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Abstract Let p € (0,1], ¢ € (0,00] and A be a general expansive matrix on R™. We introduce the anisotropic
Hardy-Lorentz space H%'?(R™) associated with A via the non-tangential grand maximal function and then es-
tablish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the
radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characteriza-
tions except the oo-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on R"™.
As applications, we first prove that H'?(R") is an intermediate space between HA'7'(R™) and HL>92(R™)
with 0 < p1 < p < p2 < 00 and q1, ¢, g2 € (0, 00|, and also between H7'" (R™) and HY" (R™) with p € (0,00)
and 0 < g1 < g < g2 < oo in the real method of interpolation. We then establish a criterion on the boundedness
of sublinear operators from H f"q(R") into a quasi-Banach space; moreover, we obtain the boundedness of d-type
Calderén-Zygmund operators from H? (R™) to the weak Lebesgue space LP*°(R™) (or to HY'*°(R™)) in the

critical case, from HT'Y(R™) to LP7(R™) (or to H'*(R™)) with 6 € (0, hl]:‘,; l,pe€ (1i5,1] and g € (0,00], as

well as the boundedness of some Calderén-Zygmund operators from H%?(R™) to LP»>°(R™), where b := | det Al
A— :=min{|\| : A € 6(A)} and o(A) denotes the set of all eigenvalues of A.
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1 Introduction

The study of Lorentz spaces originated from Lorentz [50,51] in the early 1950’s. As a generalization of
LP(R™), Lorentz spaces are known to be the intermediate spaces of Lebesgue spaces in the real interpo-
lation method; see [14,46,61]. For a systematic treatment of Lorentz spaces as well as their dual spaces,
we refer the reader to Hunt [38], Cwikel [21] and Cwikel and Fefferman [22,23]; see also [7, 8,35, 65, 70].
It is well known that, due to their fine structures, Lorentz spaces play an irreplaceable role in the study
on various critical or endpoint analysis problems from many different research fields and there exist a lot
of literatures on this subject, here we only mention several recent papers from harmonic analysis (see,
for example, [56,59,67,73]) and partial differential equations (see, for example, [39,54,62]).

On the other hand, the theory of Hardy spaces has been well developed and these spaces play an
important role in many branches of analysis and partial differential equations; see, for example, [18,30,
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32,36,49,57,58,68,69,71]. It is well known that Hardy spaces are good substitutes of Lebesgue spaces
when p € (0, 1], particularly, for the study on the boundedness of maximal functions and singular integral
operators. Moreover, for the study on the boundedness of operators, the weak Hardy space H1°°(R") is
also a good substitute of L1:°°(R™). Recall that the weak Hardy spaces H?:*°(R™) with p € (0, 1) were first
introduced by Fefferman et al. [29] in 1974, which naturally appear as the intermediate spaces of Hardy
spaces HP(R™) with p € (0,1] via the real interpolation. Later on, to find out the biggest space from
which the Hilbert transform is bounded to the weak Lebesgue space L'>°(R"), Fefferman and Soria [31]
introduced the weak Hardy space H':°°(R"™), in which they also obtained the co-atomic decomposition
of H»*°(R™) and the boundedness of some Calderén-Zygmund operators from H1°°(R™) to L1>°(R™).
In 1994, Alvarez [3] considered the Calderén-Zygmund theory related to H?*°(R™) with p € (0, 1], while
Liu [47] studied the weak Hardy spaces HP**>°(R™) with p € (0, 1] on homogeneous groups. Nowadays,
it is well known that the weak Hardy spaces HP>*°(R™), with p € (0, 1], play a key role when studying
the boundedness of operators in the critical case; see, for example, [3,4,25-27,34,77]. Moreover, it is
known that the weak Hardy spaces HP*>°(R™) are special cases of the Hardy-Lorentz spaces HP7(R™)
which, when p = 1 and ¢ € (1,00), were introduced and investigated by Parilov [60]. In 2007, Abu-
Shammala and Torchinsky [1] studied the Hardy-Lorentz spaces HP?(R™) for the full range p € (0, 1] and
q € (0, 00|, and obtained their co-atomic characterization, real interpolation properties over parameter g,
and the boundedness of singular integrals and some other operators on these spaces. In 2010, Almeida
and Caetano [2] studied the generalized Hardy spaces which include the classical Hardy-Lorentz spaces
HP9(R"™) investigated in [1] as special cases. To be more precise, Almeida and Caetano [2] obtained
some maximal characterizations of these generalized Hardy spaces and some real interpolation results
with function parameters and, as applications, they studied the behavior of some classical operators in
this generalized setting.

As the series of works (see, for example, [1-3,29, 31,47, 60]) reveal, the Hardy-Lorentz spaces (as
well the weak Hardy spaces) serve as a more subtle research object than the usual Hardy spaces when
considering the boundedness of singular integrals, especially, in some endpoint cases, due to the fact
that these function spaces own finer structures. However, the real-variable theory of these spaces is
still not complete. For example, the r-atomic, with r € (1,00), or the molecular characterizations, the
characterizations in terms of the radial or the non-tangential maximal functions, and the finite atomic
characterizations of Hardy-Lorentz spaces are still unknown.

On the other hand, from 1970’s, there has been an increasing interesting in extending classical func-
tion spaces arising in harmonic analysis from Euclidean spaces to anisotropic settings and some other
domains; see, for example, [16,17,32,33,45,66,72,74,75]. The study of function spaces on R™ associated
with anisotropic dilations was originally started from these celebrated articles [15-17] of Calderén and
Torchinsky on anisotropic Hardy spaces. Since then, the theory of anisotropic function spaces was well
developed by many authors; see, for example, [32,69,74]. In 2003, Bownik [9] introduced and investi-
gated the anisotropic Hardy spaces associated with general expansive dilations, which were extended to
the weighted setting in [13]. For further developments of function spaces on the anisotropic Euclidean
spaces, we refer the reader to [11-13,24,41-43,76].

To give a complete theory of Hardy-Lorentz spaces and also to establish this theory in a more general
anisotropic setting, in this paper, we systematically develop a theory of Hardy-Lorentz spaces associated
with anisotropic dilations A. To be precise, in this paper, for all p € (0, 1] and ¢ € (0, o0], we introduce
the anisotropic Hardy-Lorentz spaces H'yY(R™) associated with a general expansive matrix A via the
non-tangential grand maximal function. Then we characterize Hy?(R™) in terms of the atomic and the
molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic
decompositions. All these results except the oco-atomic characterization are new even for the classical
isotropic Hardy-Lorentz spaces on R™. As applications, we first prove that the space H?(R™) is an
intermediate space between H"* (R™) and H"(R™) with 0 < p1 < p < p2 < oo and ¢4, ¢, g2 € (0, 0],
and also between HI?' (R™) and H}"(R™) with p € (0,00) and 0 < ¢1 < ¢ < g2 < 00 in the real method
of interpolation. We then establish a criterion on the boundedness of sublinear operators from H%?(R™)
into a quasi-Banach space. Moreover, we obtain the boundedness of é-type Calderén-Zygmund operators
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from H' (R™) to the weak Lebesgue space LP*>°(R™) (or to Hy**(R™)) in the critical case, from H?(R™)
to LP9(R™) (or to HY(R™)) with 6 € (0, lTnAb‘ l,pe (1-}-6’ 1] and ¢ € (0, 00], as well as the boundedness
of some Calderén-Zygmund operators from H%Y(R™) to LP>°(R™).

To be precise, this paper is organized as follows.

In Section 2, we first present some basic notions and notation appearing in this paper, including Lorentz
spaces and their properties and also some known facts on expansive matrixes in [9]. Then we introduce
the anisotropic Hardy-Lorentz spaces H'}?(R™), with p € (0,1] and ¢ € (0, 00], via the non-tangential
grand maximal function (see Definition 2.5 below). These anisotropic Hardy-Lorentz spaces include the
classical Hardy spaces of Fefferman and Stein [30], the classical Hardy-Lorentz spaces of Abu-Shammala
and Torchinsky [1], the anisotropic Hardy spaces of Bownik [9] and the anisotropic weak Hardy spaces of
Ding and Lan [24] as special cases. Some basic properties of H;?(R™) are also obtained in this section
(see Propositions 2.7 and 2.8 below).

Section 3 is devoted to the atomic and the molecular characterizations of HY'?(R™). These char-
acterizations of Hy/(R™) are obtained by using the Calderén-Zygmund decomposition associated with
non-tangential grand maximal functions on anisotropic R™ from [9, p.9, Lemma 2.7], as well as a crite-
rion for affirming some functions being in Lorentz spaces LP?(R™) from [1, Lemma 1.2]. Recall that, for
the classical Hardy-Lorentz spaces HP*4(R™), only their oo-atomic characterizations are known (see [1]).
Thus, the r-atomic characterizations of Hy?(R™), with r € (1,00), presented in Theorem 3.6 below are
new even for the classical Hardy-Lorentz spaces. We also point out that the molecular characterizations
in Theorem 3.9 below are new even when p = ¢ for the anisotropic Hardy spaces H (R™) with p € (0, 1].
Moreover, the approach used to prove the r-atomic characterization in this paper is much more compli-
cated than that used to prove the co-atomic characterization in [1]. Indeed, in the proof of the co-atomic
characterization, an L (R™) estimate of an infinite combination of co-atoms can be easily obtained by
the size condition and the finite overlapping property of oco-atoms (see [1, p.291]), but this approach
fails for the corresponding L"(R™) estimate with r € (1,00). To overcome this difficulty, we employ a
distributional estimate (see (3.23) below) instead of the L"(R™) estimate in this paper, which relies on
some subtle applications of the boundedness of the grand maximal function on L"(R™) and the finite
overlapping property of r-atoms.

