)

� |Ω̃k|
1
p0

− 1
p ‖MN(f

(m))‖Lp,q(Rn) → 0 as k → ∞,

where the implicit positive constant is independent of k and Hp0
A (Rn) denotes the anisotropic Hardy

space introduced by Bownik [9]. From the above estimates, we further deduce that∥∥∥∥f (m) −
N∑

k=−N
(gm,k+1 − gm,k)

∥∥∥∥
H

p0
A (Rn)+L∞(Rn)

�
∥∥∥∥∑
i∈N

bm,N+1
i

∥∥∥∥
H

p0
A (Rn)

+ ‖gm,−N‖L∞(Rn) → 0

as N → ∞. Here, the implicit positive constant is independent of N and, for any f ∈ Hp0
A (Rn)

+ L∞(Rn), let

‖f‖Hp0
A (Rn)+L∞(Rn) := inf{‖f1‖Hp0

A (Rn) + ‖f2‖L∞(Rn) : f = f1 + f2, f1 ∈ Hp0
A (Rn), f2 ∈ L∞(Rn)},

where the infimum is taken over all decompositions of f as above. Therefore,

f (m) =

∞∑
k=−∞

(gm,k+1 − gm,k) in S ′(Rn). (3.11)

Moreover, for i ∈ N, k ∈ Z and j ∈ N, define a polynomial Pm,k+1
i,j as the orthogonal projection of

[f (m) − Pm,k+1
j ]ζki on P	(Rn) with respect to the norm defined by (3.8), namely, Pm,k+1

i,j is the unique

element of P	(Rn) satisfying that, for all Q ∈ P	(Rn),∫
Rn

[f (m)(x)− Pm,k+1
j (x)]ζki (x)Q(x)ζk+1

j (x) dx =

∫
Rn

Pm,k+1
i,j (x)Q(x)ζk+1

j (x) dx.

By an argument parallel to the proof of [9, p. 37, Lemma 6.3], we find that∑
j∈N

∑
i∈N

Pm,k+1
j,i ζk+1

i = 0.

Then, for any k ∈ Z, by the facts that
∑
j∈N

ζkj = χΩk
,

∑
i∈N

bm,k+1
i = f (m)χΩk+1

−
∑
i∈N

Pm,k+1
i ζk+1

i , supp

(∑
i∈N

Pm,k+1
i ζk+1

i

)
⊂ Ωk+1

and Ωk+1 ⊂ Ωk, we have

gm,k+1 − gm,k =

[
f (m) −

∑
i∈N

bm,k+1
i

]
−
[
f (m) −

∑
j∈N

bm,kj

]
=

∑
j∈N

bm,kj −
∑
j∈N

∑
i∈N

bm,k+1
i ζkj +

∑
j∈N

∑
i∈N

Pm,k+1
j,i ζk+1

i

=
∑
i∈N

[
bm,ki −

∑
j∈N

(bm,k+1
j ζki − Pm,k+1

i,j ζk+1
j )

]
=:

∑
i∈N

hm,ki , (3.12)



Liu J et al. Sci China Math September 2016 Vol. 59 No. 9 1681

where all the series converge in S ′(Rn). Furthermore, for all i ∈ N and k ∈ Z,

hm,ki = [f (m) − Pm,ki ]ζki −
∑
j∈N

{[f (m) − Pm,k+1
j ]ζki − Pm,k+1

i,j }ζk+1
j .

By the definitions of Pm,ki and Pm,k+1
i,j , we know that∫

Rn

hm,ki (x)Q(x) dx = 0 for all Q ∈ P	(Rn). (3.13)

In addition, recall that Pm,k+1
i,j �= 0 implies

(xk+1
j +B	k+1

j +τ ) ∩ (xki +B	ki +τ ) �= ∅.

Then, by a proof similar to that of [9, p. 35, Lemma 6.1(i)], we find that

supp ζk+1
j ⊂ (xk+1

j +B	k+1
j +τ ) ⊂ (xki +B	ki +4τ ).

Therefore,

supphm,ki ⊂ (xki +B	ki +4τ ). (3.14)

Since
∑
j∈N

ζk+1
j = χΩk+1

, it follows that

hm,ki = ζki f
(m)χΩ�

k+1
− Pm,ki ζki + ζki

∑
j∈N

Pm,k+1
j ζk+1

j +
∑
j∈N

Pm,k+1
i,j ζk+1

j . (3.15)

By a proof similar to that of [9, p. 35, Lemma 6.1(ii); p. 36, Lemma 6.2], we find that, for all j ∈ N,

�{i ∈ N : (xk+1
j +B	k+1

j +τ ) ∩ (xki +B	ki +τ ) �= ∅} � 1

and, for all i, j, m ∈ N and k ∈ Z,

sup
x∈Rn

|Pm,k+1
i,j (x)ζk+1

j (x)| � 2k+1,

which, combined with supx∈Rn |Pm,ki (x)ζki (x)| � 2k, ‖f (m)χΩ�
k+1

‖L∞(Rn) � 2k and (3.15), further implies

that, for all i, m ∈ N and k ∈ Z,

‖hm,ki ‖L∞(Rn) � 2k. (3.16)

By (3.13), (3.14) and (3.16), we know that, for all k ∈ Z and m, i ∈ N, hm,ki is a multiple of a

(p,∞, s)-atom, which, together with (3.11) and (3.12), implies that (3.4) holds true.

Step 2. By (3.16) and the Alaoglu theorem (see, for example, [64, Theorem 3.17]), there exists a

subsequence {mι}∞ι=1 ⊂ N such that, for every i ∈ N and k ∈ Z, hmι,k
i → hki weak-∗ in L∞(Rn) as

ι→ ∞. It is easy to see that supphki ⊂ (xki +B	ki +4τ ), ‖hki ‖L∞(Rn) � 2k and
∫
Rn h

k
i (x)Q(x)dx = 0 for all

Q ∈ P	(Rn). Thus, hki is a multiple of a (p,∞, s)-atom aki . Let hki := λki a
k
i , where λ

k
i ∼ 2k|B	ki +4τ |1/p.

Then, by (3.7), (3.5) and (2.1), for q ∈ (0,∞), we have

∞∑
k=−∞

(∑
i∈N

|λki |p
) q

p

∼
∞∑

k=−∞

(∑
i∈N

2kp|B	ki +4τ |
) q

p

∼
∞∑

k=−∞
2kq|Ωk|

q
p ∼ ‖MN(f)‖qLp,q(Rn) ∼ ‖f‖q

Hp,q
A (Rn)

. (3.17)

Similar to (3.17), we conclude that supk∈Z(
∑

i∈N
|λki |p)1/p � ‖f‖Hp,∞

A (Rn).
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Step 3. By Step 2, we easily know that, to prove (3.2), it suffices to show that f =
∑

k∈Z

∑
i∈N

hki
in S ′(Rn).

To show this, for all k ∈ Z, let
fk :=

∑
i∈N

hki .

Then f
(mι)
k → fk in S ′(Rn) as ι→ ∞, where, for all m ∈ N and k ∈ Z, f (m)

k := gm,k+1−gm,k. Indeed, by
the finite intersection property of {xki +B	ki +4τ}i∈N for each k ∈ Z (see (3.7)), and the support conditions

of hki and hm,ki , we know that, for any φ ∈ S(Rn),

〈f (mι)
k , φ〉 =

〈∑
i∈N

hmι,k
i , φ

〉
=

∑
i∈N

〈hmι,k
i , φ〉 →

∑
i∈N

〈hki , φ〉 =
〈∑
i∈N

hki , φ

〉
= 〈fk, φ〉 as ι→ ∞.

We next show that, for all m ∈ N,∑
|k|�K1

f
(m)
k → 0 in S′(Rn) as K1 → ∞. (3.18)

To show (3.18), we consider two cases.

For p ∈ (0, 1), it suffices to show that, for all m ∈ N,

lim
K2→−∞

∥∥∥∥ ∑
k�K2

f
(m)
k

∥∥∥∥
H1

A(Rn)

= 0 and lim
K3→∞

∥∥∥∥ ∑
k�K3

f
(m)
k

∥∥∥∥
H

p0
A (Rn)

= 0, (3.19)

where p0 ∈ (0, p) satisfies that �(1/p0 − 1) ln b/ lnλ−	 � s. Indeed, by (3.13), (3.14) and (3.16), we find

that (2k|B	ki +4τ |)−1hm,ki is a (1,∞, s)-atom multiplied by a constant. Therefore, by Lemma 3.4, (3.7),

(3.5) and (2.2), we have∥∥∥∥ ∑
k�K2

f
(m)
k

∥∥∥∥
H1

A(Rn)

�
∑
k�K2

∑
i∈N

‖hm,ki ‖H1
A(Rn) �

∑
k�K2

∑
i∈N

2k|B	ki +4τ |

�
∑
k�K2

2k|Ωk| �
∑
k�K2

2k(1−p)‖f‖p
Hp,∞

A (Rn)
�

∑
k�K2

2k(1−p)‖f‖p
Hp,q

A (Rn)
,

which converges to 0 as K2 → −∞. Similarly, (2k|B	ki +4τ |1/p0)−1hm,ki is a (p0,∞, s)-atom multiplied by

a constant. Since �(1/p0 − 1) ln b/ lnλ−	 � s, by Lemma 3.4, (3.7), (3.5) and (2.2) again, we find that∥∥∥∥ ∑
k�K3

f
(m)
k

∥∥∥∥p0
H

p0
A (Rn)

�
∑
k�K3

∑
i∈N

‖hm,ki ‖p0
H

p0
A (Rn)

�
∑
k�K3

∑
i∈N

2kp0 |B	ki +4τ | �
∑
k�K3

2kp0 |Ωk|

�
∑
k�K3

2k(p0−p)‖f‖p
Hp,∞

A (Rn)
�

∑
k�K3

2k(p0−p)‖f‖p
Hp,q

A (Rn)
,

which converges to 0 as K3 → ∞. These prove (3.19) and hence (3.18).

For p = 1, we replace H1
A(R

n) by L2(Rn). Notice that∥∥∥∥ ∑
k�K2

f
(m)
k

∥∥∥∥
L2(Rn)

�
∑
k�K2

∥∥∥∥∑
i∈N

hm,ki

∥∥∥∥
L2(Rn)

�
∑
k�K2

2k
∣∣∣∣ ⋃
i∈N

(xki +B	ki +4τ )

∣∣∣∣1/2
�

∑
k�K2

2k|Ωk|1/2 �
∑
k�K2

2k/2‖f‖1/2
H1,∞

A (Rn)
�

∑
k�K2

2k/2‖f‖1/2
H1,q

A (Rn)
,

which converges to 0 as K3 → ∞. This implies that (3.18) also holds true in this case.

An argument similar to that used in the proof of (3.18) also shows that
∑

|k|�K1
fk → 0 in S′(Rn) as

K1 → ∞. From this and (3.18), it follows that, for any φ ∈ S(Rn) and ε ∈ (0,∞), there exists some

K̃1 ∈ N, independent of mι, such that∣∣∣∣〈 ∑
|k|�K̃1

f
(mι)
k , φ

〉∣∣∣∣ < ε

3
and

∣∣∣∣〈 ∑
|k|�K̃1

fk, φ

〉∣∣∣∣ < ε

3
. (3.20)
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Fixing this K̃1, by the fact that f
(mι)
k → fk in S ′(Rn) as ι→ ∞ for all k ∈ Z, we know that there exists

an integer ι̃ such that, if ι > ι̃, then, for all integers k with |k| � K̃1, we have

|〈f (mι)
k − fk, φ〉| <

ε

6K̃1 + 3
,

which, combined with (3.20), implies that, if ι > ι̃,∣∣∣∣〈∑
k∈Z

f
(mι)
k , φ

〉
−
〈∑
k∈Z

fk, φ

〉∣∣∣∣ � ∣∣∣∣〈 ∑
|k|�K̃1

f
(mι)
k , φ

〉∣∣∣∣+ ∣∣∣∣〈 ∑
|k|�K̃1

fk, φ

〉∣∣∣∣+ ∣∣∣∣ ∑
|k|�K̃1

〈f (mι)
k − fk, φ〉

∣∣∣∣
<
ε

3
+
ε

3
+
ε

3
= ε.

Thus, limι→∞〈
∑

k∈Z
f
(mι)
k , φ〉 = 〈

∑
k∈Z

fk, φ〉, which, together with the fact that f (m) → f in S ′(Rn) as
m→ ∞, further implies that

〈f, φ〉 = lim
ι→∞〈f (mι), φ〉 = lim

ι→∞

〈∑
k∈Z

f
(mι)
k , φ

〉
=

〈∑
k∈Z

fk, φ

〉
.

This shows

f =
∑
k∈Z

fk =
∑
k∈Z

∑
i∈N

hki in S ′(Rn),

which completes the proof of (3.2) and hence the proof of the statement that Hp,q
A (Rn) ⊂ Hp,r,s,q

A (Rn).
We now prove Hp,r,s,q

A (Rn) ⊂ Hp,q
A (Rn). To this end, for any f ∈ Hp,r,s,q

A (Rn), by Definition 3.2, we

know that there exists a sequence of (p, r, s)-atoms, {aki }i∈N, k∈Z, supported on {xki + Bki }i∈N, k∈Z ⊂ B,

respectively, such that f =
∑

k∈Z

∑
i∈N

λki a
k
i in S ′(Rn), where λki ∼ 2k|Bki |1/p for all k ∈ Z and i ∈ N,∑

i∈N
χxk

i +B
k
i
(x) � 1 for all k ∈ Z and x ∈ Rn, and

‖f‖Hp,r,s,q
A (Rn) ∼

[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

. (3.21)

Clearly, there exists a sequence, {�ki }i∈N, k∈Z, of integers such that xki +B	ki = xki +B
k
i for i ∈ N and k ∈ Z.

It suffices to only consider the case when N = N(p) := �( 1p − 1) ln b
lnλ− 	+2. Let μk := (

∑
i∈N

|B	ki |)
1/p and

β :=

(
ln b

lnλ−
+N − 1

)
lnλ−
ln b

>
1

p
.

Then, for r ∈ (1,∞], there exists δ ∈ (1/r, 1) such that 1
β < δp < 1. Notice that, for any fixed k0 ∈ Z

and all x ∈ Rn,

MN (f)(x) �MN

( k0−1∑
k=−∞

∑
i∈N

λki a
k
i

)
(x) +

∞∑
k=k0

∑
i∈N

|λki |MN (aki )(x) =: ψk0(x) + ηk0(x).

To prove Hp,r,s,q
A (Rn) ⊂ Hp,q

A (Rn), we now consider two cases: q/p ∈ [1,∞] and q/p ∈ (0, 1).

Case 1. q/p ∈ [1,∞]. In this case, to show the desired conclusion, we claim that

2k0p[dψk0
(2k0)]δ �

k0−1∑
k=−∞

[2kμδk]
p and 2k0δpdηk0 (2

k0) �
∞∑

k=k0

[2kδμk]
p. (3.22)

Assume that (3.22) holds true for the time being. Notice that δ ∈ (0, q/p). Then, by Lemma 3.5, the

fact that |B	ki | ∼
|λk

i |p
2kp and (3.21), we have

‖f‖Hp,q
A (Rn) = ‖MN(f)‖Lp,q(Rn) � ‖{2kμk}k∈Z‖	q �

[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

∼ ‖f‖Hp,r,s,q
A (Rn)



1684 Liu J et al. Sci China Math September 2016 Vol. 59 No. 9

with the usual interpretation for q = ∞, which implies that ‖f‖Hp,q
A (Rn) � ‖f‖Hp,r,s,q

A (Rn) and hence

Hp,r,s,q
A (Rn) ⊂ Hp,q

A (Rn).
Now, let us give the proof of the claim (3.22). To this end, we first estimate ψk0 . Notice that aki is a

(p, r, s)-atom, supp aki ⊂ (xki +B	ki ),
∑

i∈N
χxk

i +B�k
i

� 1 and λki ∼ 2k|B	ki |
1/p. For r ∈ (1,∞), by Hölder’s

inequality, we find that, for σ := 1− p
rδ > 0 and all x ∈ Rn,

ψk0(x) �
k0−1∑
k=−∞

MN

(∑
i∈N

λki a
k
i

)
(x)

�
( k0−1∑
k=−∞

2kσr
′
)1/r′{ k0−1∑

k=−∞
2−kσr

[
MN

(∑
i∈N

λki a
k
i

)
(x)

]r}1/r

= C̃2k0σ
{ k0−1∑
k=−∞

2−kσr
[
MN

(∑
i∈N

λki a
k
i

)
(x)

]r}1/r

,

where C̃ := ( 1
2σr′−1

)1/r
′
, which, combined with Proposition 2.9, Remark 2.10 and the finite intersection

property of {xki +B	ki }i∈N for each k ∈ Z, further implies that

2k0p[dψk0
(2k0)]δ = 2k0p|{x ∈ Rn : ψk0(x) > 2k0}|δ

� 2k0p
∣∣∣∣{x ∈ Rn : C̃r

k0−1∑
k=−∞

2−kσr
[
MN

(∑
i∈N

λki a
k
i

)
(x)

]r
> 2k0r(1−σ)

}∣∣∣∣δ

= 2k0p
{∫

{x∈Rn:C̃r
∑k0−1

k=−∞ 2−kσr [MN (
∑

i∈N
λk
i a

k
i )(x)]

r>2k0r(1−σ)}
dx

}δ

� C̃rδ2k0p2−k0rδ(1−σ)
{∫

Rn

k0−1∑
k=−∞

2−kσr
[
MN

(∑
i∈N

λki a
k
i

)
(x)

]r
dx

}δ

�
[ k0−1∑
k=−∞

2−kσr
∫
Rn

∣∣∣∣∑
i∈N

λki a
k
i (x)

∣∣∣∣r dx]δ

�
[ k0−1∑
k=−∞

2−kσr
∑
i∈N

|λki |r
∫
xk
i +B�k

i

|aki (x)|r dx
]δ

�
[ k0−1∑
k=−∞

2−kσr
∑
i∈N

2kr|B	ki |
r
p |B	ki |

( 1
r− 1

p )r

]δ

�
k0−1∑
k=−∞

2kp
(∑
i∈N

|B	ki |
)δ

∼
k0−1∑
k=−∞

[2kμδk]
p, (3.23)

which is the desired estimate of ψk0 for r ∈ (1,∞) in (3.22).

For r = ∞, by Proposition 2.9, Remark 2.10 and the finite intersection property of {xki +B	ki }i∈N for

each k ∈ Z again, we have

2k0p[dψk0
(2k0)]δ = 2k0p|{x ∈ Rn : ψk0(x) > 2k0}|δ

� 2k0(p−δr̃)
{ k0−1∑
k=−∞

∫
Rn

[
MN

(∑
i∈N

λki a
k
i

)
(x)

]r̃
dx

}δ

� 2k0(p−δr̃)
{ k0−1∑
k=−∞

∑
i∈N

∫
xk
i +B�k

i

|λki aki (x)|r̃ dx
}δ

�
k0−1∑
k=−∞

2kp
(∑
i∈N

|B	ki |
)δ

∼
k0−1∑
k=−∞

[2kμδk]
p, (3.24)
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where r̃ ∈ (1,∞) such that δr̃ > p, which, together with (3.23), implies the desired estimate of ψk0
in (3.22).