In Section 4, we characterize H}Y(R™) by means of the radial and the non-tangential maximal functions
(see Theorem 4.9 below). To this end, via the Aoki-Rolewicz theorem (see [6,63]), we first prove that

the LP9(R™) quasi-norm of the tangential maximal function Tg(K’L)(f) can be controlled by that of the

non-tangential maximal function MfoK’L)( f) for all f € S8'(R™) (see Lemma 4.6 below), where K is the
truncation level, L is the decay level and S'(R™) denotes the set of all tempered distributions on R™. Then
we obtain the boundedness of the maximal function Mz(f) on LP¢(R") with p € (1,00) and ¢ € (0, ]
(see Lemma 4.7 below), where Mx(f) is defined as in (2.17) below. As a consequence of Lemma 4.7, both
the non-tangential grand maximal function and the Hardy-Littlewood maximal function given by (2.20)
are also bounded on LP7(R™) (see Remark 4.8 below). We point out that Lemmas 4.6 and 4.7, Remark 4.8
and the monotone property of the non-increasing rearrangement (see [35, Proposition 1.4.5(8)]) play a
key role in proving Theorem 4.9.

In Section 5, we obtain the finite atomic decomposition characterizations of Hy?(R™). In what follows,
C2°(R™) denotes the space of all smooth functions with compact supports. For any admissible anisotropic
triplet (p,r, s), via proving that H?(R™) N L™(R™), with r € [1, 00], and HY?(R™) N C°(R™) are dense
in HYY(R™) (see Lemma 5.2 below), we establish the finite atomic decomposition characterizations of
H"9(R™) (see Theorem 5.7 below). This extends [53, Theorem 3.1 and Remark 3.3] and [37, Theorem 5.6]
to the present setting of anisotropic Hardy-Lorentz spaces.

Section 6 is devoted to the interpolation of H?(R™) and the boundedness of Calderén-Zygmund op-
erators. As an application, in Subsection 6.1, we show that H}Y(R™) is an intermediate space between
HEM(R™) and H% (R™) with 0 < p1 < p < p2 < oo and q1, ¢, g2 € (0, 00, and also between H' " (R™)
and HY? (R™) with p € (0,00) and 0 < ¢1 < ¢ < g2 < oo in the sense of real interpolation (see Theo-
rem 6.1 below), whose isotropic version includes [1, Theorem 2.5] as a special case (see Remark 6.7(ii)
below). In Subsection 6.2, by using the atomic characterization of H% (R™), we first obtain the bound-
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edness of §-type Calderén-Zygmund operators from H%(R™) to the weak Lebesgue space LP:*>°(R™) (or
to H'y"°(R™)) in the critical case (see Theorem 6.8 below). In this case, even for the classical isotropic
setting, o-type Calderén-Zygmund operators are not bounded from HP(R™) to itself. Moreover, for all
p € (0,1] and ¢ € (p, <], employing the atomic characterizations of H(R™), we also obtain the bound-
edness of some Calderén-Zygmund operators from HY?(R™) to LP**°(R") (see Theorem 6.11 below). In
addition, as an application of the finite atomic decomposition characterizations for H?(R™) (see Theo-
rem 5.7 below) obtained in Section 5, we establish a criterion on the boundedness of sublinear operators
from H?(R™) into a quasi-Banach space (see Theorem 6.13 below), which is of independent interest;
by this criterion, we further conclude that, if T' is a sublinear operator and maps all (p, r, s)-atoms with
r € (1,00) (or all continuous (p, oo, s)-atoms) into uniformly bounded elements of some quasi-Banach
space B, then T has a unique bounded sublinear extension from H%'?(R™) into B (see Corollary 6.14
below). This extends the corresponding results of Meda et al. [53], Yang and Zhou [79] and Grafakos et
al. [37] to the present setting. Finally, via the criterion established in Theorem 6.13, we also obtain the
boundedness of §-type Calderén-Zygmund operators from HYY(R™) to LP4(R™) (or to HY?(R™)) with
5 € (0, hl‘n)‘g], pE (1i5, 1] and ¢ € (0, 0] (see Theorem 6.16 below).

We point out that we also obtain the Littlewood-Paley characterizations of anisotropic Hardy-Lorentz
spaces H'Y(R™), respectively, in terms of the Lusin-area functions, the Littlewood-Paley g-functions or
the gi-functions; to restrict the length of this article, we present these characterizations in [48]. More
applications of these anisotropic Hardy-Lorentz spaces H'}Y(R™) are expectable.

Finally, we make some conventions on notation. Throughout this paper, we always let N := {1,2,...}
and Z; := {0} UN. We denote by C' a positive constant which is independent of the main parameters, but
its value may change from line to line. Constants with subscripts, such as C, are the same in different
occurrences. We also use C(, 3,...) to denote a positive constant depending on the indicated parameters
B, ... For any multi-index 3 := (B1,...,8,) € Z}, let |B] := B1 + -+ + B, and 0° = (821)51 e (82,,)&“
We use [ < g to denote f < Cg and, if f < g < f, then we write f ~ g. For every index r € [1, 00|, we
use 1’ to denote its conjugate inder, i.e., 1/r+1/r" = 1. Moreover, for any set F' C R™, we denote by xr
its characteristic function, by F C the set R™ \ F, and by #F the cardinality of F. The symbol |s], for
any s € R, denotes the biggest integer less than or equal to s.

2 Anisotropic Hardy-Lorentz spaces

In this section, we introduce the anisotropic Hardy-Lorentz spaces via grand maximal functions and give
out some basic properties of these spaces.

First we recall the definition of Lorentz spaces. Let p € (0,00) and ¢ € (0,00]. The Lorentz
space LP1(R™) is defined to be the space of all measurable functions f with finite LP-?(R™) quasi-norm

| flle.a@rny given by

1
e dt|a
O[] vien g€ 0.0)
[ llzpaqny =9 LPJo
sup [t f*(t)], when ¢ = oo,
t€(0,00)

where f* denotes the non-increasing rearrangement of f, namely,
[ (t) ={a e (0,00) : df(a) < t}, te€(0,00).
Here and hereafter, for any a € (0,00), dy(a) := {z € R" : |f(z)] > a}|. It is well known that, if

q € (0,00), then

1

lrnry ~{ [ aq‘l[df(a)]gda}; ~{ ey} (1)

kEZ
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and
[ fllLpoo(mny ~  sup {a[df(a)];}Nilég&k[df@k)];}v (2.2)

a€(0,00)
where the implicit equivalent positive constants are independent of f; see [35]. By [35, Remark 1.4.7],
for all p, r € (0,00), ¢ € (0,00] and all measurable functions g, we have

gl | zo.a@ny = gl Zor.ar (n)- (2.3)

Now let us recall the notion of expansive matrixes (see, for example, [9]).

Definition 2.1.  An ezpansive matriz (for short, a dilation) is an n x n real matrix A such that all
eigenvalues X of A satisfy |A| > 1.

Throughout this paper, we always let A be a fixed dilation and b := |det A|. By [9, p.6, (2.7)], we
know that b € (1,00). Let A_ and Ay be positive numbers such that

1< Ao <min{|A: A€ 0(A)} <max{|A|: A€ a(A)} < Ay,

where o(A) denotes the set of all eigenvalues of A. Then there exists a positive constant C', independent
of  and j, such that, for all x € R™, when j € Z,

C1 (Y]l < A7) < OO\ Yal (2.4)
and, when j € Z \ Zy.,
C (Y el < A7) < OOVl (2.5)
In the case when A is diagonalizable over C, we can even take
Ao r=min{|A|: A€ o(4)} and Ay :=max{|A|: A€ o(A)}.

Otherwise, we need to choose them sufficiently close to these equalities according to what we need in our
arguments.

It was proved in [9, p.5, Lemma 2.2] that, for a given dilation A, there exist an open ellipsoid A and
r € (1,00) such that A C rA C AA, and one can additionally assume that |A| = 1, where |A| denotes
the n-dimensional Lebesgue measure of the set A. Let By, := A*A for all k € Z. An ellipsoid z + By, for
some z € R"” and k € Z is called a dilated ball. Let B be the set of all such dilated balls, namely,

B:={z+By:xeR" kelZ} (2.6)

Then By, is open, By C By, C By11 and |By| = b*. Throughout this paper, let 7 be the minimal integer
such that »™ > 2. Then, for all £ € Z, it holds true that

By + By C Byy+, (2.7)
By + (Biyr)® € (By)E, (2.8)

where FE + F denotes the algebraic sum {x+y: 2 € E, y € F} of sets E, F C R™.
Define the step homogeneous quasi-norm p on R™ associated to A and A as

p(x) := (2.9)

bj, when z € Bj+1\Bj,
0, when z = 0,, here and hereafter, 0, = (0,...,0) € R".

Obviously, for all k € Z, B, = {x € R™ : p(x) < b*}. By (2.7) and (2.8), we know that, for all z, y € R",

max{L, plz +y)} < b7 (max{1, p(x)})(max{L, p(y)}) (2.10)

and, for all j € Z; and z € R", max{1, p(A7z)} < &/ max{1, p(x)}; see [9, p.8]. Moreover, (R", p, dx) is
a space of homogeneous type in the sense of Coifman and Weiss [19,20], here and hereafter, dz denotes
the n-dimensional Lebesgue measure.

Recall that the homogeneous quasi-norm induced by A was introduced in [9, p.6, Definition 2.3] as
follows.
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Definition 2.2. A homogeneous quasi-norm associated with a dilation A is a measurable mapping
p: R™ — [0, 00| satisfying that

(i) ple) = 0 2 = O:

(i) p(Az) = bp(z) for all z € R™;

(iii) there exists a positive constant H € [1,00) such that, for all z, y € R™,

plr +y) < Hlp(z) + p(y)]-

In the standard dyadic case A := 21,,xp, p(z) := |2|™ for all x € R™ is an example of the homogeneous
quasi-norm associated with A, here and hereafter, I,,«,, denotes the nxn unit matriz and |-| the Euclidean
norm in R™. It was proved in [9, p. 6, Lemma 2.4] that all homogeneous quasi-norms associated with A
are equivalent. Therefore, in what follows, we always use the step homogeneous quasi-norm induced by
the given dilation A for convenience.