In order to estimate ηk0 , it suffices to prove that, for all i ∈ N and k ∈ Z,∫
Rn

[MN (aki )(x)]
δpdx � |B	ki |

1−δ (3.25)

with the implicit positive constant independent of i and k. Indeed, by (3.25), we have

2k0δpdηk0 (2
k0) = 2k0δp

∣∣∣∣{x ∈ Rn :

[ ∞∑
k=k0

∑
i∈N

|λki |MN (aki )(x)

]δp
> 2k0δp

}∣∣∣∣
�

∫
Rn

[ ∞∑
k=k0

∑
i∈N

|λki |MN (aki )(x)

]δp
dx �

∞∑
k=k0

∑
i∈N

|λki |δp
∫
Rn

[MN (aki )(x)]
δp dx

�
∞∑

k=k0

∑
i∈N

|λki |δp|B	ki |
1−δ �

∞∑
k=k0

2kδp
∑
i∈N

|B	ki | ∼
∞∑

k=k0

[2kδμk]
p, (3.26)

which is the desired estimate of ηk0 in (3.22).

To show (3.25), we write∫
Rn

[MN(a
k
i )(x)]

δp dx =

∫
xk
i +B�k

i
+τ

[MN(a
k
i )(x)]

δp dx+

∫
(xk

i +B�k
i
+τ

)�
· · · =: I1 + I2.

For r ∈ (1,∞], by Hölder’s inequality, Proposition 2.9 and Remark 2.10, we find that

I1 =

∫
xk
i +B�k

i
+τ

[MN (aki )(x)]
δp dx

�
{∫

xk
i +B�k

i
+τ

[MN (aki )(x)]
r dx

} δp
r

|B	ki +τ |
1− δp

r � ‖aki ‖
δp
Lr(Rn)|B	ki +τ |

1− δp
r

� |B	ki +τ |
δp( 1

r− 1
p )|B	ki +τ |

1− δp
r ∼ |B	ki +τ |

1−δ ∼ |B	ki |
1−δ,

where the implicit positive constants are independent of i and k.

To estimate I2, it suffices to show that, for all i ∈ N, k ∈ Z and x ∈ (xki +B	ki +τ )
�,

M0
N (aki )(x) � |B	ki |

− 1
p

|B	ki |
β

[ρ(x− xki )]
β

(3.27)

with the implicit positive constant independent of i and k, whereM0
N(f) denotes the radial grand maximal

function of f as in Definition 2.3, β := ( ln b
lnλ− +N − 1) lnλ−

ln b and ρ denotes the homogeneous quasi-norm

associated with the dilation A in Definition 2.2. Indeed, assuming that (3.27) holds true for the time

being, noticing that βδp > 1, then, by Proposition 2.4 and (3.27), we have

I2 �
∫
(xk

i +B�k
i
+τ

)�
[M0

N (aki )(x)]
δp dx �

∫
ρ(x−xk

i )�|B
�k
i
+τ

|
|B	ki |

−δ |B	ki |
βδp

[ρ(x − xki )]
βδp

dx

∼
∞∑
j=0

∫
2j |B

�k
i
+τ

|�ρ(x−xk
i )<2j+1|B

�k
i
+τ

|
|B	ki |

−δ |B	ki |
βδp

[ρ(x− xki )]
βδp

dx

∼
∞∑
j=0

∫
ρ(x−xk

i )∼2j |B
�k
i
+τ

|
|B	ki |

−δ |B	ki |
βδp

(2j |B	ki +τ |)
βδp

dx

∼ |B	ki |
−δ|B	ki +τ |

∞∑
j=0

2j2−jβδp ∼ |B	ki |
1−δ (3.28)
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with the implicit positive constants independent of i and k, which completes the proof of (3.25).

Thus, to obtain the desired conclusion of Case 1, we still need to prove (3.27). To this end, take

x ∈ (xki +B	ki +τ )
�, ϕ ∈ SN (Rn) and t ∈ Z. Suppose that P is a polynomial with degree not more than s,

which will be determined later. Then, for all i ∈ N and k ∈ Z, by Hölder’s inequality, we have

|(aki ∗ ϕt)(x)| = b−t
∣∣∣∣ ∫

Rn

aki (y)ϕ(A
−t(x− y)) dy

∣∣∣∣
= b−t

∣∣∣∣ ∫
xk
i +B�k

i

aki (y)[ϕ(A
−t(x− y))− P (A−t(x− y))] dy

∣∣∣∣
� b−t‖aki ‖Lr(Rn)

[ ∫
xk
i +B�k

i

|ϕ(A−t(x − y))− P (A−t(x− y))|r′ dy
]1/r′

� b−t|B	ki |
1/r−1/pbt/r

′
{∫

A−t(x−xk
i )+B�k

i
−t

|ϕ(y)− P (y)|r′ dy
}1/r′

� b−t|B	ki |
1/r−1/pbt/r

′
b−t/r

′ |B	ki |
1/r′ sup

y∈A−t(x−xk
i )+B�k

i
−t

|ϕ(y) − P (y)|

= |B	ki |
−1/pb	

k
i −t sup

y∈A−t(x−xk
i )+B�k

i
−t

|ϕ(y)− P (y)|. (3.29)

Suppose that x ∈ [xki + (B	ki +τ+m+1 \B	ki +τ+m)] for some integer m ∈ Z+. Then, by (2.8), we obtain

A−t(x− xki ) +B	ki −t ⊂ A−t(B	ki +τ+m+1 \B	ki +τ+m) +B	ki −t

= A	
k
i −t([Bτ+m+1 \Bτ+m] + B0) ⊂ A	

k
i −t(Bm)�. (3.30)

If �ki � t, we choose P ≡ 0. Then, by (3.30), we know that

sup
y∈A−t(x−xk

i )+B�k
i
−t

|ϕ(y)| � sup
y∈A−t(x−xk

i )+B�k
i
−t

min{1, ρ(y)−N} � b−N(	ki −t+m). (3.31)

If �ki < t, then we let P be the Taylor expansion of ϕ at the point A−t(x− xki ) of order s. By the Taylor

remainder theorem, (2.5) and (3.30), we have

sup
y∈A−t(x−xk

i )+B�k
i
−t

|ϕ(y)− P (y)| � sup
z∈B

�k
i
−t

sup
|α|=s+1

|∂αϕ(A−t(x − xki ) + z)||z|s+1

� λ
(s+1)(	ki −t)− sup

y∈A−t(x−xk
i )+B�k

i
−t

min{1, ρ(y)−N}

� λ
(s+1)(	ki −t)− min{1, b−N(	ki−t+m)}. (3.32)

Combining (3.29), (3.31) and (3.32), for all x ∈ [xki + (B	ki +τ+m+1 \B	ki +τ+m)] with m ∈ Z+, we further

conclude that

M0
N (aki )(x) = sup

ϕ∈SN(Rn)

sup
t∈Z

|(aki ∗ ϕt)(x)|

� |B	ki |
−1/pmax

{
sup

t∈Z, t�	ki
b	

k
i −tb−N(	ki −t+m),

sup
t∈Z, t>	ki

b	
k
i −tλ(s+1)(	ki −t)− min{1, b−N(	ki−t+m)}

}
.

Notice that the supremum over t � �ki has the largest value when t = �ki . Without loss of generality, we

may assume that s := �( 1p − 1) ln b
lnλ− 	. Since N = s+2 implies bλs+1

− � bN and the above supremum over

t > �ki is attained when �ki − t+m = 0, it follows that

M0
N (aki )(x) � |B	ki |

−1/pmax{b−Nm, (bλs+1
− )−m} � |B	ki |

−1/p(bλs+1
− )−m
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∼ |B	ki |
−1/pb−mb−(s+1)m

ln λ−
ln b � |B	ki |

−1/pb	
k
i [(s+1)

lnλ−
ln b +1]b−(	ki +τ+m)[(s+1)

lnλ−
ln b +1]

� |B	ki |
−1/p|B	ki |

(s+1)
lnλ−
ln b +1[ρ(x− xki )]

−[(s+1)
lnλ−
ln b +1]

∼ |B	ki |
−1/p

|B	ki |
β

[ρ(x− xki )]
β

(3.33)

with the implicit positive constants independent of i and k, which is (3.27). This finishes the proof of

Case 1.

Case 2. q/p ∈ (0, 1). In this case, when r ∈ (1,∞), similar to (3.23), we have

2k0p[dψk0
(2k0)]δ �

[ k0−1∑
k=−∞

2−kσr
∑
i∈N

2kr|B	ki |
r
p |B	ki |

( 1
r− 1

p )r

]δ
∼

( k0−1∑
k=−∞

2
kp
δ μpk

)δ
. (3.34)

By a similar calculation to (3.24), we easily know that (3.34) also holds true for r = ∞. This further

implies that

∑
k0∈Z

2k0q|{x ∈ Rn : ψk0(x) > 2k0}|
q
p �

∑
k0∈Z

2k0(q−
q
δ )

k0−1∑
k=−∞

2
kq
δ μqk

∼
∑
k∈Z

∞∑
k0=k+1

2k0(q−
q
δ )2

kq
δ μqk �

∑
k∈Z

2kqμqk. (3.35)

On the other hand, similar to (3.26), we obtain

2k0δpdηk0 (2
k0) �

∞∑
k=k0

[2kδμk]
p,

which, together with q < p, implies that

2k0δp|{x ∈ Rn : ηk0(x) > 2k0}| �
∞∑

k=k0

2−kδ̃p[2k(1−δ̃)μk]p � 2−k0δ̃p
{ ∞∑
k=k0

[2k(1−δ̃)μk]q
} p

q

,

where δ̃ := 1−δ
2 . Therefore, we have∑
k0∈Z

2k0q|{x ∈ Rn : ηk0(x) > 2k0}|
q
p

�
∑
k0∈Z

2k0δ̃q
∞∑

k=k0

[2k(1−δ̃)μk]q ∼
∑
k∈Z

[2k(1−δ̃)μk]q
k∑

k0=−∞
2k0δ̃q �

∑
k∈Z

2kqμqk. (3.36)

Notice that μk := (
∑

i∈N
|B	ki |)

1/p and λki ∼ 2k|B	ki |
1/p. Combining (2.1), (3.35), (3.36) and (3.21), we

further conclude that

‖MN(f)‖qLp,q(Rn) ∼
∑
k0∈Z

2k0q|{x ∈ Rn :MN(f)(x) > 2k0}|
q
p

�
∑
k0∈Z

2k0q|{x ∈ Rn : ψk0(x) > 2k0}|
q
p +

∑
k0∈Z

2k0q|{x ∈ Rn : ηk0(x) > 2k0}|
q
p

�
∑
k∈Z

2kqμqk ∼
∑
k∈Z

[∑
i∈N

|λki |p
] q

p

∼ ‖f‖q
Hp,r,s,q

A (Rn)
,

which implies that ‖f‖Hp,q
A (Rn) � ‖f‖Hp,r,s,q

A (Rn) and H
p,r,s,q
A (Rn) ⊂ Hp,q

A (Rn). This finishes the proof of

Case 2 and hence Theorem 3.6.
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3.2 Molecular characterizations of Hp,q
A (Rn)

In this subsection, we establish the molecular characterizations of Hp,q
A (Rn). We begin with the following

notion of anisotropic (p, r, s, ε)-molecules associated with dilated balls.

Definition 3.7. An anisotropic quadruple (p, r, s, ε) is said to be admissible if p ∈ (0, 1], r ∈ (1,∞],

s ∈ N with s � �(1/p−1) ln b/ lnλ−	 and ε ∈ (0,∞). For an admissible anisotropic quadruple (p, r, s, ε), a

measurable function m is called an anisotropic (p, r, s, ε)-molecule associated with a dilated ball B ∈ B if

(i) for each j ∈ Z+, ‖m‖Lr(Uj(B)) � b−jε|B|1/r−1/p, where U0(B) := B and, for any j ∈ N,

Uj(B) := (AjB) \ (Aj−1B);

(ii)
∫
Rn m(x)xα dx = 0 for any α ∈ Zn+ with |α| � s.

Throughout this paper, an anisotropic (p, r, s, ε)-molecule is called a (p, r, s, ε)-molecule for simplic-

ity. Via (p, r, s, ε)-molecules, we introduce the following anisotropic molecular Hardy-Lorentz space

Hp,r,s,ε,q
A (Rn).

Definition 3.8. For an admissible anisotropic quadruple (p, r, s, ε), q ∈ (0,∞] and a dilation A, the

anisotropic molecular Hardy-Lorentz space Hp,r,s,ε,q
A (Rn) is defined to be the set of all distributions f

∈ S ′(Rn) satisfying that there exist a sequence of (p, r, s, ε)-molecules, {mk
i }i∈N, k∈Z, associated with

dilated balls {xki + Bki }i∈N, k∈Z ⊂ B, respectively, and a positive constant C̃ such that
∑

i∈N
χxk

i +B
k
i
(x)

� C̃ for all k ∈ Z and x ∈ Rn, and f =
∑

k∈Z

∑
i∈N

λkim
k
i in S ′(Rn), where λki ∼ 2k|Bki |1/p for all k ∈ Z

and i ∈ N.
Moreover, define

‖f‖Hp,r,s,ε,q
A (Rn) := inf

{[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

: f =
∑
k∈Z

∑
i∈N

λkim
k
i

}
with the usual modification made when q = ∞, where the infimum is taken over all decompositions of f

as above.

Now we state the main theorem of this subsection as follows.

Theorem 3.9. Let (p, r, s, ε) be an admissible anisotropic quadruple defined as in Definition 3.7 with

ε ∈ (max{1, (s + 1) logb(λ+)},∞), q ∈ (0,∞] and N ∈ N ∩ [N(p),∞). Then Hp,q
A (Rn) = Hp,r,s,ε,q

A (Rn)
with equivalent quasi-norms.

Proof. By the definitions of (p,∞, s)-atoms and (p, r, s, ε)-molecules, we know that each (p,∞, s)-atom

is also a (p, r, s, ε)-molecule, which implies that

Hp,∞,s,q
A (Rn) ⊂ Hp,r,s,ε,q

A (Rn).

This, combined with Theorem 3.6, further implies that, to prove Theorem 3.9, it suffices to show

Hp,r,s,ε,q
A (Rn) ⊂ Hp,q

A (Rn).
To prove this, for any f ∈ Hp,r,s,ε,q

A (Rn), by Definition 3.8, we know that there exists a sequence

of (p, r, s, ε)-molecules, {mk
i }i∈N, k∈Z, associated with {xki + Bki }i∈N, k∈Z ⊂ B, respectively, such that

f =
∑
k∈Z

∑
i∈N

λkim
k
i in S′(Rn), λki ∼ 2k|Bki |1/p for all k ∈ Z and i ∈ N,

∑
i∈N

χxk
i +B

k
i
(x) � 1 for all

k ∈ Z and x ∈ Rn, and

‖f‖Hp,r,s,ε,q
A (Rn) ∼

[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

. (3.37)

Take a sequence {�ki }i∈N, k∈Z of integers satisfying that, for all i ∈ N and k ∈ Z, xki +B	ki := xki +Bki .

It suffices to only consider the case when N = N(p) := �( 1p − 1) ln b
lnλ−

	+ 2. Let

β :=

(
ln b

lnλ−
+N − 1

)
lnλ−
ln b

>
1

p
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and μk := (
∑

i∈N
|B	ki |)

1/p for all k ∈ Z. Then, for r ∈ (1,∞], there exist r̃ ∈ (1, r) and δ ∈ (0, 1) such

that 1
r̃ < δ < 1 and 1

β < δp < 1. Notice that, for any fixed k0 ∈ Z and all x ∈ Rn,

MN (f)(x) �MN

( k0−1∑
k=−∞

∑
i∈N

λkim
k
i

)
(x) +

∞∑
k=k0

∑
i∈N

|λki |MN (mk
i )(x) =: ψ̃k0(x) + η̃k0(x). (3.38)

To finish the proof that Hp,r,s,ε,q
A (Rn) ⊂ Hp,q

A (Rn), it suffices to show

‖MN(f)‖Lp,q(Rn) � ‖f‖Hp,r,s,ε,q
A (Rn).

To this end, we now consider two cases: q/p ∈ [1,∞] and q/p ∈ (0, 1).

Case 1. q/p ∈ [1,∞]. In this case, if we can prove that

2k0p[dψ̃k0
(2k0)]δ �

k0−1∑
k=−∞

[2kμδk]
p and 2k0δpdη̃k0 (2

k0) �
∞∑

k=k0

[2kδμk]
p, (3.39)

then, noticing that δ ∈ (0, q/p), by Lemma 3.5, |B	ki | ∼
|λk

i |p
2kp and (3.37), we have

‖f‖Hp,q
A (Rn) = ‖MN(f)‖Lp,q(Rn) � ‖{2kμk}k∈Z‖	q �

[∑
k∈Z

(∑
i∈N

|λki |p
) q

p
] 1

q

∼ ‖f‖Hp,r,s,ε,q
A (Rn),

which is the desired conclusion.

Now, we show (3.39). Notice that, for all k ∈ Z and i ∈ N, mk
i is a (p, r, s, ε)-molecule associated with

xki + B	ki ,
∑
i∈N

χxk
i +B�k

i

� 1, λki ∼ 2k|B	ki |
1/p and r̃ ∈ (1, r). By Hölder’s inequality, we find that, for

σ := 1− p
r̃δ > 0 and all x ∈ Rn,

ψ̃k0(x) �
k0−1∑
k=−∞

MN

(∑
i∈N

λkim
k
i

)
(x)

�
( k0−1∑
k=−∞

2kσr̃
′
)1/r̃′{ k0−1∑

k=−∞
2−kσr̃

[
MN

(∑
i∈N

λkim
k
i

)
(x)

]r̃}1/r̃

∼ 2k0σ
{ k0−1∑
k=−∞

2−kσr̃
[
MN

(∑
i∈N

λkim
k
i

)
(x)

]r̃}1/r̃

.

This further implies that

2k0p[dψ̃k0
(2k0)]δ � 2k0p2−k0r̃δ(1−σ)

{∫
Rn

k0−1∑
k=−∞

2−kσr̃
[
MN

(∑
i∈N

λkim
k
i

)
(x)

]r̃
dx

}δ

�
[ k0−1∑
k=−∞

2−kσr̃
∫
Rn

∣∣∣∣∑
i∈N

λkim
k
i (x)

∣∣∣∣r̃ dx]δ =:

( k0−1∑
k=−∞

2−kσr̃Fk

)δ
. (3.40)

Moreover, by Hölder’s inequality, we know that, for all k ∈ Z ∩ (−∞, k0 − 1],

(Fk)
1/r̃ ∼ sup

‖g‖
Lr̃′ (Rn)

=1

∣∣∣∣ ∫
Rn

[∑
i∈N

λkim
k
i (x)

]
g(x) dx

∣∣∣∣
� sup

‖g‖
Lr̃′ (Rn)

=1

{∑
i∈N

|λki |
∑
j∈Z+

∫
Uj(xk

i +B�k
i
)

|mk
i (x)||g(x)| dx

}

� sup
‖g‖

Lr̃′ (Rn)
=1

{∑
i∈N

|λki |
∑
j∈Z+

[ ∫
Uj(xk

i +B�k
i
)

|mk
i (x)|r dx

]1/r[ ∫
Uj(xk

i +B�k
i
)

|g(x)|r
′
dx

]1/r′}



1690 Liu J et al. Sci China Math September 2016 Vol. 59 No. 9

∼ sup
‖g‖

Lr̃′ (Rn)
=1

{∑
i∈N

|λki |
∑
j∈Z+

‖mk
i ‖Lr(Uj(xk

i +B�k
i
))F

k
i,j

}
, (3.41)

where, for all k ∈ Z ∩ (−∞, k0 − 1], i ∈ N and j ∈ Z+,

F ki,j :=

[∫
Uj(xk

i +B�k
i
)

|g(x)|r′ dx
]1/r′

, (3.42)

U0(x
k
i +B	ki ) := xki +B	ki and, for any j ∈ N,

Uj(x
k
i +B	ki ) := [Aj(xki +B	ki )] \ [A

j−1(xki +B	ki )].

By this, (3.42) and (2.20), we find that, for all k ∈ Z ∩ (−∞, k0 − 1], i ∈ N and j ∈ Z+,

F ki,j � |AjB	ki |
1/r′

[
1

|AjB	ki |

∫
Aj(xk

i +B�k
i
)

|g(x)|r′ dx
]1/r′

� |AjB	ki |
1/r′ inf

x∈xk
i +B�k

i

{MHL(|g|r
′
)(x)}1/r′

� |AjB	ki |
1/r′

{
1

|B	ki |

∫
xk
i +B�k

i

[MHL(|g|r
′
)(x)]r̃

′/r′ dx

}1/r̃′

, (3.43)

whereMHL(f) denotes the Hardy-Littlewood maximal function as in (2.20). Notice thatMHL is bounded

on Lr(Rn) for all r ∈ (1,∞) (see Lemma 2.9 and Remark 2.10), {xki + B	ki }i∈N is finitely overlapped,

|λki | ∼ 2k|B	ki |
1/p,

‖mk
i ‖Lr(Uj(xk

i +B�k
i
)) � b−jε|B	ki |

1/r−1/p,

ε > 1 > 1/r′ and r > r̃. Then, by (3.41), (3.43) and Hölder’s inequality, for all k ∈ Z ∩ (−∞, k0 − 1],

we have

Fk � sup
‖g‖

Lr̃′ (Rn)
=1

{∑
i∈N

2k|B	ki |
1/p

∑
j∈Z+

b−jε|B	ki |
1/r−1/pbj/r

′ |B	ki |
1/r′

×
[

1

|B	ki |

∫
xk
i +B�k

i

{MHL(|g|r
′
)(x)}r̃

′/r′ dx

]1/r̃′}r̃

� sup
‖g‖

Lr̃′ (Rn)
=1

{[∑
i∈N

2kr̃|B	ki |
]1/r̃[∑

i∈N

∫
xk
i +B�k

i

{MHL(|g|r
′
)(x)}r̃′/r′ dx

]1/r̃′}r̃

�
[∑
i∈N

2kr̃|B	ki |
]

sup
‖g‖

Lr̃′ (Rn)
=1

[∫
Rn

{MHL(|g|r
′
)(x)}r̃′/r′ dx

]r̃/r̃′

�
[∑
i∈N

2kr̃|B	ki |
]

sup
‖g‖

Lr̃′ (Rn)
=1

[∫
Rn

|g(x)|r̃′ dx
]r̃/r̃′

�
∑
i∈N

2kr̃|B	ki |.

By this and (3.40), we know that

2k0p[dψ̃k0
(2k0)]δ �

[ k0−1∑
k=−∞

2−kσr̃
∑
i∈N

2kr̃|B	ki |
]δ

�
k0−1∑
k=−∞

2kr̃δ(1−σ)
[∑
i∈N

|B	ki |
]δ

∼
k0−1∑
k=−∞

[2kμδk]
p, (3.44)

which is the first desired estimate in (3.39).



Liu J et al. Sci China Math September 2016 Vol. 59 No. 9 1691

Now we establish the desired estimate of η̃k0 in (3.39). It suffices to show that, for all i ∈ N and k ∈ Z,∫
Rn

[MN (mk
i )(x)]

δpdx � |B	ki |
1−δ, (3.45)

where the implicit positive constant is independent of i and k. Indeed, as in (3.26), by (3.45), we find that

2k0δpdη̃k0 (2
k0) �

∞∑
k=k0

∑
i∈N

|λki |δp
∫
Rn

[MN (mk
i )(x)]

δp dx

�
∞∑

k=k0

∑
i∈N

|λki |δp|B	ki |
1−δ �

∞∑
k=k0

2kδp
∑
i∈N

|B	ki | ∼
∞∑

k=k0

[2kδμk]
p, (3.46)

which is the desired conclusion.

In order to show (3.45), we write∫
Rn

[MN(m
k
i )(x)]

δp dx =

∫
xk
i +B�k

i
+τ

[MN(m
k
i )(x)]

δp dx+

∫
(xk

i +B�k
i
+τ

)�
· · · =: Ĩ1 + Ĩ2.

For r ∈ (1,∞], by Hölder’s inequality, Proposition 2.9 and Remark 2.10, we have

Ĩ1 =

∫
xk
i +B�k

i
+τ

[MN (mk
i )(x)]

δp dx �
{∫

xk
i +B�k

i
+τ

[MN(m
k
i )(x)]

r dx

} pδ
r

|B	ki +τ |
1− pδ

r

�
∑
j∈Z+

‖mk
i ‖
pδ

Lr(Uj(xk
i +B�k

i
))
|B	ki +τ |

1− pδ
r

�
∑
j∈Z+

b−jεpδ|B	ki |
( 1
r− 1

p )pδ|B	ki +τ |
1− pδ

r ∼ |B	ki |
1−δ (3.47)

with the implicit positive constants independent of i and k. To estimate Ĩ2, we only need to prove that,

for all i ∈ N, k ∈ Z and x ∈ (xki +B	ki +τ )
�,

M0
N(m

k
i )(x) � |B	ki |

− 1
p

|B	ki |
β

[ρ(x− xki )]
β

(3.48)

with the implicit positive constant independent of i and k, whereM0
N(f) denotes the radial grand maximal

function of f as in Definition 2.3, ρ denotes the homogeneous quasi-norm associated with dilation A and

β := ( ln b
lnλ−

+ N − 1) lnλ−
ln b . Indeed, noticing that βδp > 1, as in (3.28), by Proposition 2.4 and (3.48),

we have

Ĩ2 =

∫
(xk

i +B�k
i
+τ

)�
[MN(m

k
i )(x)]

δp dx

�
∫
ρ(x−xk

i )�|B
�k
i
+τ

|
|B	ki |

−δ |B	ki |
βδp

[ρ(x− xki )]
βδp

dx ∼ |B	ki |
1−δ

with the implicit positive constants independent of i and k, which, combined with (3.47), completes the

proof of (3.45).

Thus, to obtain the desired conclusion of Case 1, we only need to prove (3.48). To this end, for any

i ∈ N and k ∈ Z, take x ∈ (xki + B	ki +τ )
�, ϕ ∈ SN (Rn) and t ∈ Z. Suppose that P is a polynomial

of degree no more than s which will be determined later. Then, for all i ∈ N and k ∈ Z, by Hölder’s

inequality, we find that

|(mk
i ∗ ϕt)(x)| = b−t

∣∣∣∣ ∫
Rn

mk
i (y)ϕ(A

−t(x− y)) dy

∣∣∣∣
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� b−t
∑
j∈Z+

∣∣∣∣ ∫
Uj(xk

i +B�k
i
)

mk
i (y)[ϕ(A

−t(x − y))− P (A−t(x− y))] dy

∣∣∣∣
� b−t

∑
j∈Z+

‖mk
i ‖Lr(Uj(xk

i +B�k
i
))

[∫
Uj(xk

i +B�k
i
)

|ϕ(A−t(x− y))− P (A−t(x− y))|r′ dy
]1/r′

� b−t
∑
j∈Z+

b−jε|B	ki |
1/r−1/pbt/r

′
{∫

A−t+j(x−xk
i )+A

jB
�k
i
−t

|ϕ(y)− P (y)|r′ dy
}1/r′

� b−t|B	ki |
1/r−1/pbt/r

′
b−t/r

′ |B	ki |
1/r′

×
{ ∑
j∈Z+

b−jεbj/r
′

sup
y∈A−t+j(x−xk

i )+A
jB

�k
i
−t

|ϕ(y)− P (y)|
}

= |B	ki |
−1/pb	

k
i −t

∑
j∈Z+

b−jεbj/r
′

sup
y∈A−t+j(x−xk

i )+A
jB

�k
i
−t

|ϕ(y)− P (y)|. (3.49)

Suppose that x ∈ [xki + (B	ki +τ+m+1 \B	ki +τ+m)] for some m ∈ Z+. Then, by (2.8), we obtain

A−t+j(x − xki ) +AjB	ki −t ⊂ A−t+j(B	ki +τ+m+1 \B	ki +τ+m) +AjB	ki −t

= A	
k
i −t+j([Bτ+m+1 \Bτ+m] +B0) ⊂ A	

k
i −t+j(Bm)�. (3.50)

If �ki � t, we choose P ≡ 0. Then

sup
y∈A−t+j(x−xk

i )+A
jB

�k
i
−t

|ϕ(y)| � sup
y∈A�k

i
−t+j(Bm)�

min{1, ρ(y)−N} � b−N(	ki −t+j+m). (3.51)

If �ki < t, then we let P be the Taylor expansion of ϕ at the point A−t+j(x − xki ) of order s. By the

Taylor remainder theorem, (2.4), (2.5) and (3.50), we have

sup
y∈A−t+j(x−xk

i )+A
jB

�k
i
−t

|ϕ(y)− P (y)| � sup
z∈AjB

�k
i
−t

sup
|α|=s+1

|∂αϕ(A−t+j(x − xki ) + z)||z|s+1

� bj(s+1) logb(λ+)λ
(s+1)(	ki −t)− sup

y∈A−t+j(x−xk
i )+A

jB
�k
i
−t

min{1, ρ(y)−N}

� bj(s+1) logb(λ+)λ
(s+1)(	ki −t)− sup

y∈A�k
i
−t+j(Bm)�

min{1, ρ(y)−N}

� bj(s+1) logb(λ+)λ
(s+1)(	ki −t)− min{1, b−N(	ki −t+j+m)}. (3.52)

Take s := �( 1p − 1) ln b
lnλ− 	. Since N = s+ 2, it follows that bλs+1

− � bN . By this, (3.49), (3.51), (3.52) and

ε > (s+ 1) logb(λ+), for all x ∈ [xki + (B	ki +τ+m+1 \B	ki +τ+m)] with m ∈ Z+, we find that

[M0
N (mk

i )(x)]
p = sup

ϕ∈SN (Rn)

sup
t∈Z

|(mk
i ∗ ϕt)(x)|p

� |B	ki |
−1

∑
j∈Z+

b−jp(ε−1/r′) max
{

sup
t∈Z, t�	ki

bp(	
k
i −t)b−Np(	

k
i −t+j+m),

sup
t∈Z, t>	ki

bp(	
k
i −t)bjp(s+1) logb(λ+)λ

p(s+1)(	ki −t)− min{1, b−Np(	ki −t+j+m)}
}

� |B	ki |
−1

∑
j∈Z+

b−jp[ε−(s+1) logb(λ+)+1−1/r′] max{b−Npm, (bλs+1
− )−pm}

� |B	ki |
−1(bλs+1

− )−pm.

Form this, as in (3.33), we easily deduce that (3.48) holds true for q/p ∈ [1,∞]. This finishes the proof

of Case 1.
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Case 2. q/p ∈ (0, 1). In this case, let ψ̃k0 and η̃k0 be as in (3.38). Similar to (3.44), we have

2k0p[dψ̃k0
(2k0)]δ �

[ k0−1∑
k=−∞

2−kσr̃
∑
i∈N

2kr̃|B	ki |
]δ

∼
( k0−1∑
k=−∞

2
kp
δ μpk

)δ
,

which further implies that

∑
k0∈Z

2k0q|{x ∈ Rn : ψ̃k0(x) > 2k0}|
q
p �

∑
k0∈Z

2k0(q−
q
δ )

k0−1∑
k=−∞

2
kq
δ μqk

∼
∑
k∈Z

∞∑
k0=k+1

2k0(q−
q
δ )2

kq
δ μqk �

∑
k∈Z

2kqμqk. (3.53)

On the other hand, similar to (3.46), we find that

2k0δpdη̃k0 (2
k0) �

∞∑
k=k0

[2kδμk]
p,

which implies that

2k0δp|{x ∈ Rn : η̃k0(x) > 2k0}| �
∞∑

k=k0

2−kδ̃p[2k(1−δ̃)μk]p � 2−k0δ̃p
{ ∞∑
k=k0

[2k(1−δ̃)μk]q
} p

q

,

where δ̃ := 1−δ
2 . Therefore, we have

∑
k0∈Z

2k0q|{x ∈ Rn : η̃k0(x) > 2k0}|
q
p �

∑
k0∈Z

2k0δ̃q
∞∑

k=k0

[2k(1−δ̃)μk]q

∼
∑
k∈Z

[2k(1−δ̃)μk]q
k∑

k0=−∞
2k0δ̃q �

∑
k∈Z

2kqμqk. (3.54)

Notice that μk := (
∑

i∈N
|B	ki |)

1/p and λki ∼ 2k|B	ki |
1/p. Combining (2.1), (3.53), (3.54) and (3.37), we

further conclude that

‖MN(f)‖qLp,q(Rn) ∼
∑
k0∈Z

2k0q|{x ∈ Rn :MN(f)(x) > 2k0}|
q
p

�
∑
k0∈Z

2k0q|{x ∈ Rn : ψ̃k0(x) > 2k0}|
q
p +

∑
k0∈Z

2k0q|{x ∈ Rn : η̃k0(x) > 2k0}|
q
p

�
∑
k∈Z

2kqμqk ∼
∑
k∈Z

[∑
i∈N

|λki |p
] q

p

∼ ‖f‖q
Hp,r,s,ε,q

A (Rn)
,

which implies that

‖f‖Hp,q
A (Rn) � ‖f‖Hp,r,s,ε,q

A (Rn).

This finishes the proof of Case 2 and hence Theorem 3.9.

4 Maximal function characterizations of Hp,q
A (Rn)

In this section, we characterize Hp,q
A (Rn) in terms of the radial maximal functionM0

ϕ (see (2.13)) and the

non-tangential maximal function Mϕ (see (2.12)). We begin with the following Definitions 4.1 and 4.2

from [9].
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Definition 4.1. For any function F : Rn×Z → [0,∞), K ∈ Z∪{∞} and � ∈ Z, the maximal function

of F with aperture � is defined by

F ∗K
	 (x) := sup

k∈Z, k�K
sup

y∈x+Bk+�

F (y, k), ∀x ∈ Rn.

Definition 4.2. Let K ∈ Z and L ∈ [0,∞). For ϕ ∈ S, the radial maximal function M
0(K,L)
ϕ (f),

the non-tangential maximal function M
(K,L)
ϕ (f) and the tangential maximal function T

N(K,L)
ϕ (f) of

f ∈ S ′(Rn) are, respectively, defined by setting, for all x ∈ Rn,

M0(K,L)
ϕ (f)(x) := sup

k∈Z, k�K
|(f ∗ ϕk)(x)|[max{1, ρ(A−Kx)}]−L(1 + b−k−K)−L,

M (K,L)
ϕ (f)(x) := sup

k∈Z, k�K
sup

y∈x+Bk

|(f ∗ ϕk)(y)|[max{1, ρ(A−Ky)}]−L(1 + b−k−K)−L

and

TN(K,L)
ϕ (f)(x) := sup

k∈Z,k�K
sup
y∈Rn

|(f ∗ ϕk)(y)|
[max{1, ρ(A−k(x− y))}]N

(1 + b−k−K)−L

[max{1, ρ(A−Ky)}]L .

Furthermore, the radial grand maximal function M
0(K,L)
N (f) and the non-tangential grand maximal func-

tion M
(K,L)
N (f) of f ∈ S ′(Rn) are, respectively, defined by setting, for all x ∈ Rn,

M
0(K,L)
N (f)(x) := sup

ϕ∈SN (Rn)

M0(K,L)
ϕ (f)(x)

and

M
(K,L)
N (f)(x) := sup

ϕ∈SN(Rn)

M (K,L)
ϕ (f)(x).

Lemma 4.3 through Lemma 4.5 are just [9, p. 42, Lemma 7.2; p. 45, Lemma 7.5; p. 46, Lemma 7.6],

respectively.

Lemma 4.3. There exists a positive constant C such that, for all functions F : Rn × Z → [0,∞),

� ∈ [�′,∞) ∩ Z, K ∈ Z ∪ {∞} and λ ∈ (0,∞),

|{x ∈ Rn : F ∗K
	 (x) > λ}| � Cb	−	

′
|{x ∈ Rn : F ∗K

	′ (x) > λ}|.

Lemma 4.4. Suppose that ϕ ∈ S(Rn) with
∫
Rn ϕ(x) dx �= 0. For any given N ∈ N and L ∈ [0,∞),

there exist an I ∈ N and a positive constant C(L), depending on L, such that, for all K ∈ Z+ and

f ∈ S ′(Rn),
M

0(K,L)
I (f)(x) � C(L)T

N(K,L)
ϕ (f)(x), ∀x ∈ Rn.