A C°°(R™) function ¢ is said to belong to the Schwartz class S(R™) if, for every integer ¢ € Z and
multi-index «,

[@llae = Sélﬂgr[p(x)]elf‘)%(x)l < o0.

The dual space of S(R™), namely, the space of all tempered distributions on R" equipped with the weak-x
topology, is denoted by S’(R™). For any N € Z,, define Sy (R™) as

Sn(R") :={y € SR") : ||

a,l < 1,|Oé| <N;£<N}v
equivalently,

P € SNR") & lelsyer) = sup sup [0°p(a) max{1, ()] V)] < 1 (2.11)

In what follows, for ¢ € S(R"),k € Z and z € R", let ¢y () := b~ Fp(A k).

Definition 2.3. Let ¢ € S(R") and f € §'(R"). The non-tangential mazimal function My(f) of f
with respect to ¢ is defined as

My (f)(x) = _ flépkezu*%(y)l’ Vi eR" (2.12)
yecxr k>

The radial mazimal function Mg( f) of f with respect to ¢ is defined as

MO(f)(@) i=suplf + pr(@)], Vo R, (2.13)
kEZ

For N € N, the non-tangential grand mazimal function My (f) of f € S'(R™) is defined as

My(f)(xz):= sup My(f)(z), VxeR" (2.14)
pESN(R™)

and the radial grand mazimal function M3 (f) of f € S'(R™) is defined as

MY(F)@) = s MUP(), VreR"
pESN(R™)

The following proposition is just [9, p. 17, Proposition 3.10].

Proposition 2.4.  For every given N € N, there exists a positive constant C(yy, depending only on N,
such that, for all f € S'(R™) and x € R",

MR (f)(@) < My (f)(x) < Cny) MR (f)(2)-

We now introduce the notion of anisotropic Hardy-Lorentz spaces.
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Definition 2.5.  Suppose p € (0,00), ¢ € (0, 00] and

1 Inb
-1 2, wh 0,1
N(p) = \\(p )hl)\J T2 w enpe( ) ];

2, when p € (1,00).
For every N € NN [N(,),0), the anisotropic Hardy-Lorentz space HY*(R™) is defined by
HYYR™) = {f € S'(R") : Mn(f) € L™ (R")}

and, for any f € HY'(R"), let || fllgra@ny := [IMN(f)]|Lo-agn)-
Remark 2.6.  Even though the quasi-norm of H?(R") in Definition 2.5 depends on N, it follows from
Theorem 3.6 below that the space H/(R™) is independent of the choice of N as long as N € NN[N(,), ).

Obviously, when p = ¢, H}?(R™) becomes the anisotropic Hardy space H%(R™) introduced by
Bownik [9] and, when ¢ = co, H?(R™) is the anisotropic weak Hardy space H*(R™) investigated
by Ding and Lan [24].

Now let us give some basic properties of H(R™).

Proposition 2.7.  Let p € (0,00), ¢ € (0,00] and N € NN [N, 00). Then HY*(R™) C S'(R™) and
the inclusion is continuous.

Proof.  Let f € HY?(R™). Then, for any ¢ € S(R") and x € By, we have

Bi=[(foo)l = 1f * 3(0n)] < Mz(f)(2), (2.15)

where ¢(-) := (=) and M3 is as in (2.12) with ¢ replaced by ¢. Notice that, for ¢ € (0, 0], by the
definitions of Mz and My,

[Mz()llzra@n) < [@llsy@n)IMN()lLrarn) = [|6]lsy @) 1| 720 @n)-

Thus, to show Proposition 2.7, it suffices to prove that 5 < || Mz(f)||zr.a(mn)-
To this end, by (2.15) and (2.1), for ¢ € (0, 00), we have

1

5s{ > 2’”}§~{ > 2kQ|{xeBo:ﬂxBo<x>>2’f}|3}q
B

kEZ, k<log, k€Z, k<log, B
1
< {szﬂ{x € Bo: My(f)(a) > 2’%} S IMa() |l ogany (2.16)
kEZ

Similar to (2.16), we also conclude that

B S NIMG ()|l peoe(mn)-
This finishes the proof of Proposition 2.7.
Proposition 2.8.  For all p € (0,00), g € (0,00] and N € NN [N,,00), HYY(R™) is complete.

Proof.  To prove that H}(R™) is complete, it suffices to show that, for any sequence {fi}ren C
H%9(R™) such that | ficll rza mmy < 2% for k € N, the series {d ", fi}men converges in H}?(R"). Since
{34t fe}tmen is a Cauchy sequence in H}/(R™), from Proposition 2.7, it follows that {>"}"; fk}men
is also a Cauchy sequence in S’(R™) which, together with the completeness of S'(R™), implies that there
exists some f € §’(R™) such that Y-, fi converges to f in S’(R™) as m — co. Thus, for any ¢ € S(R™),
the series Y 7" | fi * p(z) converges pointwise to f x ¢(z) for all z € R™ as m — oo. Therefore, for all
r € R", we have

My(f)(x) <D My (fi)(@).

keN
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By this and the Aoki-Rolewicz theorem (see [6,63]), we know that there exists v € (0, 1] such that

ZMN Ir)

keN

”MN( ||LP 2 (R™)

S Z HMN(fk)||11'iP:Q(Rn)-

Lrea(R™)  peN

From this, it follows that, for all m € N,

Hf >
k=1

Z i _HMN( > fk)
k=m+41 Hiyq(R") k=m+1

< [ ) ||MN<fk>||zp,q<Rn>} "

k=m+1

HZ:Q(RH Lr:a(R™)

o0
v

§< Z 2k“> ~27™ =0 as m — o0.

k=m+1

Thus, >"p-, fr — [ in HY?(R™) as m — oo. This finishes the proof of Proposition 2.8.

The following Proposition 2.9 is just [9, p. 13, Theorem 3.6].
Proposition 2.9.  For any given s € (1,00), let

Fim {p € LR s [p(@)] < [1+ p(@)] %, Yz € R"}.
For p € [1,00] and f € LP(R™), the mazimal function associated with F, Mx(f), is defined by setting

Mz(f)(z) == sup My(f)(x), VaeR" (2.17)
pEF

Then there exists a positive constant C(yy, depending on s, such that, for all X € (0,00) and f € LY(R™),

{z € R" : Mz (f)(z) > AH < Cioll fllrmny /A (2.18)

and, for all p € (1,00] and f € LP(R™),

Cs)
IMF ()l o) < | 1/p||f||LP(]R")- (2.19)

Remark 2.10.  Clearly, by Proposition 2.9, we know that the non-tangential grand maximal function
Mn(f), defined in (2.14), and the Hardy-Littlewood maximal function Myy,(f), defined by setting, for
all f € L (R™) and z € R™,

1 1
My (f)(@) = sup sup / f()ldz= sup / (=) dz, (2.20)
ez yea+ By | Bl Jy+ B, zeBes |B| /B

where B is as in (2.6), satisfy (2.18) and (2.19).

3 Atomic and molecular characterizations of HY?(R™)
In this section, we establish the atomic and the molecular characterizations of H*(R™).

3.1 Atomic characterizations of H%}'?(R™)

In this subsection, by using the Calderén-Zygmund decomposition associated with the non-tangential
grand maximal function on anisotropic R" established in [9], we obtain the atomic characterizations of
HY(R™).

We begin with the following notion of anisotropic (p, r, s)-atoms from [9, p. 19, Definition 4.1].



Liu J et al. Sct China Math September 2016 Vol. 59 No.9 1677

Definition 3.1.  An anisotropic triplet (p, r, s) is said to be admissible if p € (0,1], r € (1,00] and s € N
with s > [(1/p—1)Inb/InA_]. For an admissible anisotropic triplet (p,r,s), a measurable function a
on R” is called an anisotropic (p,r, s)-atom if

(i) suppa C B, where B € B and B is as in (2.6);

(ii) HaHLT(R” | B/t

(iil) [, a(z)z® dz = 0 for any a € Z'} with |a| <s

Throughout this paper, an anisotropic (p, r, s)-atom is simply called a (p, r, s)-atom. Now, via (p,r, s)-
atoms, we give the definition of the anisotropic atomic Hardy-Lorentz space H"*?(R™) as follows.

Definition 3.2.  For an anisotropic triplet (p,r, s) as in Definition 3.1, ¢ € (0, 0c] and a dilation A, the
anisotropic atomic Hardy-Lorentz space HY*?(R™) is defined to be the set of all distributions f € S’(R™)
satisfying that there exist a sequence of (p, 7, s)-atoms, {a¥};cn, ez, supported on {x¥ + BE}icn kez C B,
respectively, and a positive constant C such that

Y Xetipr(@) <C

ieN
for all x € R™ and k € Z, and

F=>_> Naf in SR,
keZ ieN
where \¥ ~ 2F|BF|'/P for all k € Z and i € N with the implicit equivalent positive constants independent
of k and 1.
Moreover, for all f € HY"”9(R"™), define

£ e gy = iﬂf{ [Z (Z IAfI”) } Cof= ZZA?af}

keZ ™ ieN kE€Z ieN

with the usual interpretation for ¢ = oo, where the infimum is taken over all decompositions of f as
above.

In order to establish the atomic decomposition of H}?(R™), we need the following several technical
lemmas, which are [9, p.9, Lemma 2.7; p. 19, Theorem 4.2] and [1, Lemma 1.2], respectively.

Lemma 3.3.  Suppose that Q@ C R™ is open and || < co. For any d € Z,, there exist a sequence of
points, {z;}jen C Q, and a sequence of integers, {{;};en C Z, such that

(i) Q= UjEN(xj + By, );

(ii) {zj + Be;—+ }jen are pairwise disjoint, where T is as in (2.7) and (2.8);

(iii) for every j € N, (x; + B, +4) N Qb =0, but (z; + Be;yar1) N Ot £ p;

(iv) if (i + Be,4d—27) N (x5 + By, ya—2-) # 0, then |[6; — 0| < 73

(v) foralli €N, 8{j € N: (2 + By, ya—2-) N (2 + Be,ya—2r) # 0} < L, where L is a positive constant
independent of 0, f and i.

Lemma 3.4.  Let (p,r,s) be an admissible anisotropic triplet as in Definition 3.1 and N € NN[N(,y, 00).
Then there exists a positive constant C, depending only on p and r, such that, for all (p,r,s)-atoms a,

1My (@)l L@y < C.

Lemma 3.5.  Suppose that p € (0,00), g € (0,00], {uk}rez is a non-negative sequence of complex
numbers such that {2%uy}rez € €4 and ¢ is a non-negative function having the following property: There
exists 6 € (0, min{1,q/p}) such that, for any ko € N, ¢ < ¥r, + Nk, where Vg, and ny, are functions,
depending on ko and satisfying

ko—1 oo
2koP[dy, (2" < C Y [25(uw)’P and  2F%Pd,, (280) < C Y28 )P
k=—o00 k=ko
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for some positive constant C independent of ko. Then ¢ € LP1(R™) and

ol pra@ny < CI{2F i rezllea,

where C' is a positive constant independent of ¢ and { g }rez.

Now, it is a position to state the main result of this subsection.
Theorem 3.6.  Let (p,r,s) be an admissible anisotropic triplet as in Definition 3.1, ¢ € (0,00] and
N € NN [Ny, 00). Then HYY(R™) = HY"*4(R") with equivalent quasi-norms.

Proof.  First, we show that
HYPYR™) c HYS9(R™). (3.1)

Observe that, by Definition 3.1, for any r € (1,00), a (p, 00, s)-atom is also a (p,r, s)-atom and hence
HEPO2UR™) ¢ HY"®4(R™). Thus, to prove (3.1), we only need to show that

HBU(R™) C HESI(R™), (3.2)

Now we prove (3.2) by three steps.

Step 1.  To show (3.2), for any f € HY'(R"), ¢ € S(R") with [, ¢(x)dz = 1, and m € N, let
fm = fxp_,,. Then, by [9, p.15, Lemma 3.8], we have f(™ — f in S'(R™) as m — oco. Moreover,
by [9, p. 39, Lemma 6.6], we know that, for all m € N and = € R",

My42(f)(@) < Oy M (f)(2), (3-3)

where C(y ) is a positive constant depending on N and ¢, but independent of f. Therefore, fm e
H%Y(R™) and ||f(m)||H§,q(Rn) S [ f Il zany with the implicit positive constant independent of m and f.
In what follows of this step, we show that, for any m € N,

Fr =3 "Rt i SR, (3.4)

k€Z ieN

where, for all m, i € Nand k € Z, h;n’k is a (p, 00, s)-atom multiplied by a constant depending on k and 4
but, independent of f and m.
To show (3.4), we borrow some ideas from the proof of [9, p.38, Theorem 6.4]. For k € Z and
N eNnN [N(p),oo), let
Qp = {J) eR": MN(f)(J)) > Qk}.

Then €2, is open. Applying Lemma 3.3 to Q4 with d = 67, we obtain a sequence {z¥};eny C Qf and a
sequence of integers, {¢¥},cn, satisfying, with 7 and L same as in Lemma 3.3,

O = |J(@F + Bu), (3.5)
1EN
(#F + Bpe_ )N (2 + By ) =0 forall i, jEN with i+#j (3.6)

(% + Bpyo) NS =0, (28 + Byygr0) NOQE#0 forall ieN,
i (2 + B pa) N (2 + B ar) £0, then |65 — 6 <7,
t{j € N: (@} + By pa,) N (2 + By yy,) 70} < L forall ieN. (3.7)
Fix 0 € S(R™) such that suppf C B, 0< 0 <1, and § =1 on By. For each i € N, k € Z and all
r € R, define 0% (x) := o(A=Y (z — zF)) and

0F (z)

B(p) e ,
G g k@)
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Then (¥ € S(R™), supp (F C xf—f—Be;_c_H, 0<¢F<1,¢F=10n2¥+B,__ by (3.6), and D ieN ¢k =xaq,-
Therefore, the family {¢¥};cn forms a smooth partition of unity on Q.

For ¢ € Z,, let Pe(R™) denote the linear space of all polynomials on R™ with degree not more than /.
For each ¢ and P € P;(R™), define

1/2
IPhoct= | | opae fo POFEE - (39
which induces a finite dimensional Hilbert space (P¢(R™), || - ||i,x). For each i, via
Qo (0, QePiE,
f]Rn Cf(a:)da:

the function f(™ induces a linear bounded functional on P;(R™). By the Riesz lemma, there exists a
unique polynomial Pim’k € P¢(R™) such that, for all @ € Py(R™),

1 1 mk Ak 1 m.k k

(£, Qct) = (P Qc) = [ Pt @ .

f]Rn Cf(x)dx ' f]Rn (f(x)dx ’ ' f]Rn Cf(x)dx Re ’

For every 1 € N, k € Z and m € N, define a distribution

bt = [0 — PR

From the fact that, for all £ € Z and = € R", ZieN Xak+B,y,, () < L and supp b:nk C :cf + Bk yy,, it
follows that {Zle bzm’k}[eN converges in &'(R™). Let /
g™ = f =Y = O YT — PG = g + D PG
ieN ieN ieN

Notice that, for any k € Z and = € R", the number i satisfying (¥(x) # 0 is less than L, where L is the
same as in (3.7). Therefore, by a proof similar to that of [9, p. 25, Lemma 5.3], we easily conclude that,
for all x € R™,

> P @)t ()| S 28,

i€EN

where the implicit positive constant is independent of k. Clearly, by (3.3), for all z € R™, we have
17 @)xgp @)] S Muv(F)(@)xgg (2) < 2"

where the implicit positive constants are independent of k. Thus, ||g™*|| e ®n) S 2% and [|g™ || s (rr)
— 0 as k — —o0.

Following the proof of [9, p.31, Lemma 5.7], we conclude that, for any & € Z and pg € (0, p) satisfying
[(1/po —1)Inb/InA_]| < s,

/n {MN(%Z)Z”JC> (x)] " i < /ﬁk[MN(f(m))(x)]po dz, (3.9)

where
ﬁk = {x e R™: MN(f(m))(J)) > Qk}.

Since f™) e H7(R™), it follows that there exists an integer ko such that, for any k € [ko,00) N Z,
|2 < co. Noticing that, for all a € (0, c0),

% N {z € R : My (£)(2) > | < min{|Qpl, 0P| Mn (£ o o

we have

/~ [Mn (f) ()] dx = /Ooopoa”o_ll{w €t My(f™)(2) > a}|da

Qp
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v . o]
</ p0|Qk|ap0_1da+/ poa™ P HIMN (FU )] 4 e oy dev
0 ¥
p p |Q |1 pO/pHMN(f(m))||Lp,ac(]Rn)
S PP M (£ (3.10)

where
§k|71/p.

Y= ||MN(f(m))||va°°(Rn)
By (3.9) and (3.10), we find that

2 ()

€N 1€N

~ 1 _1
< Q|0 e ||MN(f(m))||Lp,q(Rn) —0 as k— oo,
Lpo(]Rn)

HZO (]Rn)

where the implicit positive constant is independent of k and H%°(R™) denotes the anisotropic Hardy
space introduced by Bownik [9]. From the above estimates, we further deduce that

me ,N+1

1€EN

N

Hf(m) _ Z (gm,kJrl _ gm,k)

k=—N

+ ||gm’7N||L°°(R") —0
HiO(R")

HP0 (Rn)+ Lo (Rn)

as N — oo. Here, the implicit positive constant is independent of N and, for any f € HY(R")
+ L>°(R™), let

11120 (gny 4 Lo @ny = L f1ll gro @ny + 1 f2llLoen) 1 f = f1 + fo, f1 € HY(R™), f2 € L®(R™)},

where the infimum is taken over all decompositions of f as above. Therefore,

oo

f(m) _ Z (gm,k-i-l _gm,k) in S’(Rn). (3.11)

k=—o0

Moreover, for ¢ € N, k € Z and j € N, define a polynomial Pm’kJr1 as the orthogonal projection of
[fm) — Pm k+1]§’“ on Py(R™) with respect to the norm defined by (3.8), namely, PZ’; #H1 s the unique
element of Pe(R™) satisfying that, for all @ € Py(R™),

[ @) = B @)t @@ @ de = [P @)@ (@) da.

n

By an argument parallel to the proof of [9, p. 37, Lemma 6.3], we find that

Zzpm 1 k+1 —0.

jeN eN
Then, for any k € Z, by the facts that ZjEN Cj’-“ = XQus
1 & 1
S = (g, = TP, s (RPN o
ieN ieN ieN

and Q11 C Qf, we have

gkt _ gmk [f(m) B Zb?@,k+1:| B [f(m) _ Zb;n,k:|

ieN jeN

k 1 1 k1

=D 0D Y TG Y Y PTG
JEN JEN ieN JEN ieN

=y [b?’k = e - P;j;v’f“gfﬂ)] = > K, (3.12)

€N JEN i€EN
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where all the series converge in §’'(R™). Furthermore, for all ¢ € N and k € Z,

= = PG =Y A - PR - PG
jeN

By the definitions of P"* and Pi”';’kﬂ, we know that
/ hE(@)Q(x)de =0 for all Q€ Py(R™). (3.13)

In addition, recall that Pﬁ’kﬂ # 0 implies
(@it + By y) N (@f + Bpryr) # 0
Then, by a proof similar to that of [9, p.35, Lemma 6.1(i)], we find that
supp Cf“ C (mf“ + BZ?HH) C (aF + By 4r)-
Therefore,
supp h"F c (zF + By yr)- (3.14)
Since Y ey C]’?‘H = X, it follows that

jEN JjEN

By a proof similar to that of [9, p.35, Lemma 6.1(ii); p. 36, Lemma 6.2], we find that, for all j € N;
fH{ieN: (:L'?-H + BZI;-HJFT) N (xf + Bel_c_;’_T) #0} <1
g i
and, for all 4, j, m € N and k € Z,

k
sup [P (@) ()] S 28
zER™

which, combined with sup,cgn» szk(x)gk(xﬂ < 2k, ||f(m)XQE+1 | Lo @n) < 2% and (3.15), further implies
that, for all i, m € N and k € 7Z,