Lemma 4.5. Suppose that p ∈ (0,∞), ϕ ∈ S(Rn) and K ∈ Z+. Then, for any given M ∈ (0,∞),

there exist L ∈ (0,∞) and a positive constant C(K,M) such that, for all f ∈ S ′(Rn) and x ∈ Rn,

M (K,L)
ϕ (f)(x) � C(K,M)[max{1, ρ(x)}]−M . (4.1)

Lemma 4.6. Let p ∈ (0,∞), N ∈ (1/p,∞)∩N, q ∈ (0,∞] and ϕ ∈ S(Rn). Then there exists a positive

constant C such that, for all K ∈ Z, L ∈ [0,∞) and f ∈ S ′(Rn),

‖TN(K,L)
ϕ (f)‖Lp,q(Rn) � C‖M (K,L)

ϕ (f)‖Lp,q(Rn). (4.2)

Proof. We first prove that, for all p ∈ (0,∞), q ∈ (0,∞], K ∈ Z and � ∈ [�′,∞) ∩ Z,

‖F ∗K
	 ‖Lp,q(Rn) � b(	−	

′)/p‖F ∗K
	′ ‖Lp,q(Rn), (4.3)

where F ∗K
	 is as in Definition 4.1 and, for all ϕ ∈ S(Rn), f ∈ S ′(Rn), k ∈ Z and y ∈ Rn,

F (y, k) := |(f ∗ ϕk)(y)|max[{1, ρ(A−Ky)}]−L(1 + b−k−K)−L. (4.4)
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To this end, fix x ∈ Rn. For k ∈ (−∞,K] ∩ Z, if x− y ∈ Bk+1, then

F (y, k)[max{1, ρ(A−k(x− y))}]−N � F ∗K
1 (x); (4.5)

if x− y ∈ Bk+j+1 \Bk+j for some j ∈ N, then

F (y, k)[max{1, ρ(A−k(x − y))}]−N � F ∗K
j+1(x)b

−jN . (4.6)

By taking supremum over all k ∈ (−∞,K]∩ Z and y ∈ Rn on the both sides of (4.5) and (4.6), together

with (4.4) and the definition of T
N(K,L)
ϕ , we further find that

TN(K,L)
ϕ (f)(x) �

∞∑
j=0

F ∗K
j+1(x)b

−jN . (4.7)

Notice that F ∗K
	′ is a non-negative function for any �′ ∈ Z. By (2.1) and Lemma 4.3, we conclude that,

for any � ∈ [�′,∞) ∩ Z, K ∈ Z and p, q ∈ (0,∞),

‖F ∗K
	 ‖Lp,q(Rn) ∼

[ ∫ ∞

0

λq−1|{x ∈ Rn : F ∗K
	 (x) > λ}|q/p dλ

]1/q
� b(	−	

′)/p
[∫ ∞

0

λq−1|{x ∈ Rn : F ∗K
	′ (x) > λ}|q/p dλ

]1/q
∼ b(	−	

′)/p‖F ∗K
	′ ‖Lp,q(Rn), (4.8)

where the implicit positive constants are independent of � and K. It is easy to see that (4.8) is also true

for q = ∞ by the definition of the Lp,∞(Rn) norm. This proves (4.3).

Now we show (4.2). By (4.7), the Aoki-Rolewicz theorem (see [6,63]), (4.3) and N ∈ (1/p,∞)∩N, we
know that there exists υ ∈ (0, 1] such that

‖TN(K,L)
ϕ (f)‖υLp,q(Rn) �

∞∑
j=0

b−jNυ‖F ∗K
j+1‖υLp,q(Rn)

�
∞∑
j=0

b−jNυb(j+1)υ/p‖F ∗K
0 ‖υLp,q(Rn) � ‖M (K,L)

ϕ (f)‖υLp,q(Rn)

with the implicit positive constants independent of K, L and f , which implies (4.2) and hence completes

the proof of Lemma 4.6.

Lemma 4.7. Suppose that p ∈ (1,∞) and q ∈ (0,∞]. Then there exists a positive constant C such

that, for all f ∈ Lp,q(Rn),

‖MF(f)‖Lp,q(Rn) � C‖f‖Lp,q(Rn), (4.9)

where MF (f) is defined as in (2.17).

Proof. Let E ⊂ Rn be an arbitrary measurable set and |E| <∞. By (2.18) and (2.19), we have

‖MF(χE)‖L1,∞(Rn) � ‖χE‖L1(Rn) ∼ |E|

and

‖MF(χE)‖L∞(Rn) � ‖χE‖L∞(Rn) � 1.

Thus, applying [44, Theorem 1.1 and Remark 1.4] to MF and f ∈ Lp,q(Rn) with p0 = q0 = 1 and

p1 = q1 = ∞, we obtain (4.9). This finishes the proof of Lemma 4.7.

Remark 4.8. As a corollary of Lemma 4.7, the operators MN(f) in (2.14) and MHL(f) in (2.20) also

satisfy (4.9).
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Now we state the main result of this section.

Theorem 4.9. Suppose that p ∈ (0,∞), q ∈ (0,∞] and ϕ ∈ S(Rn) with
∫
Rn ϕ(x) dx �= 0. Then, for

all f ∈ S ′(Rn), the following statements are mutually equivalent:

f ∈ Hp,q
A (Rn), (4.10)

Mϕ(f) ∈ Lp,q(Rn), (4.11)

M0
ϕ(f) ∈ Lp,q(Rn). (4.12)

In this case, it holds true that

‖f‖Hp,q
A (Rn) � C1‖M0

ϕ(f)‖Lp,q(Rn) � C1‖Mϕ(f)‖Lp,q(Rn) � C2‖f‖Hp,q
A (Rn),

where C1 and C2 are positive constants independent of f .

Proof. Clearly, (4.10) implies (4.11) and (4.11) implies (4.12). Thus, to prove Theorem 4.9, it suffices

to show that (4.11) implies (4.10) and that (4.12) implies (4.11).

We first prove that (4.11) implies (4.10). To this end, notice that, by Lemma 4.4 with N ∈ (1/p,∞)∩N
and L = 0, we find that there exists an I ∈ N such that M

0(K,0)
I (f)(x) � T

N(K,0)
ϕ (f)(x) for all K ∈ Z+,

f ∈ S ′(Rn) and x ∈ Rn. From this and Lemma 4.6, we further deduce that, for all K ∈ Z+ and

f ∈ S ′(Rn),

‖M0(K,0)
I (f)‖Lp,q(Rn) � ‖M (K,0)

ϕ (f)‖Lp,q(Rn). (4.13)

Letting K → ∞ in (4.13), by [35, Proposition 1.4.5(8)] and the Fatou lemma, we know that

‖M0
I (f)‖Lp,q(Rn) � ‖Mϕ(f)‖Lp,q(Rn),

which, together with Proposition 2.4, shows that (4.11) implies (4.10).

Now we show that (4.12) implies (4.11). Suppose now that M0
ϕ(f) ∈ Lp,q(Rn). By Lemma 4.5, we find

that there exists L ∈ (0,∞) such that (4.1) holds true, which further implies that M
(K,L)
ϕ (f) ∈ Lp,q(Rn)

for all K ∈ Z+. Indeed, for q/p ∈ (0, 1], by (2.1) and (4.1), we have

‖M (K,L)
ϕ (f)‖qLp,q(Rn) ∼

∫ ∞

0

λq−1|{x ∈ Rn :M (K,L)
ϕ (f)(x) > λ}|q/p dλ

�
∫ ∞

0

λq−1|{x ∈ B1 :M (K,L)
ϕ (f)(x) > λ}|q/p dλ

+

∞∑
j=1

∫ ∞

0

λq−1|{x ∈ Bj+1 \Bj :M (K,L)
ϕ (f)(x) > λ}|q/p dλ

�
∫ 1

0

λq−1|B1|q/p dλ+

∞∑
j=1

∫ b−jM

0

λq−1|Bj+1|q/p dλ

∼
∞∑
j=0

b−jMqb(j+1)q/p ∼ 1 as M > 1/p.

For another case when q/p ∈ (1,∞), by (2.1), the Minkowski integral inequality and (4.1), we find that

‖M (K,L)
ϕ (f)‖qLp,q(Rn) � ‖M (K,L)

ϕ (f)‖qLp,q(B1)
+ ‖M (K,L)

ϕ (f)‖qLp,q(Rn\B1)

∼
∫ ∞

0

λq−1|{x ∈ B1 :M (K,L)
ϕ (f)(x) > λ}|q/p dλ

+

[∑
k∈Z

2kq
( ∞∑
j=1

|{x ∈ Bj+1 \Bj : M (K,L)
ϕ f(x) > 2k}|

) q
p
] p

q · qp

�
∫ ∞

0

λq−1|{x ∈ B1 :M (K,L)
ϕ (f)(x) > λ}|q/p dλ
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+

[ ∞∑
j=1

(∑
k∈Z

2kq|{x ∈ Bj+1 \Bj : M (K,L)
ϕ (f)(x) > 2k}|

q
p

) p
q
] q

p

∼
∫ ∞

0

λq−1|{x ∈ B1 :M (K,L)
ϕ (f)(x) > λ}|q/p dλ

+

[ ∞∑
j=1

(∫ ∞

0

λq−1|{x ∈ Bj+1 \Bj :M (K,L)
ϕ (f)(x) > λ}|

q
p dλ

) p
q
] q

p

�
∫ 1

0

λq−1|B1|q/p dλ+

[ ∞∑
j=1

(∫ b−jM

0

λq−1|Bj+1|q/p dλ
) p

q
] q

p

�
[ ∞∑
j=0

b−jMpb(j+1)

] q
p

∼ 1 as M > 1/p. (4.14)

Clearly, (4.14) also holds true for q = ∞, since

‖f‖Lp,∞(Rn) = sup
λ∈(0,∞)

{λd1/pf (λ)} ∼ sup
k∈Z

2k[df (2
k)]

1
p .

On the other hand, by Lemmas 4.4 and 4.6, we know that, for any L ∈ (0,∞), there exists some I ∈ N
such that, for all K ∈ Z+ and f ∈ S ′(Rn),

‖M0(K,L)
I (f)‖Lp,q(Rn) � C3‖M (K,L)

ϕ (f)‖Lp,q(Rn),

where C3 is a positive constant independent of K. For any given K ∈ Z+, let

ΩK := {x ∈ Rn :M
0(K,L)
I (f)(x) � C4M

(K,L)
ϕ (f)(x)} (4.15)

with C4 := 2C3. Then

‖M (K,L)
ϕ (f)‖Lp,q(Rn) � ‖M (K,L)

ϕ (f)‖Lp,q(ΩK), (4.16)

because

‖M (K,L)
ϕ (f)‖Lp,q(Ω�

K) � C−1
4 ‖M0(K,L)

I (f)‖Lp,q(Ω�
K) � C3/C4‖M (K,L)

ϕ (f)‖Lp,q(Rn).

To finish the proof that (4.12) implies (4.11), for any given L ∈ [0,∞), it suffices to show that, for all

t ∈ (0, p), K ∈ Z+ and f ∈ S ′(Rn),

M (K,L)
ϕ (f)(x) � {MHL([M

0(K,L)
ϕ (f)]t)(x)}1/t, ∀x ∈ ΩK . (4.17)

Indeed, if (4.17) holds true for the time being, then, by (4.16), (2.3), (4.17) and Remark 4.8, for all

K ∈ Z+ and f ∈ S ′(Rn), we have

‖M (K,L)
ϕ (f)‖tLp,q(Rn) � ‖M (K,L)

ϕ (f)‖tLp,q(ΩK) ∼ ‖[M (K,L)
ϕ (f)]t‖

L
p
t
,
q
t (ΩK)

� ‖MHL([M
0(K,L)
ϕ (f)]t)‖

L
p
t
,
q
t (ΩK)

� ‖[M0(K,L)
ϕ (f)]t‖

L
p
t
,
q
t (Rn)

∼ ‖M0(K,L)
ϕ (f)‖tLp,q(Rn). (4.18)

Noticing that M
(K,L)
ϕ (f)(x) and M

0(K,L)
ϕ (f)(x) converge pointwise and monotonically to Mϕ(f)(x) and

M0
ϕ(f)(x) for all f ∈ S ′(Rn) and x ∈ Rn, respectively, as K → ∞, by [35, Proposition 1.4.5(8)], the

monotone convergence theorem and (4.18), we have

‖Mϕ(f)‖Lp,q(Rn) � ‖M0
ϕ(f)‖Lp,q(Rn),

which shows that (4.12) implies (4.11).
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Thus, to complete the proof of Theorem 4.9, we only need to prove (4.17). For this purpose, for all

f ∈ S ′(Rn), k ∈ Z and y ∈ Rn, let

F (y, k) := |(f ∗ ϕk)(y)|[max{1, ρ(A−Ky)}]−L[1 + b−k−K ]−L. (4.19)

Let x ∈ ΩK . By the definitions of F ∗K
0 and M

(K,L)
ϕ and (4.19), it is easy to see that there exist

k ∈ (−∞,K] ∩ N and y ∈ x+Bk such that

F (y, k) � F ∗K
0 (x)/2 =M (K,L)

ϕ (f)(x)/2. (4.20)

For this y, consider x̃ ∈ (y +Bk−	) for some integer � ∈ Z+ to be specified later. We write

f ∗ ϕk(x̃)− f ∗ ϕk(z) = f ∗Ψk(z), ∀ z ∈ Rn, (4.21)

where Ψ(z) := ϕ(z + A−k(x̃ − y)) − ϕ(z) for all z ∈ Rn. By (2.11), (2.10), the mean value theorem

and (2.5), we conclude that

‖Ψ‖SI(Rn) � sup
h∈B−�

‖ϕ(·+ h)− ϕ(·)‖SI(Rn)

= sup
h∈B−�

sup
z∈Rn

sup
|α|�I

max{1, [ρ(z)]I}|∂αϕ(z + h)− ∂αϕ(z)|

�
[

sup
h∈B−�

sup
z∈Rn

sup
|α|�I+1

max{1, [ρ(z + h)]I}|∂αϕ(z + h)|
][

max
h∈B−�

|h|
]

� C5λ
−	
− , (4.22)

where the positive constant C5 is independent of L. Notice that, by a proof similar to that of [9, p. 17,

Proposition 3.10], we find that, for all x ∈ Rn,

M
(K,L)
I (f)(x) � bτIM

0(K,L)
I (f)(x). (4.23)

Moreover, by (2.10), we know that, for all x̃ ∈ y +Bk−	,

max{1, ρ(A−K x̃)} � bτ max{1, ρ(A−Ky)},

which, combined with (4.20)–(4.23) and (4.15), implies that

bτLF (x̃, k) � [|f ∗ ϕk(y)| − |f ∗Ψk(y)|][max{1, ρ(A−Ky)}]−L(1 + b−k−K)−L

� F (y, k)−M
(K,L)
I (f)(x)‖Ψ‖SI(Rn) �M (K,L)

ϕ (f)(x)/2 − C5λ
−	
− bτIM

0(K,L)
I (f)(x)

�M (K,L)
ϕ (f)(x)/2 − C4C5λ

−	
− bτIM (K,L)

ϕ (f)(x) �M (K,L)
ϕ (f)(x)/4, (4.24)

where � is chosen to be the smallest integer such that C4C5λ
−	
− bτI � 1/4. Therefore, by (4.24) and (2.7),

we conclude that, for all t ∈ (0, p) and x ∈ ΩK ,

[M (K,L)
ϕ (f)(x)]t � 4tbτLt

|Bk−	|

∫
y+Bk−�

[F (z, k)]t dz � 4tbτLt
bτ+	

|Bk+τ |

∫
x+Bk+τ

[M0(K,L)
ϕ (f)]t(z) dz

� 4tbτLtMHL([M
0(K,L)
ϕ (f)]t)(x)

with the implicit positive constants independent of t, K and f , which implies (4.17). This finishes the

proof of Theorem 4.9.

5 Finite atomic decomposition characterizations of Hp,q
A (Rn)

In this section, we obtain the finite atomic decomposition characterizations of Hp,q
A (Rn). To be precise,

we prove that, for any given finite linear combination of (p, r, s)-atoms with r ∈ (1,∞) (or continuous

(p,∞, s)-atoms), its quasi-norm in Hp,q
A (Rn) can be achieved via all its finite atomic decompositions.
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Definition 5.1. For an admissible anisotropic triplet (p, r, s), q ∈ (0,∞] and a dilation A, denote by

Hp,r,s,q
A,fin (Rn) the set of all distributions f ∈ S ′(Rn) satisfying that there exist K, I ∈ N, a finite sequence

of (p, r, s)-atoms, {aki }i∈[1,I]∩N, k∈[1,K]∩Z, supported on {xki + Bki }i∈[1,I]∩N, k∈[1,K]∩Z ⊂ B, respectively,

and a positive constant C̃, independent of I and K, such that
∑I

i=1 χxk
i +B

k
i
(x) � C̃ for all x ∈ Rn and

k ∈ [1,K] ∩ Z, and

f =

K∑
k=1

I∑
i=1

λki a
k
i in S ′(Rn),

where λki ∼ 2k|Bki |1/p for all k ∈ [1,K]∩Z and i ∈ [1, I]∩N with the implicit equivalent positive constants

independent of k, K and i, I. Moreover, the quasi-norm of f in Hp,r,s,q
A,fin (Rn) is defined by

‖f‖Hp,r,s,q
A,fin (Rn) := inf

{[ K∑
k=1

( I∑
i=1

|λki |p
) q

p
] 1

q

: f =

K∑
k=1

I∑
i=1

λki a
k
i ,K, I ∈ N

}
with the usual modification made when q = ∞, where the infimum is taken over all decompositions of f

as above.

Obviously, by Theorem 3.6, we know that, for any admissible anisotropic triplet (p, r, s) and q ∈ (0,∞),

the setHp,r,s,q
A,fin (Rn) is dense in Hp,q

A (Rn) with respect to the quasi-norm ‖·‖Hp,q
A (Rn). From this, we deduce

the following density of Hp,q
A (Rn).

Lemma 5.2. If p, q ∈ (0,∞), then

(i) for any r ∈ [1,∞], Hp,q
A (Rn) ∩ Lr(Rn) is dense in Hp,q

A (Rn);
(ii) Hp,q

A (Rn) ∩C∞
c (Rn) is dense in Hp,q

A (Rn).

Proof. We first prove (i). If p ∈ (1,∞) and q ∈ (0,∞), then Hp,q
A (Rn) = Lp,q(Rn) (see Remark 6.6(ii)

below). By [35, Theorem 1.4.13], we know that the set of simple functions is dense in Lp,q(Rn). Thus,

Lp,q(Rn) ∩Lr(Rn) is also dense in Lp,q(Rn) for all r ∈ [1,∞]. If p ∈ (0, 1] and q ∈ (0,∞), by the density

of the set Hp,∞,s,q
A,fin (Rn) in Hp,q

A (Rn) and Hp,∞,s,q
A,fin (Rn) ⊂ Lr(Rn) for all r ∈ [1,∞], we easily find that

Hp,q
A (Rn) ∩ Lr(Rn) is dense in Hp,q

A (Rn). This finishes the proof of (i).

Now we prove (ii). To this end, we claim that, for any ϕ ∈ S(Rn) with
∫
Rn ϕ(x) dx �= 0 and f ∈

Hp,q
A (Rn),

f ∗ ϕk → f in Hp,q
A (Rn) as k → −∞. (5.1)

To show this, we first assume that f ∈ Hp,q
A (Rn) ∩ L2(Rn). In this case, to prove (5.1), it suffices to

show that

MN (f ∗ ϕk − f)(x) → 0 for almost every x ∈ Rn as k → −∞, (5.2)

where N := N(p)+2. Indeed, it is easy to see that f ∗ϕk−f ∈ L2(Rn) for all k ∈ Z, which, together with
Proposition 2.9 and Remark 2.10, implies that MN(f ∗ϕk − f) ∈ L2(Rn) for all k ∈ Z. By this, [9, p. 39,

Lemma 6.6], (5.2), (2.1) and the Lebesgue dominated convergence theorem, we know that (5.1) holds

true for all f ∈ Hp,q
A (Rn) ∩ L2(Rn).