1R | oo ey S 25 (3.16)

By (3.13), (3.14) and (3.16), we know that, for all k € Z and m, i € N, A" is a multiple of a
(p, 00, s)-atom, which, together with (3.11) and (3.12), implies that (3.4) holds true.
Step 2. By (3.16) and the Alaoglu theorem (see, for example, [64, Theorem 3.17]), there exists a
subsequence {m,}°2,; C N such that, for every i € N and k € Z, h:nk — h¥ weak-x in L>®(R") as
t — oo. Tt is easy to see that supp h¥ C (z¥ + Bk iar), A% || ooy S 2% and [5, h¥ (2)Q(x)dx = 0 for all
Q € P¢(R™). Thus, h¥ is a multiple of a (p, 0o, s)-atom a¥. Let h¥ := Ma¥ where \¥ ~ 2’“|B€§+4T|1/p.
Then, by (3.7), (3.5) and (2.1), for ¢ € (0,00), we have

S (Z|Af|p)g~ S (Zz’wlB@m)g

k=—o0 “i€EN k=—o0 “i€EN
S YL~ (M (D gy ~ gy (3.17)
k=—o0

Similar to (3.17), we conclude that supycz (> ey |\EpyL/P < £l 222 (g -
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Step 3. By Step 2, we easily know that, to prove (3.2), it suffices to show that f = >, ., >
in 8'(R™).
To show this, for all k € Z, let

€N z

k= hY.

ieN
Then f,gmL) — fr in 8’'(R™) as « — oo, where, for all m € N and k € Z, fkm) = g™kt _ gmk Indeed, by
the finite intersection property of {xf + By 4, tien for each k € Z (see (3.7)), and the support conditions
of hf and h;n’k, we know that, for any ¢ € S(R"),

< émb)7¢>_<zhzm“k7¢>_z hm“ Z <Zh > fk;¢> as L —» o0.
1€N €N €N 1€N
We next show that, for all m € N,
ST A =0 i SR as Ky - oo (3.18)

|k|> K1

To show (3.18), we consider two cases.
For p € (0,1), it suffices to show that, for all m € N,

> i)

k<K>

=0 and lim
H} (R™) frameo

lim
K24)700

=0, (3.19)
HIP (&)

> 4

k>K;

where pg € (0, p) satisfies that [(1/po — 1)Ind/InA_| < s. Indeed, by (3.13), (3.14) and (3.16), we find
that (27| By, |) " hi" 7 is a (1,00, s)-atom multiplied by a constant. Therefore, by Lemma 3.4, (3.7),
(3.5) and (2.2), we have

S <D IR e S D0 3 28 Beral

k<Ko HH};(R" E<Ks icN E<Ks icN

S 2% D 2PNy S D 2P o gy
k<Ko k<Ko k< K2

which converges to 0 as Ky — —oo. Similarly, (2k|B£k+4T|1/p0)’1h;n’k is a (po, 00, s)-atom multiplied by
a constant. Since L(l/po —1)Inb/InA_] < s, by Lemma 3.4, (3.7), (3.5) and (2.2) again, we find that

Z fkm Z Z”hmkHHm Rn) N Z ZleJ0|B€?+4T| 5 Z 2pr|Qk|

E>Ks HYP(R™)  k>Ks ieN k>Ks ieN E>Ks
< Z ok po*P)HfHHp 20 (R S Z 9k(Po—p) ||f||Hpvq(]Rn))
k>Ks k>Ks

which converges to 0 as K3 — co. These prove (3.19) and hence (3.18).
For p = 1, we replace H}(R™) by L?(R™). Notice that

ST <> Do wt <> 2 @k + Boyur)

k<Ko L2(R")  p<K, I ieN L2(R"™) k<K, ieN

1/2 1/2
S 0 MU S D 2 e gy S D 21 by

k< K> k< K> k< K>

1/2

which converges to 0 as K3 — oco. This implies that (3.18) also holds true in this case.

An argument similar to that used in the proof of (3.18) also shows that 3, s, fe — 0 in S'(R") as
K, — oo. From this and (3.18), it follows that, for any ¢ € S(R™) and € € (0,00), there exists some
K 1 € N, independent of m,, such that

(gt m(Saglss o

|| > K || > K
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Fixing this I?l, by the fact that fkmb) — fr in S’'(R™) as ¢ — oo for all k € Z, we know that there exists
an integer ¢ such that, if ¢ > 7, then, for all integers k with |k| < Kl, we have

£

(mL)_
|<fk fk7¢>|<6[?1—|—37

which, combined with (3.20), implies that, if ¢« > 7,

(2 ) (E <l 2 el S mle] 5 o

k| > K, |k|>F, k| <Ky

<€+€+€_
3 3 3

Thus, lim, 00 (D 4z fkmL)7 ®) = (>_pez [r, ®), which, together with the fact that f) = fin §'(R™) as
m — oo, further implies that

(1.6 = Jim (£7,0) = fim (3 1)0) = (51w

kEZ kEZ

This shows

F=_fe=)_ > hi in SR,

keZ k€Z ieN

which completes the proof of (3.2) and hence the proof of the statement that HY(R™) c HY™™(R™).

We now prove HY"®4(R™) c H}Y(R™). To this end, for any f € HY"”?(R™), by Definition 3.2, we
know that there exists a sequence of (p,7, s)-atoms, {a¥}ien, kez, supported on {z¥ + BF}ien kez C B,
respectively, such that f = >, ., > . AFaF in §'(R™), where A¥ ~ 28| BEIM/P for all k € Z and i € N,
2 ien Xat4pr(x) S 1 forall k € Z and € R", and

ooy ~ | 5 () r (3.21)

k€Z ™ 1eN

Clearly, there exists a sequence, {¢*};cn kez, of integers such that z¥ + By = zk+BF fori € Nand k € Z.
It suffices to only consider the case when N = N,y := L(Zl) — 1), | +2. Let pu, == (3 ;e |Ber|)/? and

Inb InA_ 1
b= . + N -1 t > .
n Inb P

Then, for r € (1, 00], there exists § € (1/r,1) such that é < dp < 1. Notice that, for any fixed kg € Z
and all x € R",

ko—1 oo
My (f)(z) < MN< 3 ZAfaf) @)+ 3 S N M (ab) () =t (2) + i ().

k=—o00 €N k=ko i€N

To prove HY"*9(R™) ¢ H}Y(R™), we now consider two cases: ¢/p € [1,00] and ¢/p € (0,1).

Case 1. ¢/p € [1,00]. In this case, to show the desired conclusion, we claim that

ko—1 oo
2oy, () S 3 R and 2%d, (2) S S 24, (3.22)
k=—o00 k=ko

Assume that (3.22) holds true for the time being. Notice that § € (0,¢/p). Then, by Lemma 3.5, the
k|p
fact that |Byi| ~ X1 and (3.21), we have

2kp

1

oy = M)l zmaceny < {24 e kezlen < [Z (Z |Af|p) } S —

keZ *ieN
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with the usual interpretation for ¢ = oo, which implies that || f||gza@n) < || fllzza@n) and hence
HZJ’,S#I(Rn) C Hﬁ’q(Rn)

Now, let us give the proof of the claim (3.22). To this end, we first estimate 1. Notice that a¥ is a
(p,r, s)-atom, suppa¥ C (zF +Be?), Y ieN Xab+B,, <1land Af ~ 2k|B€?|1/p. For 7 € (1, 00), by Holder’s
inequality, we find that, for o := 1~ >0 and all z € R",

ko—1

Uro(z) < Y MN<Z>\§€G§) ()

k=—o0 1€EN

ko—1 1/r" , ko—1 ry 1/r
(E ) (B ezl
k=—o0 k=—o0 €N
Jo—1

~ewe{ $ e[St )eo] ]

k=—o0 €N

where C := (QM%_l)l/’“l7 which, combined with Proposition 2.9, Remark 2.10 and the finite intersection

property of {z¥ + B }ien for each k € Z, further implies that

2907 [dy,, (2M))° = 25P[{z € R™ : gy, (2) > 20}

ko—1 T
{x ER™:C" Z g~ kor [MN<Z/\§af) (.23):| > ZkOT(l_“)}

k=—o00 €N

é
< 9kop

5
= Qk‘”’{/ dx}
{zeRn:Cr o107 2= kor [My (35, 0 AFak) (a)]7>2k0r(1=0)}

—co ieN N A
ko—1 r )
< ér62k0p2—kor5(1—a){/ Z 9—kor [MN<Z)\faf> (J))] dl‘}
R p=—oo ieN
r ko—1 r 5
< Z 2*’“"’/ Z)\faf(x) dx]
- k=—o00 €N
r ko—1 £}
< g kor e "/ ak(z de}
DR LL
- ko—1 s
< Z 2—kar22kr|B€? » Bé? (7111))7":|
- k=—o00 i€eN
ko—1 5 ko—1
S Y 2 (Sisal) ~ X P (3.23)
k=—o0 €N k=—o0

which is the desired estimate of ¢y, for r € (1,00) in (3.22).
For r = oo, by Proposition 2.9, Remark 2.10 and the finite intersection property of {xf + Byi bien for
each k € Z again, we have

250P[dy,  (2%))° = 25P[{z € R" : P () > 2}[°

ko—1 T )
<2ko<pm{ Z/ {MN(Z)\faf)(x)} dx}

k=—oco VR" i€N

ko—1

< 9ko(p—07) {

>y

k
k=—oc i€N ¥ Ti t Bk

ko—1 ) ko—1
< X 2 (Sieal) ~ X R, (3:24)

k=—o00 1EN k=—o00

)
|A§a§(x>|w}
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where 7 € (1,00) such that 67 > p, which, together with (3.23), implies the desired estimate of 1,
n (3.22).
In order to estimate 7y, , it suffices to prove that, for all i € N and k € Z,

[ ey @)rdo < Bl (3.25)
with the implicit positive constant independent of ¢ and k. Indeed, by (3.25), we have

{x cR": [ i 3 |>\f|MN(af)(x)] v > Qkoap}‘

2k06pd77k (Qko) — 9kodp
0

k=ko 1€EN
</ [Z S I M (at ] <3 S [ M) @) do
" Lk=ko ieN k=kq i€N
o0 o0
SY D INEPIBRT0 S Y 2P By | ~ Z (2% g P, (3.26)
k=ko i€N k=ko ieN k=ko

which is the desired estimate of ny, in (3.22).
To show (3.25), we write

/WV[MN(af)(x)]‘sp dx—/kw [MN(af)(x)]“de/ =T+ T

(x§+B£?+T)B
For r € (1, 00], by Holder’s inequality, Proposition 2.9 and Remark 2.10, we find that
I - / (M () ()P da
;c’?-l—B[k

5p

< { / [MMaf)(x)de} Byey, [
I:'/CJFBK?-FT

5 1_1 _6p _5 iy
< 1By PGBy '~ By 0 ~ B,

_dp
By '

™)

where the implicit positive constants are independent of 7 and k.
To estimate Io, it suffices to show that, for all i € N, k € Z and x € (zF + BZ;;JFT)E,

, 1B (3.27)

ol — k)]s |
with the implicit positive constant independent of i and k, where M$(f) denotes the radial grand maximal
function of f as in Definition 2.3, 8 := (hll“)fi +N-1) h]’ )‘b‘ and p denotes the homogeneous quasi-norm
associated with the dilation A in Definition 2.2. Indeed, assuming that (3.27) holds true for the time
being, noticing that Sdp > 1, then, by Proposition 2.4 and (3.27), we have

My (af)(@) < |Bpe|”

Bk
nsf G es Bl
(eh 4By, )0 pa-at)>1By, | lp(x— 2P

| Bx | 9P
NZ/ By s, e
B isoe—aty<ainiBy, 1 [p(e = af)lPP

>/ PRI
~ ¢k . ‘ X
plz—ak NQJ‘Bek A ‘ (ZJ |B€’?+T|)/66p

1
Bl B3 27
7=0

(3.28)
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with the implicit positive constants independent of ¢ and k, which completes the proof of (3.25).

Thus, to obtain the desired conclusion of Case 1, we still need to prove (3.27). To this end, take
z € (zF+ BZMT)E, v € Sy(R™) and t € Z. Suppose that P is a polynomial with degree not more than s,
which will be determined later. Then, for all € N and k € Z, by Holder’s inequality, we have

|(af * 1) ()| = 07"

[ atetata =iy

=yt

[, atwleta@ =) - P - ) dy\
’C?"‘Be?

1/r'
<ol | [ et =) - P - o)l a]
¥ +B,

or
i

1/r'
< b By [Vt / lo(y) — P dy
‘ A_‘(xfx:f)JrBw_t

< b7t|lep |1/7"71/1)bt/r'b7t/r'|‘BﬂC 1/

sup lo(y) — P(y)]
yEA=t (z—ak)+ By _,

_ k_
= By |7 V/P0 sup lp(y) = P(y)l- (3:29)
yeA_t(xfx:f)JrBek_t

Suppose that = € [zF + (Ber 4r4m+1 \ Berrqm)] for some integer m € Z. Then, by (2.8), we obtain
A @ —af) + Bp g © AT (Bt srymgr \ Bebgorm) + Bory
= A" ([Brimi1 \ Brim] + Bo) € A% (B,,)E. (3.30)
If ¢¥ > t, we choose P = 0. Then, by (3.30), we know that

. — — k7
sup lo(y)] < sup min{1, p(y) N} <o NG, (3.31)
yeA_t(xfxi.“)JrB['/k_t yeA_t(xfxi.“)JrBe;_c_t

If ¢¥ < t, then we let P be the Taylor expansion of ¢ at the point A~!(x — 2¥) of order s. By the Taylor
remainder theorem, (2.5) and (3.30), we have

sup lo(y) = P(y)| < sup  sup [0%p(A7H(z — 2F) + 2)[|2*H!

yEA_t(I7I?)+Be’?_t ZEBe?—t la|=s+1

k
< AL =D sup min{1, p(y) "N}
yEA—t(x—xf)—i-Be;_c_t

k
< )\(_s-‘,-l)([i —t) min{1, be(Effter)}. (3.32)

Combining (3.29), (3.31) and (3.32), for all z € [F + (Byry i1 \ Bk rimn)] With m € Z,., we further
conclude that

My (af)(z) = sup sup|(af  o¢)(z)]
peSN(R™) teZ

k k
| Bgi|~Y/P max { sup bl Tty N —tEm)
‘ LEL, t< ek

. k .
sup  BEIACTVE D i, b—N<e§—t+m)}},
LEL, t>LF

A

Notice that the supremum over ¢ < ¢¥ has the largest value when ¢ = £¥. Without loss of generality, we
may assume that s := L(,l, —1),n" |. Since N = s+ 2 implies bASTH < bV and the above supremum over

t > (¥ is attained when ¢¥ — ¢ +m = 0, it follows that

My (af)(@) S |Bpr |~ max{o™ V™, (bAZF) 7"} S |By |7 (0AZH) T
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-~ |Bék|—1/pb—mb—(s+1)mh;n>\b_ < |B k|—1/pb€,]f[(s+1)h;:\b_ +1]b—(€§+7—+m)[(s+1)hl‘:\b_ +1]

< B[ 77 By D i p(a — )]+ i 1

| Bee|”
[p(x — 27)]°

with the implicit positive constants independent of ¢ and &, which is (3.27). This finishes the proof of
Case 1.

Case 2. ¢/p € (0,1). In this case, when r € (1, 00), similar to (3.23), we have

ko—1 ko—1
2M0P[dy, (2F0)] ‘5<[ D 27k ok B |sz ~ } ( > 25%) : (3.34)

k=—o0 1€EN k=—o0

~ By |7 (3.33)

By a similar calculation to (3.24), we easily know that (3.34) also holds true for » = oo. This further
implies that

ko—1
Z 2k0q|{1‘ cR" - 1/1k0($) > 2ko}|z S Z 21@0(‘1*3) Z 2’%qu
ko€Z ko€Z k=—o0
e k
~ 3TN Ralam g e < N okl (3.35)
keZ ko=k+1 kez
On the other hand, similar to (3.26), we obtain
o0
2Ry, (2) < D 2%,
k=ko
which, together with ¢ < p, implies that
[eS) ~ _ _ [eS) ~ Z
20| (g € R <y, () > 20} S 3 27 IR0D) < 2-’%@{ 3 [2“1—5)%1(1}
k=ko k=ko

where § := 155. Therefore, we have

3 249z € R™ : y, (2) > 20}
ko€EZ

SDIELED WL IS SIEU IS DIETUED S LN AR

ko€Z k=ko kEZ ko=—00 kEZ

Notice that pg := (>,

ien | Ber|)'/P and AF ~ 25|Byi[V/P. Combining (2.1), (3.35), (3.36) and (3.21), we

further conclude that

I () pagany ~ 3 200 € R : My (f)(@) > 240}

ko€EZ
S 2w e R 1y (2) > 250} + > 29 {z € R 1y () > 250}
ko€Z ko€Z
q
p
LTSS [Z |A§|p] ~ 1 W ggny
kEZ keZ - ieN

which implies that || f | gz.e@ny S I f[|gnreo@ny and HY">4(R™) € H(R™). This finishes the proof of
Case 2 and hence Theorem 3.6.
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3.2 Molecular characterizations of H%'?(R™)

In this subsection, we establish the molecular characterizations of H{'?(R™). We begin with the following
notion of anisotropic (p, r, s, €)-molecules associated with dilated balls.

Definition 3.7.  An anisotropic quadruple (p,r, s,¢) is said to be admissible if p € (0,1], r € (1, 0],

s€Nwiths > |(1/p—1)Inb/InA_] and € € (0,0). For an admissible anisotropic quadruple (p,r, s,€), a

measurable function m is called an anisotropic (p,r, s, €)-molecule associated with a dilated ball B € 9B if
(i) for each j € Zy, |m|| (v, (my) < b9°|B|Y/"~1/P where Uy(B) := B and, for any j € N,

U;(B) = (A’B) \ (A"~ B);

(ii) [pn m(z)z®dx =0 for any o € Z" with |af < s.

Throughout this paper, an anisotropic (p,r,s,)-molecule is called a (p,r,s,e)-molecule for simplic-

ity. Via (p,r,s,e)-molecules, we introduce the following anisotropic molecular Hardy-Lorentz space
H£7T’,S7€,¢I(Rn).
Definition 3.8.  For an admissible anisotropic quadruple (p,r,s,¢), ¢ € (0,00] and a dilation A, the
anisotropic molecular Hardy-Lorentz space HYY"*%9(R™) is defined to be the set of all distributions f
€ S'(R") satisfying that there exist a sequence of (p,r,s,e)-molecules, {m¥};cn rez, associated with
dilated balls {z¥ + BF}ien kez C B, respectively, and a positive constant C' such that Y, X, 4 pr (2)
< Cforall keZand z € R", and f = Sorez Sien Armk in S'(R™), where A¥ ~ 2% BF|1/P for all k € Z
and i € N.

Moreover, define

F | rzprosea gy = inf{ [Z <Z |)\§|”> p] tif= ZZ)\fmf}

keZ ~ieN k€Z ieN

with the usual modification made when ¢ = oo, where the infimum is taken over all decompositions of f
as above.

Now we state the main theorem of this subsection as follows.
Theorem 3.9.  Let (p,r,s,e) be an admissible anisotropic quadruple defined as in Definition 3.7 with
e € (max{1, (s + 1)log,(A4)},00), ¢ € (0,00] and N € NN [N, 00). Then HY?(R") = HY">%9(R™)
with equivalent quasi-norms.

Proof. By the definitions of (p, 00, s)-atoms and (p, r, s, £)-molecules, we know that each (p, 0o, s)-atom
is also a (p, r, s, )-molecule, which implies that

HZ:OO:S#I(RTL) C H‘iﬂ"vS:Ev‘I(Rn).