Now, we show (5.2). Notice that, if g is continuous and has compact support, then g is uniformly

continuous on Rn. Thus, for any δ ∈ (0,∞), there exists η ∈ (0,∞) such that, for all y ∈ Rn satisfying

ρ(y) < η and x ∈ Rn,

|g(x− y)− g(x)| < δ

2‖ϕ‖L1(Rn)
.

Without loss of generality, we may assume that
∫
Rn ϕ(x) dx = 1. Then

∫
Rn ϕk(x) dx = 1 for all k ∈ Z.

From this, we deduce that, for all k ∈ Z and x ∈ Rn,

|g ∗ ϕk(x) − g(x)| �
∫
ρ(y)<η

|g(x− y)− g(x)||ϕk(y)| dy +
∫
ρ(y)�η

|g(x− y)− g(x)||ϕk(y)| dy
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<
δ

2
+ 2‖g‖L∞(Rn)

∫
ρ(y)�b−kη

|ϕ(y)| dy. (5.3)

On the other hand, by the integrability of ϕ, we know that there exists k̃ ∈ Z such that, for all k ∈
[k̃,∞) ∩ Z,

2‖g‖L∞(Rn)

∫
ρ(y)�b−kη

|ϕ(y)| dy < δ

2
,

which, combined with (5.3), implies that limk→−∞ |g ∗ ϕk(x) − g(x)| = 0 holds true uniformly for all

x ∈ Rn. Therefore, ‖g ∗ ϕk − g‖L∞(Rn) → 0 as k → −∞, which, together with Proposition 2.9 and

Remark 2.10, further implies that

‖MN(g ∗ ϕk − g)‖L∞(Rn) � ‖g ∗ ϕk − g‖L∞(Rn) → 0 as k → −∞. (5.4)

For any given ε ∈ (0,∞), there exists a continuous function g with compact support such that

‖f − g‖2L2(Rn) < ε.

By (5.4) and [9, p. 39, Lemma 6.6], there exists a positive constant C6 such that, for all x ∈ Rn,

lim sup
k→−∞

MN(f ∗ ϕk − f)(x)

� sup
k∈Z

MN((f − g) ∗ ϕk)(x) + lim sup
k→−∞

MN(g ∗ ϕk − g)(x) +MN(g − f)(x)

� C6MN(p)
(g − f)(x).

Therefore, by Proposition 2.9 and Remark 2.10 again, we find that there exists a positive constant C7

such that, for any λ ∈ (0,∞),∣∣∣∣{x ∈ Rn : lim sup
k→−∞

MN (f ∗ ϕk − f)(x) > λ

}∣∣∣∣
�

∣∣∣∣{x ∈ Rn :MN(p)
(g − f)(x) >

λ

C6

}∣∣∣∣ � C7

‖f − g‖2L2(Rn)

λ2
� C7

ε

λ2
,

which implies that (5.2) holds true for all f ∈ Hp,q
A (Rn) ∩ L2(Rn).

Assume now f ∈ Hp,q
A (Rn). By (i), we know that Hp,q

A (Rn) ∩ L2(Rn) is dense in Hp,q
A (Rn). Thus, for

any given ε ∈ (0,∞), there exists a function g ∈ Hp,q
A (Rn) ∩ L2(Rn) such that

‖f − g‖q
Hp,q

A (Rn)
< ε.

Moreover, by [9, p. 39, Lemma 6.6] again and f ∈ Hp,q
A (Rn), we find that {f ∗ ϕk}k∈Z are uniformly

bounded in Hp,q
A (Rn) and

sup
k∈Z

‖(f − g) ∗ ϕk‖Hp,q
A (Rn) � ‖f − g‖Hp,q

A (Rn).

Therefore, by (5.1) being true for all f ∈ Hp,q
A (Rn) ∩ L2(Rn), we further conclude that

lim sup
k→−∞

‖f ∗ ϕk − f‖q
Hp,q

A (Rn)

� sup
k∈Z

‖(f − g) ∗ ϕk‖qHp,q
A (Rn)

+ lim sup
k→−∞

‖g ∗ ϕk − g‖q
Hp,q

A (Rn)
+ ‖g − f‖q

Hp,q
A (Rn)

� ‖g − f‖q
Hp,q

A (Rn)
� ε.

This implies that the claim (5.1) holds true.

Notice that, if f ∈ Hp,r,s,q
A,fin (Rn) and ϕ ∈ C∞

c (Rn) with
∫
Rn ϕ(x) dx �= 0, then, for all k ∈ Z,

f ∗ ϕk ∈ C∞
c (Rn) ∩Hp,q

A (Rn)
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and, by (5.1),

f ∗ ϕk → f in Hp,q
A (Rn) as k → −∞.

From this and the density of the set Hp,r,s,q
A,fin (Rn) in Hp,q

A (Rn), we further deduce that C∞
c (Rn)∩Hp,q

A (Rn)
is dense in Hp,q

A (Rn). This finishes the proof of (ii) and hence Lemma 5.2.

The following conclusion is from Theorem 3.6 and its proof. We state it here for the later application.

Lemma 5.3. If p ∈ (0, 1], q ∈ (0,∞], r ∈ (1,∞] and s ∈ N with s � �(1/p− 1) ln b/ lnλ−	, then, for
any f ∈ Hp,q

A (Rn) ∩ Lr(Rn), there exist {λki }k∈Z, i∈N ⊂ C, {xki }k∈Z, i∈N ⊂ Rn, balls {B	ki }k∈Z, i∈N and

(p,∞, s)-atoms {aki }k∈Z, i∈N such that

f =
∑
k∈Z

∑
i∈N

λki a
k
i ,

where the series converges almost everywhere and also converges in S ′(Rn),

supp aki ⊂ B	ki +4τ , Ωk =
⋃
i∈N

(xki +B	ki +4τ ) for all k ∈ Z and i ∈ N, (5.5)

where

Ωk := {x ∈ Rn :MN(f)(x) > 2k},
(xki +B	ki −τ ) ∩ (xkj +B	kj−τ ) = ∅ for all k ∈ Z and i, j ∈ N with i �= j, (5.6)

�{j ∈ N : (xki +B	ki +4τ ) ∩ (xkj +B	kj+4τ ) �= ∅} � L for all i ∈ N, (5.7)

where L is a positive constant independent of Ωk and f . Moreover, there exists a positive constant C,

independent of f , such that, for all k ∈ Z and i ∈ N,

|λki aki | � C2k almost everywhere (5.8)

and ∑
k∈Z

(∑
i∈N

|λki |p
) q

p

� C‖f‖q
Hp,q

A (Rn)
. (5.9)

Remark 5.4. For all i ∈ N, k ∈ Z and � ∈ [0,∞), let ζki and P	(Rn) be the same as in the proof

of Theorem 3.6. For any f ∈ Hp,q
A (Rn) ∩ Lr(Rn), by an argument similar to that used in the proof

of Theorem 3.6, we also find that there exists a unique polynomial P ki ∈ P	(Rn) such that, for all

Q ∈ P	(Rn),

〈f,Qζki 〉 = 〈P ki , Qζki 〉 =
∫
Rn

P ki (x)Q(x)ζki (x) dx. (5.10)

Moreover, for any i, j ∈ N and k ∈ Z, we let the polynomial P k+1
i,j be the orthogonal projection of

(f − P k+1
j )ζki on P	(Rn) with respect to the norm defined by (3.8), namely, P k+1

i,j is the unique element

of P	(Rn) such that, for all Q ∈ P	(Rn),∫
Rn

[f(x)− P k+1
j (x)]ζki (x)Q(x)ζk+1

j (x) dx =

∫
Rn

P k+1
i,j (x)Q(x)ζk+1

j (x) dx (5.11)

and, for all i ∈ N and k ∈ Z,

λki a
k
i = (f − P ki )ζ

k
i −

∑
j∈N

[(f − P k+1
j )ζki − P k+1

i,j ]ζk+1
j . (5.12)

Lemmas 5.5 and 5.6 are just [13, Lemmas 4.4 and 5.2], respectively; see also [9, p. 25, Lemma 5.3 and

p. 36, Lemma 6.2].
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Lemma 5.5. There exists a positive constant C, independent of f , such that, for all i ∈ N and k ∈ Z,

sup
y∈Rn

|P ki (y)ζki (y)| � C sup
y∈Uk

i

MN (f)(y) � C2k,

where Uki := (xki +B	ki +4τ+1) ∩ (Ωk)
�.

Lemma 5.6. There exists a positive constant C, independent of f , such that, for all i, j ∈ N and

k ∈ Z,
sup
y∈Rn

|P k+1
i,j (y)ζk+1

j (y)| � C sup
y∈Ũk

i

MN (f)(y) � C2k+1,

where Ũki := (xk+1
j +B	k+1

j +4τ+1) ∩ (Ωk+1)
�.

The following Theorem 5.7 extends [53, Theorem 3.1 and Remark 3.3] to the setting of anisotropic

Hardy-Lorentz spaces.

Theorem 5.7. Let q ∈ (0,∞] and (p, r, s) be an admissible anisotropic triplet.

(i) If r ∈ (1,∞), then ‖ · ‖Hp,r,s,q
A,fin (Rn) and ‖ · ‖Hp,q

A (Rn) are equivalent quasi-norms on Hp,r,s,q
A,fin (Rn);

(ii) ‖ · ‖Hp,∞,s,q
A,fin (Rn) and ‖ · ‖Hp,q

A (Rn) are equivalent quasi-norms on Hp,∞,s,q
A,fin (Rn) ∩ C(Rn).

Proof. Obviously, by Theorem 3.6, Hp,r,s,q
A,fin (Rn) ⊂ Hp,q

A (Rn) and, for all f ∈ Hp,r,s,q
A,fin (Rn),

‖f‖Hp,q
A (Rn) � ‖f‖Hp,r,s,q

A,fin (Rn).

Thus, we only need to prove that, for all f ∈ Hp,r,s,q
A,fin (Rn) when r ∈ (1,∞) and for all f ∈ [Hp,r,s,q

A,fin (Rn)
∩ C(Rn)] when r = ∞, ‖f‖Hp,r,s,q

A,fin (Rn) � ‖f‖Hp,q
A (Rn). We prove this by five steps.

Step 1. Let r ∈ (1,∞]. In this case, without loss of generality, we may assume that f ∈ Hp,r,s,q
A,fin (Rn)

and ‖f‖Hp,q
A (Rn) = 1. Notice that f has compact support. Then there exists some k0 ∈ Z such that

supp f ⊂ Bk0 , where Bk0 is as in Section 2. For any k ∈ Z, let

Ωk := {x ∈ Rn :MN(f)(x) > 2k},

here and hereafter in this section, we let N ≡ N(p). Since f ∈ Hp,q
A (Rn) ∩ Lr̃(Rn), where r̃ := r if

r ∈ (1,∞) and r̃ := 2 if r = ∞, by Lemma 5.3, we know that there exist {λki }k∈Z, i∈N ⊂ C and a sequence

of (p,∞, s)-atoms, {aki }k∈Z, i∈N, such that f =
∑

k∈Z

∑
i∈N

λki a
k
i holds true almost everywhere and also

in S ′(Rn) and, moreover, (5.5) through (5.9) of Lemma 5.3 also hold true.

Step 2. In this step, we prove that there exists a positive constant C̃ such that, for all x ∈ (Bk0+4τ )
�,

MN (f)(x) � C̃|Bk0 |−1/p. (5.13)

To this end, for any fixed x ∈ (Bk0+4τ )
�, by Proposition 2.4, we have

MN(f)(x) �M0
N (f)(x) � sup

φ∈SN(Rn)

sup
k∈[k0,∞)∩Z

|f ∗ φk(x)| + sup
φ∈SN (Rn)

sup
k∈(−∞,k0)∩Z

· · · =: I1 + I2.

For I1, assume that θ ∈ S(Rn) satisfyies that supp θ ⊂ Bτ , 0 � θ � 1 and θ ≡ 1 on B0. For

k ∈ [k0,∞) ∩ Z, from supp f ⊂ Bk0 , we deduce that

f ∗ φk(x) =
∫
Rn

φk(x− y)θ(A−k0y)f(y) dy =: f ∗ ϕk0(�0n), (5.14)

where ϕ(y) := bk0−kφ(A−kx+Ak0−ky)θ(−y) for all y ∈ Rn. Noticing that, for any α ∈ Zn+ with |α| � N ,

by (2.5), λ− ∈ (1,∞), k ∈ [k0,∞) ∩ Z and ‖φ‖SN (Rn) � 1, we find that, for all y ∈ Rn,

|∂α[φ(Ak0−k·)](y)| � (λ−)(k0−k)|α|‖φ‖SN (Rn) � 1,

which, combined with the product rule and supp θ ⊂ Bτ , further implies that

‖ϕ‖SN (Rn) = sup
|α|�N

sup
y∈Bτ

|∂αy [φ(A−kx+Ak0−ky)θ(−y)]|[1 + ρ(y)]N � 1. (5.15)
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Thus, noticing that [‖ϕ‖SN(Rn)]
−1ϕ ∈ SN (Rn) and, for all z ∈ Bk0 , �0n ∈ z+Bk0 , by the definition ofMN ,

we know that, for all z ∈ Bk0 ,

MN (f)(z) � sup
u∈z+Bk0

∣∣∣∣( ϕ

‖ϕ‖SN (Rn)

)
k0

∗ f(u)
∣∣∣∣ � 1

‖ϕ‖SN(Rn)
|ϕk0 ∗ f(�0n)|. (5.16)

Combining (5.14)–(5.16), we further conclude that, for all x ∈ (Bk0+4τ )
�,

|f ∗ φk(x)| � ‖ϕ‖SN(Rn) inf
z∈Bk0

MN(f)(z) � inf
z∈Bk0

MN(f)(z)

and hence I1 � infz∈Bk0
MN (f)(z) =: C8 infz∈Bk0

MN(f)(z). Let

Ĩ :=
I1 + C8 infz∈Bk0

MN (f)(z)

2
.

Then, it is easy to see that I1 < Ĩ < C8 infz∈Bk0
MN(f)(z). Therefore, we have

‖f‖Hp,q
A (Rn) � ‖f‖Hp,∞

A (Rn) � sup
λ∈(0,∞)

λ|{z ∈ Bk0 : C8MN(f)(z) > λ}| 1p

� I1|{z ∈ Bk0 : Ĩ > I1}|
1
p ∼ I1|Bk0 |

1
p ,

which, together with ‖f‖Hp,q
A (Rn) = 1, further implies that I1 � |Bk0 |−

1
p .

For I2, by supp f ⊂ Bk0 and θ ≡ 1 on B0, we find that, for all k ∈ (−∞, k0) ∩ Z, x ∈ (Bk0+4τ )
� and

z ∈ Bk0 ,

f ∗ φk(x) =
∫
Rn

φk(x− y)θ(A−k0y)f(y) dy =: f ∗ ψk(z),

where ψ(u) := φ(A−k(x − z) + u)θ(A−k0z − Ak−k0u) for all u ∈ Rn. Notice that, if u ∈ suppψ, then

A−k0z −Ak−k0u ∈ Bτ and hence u ∈ Bk0−k+2τ . Therefore, by (2.7) and (2.8), we have

A−k(x− z) + u ∈ (Bk0−k+4τ )
� +Bk0−k +Bk0−k+2τ

⊂ (Bk0−k+4τ )
� +Bk0−k+3τ ⊂ (Bk0−k+3τ )

�,

which implies that ρ(A−k(x − z) + u) � bk0−k+3τ . From this, (2.5), λ− ∈ (1,∞), k ∈ (−∞, k0) ∩ Z and

φ ∈ SN (Rn), we further deduce that

‖ψ‖SN(Rn) � sup
|α|�N

sup
u∈ suppψ

(λ−)(k−k0)|α|
[

1 + ρ(u)

1 + ρ(A−k(x− z) + u)

]N
� 1.

Thus, by an argument similar to that used for I1, we have

I2 � inf
z∈Bk0

MN (f)(z) � |Bk0 |−
1
p .

Combining the above estimates of I1 and I2, we show that (5.13) holds true.

Step 3. We now denote by k̃ the largest integer k such that 2k < C̃|Bk0 |−
1
p , where C̃ is the same as

in (5.13). Then, by (5.13), we have

Ωk ⊂ Bk0+4τ for all k ∈ (k̃,∞] ∩ Z. (5.17)

Let

h :=
k̃∑

k=−∞

∑
i∈N

λki a
k
i and � :=

∞∑
k=k̃+1

∑
i∈N

λki a
k
i ,

where the series converge almost everywhere and also in S′(Rn). Clearly, f = h + �. In what follows

of this step, we show that h is a constant multiple of a (p,∞, s)-atom with the constant independent
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of f . To this end, observe that supp � ⊂
⋃∞
k=k̃+1 Ωk ⊂ Bk0+4τ , which, combined with supp f ⊂ Bk0+4τ ,

further implies that supph ⊂ Bk0+4τ .

Notice that, for any r ∈ (1,∞] and r1 ∈ (1, r), by Hölder’s inequality, we have∫
Rn

|f(x)|r1 dx � |Bk0 |1−
r1
r ‖f‖r1Lr(Rn) <∞.

Observing that supp f ⊂ Bk0 and f has vanishing moments up to order s, we know that f is a constant

multiple of a (1, r1, 0)-atom and therefore, by Lemma 3.4, MN (f) ∈ L1(Rn). Then, by (5.7), (5.5), (5.17)

and (5.8), we have ∫
Rn

∞∑
k=k̃+1

∑
i∈N

|λki aki (x)xα| dx �
∑
k∈Z

2k|Ωk| � ‖MN(f)‖L1(Rn) <∞.

This, together with the vanishing moments of aki , implies that � has vanishing moments up to s and hence

so does h by h = f − �. Moreover, by (5.7), (5.8) and the fact that 2k̃ < C̃|Bk0 |−
1
p , we find that, for all

x ∈ Rn,

|h(x)| �
k̃∑

k=−∞
2k � |Bk0 |−

1
p .

Thus, there exists a positive constant C9, independent of f , such that h/C9 is a (p,∞, s)-atom and, by

Definition 3.1, it is also a (p, r, s)-atom for any admissible anisotropic triplet (p, r, s).

Step 4. In this step, we show (i). To this end, assume that r ∈ (1,∞). We first show that

∞∑
k=k̃+1

∑
i∈N

λki a
k
i ∈ Lr(Rn).

For all x ∈ Rn, since Rn =
⋃
j∈Z

(Ωj\Ωj+1), it follows that there exists a j0 ∈ Z such that x ∈ (Ωj0\Ωj0+1).

Notice that supp aki ⊂ B	ki +τ ⊂ Ωk ⊂ Ωj0+1 for all k ∈ (j0,∞) ∩ Z, using (5.7) and (5.8), we conclude

that, for all x ∈ (Ωj0 \ Ωj0+1),

∞∑
k=k̃+1

∑
i∈N

|λki aki (x)| �
∑
k�j0

2k � 2j0 �MN(f)(x).

Since f ∈ Lr(Rn), from Proposition 2.9 and Remark 2.10, it follows that MN(f) ∈ Lr(Rn). Thus, by the

Lebesgue dominated convergence theorem, we further have
∑K

k=k̃+1

∑
i∈N

λki a
k
i converges to � in Lr(Rn)

as K � k̃ + 1 and K → ∞.

Now, for any positive integer K > k̃ and k ∈ [k̃ + 1,K] ∩ Z, let

I(K,k) := {i ∈ N : |i|+ |k| � K} and �(K) :=

K∑
k=k̃+1

∑
i∈I(K,k)

λki a
k
i .

Since � ∈ Lr(Rn), it follows that, for any given ε ∈ (0, 1), there exists K ∈ [k̃ + 1,∞) ∩ Z large enough,

depending on ε, such that (�− �(K))/ε is a (p, r, s)-atom. Therefore, f = h+ �(K) + (�− �(K)) is a finite

linear combination of (p, r, s)-atoms. By Step 3 and (5.9), we further conclude that

‖f‖q
Hp,r,s,q

A,fin (Rn)
� (C0)

q +

K∑
k=k̃+1

( ∑
i∈I(K,k)

|λki |p
) q

p

+ εq � 1,

which completes the proof of (i).

Step 5. In this step, we show (ii). To this end, assume that f is a continuous function in Hp,∞,s,q
A,fin (Rn).

Then aki is also continuous due to its construction (see also (3.15)). Since

MN (f)(x) � C(n,N)‖f‖L∞(Rn) for all x ∈ Rn,
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where C(n,N) is a positive constant only depending on n and N , it follows that the level set Ωk is empty

for all k satisfying that

2k � C(n,N)‖f‖L∞(Rn). (5.18)

Let k̂ be the largest integer for which (5.18) does not hold true. Then the index k in the sum defining �

runs only over k ∈ {k̃ + 1, . . . , k̂}.
Let ε ∈ (0,∞). Since f is uniformly continuous, it follows that there exists a δ ∈ (0,∞) such that

|f(x)− f(y)| < ε whenever ρ(x− y) < δ. Write � = �ε1 + �ε2 with

�ε1 :=

k̂∑
k=k̃+1

∑
i∈F (k,δ)

1

λki a
k
i and �ε2 :=

k̂∑
k=k̃+1

∑
i∈F (k,δ)

2

λki a
k
i ,

where, for k ∈ {k̃ + 1, . . . , k̂},

F
(k,δ)
1 := {i ∈ N : b	

k
i +τ � δ} and F

(k,δ)
2 := {i ∈ N : b	

k
i +τ < δ}.

Notice that, for any fixed k ∈ {k̃ + 1, . . . , k̂}, by (5.6) and (5.17), we know that F
(k,δ)
1 is a finite set and

hence �ε1 is continuous.

On the other hand, for any k ∈ {k̃ + 1, . . . , k̂}, i ∈ N such that b	
k
i +τ < δ and x ∈ xki + B	ki +τ ,

|f(x)− f(xki )| < ε. By (5.10) and supp ζki ⊂ xki +B	ki +τ , we find that, for all Q ∈ P	(Rn),

1∫
Rn ζki (x) dx

∫
Rn

[f̃(x)− P̃ ki (x)]Q(x)ζki (x) dx = 0,

where, for all x ∈ Rn,

f̃(x) := [f(x)− f(xki )]χ{xk
i +B�k

i
+τ

}(x) and P̃ ki (x) := P ki (x) − f(xki ).

Since |f̃(x)| < ε for all x ∈ Rn implies MN(f̃)(x) � ε for all x ∈ Rn, from Lemma 5.5, it follows that

sup
y∈Rn

|P̃ ki (y)ζki (y)| � sup
y∈Rn

MN (f̃)(y) � ε. (5.19)

Similar to Remark 5.4, for all k ∈ {k̃ + 1, . . . , k̂}, i ∈ F
(k,δ)
2 and j ∈ N, let P̃ k+1

i,j be the orthogonal

projection of (f̃− P̃ k+1
j )ζki on P	(Rn) with respect to the norm defined by (3.8), then, for all Q ∈ P	(Rn),∫

Rn

[f̃(x) − P̃ k+1
j (x)]ζki (x)Q(x)ζk+1

j (x) dx =

∫
Rn

P̃ k+1
i,j (x)Q(x)ζk+1

j (x) dx. (5.20)

By supp ζki ⊂ xki +B	ki +τ , we have [f̃ − P̃
k+1
j ]ζki = [f −P k+1

j ]ζki . From this, (5.11) and (5.20), we further

deduce that P̃ k+1
i,j = P k+1

i,j . Then, by Lemma 5.6, we find that

sup
y∈Rn

|P̃ k+1
i,j (y)ζk+1

j (y)| � sup
y∈Rn

MN (f̃)(y) � ε. (5.21)

Furthermore, by (5.12) and
∑

j∈N
ζk+1
j = χΩk+1

, we have

λki a
k
i = (f − P ki )ζ

k
i −

∑
j∈N

[(f − P k+1
j )ζki − P k+1

i,j ]ζk+1
j

= ζki f̃χΩ�
k+1

− P̃ ki ζ
k
i + ζki

∑
j∈N

P̃ k+1
j ζk+1

j +
∑
j∈N

P̃ k+1
i,j ζk+1

j ,

which, combined with (5.19), (5.21) and [9, p. 35, Lemma 6.1(ii)], further implies that |λki aki (x)| � ε for

all k ∈ {k̃ + 1, . . . , k̂}, i ∈ F
(k,δ)
2 and x ∈ xki +B	ki +τ .
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Moreover, using (5.5) and (5.7), we conclude that there exists a positive constant C10, independent

of f , such that

|�ε2| � C10

k̂∑
k=k̃+1

ε = C10(k̂ − k̃)ε. (5.22)

Since ε is arbitrary, we hence split � into a continuous part and a part which is uniformly arbitrarily

small. This fact implies that � is continuous. Therefore, h = f − � is a C9 multiple of a continuous

(p,∞, s)-atom by Step 3.

Now we give a finite decomposition of f . To this end, we use again the splitting � := �ε1+�
ε
2. Obviously,

for any ε ∈ (0,∞), �ε1 is a finite linear combination of continuous (p,∞, s)-atoms and, by (5.9), we have

k̂∑
k=k̃+1

( ∑
i∈F (k,δ)

1

|λki |p
) q

p

� ‖f‖q
Hp,q

A (Rn)
. (5.23)

Observe that � and �ε1 are continuous and have vanishing moments up to s and hence so does �ε2. Moreover,

supp �ε2 ⊂ Bk0+4τ and ‖�ε2‖L∞(Rn) � C10(k̂ − k̃)ε by (5.22). Therefore, we choose ε small enough such

that �ε2 becomes an arbitrarily small multiple of a continuous (p,∞, s)-atom. Indeed, �ε2 = λεaε, where

λε := C10(k̂ − k̃)ε|Bk0+4τ |1/p

and aε is a continuous (p,∞, s)-atom. Thus, f = h+ �ε1+ �
ε
2 gives the desired finite atomic decomposition

of f . Then, by (5.23) and the fact that h/C9 is a (p,∞, s)-atom, we have

‖f‖Hp,∞,s,q
A,fin (Rn) � ‖h‖Hp,∞,s,q

A,fin (Rn) + ‖�ε1‖Hp,∞,s,q
A,fin (Rn) + ‖�ε2‖Hp,∞,s,q

A,fin (Rn) � 1.

This finishes the proof of (ii) and hence Theorem 5.7.

6 Some applications

In this section, we give some applications. In Subsection 6.1, we consider the interpolation properties of

the anisotropic Hardy-Lorentz space Hp,q
A (Rn) via the real method. In Subsection 6.2, we first obtain the

boundedness of the δ-type Calderón-Zygmund operators from Hp
A(R

n) to Lp,∞(Rn) (or to Hp,∞
A (Rn)) in

the critical case. Then we prove that some Calderón-Zygmund operators are bounded from Hp,q
A (Rn) to

Lp,∞(Rn). In addition, as an application of the finite atomic decomposition characterizations of Hp,q
A (Rn)

in Theorem 5.7, we establish a criterion for the boundedness of sublinear operators from Hp,q
A (Rn) into

a quasi-Banach space, which is of independent interest. Moreover, using this criterion, we further obtain

the boundedness of the δ-type Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,q(Rn) (or to Hp,q

A (Rn)).

6.1 Interpolation of Hp,q
A (Rn)

In this subsection, as an application of the atomic decomposition for the anisotropic Hardy-Lorentz

space Hp,q
A (Rn), we prove the real interpolation properties on Hp,q

A (Rn) (see Theorem 6.1 below), whose

isotropic version includes [1, Theorem 2.5] as a special case (see Remark 6.7(ii) below).

We first recall some basic notions about the theory of real interpolation. Assume that (X1, X2) is a

compatible couple of quasi-normed spaces, namely, X1 and X2 are two quasi-normed linear spaces which

are continuously embedded in some larger topological vector space. Let

X1 +X2 := {f1 + f2 : f1 ∈ X1, f2 ∈ X2}.

For t ∈ (0,∞], the Peetre K-functional on X1 +X2 is defined as

K(t, f ;X1, X2) := inf{‖f1‖X1 + t‖f2‖X2 : f = f1 + f2, f1 ∈ X1 and f2 ∈ X2}.
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Moreover, for θ ∈ (0, 1) and q ∈ (0,∞], the interpolation space (X1, X2)θ,q is defined as

(X1, X2)θ,q :=

{
f ∈ X1 +X2 : ‖f‖θ,q :=

(∫ ∞

0

[t−θK(t, f ;X1, X2)]
q dt

t

)1/q

<∞
}
.

It is well known that

(Lq1(Rn), Lq2(Rn))θ,q = Lq(Rn) and (Lp,q1(Rn), Lp,q2(Rn))θ,q = Lp,q(Rn),

where p ∈ (0,∞), 0 < q1 � q2 � ∞, q ∈ [q1, q2] and θ ∈ (0, 1) satisfy that 1/q = (1−θ)/q1+θ/q2 (see [8]).
The main result of this subsection is the following real interpolation properties of Hp,q

A (Rn).

Theorem 6.1. Let p ∈ (0,∞) and q1, q, q2 ∈ (0,∞].

(i) If p1, p2 ∈ (0,∞), p1 �= p2, θ ∈ (0, 1) and 1/p = (1− θ)/p1 + θ/p2, then

(Hp1,q1
A (Rn), Hp2,q2

A (Rn))θ,q = Hp,q
A (Rn). (6.1)

(ii) If θ ∈ (0, 1) and 1/q = (1− θ)/q1 + θ/q2, then

(Hp,q1
A (Rn), Hp,q2

A (Rn))θ,q = Hp,q
A (Rn). (6.2)

In order to prove Theorem 6.1, we need the following technical lemma on the decomposition of a

function into its “good” and “bad” parts, whose proof is similar to the proof of [9, Lemmas 5.7 and

5.10(ii)], the details being omitted.

Lemma 6.2. Let p ∈ (0, 1], N ∈ [N(p),∞) ∩ Z, f ∈ C∞
c (Rn), λ ∈ (0,∞) and

Ωλ := {x ∈ Rn :MN (f)(x) > λ}.

Then there exist two functions gλ and bλ such that f = gλ + bλ and

‖gλ‖L∞(Rn) � C11λ, ‖bλ‖pHp
A(Rn)

� C12

∫
Ωλ

[MN (f)(x)]p dx,

where C11 and C12 are positive constants independent of f and λ, and Hp
A(R

n) is the anisotropic Hardy

space introduced in [9].

By Lemma 6.2 and an argument parallel to the proof of [29, Theorem 1], we obtain the following real

interpolation properties, the details being omitting.

Lemma 6.3. Assume that q ∈ (0,∞], p0 ∈ (0, 1], θ ∈ (0, 1) and 1/p = (1− θ)/p0. Then

(Hp0
A (Rn), L∞(Rn))θ,q = Hp,q

A (Rn). (6.3)

Remark 6.4. If A := d In×n for some d ∈ R with |d| ∈ (1,∞), then Hp0
A (Rn) and Hp,q

A (Rn) in

Lemma 6.3 become the classical isotropic Hardy and Hardy-Lorentz spaces, respectively. In this case, if

q ∈ (0,∞], p0 ∈ (0, 1], θ ∈ (0, 1), and 1/p = (1 − θ)/p0, then

(Hp0(Rn), L∞(Rn))θ,q = Hp,q(Rn),

which is just [29, Theorem 1].

Now we employ Lemma 6.3 to prove Theorem 6.1(i).

Proof of Theorem 6.1(i). Indeed, if p1, p2 ∈ (0,∞) and p1 �= p2, then there exist r ∈ (0,min{p1, p2, 1})
and η1, η2 ∈ (0, 1) such that 1/pi = (1− ηi)/r, i ∈ {1, 2}. Let η := (1− θ)η1 + θη2. Noticing that

1/p = (1− θ)/p1 + θ/p2 = (1 − η)/r,

by Lemma 6.3 and the reiteration theorem (see, for example, [55, Theorem 2]), we know that

(Hp1,q1
A (Rn), Hp2,q2

A (Rn))θ,q = ((Hr
A(R

n), L∞(Rn))η1,q1 , (H
r
A(R

n), L∞(Rn))η2,q2)θ,q
= (Hr

A(R
n), L∞(Rn))η,q = Hp,q

A (Rn),

which is the desired conclusion (6.1). This finishes the proof of Theorem 6.1(i).
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As an immediate consequence of Theorem 6.1(i), we easily know that the anisotropic Hardy-Lorentz

space Hp,q
A (Rn) serves as a median space between two anisotropic Hardy spaces via the real method,

which is the following Corollary 6.5.

Corollary 6.5. Assume that q ∈ (0,∞], p, p1, p2 ∈ (0,∞), p1 �= p2, θ ∈ (0, 1) and 1/p = (1 − θ)/p1
+ θ/p2. Then

(Hp1
A (Rn), Hp2

A (Rn))θ,q = Hp,q
A (Rn).

Remark 6.6. (i) If A := d In×n for some d ∈ R with |d| ∈ (1,∞), then Hp1
A (Rn), Hp2

A (Rn) and

Hp,q
A (Rn) in Corollary 6.5 become the classical isotropic Hardy and Hardy-Lorentz spaces, respectively.

In this case, if q ∈ (0,∞], p, p1, p2 ∈ (0,∞), p1 �= p2, θ ∈ (0, 1) and 1/p = (1 − θ)/p1 + θ/p2, then, by

Corollary 6.5, we have

(Hp1(Rn), Hp2(Rn))θ,q = Hp,q(Rn).

In particular,

(Hp1(Rn), Hp2(Rn))θ,p = Hp(Rn),

provided that θ ∈ (0, 1) and 1/p = (1 − θ)/p1 + θ/p2.

(ii) If p ∈ (1,∞) and q ∈ (0,∞], then Hp,q
A (Rn) = Lp,q(Rn). Indeed, for any p ∈ (1,∞), there exist

p1, p2 ∈ (1,∞), p1 �= p2 and θ ∈ (0, 1) such that 1/p = (1 − θ)/p1 + θ/p2. From this, Corollary 6.5,

Hr
A(R

n) = Lr(Rn) for all r ∈ (1,∞) (see [9, p. 16, Remark]) and the corresponding interpolation result

of Lorentz spaces (see, for example, [55, Theorem 3]), we deduce that

Hp,q
A (Rn) = (Hp1

A (Rn), Hp2
A (Rn))θ,q = (Lp1(Rn), Lp2(Rn))θ,q = Lp,q(Rn).

Now we turn to prove Theorem 6.1(ii) via Remark 6.6(ii).

Proof of Theorem 6.1(ii). To show Theorem 6.1(ii), we consider two cases. If p ∈ (0, 1], by a proof

similar to that of [1, Theorem 2.5], we easily obtain the desired conclusion (6.2). If p ∈ (1,∞), by

Remark 6.6(ii) and the interpolation properties of Lorentz spaces (see, for example, [8, Theorem 5.3.1]),

we find that (6.2) holds true. This finishes the proof of Theorem 6.1(ii) and hence Theorem 6.1.

Remark 6.7. (i) If A := d In×n for some d ∈ R with |d| ∈ (1,∞), then Hpi,qi
A (Rn), Hp,qi

A (Rn),
i ∈ {1, 2}, and Hp,q

A (Rn) in Theorem 6.1 become the classical isotropic Hardy-Lorentz spaces. In this

case, by Theorem 6.1(i), we know that

(Hp1,q1(Rn), Hp2,q2(Rn))θ,q = Hp,q(Rn),

provided that q1, q, q2 ∈ (0,∞], p1, p, p2 ∈ (0,∞), p1 �= p2, θ ∈ (0, 1) and 1/p = (1− θ)/p1+ θ/p2, which

is a well-known interpolation result for classical isotropic Hardy-Lorentz spaces (see [29, p. 75, (2)]). In

addition, by Theorem 6.1(ii), we have

(Hp,q1(Rn), Hp,q2(Rn))θ,q = Hp,q(Rn),

provided that p ∈ (0,∞), θ ∈ (0, 1) and q1, q, q2 ∈ (0,∞] satisfy that 1/q = (1 − θ)/q1 + θ/q2, which

generalizes [1, Theorem 2.5].

(ii) Lemma 6.3 also holds true for all p0 ∈ (1,∞) and q ∈ (0,∞]. Indeed, notice that, if p0 ∈ (1,∞),

then p ∈ (1,∞). Thus, by Remark 6.6(ii), we have

Hp0
A (Rn) = Lp0(Rn) and Hp,q

A (Rn) = Lp,q(Rn).

From this and the fact that, for all q ∈ (0,∞],

(Lp0(Rn), L∞(Rn))θ,q = Lp,q(Rn) with
1

p
=

1− θ

p0
and θ ∈ (0, 1)

(see [8, Theorem 5.3.1]), we further deduce that (6.3) holds true for all p0 ∈ (1,∞) and q ∈ (0,∞].
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6.2 Boundedness of Calderón-Zygmund operators

As another application of the atomic decomposition for Hp,q
A (Rn), in this subsection, we first obtain the

boundedness of the δ-type Calderón-Zygmund operators from Hp
A(R

n) to Lp,∞(Rn) (or to Hp,∞
A (Rn)) in

the critical case (see Theorem 6.8 and Remark 6.10 below). As the third application of Theorem 3.6, we

also prove that some Calderón-Zygmund operators are bounded from Hp,q
A (Rn) to Lp,∞(Rn) (see Theo-

rem 6.11 below). This application is a generalization of [1, Theorem 2.2] in the present setting. In addition,

as an application of the finite atomic decomposition characterizations for Hp,q
A (Rn) in Theorem 5.7, we

establish a criterion for the boundedness of sublinear operators from Hp,q
A (Rn) into a quasi-Banach space

(see Theorem 6.13 below), which is of independent interest. Moreover, using this criterion, we further

obtain the boundedness of the δ-type Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,q(Rn) (or to

Hp,q
A (Rn)) with δ ∈ (0, lnλ−

ln b ], p ∈ ( 1
1+δ , 1] and q ∈ (0,∞] (see Theorem 6.16 below).