This, combined with Theorem 3.6, further implies that, to prove Theorem 3.9, it suffices to show
HPW5S9(RY) ¢ HR9(R™).

To prove this, for any f € HL™"%9(R"), by Definition 3.8, we know that there exists a sequence
of (p,r,s,e)-molecules, {m¥}ien rez, associated with {z¥ + BF}ien kez C 9B, respectively, such that
f=her Sien Aiml in S'(R"), A¥ ~ 2F|BF|V/P for all k € Z and i € N, 3,y Xorqpr(2) S 1 for all
k € Z and x € R", and

q 1
o ~ | 5 (S 0P) ] (3.37)
kEZ 1EN

Take a sequence {£¥};en, ez of integers satisfying that, for all i € N and k € Z, z¥ + By := 2¥ + BF.

It suffices to only consider the case when N = N,y := L(,l, —1),n% | +2. Let

Inb In\_ 1
= N -1
b <ln>\+ ) b~ p
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and gy = (3 ey |B€k|)1/p for all k € Z. Then, for r € (1, 00], there exist ¥ € (1,7) and § € (0,1) such
that > 1 <di<1 and < dp < 1. Notice that, for any fixed kg € Z and all z € R™,

ko—1 e8]
My (f)(z) < MN( > Zkfmf) (@) + D D INFIMn (m) (@) =: Py () + g (@). (3.38)

k=—oo iEN k=ko i€N
To finish the proof that HY"**4(R™) C H'}?(R™), it suffices to show
M (F)llra@ny S NFllmnreea@n)-

To this end, we now consider two cases: ¢/p € [1,00] and ¢/p € (0,1).
Case 1. ¢/p € [1,00]. In this case, if we can prove that

ko—1 e}
2Pldy (20 S Y RMAP and 25%dg (2%) £ ) 2P wm?, (3.39)
k=—o00 k=ko

kp
then, noticing that ¢ € (0,¢/p), by Lemma 3.5, | By | ~ ‘/2\};,‘) and (3.37), we have

q 1
|y = M (D oaery < {2 becaller < [Z (Z |Af|p) ] YT

k€eZ ™ ieN

which is the desired conclusion.

Now, we show (3.39). Notice that, for all k € Z and i € N, m¥ is a (p,r, s, €)-molecule associated with
zh + By, D ien Xk 4B, <1 AE~ 2’“|BZ§|1/’J and 7 € (1,7). By Holder’s inequality, we find that, for
o:=1-15>0and all 7 € R™,

Bu < 3 (Tt ) o

k=—o0 1€N
ko—1 1/7" ko—1 7N 1/F
(X 2) (X ()] |
k=—oc0 k=—o0 €N
ko—1 7N 17
N2k0"{ Z QkU?[MN<Z)\fmf)(x)}} .
k=—o0 €N

This further implies that

2k0p[dw (2%0))9 < gkopg—koro(1- ”){/ﬂ kozl 2_’“‘”{ N<ZA§mf> (ac)rdsc}(S

k=—o0 ieN
ko—1 ko—1
5[ > 2—’“”*/ ZA?mf(x) ] ( > 2o ’WF) : (3.40)
k=—o00 " lien k=—o00

Moreover, by Holder’s inequality, we know that, for all k € Z N (—o0, ko — 1],

ngnL, ny=1 |/ {ZM i ] ) dx
: {Z'Ak' Z/ (@llgto)l o}

”gHLr (RPY ™ ieN JEZ 4

1/r /v
- MY | / |mf<x>|rd4 [ e
{ Z Z Uj(l’?%»Bl?) UJ(I$+B[:€)

HgHLr (®RMY iEN JEZ+

(F)M/™ ~
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ST TR O 1D i P (3.41)

gl 7 gy =1 LN JEZy

where, for all k € ZN (—o0,kg — 1], i€ Nand j € Z,

1/r'
ko '
Fij= {/ lg(z)[" dw] ; (3.42)
Uj(zF+Bk)

Uo(zF + By ) = zk + By and, for any j € N,
Ui (@t + Bye) = [A7 (a7 + B )] \ [A77 (af + Bye)).
By this, (3.42) and (2.20), we find that, for all k € Z N (—oc0, kg — 1], i € Nand j € Z,

1

[AIBye| Jas @b+,

inf My (gl”) (@)}
z€xi+B

1/r’
FE, < | AT By V" [ 9(@)" dx]

. ’l"’ ]_ ’l"’ fF/ ’l"’ 1/7.
S|4 Byl { 5 / (M (g™ ()] dx} : (3.43)
‘ | z§| *+B,k

where My, (f) denotes the Hardy-Littlewood maximal function as in (2.20). Notice that My, is bounded

on L"(R") for all r € (1,00) (see Lemma 2.9 and Remark 2.10), {z¥ + By }ien is finitely overlapped,
]~ 2¥[Bye| /7,
||mf||Lr(Uj(z§+Be?)) < b7]€|BZ§|1/r71/P’

e>1>1/r" and r > 7. Then, by (3.41), (3.43) and Holder’s inequality, for all £ € Z N (—o0, ko — 1],
we have

F. S sup {Zz’ﬂBMl/p > b B[V e By [
=1 Lien jez,

1 ’ ~ ’ I/F, F
<oy [, Ol @y @]
| e§| o +B

r 11/7
k7
~Y Z
< sw { S 9F B, [Z/
1 J T

gl L7 gy

(i (g} ] W}r

llgll , 7 ®ny = LieN ieN +sz
- . 77
S| imal] s [ [ o0y i
ieN A gl 7 gy =1 L/R”

- 7/
S DR | I S SE A

i€N e HgHLF’(Rn)Zl €N

By this and (3.40), we know that

ko—1
2k0p[dw 2ko 5 < |: Z 29— karzqusz]

k=—oc0 1€EN
ko—1 N ) ko—1

<y 2’”“<”>[Z|Bz@|} ~ Y R, (3.44)
k=—oc0 iEN k=—oc0

which is the first desired estimate in (3.39).
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Now we establish the desired estimate of 7y, in (3.39). It suffices to show that, for all i € N and k € Z,
/ (M (my) ()] dz 5 | By, (3.45)

where the implicit positive constant is independent of ¢ and k. Indeed, as in (3.26), by (3.45), we find that

Potngy (2) < 30 3N [ ity da

k= ko ieN
Z D INEPIB 0 S Z 2"y |Byy| ~ Z 28 )P, (3.46)
k=ko €N k=ko 1€N k=ko

which is the desired conclusion.
In order to show (3.45), we write

Lpoeti@a= [ @it [ =t

For r € (1, 00], by Holder’s inequality, Proposition 2.9 and Remark 2.10, we have

ps
~ pg
- [ i< ] / My ()@ de | (B
;c,’?+B[k xk+Bz’?+7
k —
5 Z Hm | L™ (U, (zh+B, k))lBé’“—H—'
JELy
< DB 7~ B (3.47)
JELy

with the implicit positive constants independent of ¢ and k. To estimate TQ, we only need to prove that,
foralli e N, k € Z and z € (aF + Bp,)C,

2 1Bal (3.48)
[o(z — =f)]? '
with the implicit positive constant independent of i and k, where M$(f) denotes the radial grand maximal
function of f as in Definition 2.3, p denotes the homogeneous quasi-norm associated with dilation A and
Bi=(nt +N- 1)“1“\;. Indeed, noticing that Bdp > 1, as in (3.28), by Proposition 2.4 and (3.48),

we have

M (m¥) (@) < | Bes

i, - / (M (m¥) ()] da
(7" +Bek+ )B

S / | By
pla—a)>|B i, |

with the implicit positive constants independent of ¢ and k, which, combined with (3.47), completes the
proof of (3.45).

Thus, to obtain the desired conclusion of Case 1, we only need to prove (3.48). To this end, for any
i € Nand k € Z, take z € (aF + B[M_T)E, v € Sy(R™) and t € Z. Suppose that P is a polynomial
of degree no more than s which will be determined later. Then, for all i € N and k& € Z, by Holder’s
inequality, we find that

-8

dr ~ |B 1-06
It —ayppon 40 10

mi (y) (A~ (z — y)) dy
R?L

|(m} * 1) (@) = b7
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<b Y

/ mh () p(A @ — y)) — P(A™(z — y)) dy‘
Uj (23 +Bx)

JEL
, 1/
<3 Il o, atem) [ / P4~ (@ — ) — P(A~ (& — )" dy]
jELy Uj(F+Byx)
) , /7'
<O b By | et {/ le(y) — P(y)l" dy}
jez, ‘ At (z—ak)+ AT By _,
< b_tlBe’? |1/7“—1/;obt/7"/b—t/7"/|B€,.c |1/r’
x { > vy sup lo(y) — P(y)l}
JELy yeA*‘*j(zfzf)+AJ'BZ§7t
k —de1d ’l"’
= | By TPH Y b sup lp(y) = P(y)l- (3.49)
JELy yEA_H'J‘(sz,]f)‘FAJ‘B[f_t

Suppose that z € [2F 4 (B By for some m € Z,. Then, by (2.8), we obtain
4 Li4T+m+1 Li4T+m +

A_t+j(l' _ xf) + AjBéi.c—t C A_t+j(B€i.c+T+m+1 \Bgi@+7—+m) + AjBﬁi-c_t

= A" ([Brygr \ Bram] + Bo) € AUTH(B,)E(3.50)
If Ef > t, we choose P = 0. Then
sup el <  sup  min{lp(y) NV} <HpNETFET (351
YEAT I (@—a})+AI Bk, yeA ~tH (B,