As the first main result of this subsection, the following Theorem 6.8 is the boundedness of the δ-type

Calderón-Zygmund operators from Hp
A(R

n) to Lp,∞(Rn) (or to Hp,∞
A (Rn)) in the critical case.

Theorem 6.8. Let δ ∈ (0, lnλ−
ln b ] and p = 1

1+δ . If k ∈ S ′(Rn) coincides with a locally integrable function

on Rn \ {�0n} and there exist two positive constants C13 and C14, independent of f, x and y, such that

‖k ∗ f‖L2(Rn) � C13‖f‖L2(Rn)

and, when ρ(x) � b2τρ(y),

|k(x− y)− k(x)| � C14
[ρ(y)]δ

[ρ(x)]1+δ
, (6.4)

then T (f) := k ∗ f for all f ∈ L2(Rn)∩Hp
A(R

n) has a unique extension on Hp
A(R

n) and, moreover, there

exist two positive constants C15 and C16 such that, for all f ∈ Hp
A(R

n),

‖T (f)‖Lp,∞(Rn) � C15‖f‖Hp
A(Rn) (6.5)

and

‖T (f)‖Hp,∞
A (Rn) � C16‖f‖Hp

A(Rn). (6.6)

To show Theorem 6.8, we need the following weak-type summable principle, which is from [31, p. 9]

(see also [47, p. 114]).

Lemma 6.9. Let p ∈ (0, 1), (X,μ) be any metric space and {fj}j∈N be a sequence of measurable

functions such that, for all j ∈ N and λ ∈ (0,∞),

μ({x ∈ X : |fj(x)| > λ}) � Cλ−p,

where C is a positive constant independent of λ and j. If {cj}j∈N ⊂ C satisfies that
∑

j∈N
|cj |p < ∞,

then
∑

j∈N
cjfj(x) is absolutely convergent almost everywhere and there exists a positive constant C̃ such

that, for all λ ∈ (0,∞),

μ

({
x ∈ X :

∣∣∣∣∑
j∈N

cjfj(x)

∣∣∣∣ > λ

})
� C̃

2− p

1− p

[∑
j∈N

|cj |p
]
λ−p.

Now we show Theorem 6.8.

Proof of Theorem 6.8. We first prove (6.5). By Theorem 3.6, to show (6.5), it suffices to prove that,

for h being a constant multiple of a (p,∞, s)-atom associated with ball B := x0 + B	 for some x0 ∈ Rn

and � ∈ Z,

sup
k∈Z

2kp|{x ∈ Rn : |T (h)(x)| > 2k}| � ‖h‖pL∞(Rn)|B|. (6.7)
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Indeed, by Theorem 3.6 with p = q, we find that, for any f ∈ Hp
A(R

n), there exists a sequence of

constant multiples of (p,∞, s)-atoms, {hj}j∈N, associated with balls {Bj}j∈N, such that f =
∑

j∈N
hj in

S ′(Rn) and

‖f‖Hp
A(Rn) ∼

[∑
j∈N

‖hj‖pL∞(Rn)|Bj |
] 1

p

.

From this, (6.7) and Lemma 6.9, we deduce that

sup
k∈Z

2kp|{x ∈ Rn : |T (f)(x)| > 2k}|

� sup
k∈Z

2kp
∣∣∣∣{x ∈ Rn :

∑
j∈N

|T (hj)(x)| > 2k
}∣∣∣∣ � ∑

j∈N

‖hj‖pL∞(Rn)|Bj | � ‖f‖p
Hp

A(Rn)
, (6.8)

which implies that ‖T (f)‖Lp,∞
A (Rn) � ‖f‖Hp

A(Rn). This is as desired.

It remains to prove (6.7). First, by the boundedness of T and Hölder’s inequality, we know that

sup
k∈Z

2kp|{x ∈ A4τB : |T (h)(x)| > 2k}|

�
∫
A4τB

|T (h)(x)|p dx � |B|(
p
2 )

′
{∫

A4τB

|T (h)(x)|2 dx
} p

2

� |B|(
p
2 )

′
{∫

Rn

|h(x)|2 dx
} p

2

� ‖h‖pL∞(Rn)|B|. (6.9)

On the other hand, by
∫
Rn h(x) dx = 0 and (6.4), we find that, for all x ∈ (A4τB)�,

|T (h)(x)| �
∫
B

|k(x− y)− k(x− x0)||h(y)| dy

� ‖h‖L∞(Rn)

∫
B

[ρ(y − x0)]
δ

[ρ(x− x0)]1+δ
� |B|1+δ

[ρ(x− x0)]1+δ
‖h‖L∞(Rn),

which further implies that

sup
k∈Z

2kp|{x ∈ (A4τB)� : |T (h)(x)| > 2k}|

� sup
k∈Z

2kp
∣∣∣∣{x ∈ (A4τB)� :

|B|1+δ
[ρ(x− x0)]1+δ

‖h‖L∞(Rn) > 2k
}∣∣∣∣

� sup
k∈Z∩(−∞,‖h‖L∞(Rn))

2kp
[‖h‖L∞(Rn)

2k

] 1
1+δ

|B| ∼ ‖h‖pL∞(Rn)|B|. (6.10)

Then (6.7) follows from (6.9) and (6.10), which completes the proof of (6.5).

Next we prove (6.6). To this end, similar to (6.8), it suffices to prove that

sup
k∈Z

2kp|{x ∈ Rn :MN(T (h))(x) > 2k}| � ‖h‖pL∞(Rn)|B|. (6.11)

First, similar to (6.9), by the boundedness of T and MN on L2(Rn) (see Remark 2.10), we easily con-

clude that

sup
k∈Z

2kp|{x ∈ A4τB :MN (T (h))(x) > 2k}| � ‖h‖pL∞(Rn)|B|. (6.12)

By
∫
Rn h(x) dx = 0, we know that T̂ (h)(�0n) = k̂(�0n)ĥ(�0n) = 0 and hence

∫
Rn T (h)(x) dx = 0. By this,

we find that, for all φ ∈ SN (Rn), k ∈ Z and x ∈ (A4τB)�,

|T (h) ∗ φk(x)| = b−k
∣∣∣∣ ∫

Rn

T (h)(y)[φ(A−k(x − y))− φ(A−k(x− x0))] dy

∣∣∣∣
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� b−k
∫
Rn

|T (h)(y)||φ(A−k(x− y))− φ(A−k(x− x0))| dy

� b−k
{∫

ρ(y−x0)<b2τ |B|
+

∫
b2τ |B|�ρ(y−x0)<b−2τρ(x−x0)

+

∫
ρ(y−x0)�b−2τρ(x−x0)

}
× |T (h)(y)||φ(A−k(x − y))− φ(A−k(x− x0))| dy

=: I1 + I2 + I3. (6.13)

For I1, by the mean value theorem, [9, p. 11, Lemma 3.2], Hölder’s inequality and the boundedness

of T on L2(Rn), we conclude that there exists ξ(y) ∈ A2τB such that, for all φ ∈ SN (Rn), k ∈ Z and

x ∈ (A4τB)�,

I1 = b−k
∫
ρ(y−x0)<b2τ |B|

|T (h)(y)||φ(A−k(x− y))− φ(A−k(x − x0))| dy

� b−k
∫
ρ(y−x0)<b2τ |B|

|T (h)(y)|
∣∣∣∣ ∑
|β|=1

∂βφ(A−k(x− ξ(y)))

∣∣∣∣|A−k(y − x0)| dy

� b−k
∫
ρ(y−x0)<b2τ |B|

|T (h)(y)| bk(1+δ̃)

[ρ(x− x0)]1+δ̃
b−kδ̃[ρ(y − x0)]

δ̃ dy

� |B|δ̃

[ρ(x− x0)]1+δ̃

{∫
Rn

[T (h)]2(y)

} 1
2

|B| 12 � |B|1+δ̃

[ρ(x − x0)]1+δ̃
‖h‖L∞(Rn), (6.14)

where

δ̃ :=

{
(lnλ+)/(ln b), when ρ(y − x0) � 1,

(lnλ−)/(ln b), when ρ(y − x0) < 1.

For I2, by
∫
Rn h(x) dx = 0, (6.4) and the mean value theorem, we know that, for all φ ∈ SN (Rn), k ∈ Z

and x ∈ (A4τB)�,

I2 = b−k
∫
b2τ |B|�ρ(y−x0)<b−2τρ(x−x0)

∣∣∣∣ ∫
B

h(z)k(y − z) dz

∣∣∣∣|φ(A−k(x− y))− φ(A−k(x− x0))| dy

�
∫
b2τ |B|�ρ(y−x0)<b−2τρ(x−x0)

{∫
B

|h(z)||k(y − z)− k(y − x0)| dz
}

[ρ(y − x0)]
δ̃

[ρ(x− x0)]1+δ̃
dy

�
‖h‖L∞(Rn)

[ρ(x− x0)]1+δ̃

∫
b2τ |B|�ρ(y−x0)<b−2τρ(x−x0)

|B|1+δ

[ρ(y − x0)]1+δ−δ̃
dy

� |B|1+δ̃

[ρ(x− x0)]1+δ̃
‖h‖L∞(Rn), (6.15)

where δ̃ is as in (6.14).

For I3, by the fact that
∫
Rn b(x) dx = 0, (6.4) and φ ∈ SN (Rn), we find that, for all k ∈ Z and

x ∈ (A4τB)�,

I3 =

∫
ρ(y−x0)�b−2τρ(x−x0)

∣∣∣∣ ∫
B

h(z)k(y − z) dz

∣∣∣∣|φk(x− y)| dy

�
∫
ρ(y−x0)�b−2τρ(x−x0)

[∫
B

|h(z)||k(y − z)− k(y − x0)| dz
]
|φk(x− y)| dy

� ‖h‖L∞(Rn)

∫
ρ(y−x0)�b−2τρ(x−x0)

{∫
B

[ρ(z − x0)]
δ

[ρ(y − x0)]1+δ
dz

}
|φk(x− y)| dy

� |B|1+δ
[ρ(x− x0)]1+δ

‖h‖L∞(Rn)

∫
Rn

|φk(x − y)| dy � |B|1+δ
[ρ(x− x0)]1+δ

‖h‖L∞(Rn). (6.16)
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Combining (6.13)–(6.16) and Proposition 2.4, we know that, for all x ∈ (A4τB)�,

MN(T (h))(x) � sup
φ∈SN (Rn)

sup
k∈Z

|T (h) ∗ φk(x)| �
|B|1+δ

[ρ(x− x0)]1+δ
‖h‖L∞(Rn).

From this, together with an argument parallel to (6.10), we further deduce that

sup
k∈Z

2kp|{x ∈ (A4τB)� :MN(T (h))(x) > 2k}| � ‖h‖pL∞(Rn)|B|,

which, combined with (6.12), implies (6.11). This finishes the proof of (6.6) and hence Theorem 6.8.

Remark 6.10. (i) If A := d In×n for some d ∈ R with |d| ∈ (1,∞), then lnλ−
ln b = 1

n and Hp
A(R

n) and

Hp,∞
A (Rn) become the classical isotropic Hardy and weak Hardy spaces, respectively. In this case, we

know, by Theorem 6.8, that, if δ ∈ (0, 1], p = n
n+δ and T is the Calderón-Zygmund operator satisfying

all conditions of Theorem 6.8 with (6.4) replaced by

|k(x− y)− k(x)| � |y|δ
|x|n+δ , |x| � 2|y|,

where the implicit positive constant is independent of x and y, then T is bounded from H
n

n+δ (Rn)
to H

n
n+δ ,∞(Rn), which is just [47, Theorem 1]. Here n

n+δ is called the critical index. In this sense,

Theorem 6.8 also establishes the boundedness of Calderón-Zygmund operators from Hp
A(R

n) to Lp,∞(Rn)
in the critical case under the anisotropic setting.

(ii) Let δ ∈ (0, 1]. A non-convolutional δ-type Calderón-Zygmund operator T is a linear operator which

is bounded on L2(Rn) and satisfies that, for any f ∈ L2(Rn) with compact support and x /∈ supp(f),

T (f)(x) =

∫
supp(f)

K(x, y)f(y) dy,

where K denotes a standard kernel on (Rn × Rn) \ {(x, x) : x ∈ Rn} in the following sense: There exists

a positive constant C such that, for all x, y, z ∈ Rn,

|K(x, y)| � C

ρ(x− y)
if x �= y

and

|K(x, y) −K(x, z)| � C
[ρ(y − z)]δ

[ρ(x− y)]1+δ
if ρ(x− y) > b2τρ(y − z). (6.17)

By an argument similar to that used in the proof of (6.6) in Theorem 6.8, we find that (6.6) also holds

true for non-convolutional δ-type Calderón-Zygmund operators T with the additional assumption that

T ∗1 = 0 (namely, for any a ∈ L1(Rn) with compact support, if
∫
Rn a(x) dx = 0, then

∫
Rn T (a)(x) dx = 0),

the details being omitted.

(iii) Following the proof of (6.5) in Theorem 6.8, we know that (6.5) also holds true when T is a

non-convolutional δ-type Calderón-Zygmund operator.

(iv) Let δ ∈ (0, lnλ−
ln b ] and p ∈ ( 1

1+δ , 1]. If T is either a convolutional δ-type Calderón-Zygmund operator

as in Theorem 6.8 or a non-convolutional δ-type Calderón-Zygmund operator with the additional assump-

tion that T ∗1 = 0, as in (ii) of this remark, then, by a similar proof to that of [9, p. 68, Theorem 9.8], we

conclude that T is bounded from Hp
A(R

n) to Hp
A(R

n). Moreover, by an argument parallel to the proof

of [9, p. 69, Theorem 9.9], we know that, if T is either a convolutional δ-type Calderón-Zygmund operator

as in Theorem 6.8 or a non-convolutional δ-type Calderón-Zygmund operator T , then T is bounded from

Hp
A(R

n) to Lp(Rn). Comparing these with Theorem 6.8 and (ii) and (iii) of this remark, we know that

the latter further completes the boundedness of these operators in the critical case by establishing the

bounedness from Hp
A(R

n) to Lp,∞(Rn) (or to Hp,∞
A (Rn)).
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Another interesting application of the atomic decomposition for Hp,q
A (Rn) is to obtain the following

boundedness of Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,∞(Rn) with p ∈ (0, 1] and q ∈ (p,∞].

Theorem 6.11. Suppose that p ∈ (0, 1], q ∈ (p,∞], r ∈ (1,∞) and T is a Calderón-Zygmund operator

associated with the kernel k. Moreover, assume that T is bounded from Lr(Rn) to Lr,∞(Rn) and ωp
satisfies a Dini-type condition of order q/(q − p), namely,

A(p,q) :=

{∫ 1

0

[ωp(δ)]
q/(q−p) dδ

δ

}(q−p)/q
<∞, (6.18)

where, for δ ∈ (0, 1],

ωp(δ) := sup
B

1

|B|

∫
ρ(x−yB)> b2τ

δ |B|

[ ∫
B

∣∣∣∣k(x, y)− ∑
|β|�N

(y − yB)
βkβ(x, yB)

∣∣∣∣ dy]p dx,
N := �(1/p− 1) ln b

lnλ− 	, β := (β1, . . . , βn) ∈ Zn+,

kβ(x, yB) :=
1

β!
Dβk(x, y)|y=yB

and the supremum is taken over all dilated balls B ∈ B centered at yB. Then T is bounded from Hp,q
A (Rn)

to Lp,∞(Rn) and, moreover, there exists a positive constant C such that, for all f ∈ Hp,q
A (Rn),

‖T (f)‖Lp,∞(Rn) � C[A(p,q)]
1
p ‖f‖Hp,q

A (Rn).

Proof. Let p ∈ (0, 1], q ∈ (p,∞] and r ∈ (1,∞). For all f ∈ Hp,q
A (Rn), by Theorem 3.6 and Defini-

tion 3.2, we know that there exists a sequence of (p,∞, s)-atoms, {aki }i∈N, k∈Z, respectively supported

on {xki + Bki }i∈N, k∈Z ⊂ B such that f =
∑
k∈Z

∑
i∈N

λki a
k
i in S ′(Rn), λki ∼ 2k|Bki |1/p for all k ∈ Z and

i ∈ N,
∑
i∈N

χxk
i +B

k
i
(x) � 1 for all k ∈ Z and x ∈ Rn, and

‖f‖Hp,q
A (Rn) ∼ ‖{μk}k∈Z‖	q ,

where μk := (
∑

i∈N
|λki |p)1/p. For all k0 ∈ Z, let f1 :=

∑k0
k=−∞

∑
i∈N

λki a
k
i and f2 := f − f1. Since

rq
p ∈ (1,∞], from Hölder’s inequality, it follows that

‖f1‖Lr(Rn) �
k0∑

k=−∞

∥∥∥∥∑
i∈N

λki a
k
i

∥∥∥∥
Lr(Rn)

∼
k0∑

k=−∞

{∫
⋃

i∈N
(xk

i +B
k
i )

∣∣∣∣∑
i∈N

λki a
k
i (x)

∣∣∣∣r dx}1/r

�
k0∑

k=−∞
2k
(∑
i∈N

|Bki |
)1/r

�
k0∑

k=−∞
2k(1−

p
r
)

(∑
i∈N

|λki |p
)1/r

� 2k0(1−
p
r )‖{μk}k∈Z‖

p
r

	q ∼ 2k0(1−
p
r )‖f‖

p
r

Hp,q
A (Rn)

,

which, together with the boundedness from Lr(Rn) to Lr,∞(Rn) of T , implies that

2pk0 |{x ∈ Rn : |T (f1)(x)| > 2k0}| � ‖f‖p
Hp,q

A (Rn)
. (6.19)

To complete the proof of Theorem 6.11, it suffices to prove that, for all k0 ∈ Z,

2pk0 |{x ∈ Rn : |T (f2)(x)| > 2k0}| � A(p,q)‖f‖pHp,q
A (Rn)

. (6.20)

Indeed, if (6.20) is true, then, by (6.19), we further conclude that

2pk0 |{x ∈ Rn : |T (f)(x)| > 2k0}|
� 2pk0 |{x ∈ Rn : |T (f1)(x)| > 2k0−1}|+ 2pk0 |{x ∈ Rn : |T (f2)(x)| > 2k0−1}|
� ‖f‖p

Hp,q
A (Rn)

+A(p,q)‖f‖pHp,q
A (Rn)

� A(p,q)‖f‖pHp,q
A (Rn)

. (6.21)
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Taking the supremum over all k0 ∈ Z at the left-hand side of (6.21), we find that

‖T (f)‖Lp,∞(Rn) � [A(p,q)]
1
p ‖f‖Hp,q

A (Rn),

which is the desired conclusion of Theorem 6.11.

Finally, we give the proof of (6.20). To this end, for all i ∈ N and k ∈ Z, let B	ki := xki + Bki , where

�ki ∈ Z. For every k ∈ (k0,∞] ∩ Z, there exists an mk ∈ N such that

bmk−2τ−1 �
(
3

2

)p(k−k0)
< bmk−2τ .

Let

Bk0 :=
∞⋃

k=k0+1

⋃
i∈N

B	ki +mk+τ
.

Notice that λki ∼ 2k|Bki |1/p ∼ 2k|B	ki |
1/p. Since q/p ∈ (1,∞], from Hölder’s inequality, we deduce that,

for all k ∈ Z and i ∈ N,

|Bk0 | �
∞∑

k=k0+1

∑
i∈N

|B	ki +mk+τ
| � 2−pk0

∞∑
k=k0+1

(
3

4

)p(k−k0) ∑
i∈N

|λki |p

� 2−pk0‖{μk}k∈Z‖p	q ∼ 2−pk0‖f‖p
Hp,q

A (Rn)
. (6.22)

Moreover, by the cancelation condition of aki , we have∫
Rn\Bk0

|T (f2)(x)|p dx

�
∞∑

k=k0+1

∑
i∈N

|λki |p
∫
Rn\B

�k
i
+mk+τ

|T (aki )(x)|p dx

=
∞∑

k=k0+1

∑
i∈N

|λki |p
{∫

Rn\B
�k
i
+mk+τ

∣∣∣∣ ∫
B

�k
i

[
k(x, y)−

∑
|β|�N

(y − yB
�k
i

)βkβ(x, yB
�k
i

)

]
aki (y) dy

∣∣∣∣p dx}.
Observe that, from x ∈ (B	ki +mk+τ )

� and (2.9), we deduce that

ρ(x− yB
�k
i

) > bmk |B	ki | > b2τ
(
3

2

)p(k−k0)
|B	ki |.

Hence, by Hölder’s inequality, we find that∫
Rn\Bk0

|T (f2)(x)|p dx �
∞∑

k=k0+1

ωp

((
2

3

)p(k−k0))
μpk

�
{ ∞∑
k=k0+1

[
ωp

((
2

3

)p(k−k0))] q
q−p

} q−p
q

‖{μk}k∈Z‖p	q

�
{∫ 1

0

[ωp(δ)]
q

q−p
dδ

δ

} q−p
q

‖f‖p
Hp,q

A (Rn)
∼ A(p,q)‖f‖pHp,q

A (Rn)
,

which further implies that

2pk0 |{x ∈ (Bk0)
� : |T (f2)(x)| > 2k0}| � A(p,q)‖f‖pHp,q

A (Rn)
.

By this and (6.22), we conclude that

2pk0 |{x ∈ Rn : |T (f2)(x)| > 2k0}| � 2pk0 [|Bk0 |+ |{x ∈ (Bk0)
� : |T (f2)(x)| > 2k0}|]

� (1 +A(p,q))‖f‖pHp,q
A (Rn)

� A(p,q)‖f‖pHp,q
A (Rn)

,

which proves (6.20). This finishes the proof of Theorem 6.11.
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Remark 6.12. (i) IfA is the same as in Remark 6.10(i), thenN = �n(1/p−1)	, ln b
lnλ−

= n andHp,q
A (Rn)

and Lp,∞(Rn) become the classical isotropic Hardy-Lorentz and weak Lebesgue spaces, respectively. In

this case, Theorem 6.11 is just [1, Theorem 2.2].

(ii) It is well known that the Hörmander condition implies the boundedness of the Calderón-Zygmund

operator T fromH1
A(R

n) to L1(Rn). Observe thatH1
A(R

n) � H1,q
A (Rn) with q ∈ (1,∞]. Thus, to define T

on H1,q
A (Rn) with q ∈ (1,∞], it is natural to require T to satisfy some conditions stronger than the usual

Hörmander condition. This is accomplished by the variable dilations (the Dini-type condition (6.18))

of Fefferman and Soria [31] (see also [1]). Moreover, recall that we consider p = 1
1+δ or p ∈ ( 1

1+δ , 1]

with δ ∈ (0, lnλ−
ln b ] in Theorem 6.8 and Remark 6.10, which implies N = � ln b

lnλ−
(1/p − 1)	 � 1. But, in

Theorem 6.11, we consider p ∈ (0, 1]. If p becomes smaller, then N becomes larger. Thus, more regularity

of the kernel of T is needed. This justifies the definition of ωp(δ) in Theorem 6.11.

(iii) If δ ∈ (0, lnλ−
ln b ], p ∈ ( 1

1+δ , 1] and T is a non-convolutional δ-type Calderón-Zygmund operator

which satisfies all the conditions in Remark 6.10(ii) with (6.17) replaced by

|K(x, y)−K(x, z)| � C
[ρ(y − z)]δ

[ρ(x− y)]1+δ
if ρ(x− y) > bτρ(y − z),

where C is a positive constant independent of x, y and z, then N = � ln b
lnλ− (1/p−1)	 = 0 and p(1+δ) > 1.

Thus, for p = q, we have

A(p,p) = sup
δ∈(0,1]

{ωp(δ)} = sup
B

1

|B|

∫
ρ(x−yB)>b2τ |B|

[ ∫
B

|K(x, y) −K(x, yB)| dy
]p
dx

� sup
B

1

|B|

∫
ρ(x−yB)>b2τ |B|

[ ∫
B

[ρ(y − yB)]
δ

[ρ(x− y)]1+δ
dy

]p
dx

� sup
B

1

|B|

∞∑
k=0

∫
bkb2τ |B|<ρ(x−yB)�bk+1b2τ |B|

[∫
B

[ρ(y − yB)]
δ

[ρ(x − yB)]1+δ
dy

]p
dx

� sup
B

1

|B|

∞∑
k=0

[
|B|1+δ

(bk|B|)1+δ

]p
bk|B| ∼ 1,

where the supremum is taken over all dilated balls B ∈ B centered at yB and B is as in (2.6). This shows

that Remark 6.10(iv) is the endpoint (critical) case of Theorem 6.11 in the sense of p = q.

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm ‖ · ‖B, which is non-

negative and non-degenerate (namely, ‖f‖B = θ if and only if f = θ) and satisfyies the quasi-triangle

inequality; namely, there exists a positive constant K ∈ [1,∞) such that, for all f, g ∈ B,

‖f + g‖B � K(‖f‖B + ‖g‖B).

Clearly, a quasi-Banach space B is called a Banach space if K = 1.

Let B be a quasi-Banach space and Y a linear space. An operator T from Y to B is said to be

B-sublinear if there exists a positive constant C such that, for any λ, μ ∈ C and f, g ∈ Y,

‖T (f + μg)‖B � C[|λ|‖T (f)‖B + |μ|‖T (g)‖B]

and ‖T (f)− T (g)‖B � C‖T (f − g)‖B. Obviously, if T is linear, then T is B-sublinear.
As an application of the finite atomic decomposition characterizations obtained in Section 5 (see

Theorem 5.7), as well as Theorem 6.13, we establish the following criterion for the boundedness of

sublinear operators from Hp,q
A (Rn) into a quasi-Banach space B, which is a variant of [37, Theorem 5.9];

see also [40, Theorem 3.5] and [78, Theorem 1.1].

Theorem 6.13. Let (p, r, s) be an admissible anisotropic triplet, q ∈ (0,∞) and B be a quasi-Banach

space. If one of the following statements holds true:
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(i) r ∈ (1,∞) and T : Hp,r,s,q
A,fin (Rn) → B is a B-sublinear operator satisfying that there exists a positive

constant C17 such that, for all f ∈ Hp,r,s,q
A,fin (Rn),

‖T (f)‖B � C17‖f‖Hp,r,s,q
A,fin (Rn); (6.23)

(ii) T : Hp,∞,s,q
A,fin (Rn) ∩ C(Rn) → B is a B-sublinear operator satisfying that there exists a positive

constant C18 such that, for all f ∈ Hp,∞,s,q
A,fin (Rn) ∩ C(Rn),

‖T (f)‖B � C18‖f‖Hp,∞,s,q
A,fin (Rn),

then T uniquely extends to a bounded sublinear operator from Hp,q
A (Rn) into B. Moreover, there exists a

positive constant C19 such that, for all f ∈ Hp,q
A (Rn),

‖T (f)‖B � C19‖f‖Hp,q
A (Rn).

Proof. We first prove (i). For any given r ∈ (1,∞), assume that (6.23) holds true. Let f ∈ Hp,q
A (Rn).

By Theorem 3.6 and the density of Hp,r,s,q
A,fin (Rn) in Hp,r,s,q

A (Rn), we know that Hp,r,s,q
A,fin (Rn) is dense in

Hp,q
A (Rn). Thus, there exists a Cauchy sequence {fj}j∈N ⊂ Hp,r,s,q

A,fin (Rn) such that

lim
j→∞

‖fj − f‖Hp,q
A (Rn) = 0,

which, together with (6.23) and Theorem 5.7(i), further implies that

‖T (fi)− T (fj)‖B � ‖T (fi − fj)‖B � ‖fi − fj‖Hp,r,s,q
A,fin (Rn) ∼ ‖fi − fj‖Hp,q

A (Rn) → 0

as i, j → ∞, where the implicit positive constants are independent of i and j. Therefore, {T (fj)}j∈N is

a Cauchy sequence in B, which, combined with the completeness of B, implies that there exists F ∈ B
such that F = limj→∞ T (fj) in B. Let T (f) := F . From (6.23) and Theorem 5.7(i) again, we further

deduce that T (f) is well defined and

‖T (f)‖B � lim sup
j→∞

[‖T (f)− T (fj)‖B + ‖T (fj)‖B] � lim sup
j→∞

‖T (fj)‖B

� lim sup
j→∞

‖fj‖Hp,r,s,q
A,fin (Rn) ∼ lim

j→∞
‖fj‖Hp,q

A (Rn) ∼ ‖f‖Hp,q
A (Rn),

where the implicit positive constants are independent of f . This finishes the proof of (i).

Now we prove (ii). For q ∈ (0,∞), we first claim that Hp,∞,s,q
A,fin (Rn) ∩ C(Rn) is dense in Hp,q

A (Rn).
Indeed, by Lemma 5.2(ii), we know that Hp,q

A (Rn) ∩C(Rn) is dense in Hp,q
A (Rn). Thus, we only need to

show that Hp,∞,s,q
A,fin (Rn)∩C(Rn) is dense in Hp,q

A (Rn)∩C(Rn) with respect to the quasi-norm ‖·‖Hp,q
A (Rn).

For any f ∈ Hp,q
A (Rn) ∩ C(Rn), by an argument similar to that used in the proof of Theorem 3.6 (or

Lemma 5.3), we find that there exist a sequence of (p,∞, s)-atoms, {aki }i∈N, k∈Z, and {λki }i∈N, k∈Z ⊂ C
such that f =

∑
k∈Z

∑
i∈N

λki a
k
i in S ′(Rn). Moreover, from definitions of these (p,∞, s)-atoms (see (5.12))

and the continuity of f , we further deduce that all these (p,∞, s)-atoms are continuous. Thus, for any

K ∈ N, if we let fK :=
∑K

|k|=0

∑K
i=1 λ

k
i a
k
i , then it is easy to see that

{fK}K∈N ⊂ Hp,∞,s,q
A,fin (Rn) ∩C(Rn)

and

lim
K→∞

‖f − fK‖Hp,q
A (Rn) = 0,

which implies that Hp,∞,s,q
A,fin (Rn) ∩ C(Rn) is dense in Hp,q

A (Rn) ∩ C(Rn) with respect to the quasi-norm

‖ · ‖Hp,q
A (Rn).

By the density of Hp,∞,s,q
A,fin (Rn) ∩ C(Rn) in Hp,q

A (Rn) and a proof similar to (i), we conclude that (ii)

holds true. This finishes the proof of Theorem 6.13.

By Theorem 6.13, we easily obtain the following conclusion, the details being omitted.
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Corollary 6.14. Let (p, r, s) be an admissible anisotropic triplet, q ∈ (0,∞) and B be a quasi-Banach

space. If one of the following statements holds true:

(i) r ∈ (1,∞) and T is a B-sublinear operator from Hp,r,s,q
A,fin (Rn) to B satisfying that

S := sup{‖T (a)‖B : a is any (p, r, s)-atom} <∞;

(ii) T is a B-sublinear operator defined on continuous (p,∞, s)-atoms satisfying that

S := sup{‖T (a)‖B : a is any continuous (p,∞, s)-atom} <∞,

then T has a unique bounded B-sublinear extension T̃ from Hp,q
A (Rn) to B.

Remark 6.15. (i) Obviously, if T is a bounded B-sublinear operator from Hp,q
A (Rn) to B, then, for

any admissible anisotropic triplet (p, r, s), T is uniformly bounded on all (p, r, s)-atoms. Corollary 6.14(i)

shows that the converse holds true for r ∈ (1,∞). However, such converse conclusion is not true in

general for r = ∞ due to the example in [10, Theorem 2]. Namely, there exists an operator T which is

uniformly bounded on all (1,∞, 0)-atoms, but does not have a bounded extension on H1(Rn).
(ii) Corollary 6.14(ii) shows that the uniform boundedness of T on a smaller class of continuous

(p,∞, s)-atoms implies the existence of a bounded extension on the whole space Hp,q
A (Rn). In particular,

if we restrict the operator T , in (i) of this remark, to the subspace H1,∞,0,1
A,fin (Rn) ∩ C(Rn), then such

restriction has a bounded extension, denoted by T̃ , to the whole space H1
A(R

n). However, T itself does

not have such property. Precisely, T and T̃ coincide on all continuous (1,∞, 0) atoms, while not on all

(1,∞, 0) atoms; see also [53]. This shows that it is necessary to restrict the operator T only on continuous

atoms for r = ∞ in Corollary 6.14(ii).

Now we use Corollary 6.14 and Theorem 6.1 to show the boundedness of the δ-type Calderón-Zygmund

operators from Hp,q
A (Rn) to Lp,q(Rn) (or to Hp,q

A (Rn)).

Theorem 6.16. Let δ ∈ (0, lnλ−
ln b ], p ∈ ( 1

1+δ , 1] and q ∈ (0,∞].

(i) If T is either a convolutional δ-type Calderón-Zygmund operator as in Theorem 6.8 or a non-

convolutional δ-type Calderón-Zygmund operator as in Remark 6.10(ii), then there exists a positive con-

stant C20 such that, for all f ∈ Hp,q
A (Rn),

‖T (f)‖Lp,q(Rn) � C20‖f‖Hp,q
A (Rn).

(ii) If T is either a convolutional δ-type Calderón-Zygmund operator as in Theorem 6.8 or a non-

convolutional δ-type Calderón-Zygmund operator satisfying the additional assumption that T ∗1 = 0 as in

Remark 6.10(ii), then there exists a positive constant C21 such that, for all f ∈ Hp,q
A (Rn),

‖T (f)‖Hp,q
A (Rn) � C21‖f‖Hp,q

A (Rn).

Proof. We first prove (i). When δ ∈ (0, lnλ−
ln b ], p ∈ ( 1

1+δ , 1) and q ∈ (0,∞], by the proof of [9, p. 69,

Theorem 9.9], we have ‖T (a)‖Lp(Rn) � 1 for any (p, 2, 0)-atom a. From this and Corollary 6.14(i), we

further deduce that, for all f ∈ Hp,q
A (Rn),

‖T (f)‖Lp(Rn) � ‖f‖Hp,q
A (Rn). (6.24)

Notice that T is a linear operator. By (6.24), the corresponding interpolation result of Lebesgue spaces

(see, for example, [55, Theorem 3]) and Theorem 6.1(i), we easily conclude that (i) holds true when

p ∈ ( 1
1+δ , 1) and q ∈ (0,∞].

When p = 1 and q ∈ (0,∞], combining the linearity of T , (6.24) with p = q, the boundedness of T on

Lr(Rn) with r ∈ (1,∞) (see, for example, [28, Theorems 5.1 and 5.10]) and Corollary 6.5, we find that (i)

also holds true in this case.

Now we turn to show (ii). Notice that, by [9, p. 64, Lemma 9.5] and Theorem 3.6, we know that

‖T (a)‖Hp
A(Rn) � 1 for any (p, 2, 0)-atom a. From this, Corollary 6.5 and an argument similar to the proof

of (i), we deduce that (ii) holds true. This finishes the proof of Theorem 6.16.
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Remark 6.17. (i) Notice that the δ-type Calderón-Zygmund operators are linear operators. By

Remark 6.10(iv), [28, Theorems 5.1 and 5.10], Corollary 6.5 and the corresponding interpolation result

of Lorentz spaces (see, for example, [55, Theorem 3]), we also conclude that, as in Theorem 6.16, the

boundedness of the δ-type Calderón-Zygmund operators from Hp,q
A (Rn) to Lp,q(Rn) (or to Hp,q

A (Rn))
with δ ∈ (0, lnλ−

ln b ], p ∈ ( 1
1+δ , 1] and q ∈ (0,∞], the details being omitted.

(ii) We should point out that, in (i) of this remark, the boundedness of the δ-type Calderón-Zygmund

operators from Hp
A(R

n) to Lp(Rn) (or to Hp
A(R

n)) is a key tool, namely, [9, p. 68, Theorem 9.8; p. 69,

Theorem 9.9] (see Remark 6.10(iv)). Notice that the proofs of [9, p. 68, Theorem 9.8; p. 69, Theorem 9.9]

also need to prove that

‖T (a)‖Hp
A(Rn) � 1 and ‖T (a)‖Lp(Rn) � 1

for any (p, 2, 0)-atom a, respectively, and are more complicated than the proof of Theorem 6.16. Thus,

in this sense, the criterion established in Theorem 6.13 is a useful tool.

(iii) If A is the same as in Remark 6.10(i), then lnλ−
ln b = 1

n , H
p,q
A (Rn) and Lp,q(Rn) become the clas-

sical isotropic Hardy-Lorentz, respectively, Lorentz spaces and T becomes the classical δ-type Calderón-

Zygmund operator correspondingly. In this case, we know that, if δ ∈ (0, 1], p ∈ ( n
n+δ , 1] and q ∈ (0,∞],

then Theorem 6.16(i) implies that T is bounded from Hp,q(Rn) to Hp,q(Rn) and Theorem 6.16(ii) implies

that T is bounded from Hp,q(Rn) to Lp,q(Rn). Moreover, when p = q, (i) and (ii) of Theorem 6.16 imply

the boundedness of the classical δ-type Calderón-Zygmund operator from Hp(Rn) to Hp(Rn), respec-
tively, from Hp(Rn) to Lp(Rn) for δ ∈ (0, 1] and p ∈ ( n

n+δ , 1], which is a well-known result (see, for

example, [5, 52, 69]).
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