If /¥ < t, then we let P be the Taylor expansion of ¢ at the point A~'*J(z — x¥) of order s. By the
Taylor remainder theorem, (2.4), (2.5) and (3.50), we have

sup lo(y) = P)| S sup  sup [0%p(A™"H (z —af) + 2)[|2]"F!
yEA—tHi (w—ak)+ Ai By, 2€EAIB; _, |a|=s+1
< I+ gy (4 \(HD(EE D) sup min{1, p(y) "}

yeEA—t+I (zfzf)JrAJ'Bek_t
i

. k
< pilstD) logy (hp) N (1 (E7—1) sup min{1, p(y) "}
ye ALt (B,,)0

< s+ 108, ) \(FDE =0 i g =N (e —tki+m) ) (3.52)

Take s := L(Zl) —1),/n |. Since N = s+ 2, it follows that bA*"" < bV, By this, (3.49), (3.51), (3.52) and

e > (s+1)log,(A\y), for all @ € [2¥ 4+ (B sy mi \ Betyrim)] With m € Z, we find that

[MR(mf)(@)P = sup  sup|(m] * ¢;)(x)[”
pESN (R™) teZ

SIBal ™S b—jp(e—l/r’)max{ sup  BPEE—D = Np(EE—t+j+m)
‘ jeZy LEL, t<LF
sup pP(eE—t) pip(s+1) 1ogb(,\+)>\zi(s+1)(€§—t) min{1, bep(liﬂftJerrm)}}
tEZL, t>LF
< |B€k|71 Z bfjp[ef(erl)1ogb()\+)+171/r'] max{binm, (b)\s_+1)fpm}
' JELy
S [Bpr| T (oATT) e

Form this, as in (3.33), we easily deduce that (3.48) holds true for ¢/p € [1,00]. This finishes the proof
of Case 1.
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Case 2. ¢/p € (0,1). In this case, let ¢y, and 7, be as in (3.38). Similar to (3.44), we have

ko—1 ko—1
2k0p[dw 2k0 0 <|: Z 2~ ka'r‘szT'sz] ( Z 25/'[/]@) ,

k=—o0 €N k=—o0

which further implies that

ko—1
> 2w €R" sy () > 2| S Y 2D YT 2y
ko€Z ko€Z k=—o00
~ Z Z 2’90(4*3)2%{1#% < ZquMZ' (3.53)
k€Z ko=k+1 keZ
On the other hand, similar to (3.46), we find that
Podndy, (250) 5 3 (2Ol
k=Fko
which implies that
240 {& € R™ 1 7y () > 20} S ) 27HPRM Dl < 2’“03”{ > [2k<13'>uk1q} :
k=Fo k=Fko

where § := 15‘5. Therefore, we have

Z 2k0q|{x ER™ : 7y, (x) > 2ko}|f, < Z 2kogq Z [zk(lig)#k]q

ko€Z ko€Z k=kgo
~ Y 2RO RIAL Z gkoda < > 2kapd. (3.54)
kEZ ko=—o00 kEZ

Notice that i, := (3,cn |Ber|)Y/P and A¥ ~ 2%|B,|/P. Combining (2.1), (3.53), (3.54) and (3.37), we
further conclude that

IMN () pary ~ D, 259z € R™ : My (f)(x) > 2"}

ko€EZ
< Z 2k04|{z € R™ : Yy, () > 2%} |5 + Z 2k0d| {z € R™ : T, (z) > 2%} |7
ko€Z ko€Z
q
P
LTSS [Z |,\§|p] ~ W ey
kEZ keZ - ieN

which implies that
[F zagny S N lmzrsea@ny.

This finishes the proof of Case 2 and hence Theorem 3.9.

4 Maximal function characterizations of H%?(R"™)

In this section, we characterize HY/(R™) in terms of the radial maximal function M (see (2.13)) and the
non-tangential maximal function M, (see (2.12)). We begin with the following Definitions 4.1 and 4.2
from [9].
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Definition 4.1.  For any function F': R" xZ — [0,00), K € ZU{oo} and ¢ € Z, the maximal function
of F with aperture £ is defined by

F X (z):= sup sup F(y,k), VxeR"
k€Z, k<K yEx+Bj e

Definition 4.2. Let K € Z and L € [0,00). For ¢ € S, the radial mazimal function Mg(K’L)

the mnon-tangential maximal function MéK’L)(f) and the tangential maximal function Tév(K’L)(f) of
f € §'(R™) are, respectively, defined by setting, for all z € R”™,

MEER(f)(w) = sup [(F o) (@)l lma{1, p(A= K@)} 7H (4 577

MUED()w) = s sup |(F = ) ()] max{L p(A ) H + bR
keZ, k<K ycx+By,

and

NUSL) () =  sup s |(f * x)(y)] (Lo kR~
Tom PN @) = | Suh S {1, p(A~*(x — y))}]N [max{1, p(A-Ky)}]E"

Furthermore, the radial grand maximal function M]?,(K’L)( f) and the non-tangential grand mazimal func-
tion M](VK’L)(f) of f € §'(R™) are, respectively, defined by setting, for all x € R™,

MEEE () (@) = sup  MOB(f)(w)
pESN (R™)
and
MGP (@)= swp MEED(f)(a).
pESN(R™)

Lemma 4.3 through Lemma 4.5 are just [9, p.42, Lemma 7.2; p.45, Lemma 7.5; p.46, Lemma 7.6],
respectively.

Lemma 4.3. There exists a positive constant C' such that, for all functions F : R™ x Z — [0, 00),
telll,0)NZ, K € ZU{oo} and X € (0,00),

{z e R™: F;R(2) > A} < O [{z e R™ : F3% () > A},

Lemma 4.4.  Suppose that ¢ € S(R") with [,, ¢(x)dx # 0. For any given N € N and L € [0,00),
there erist an I € N and a positive constant C(ry, depending on L, such that, for all K € Z, and
fes R,

MPEP (@) < Cay TEEP(f)(@), Yo eR™

Lemma 4.5.  Suppose that p € (0,00), ¢ € S(R") and K € Z,. Then, for any given M € (0,00),
there exist L € (0,00) and a positive constant C(k vy such that, for all f € S'(R™) and x € R",

MUEP(f) (@) < Ciae, ay[max{1, p(a)}) . (4.1)

Lemma 4.6. Letp € (0,00), N € (1/p,00)NN, g € (0,00] and ¢ € S(R™). Then there exists a positive
constant C such that, for all K € Z, L € [0,00) and f € S'(R"),

ITY B ()agny < CIMTEE ()| oageny. (4.2)
Proof. ~ We first prove that, for all p € (0,00), ¢ € (0,00], K € Z and ¢ € [¢',00) N Z,
1E7 X (| Loaqeny S B FE5 ) Loagny, (4.3)
where F;X is as in Definition 4.1 and, for all ¢ € S(R"), f € S'(R"), k € Z and y € R",

F(y,k) == |(f * ¢x)(y)| max[{L, p(A™Fy)}] " F (@ + b~ F)7E (4.4)
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To this end, fix © € R™. For k € (—o0, K|NZ, if x —y € Byy1, then
F(y, k) [max{1, p(A™"(z — y)) ] < F¥(2); (4.5)
if x —y € Bitjt1 \ Big; for some j € N, then
F(y, k)[max{1, p(A™"(z — y)) 7" < Fj{ (2)p~7™. (4.6)

By taking supremum over all k € (—oo, K] NZ and y € R™ on the both sides of (4.5) and (4.6), together
with (4.4) and the definition of Tg(K’L), we further find that

TYUD(f) (@) < Y F @), (4.7)
j=0

Notice that Fj;¥ is a non-negative function for any ¢ € Z. By (2.1) and Lemma 4.3, we conclude that,
for any £ € [(/,00)NZ, K € Z and p, q € (0, 0),

o 1/q
1| Lovarny ~ {/o Nz e R : F K (x) > A}Y/P d)\]

, 00 1/q
<pe=/p U Mz e R : FjE () > A}Y/P d)\]
0
~ P S| o gy, (4.8)

where the implicit positive constants are independent of £ and K. It is easy to see that (4.8) is also true
for ¢ = oo by the definition of the LP-*°(R™) norm. This proves (4.3).

Now we show (4.2). By (4.7), the Aoki-Rolewicz theorem (see [6,63]), (4.3) and N € (1/p,00) NN, we
know that there exists v € (0, 1] such that
b

TSR N agmy < FrE v @n)

s

<
I
o

WK

S bTINRIEDR g gy STMESD ()1 paen)

<.
I
o

with the implicit positive constants independent of K, L and f, which implies (4.2) and hence completes
the proof of Lemma 4.6.

Lemma 4.7.  Suppose that p € (1,00) and q € (0,00]. Then there exists a positive constant C such
that, for all f € LP9(R™),

[Mz(f)llLra@ny < CIfllLra@ny, (4.9)
where Mz(f) is defined as in (2.17).
Proof.  Let E C R™ be an arbitrary measurable set and |E| < co. By (2.18) and (2.19), we have
|Mz(xe)llLre®n) S IXEllLi@e) ~ |E]

and

[MF(xE)L=®n) S [IXEl Lo @) S 1.
Thus, applying [44, Theorem 1.1 and Remark 1.4] to Mz and f € LP%(R™) with pp = ¢o = 1 and
p1 = q1 = 00, we obtain (4.9). This finishes the proof of Lemma 4.7.

Remark 4.8.  As a corollary of Lemma 4.7, the operators My (f) in (2.14) and My (f) in (2.20) also
satisfy (4.9).
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Now we state the main result of this section.

Theorem 4.9.  Suppose that p € (0,00), ¢ € (0,00] and ¢ € S(R™) with [,, ¢(x)dx # 0. Then, for
all f € 8'(R™), the following statements are mutually equivalent:

f e HYYRM), (4.10)
M,(f) € LP(R), (4.11)
MO(f) € LPI(R™). (4.12)

In this case, it holds true that

1l aza@ny < CLIMQ(F)lLrageny < CrlMo(f)llzragny < Coll £l zany,
where Cy and Cy are positive constants independent of f.

Proof.  Clearly, (4.10) implies (4.11) and (4.11) implies (4.12). Thus, to prove Theorem 4.9, it suffices
to show that (4.11) implies (4.10) and that (4.12) implies (4.11).

We first prove that (4.11) implies (4.10). To this end, notice that, by Lemma 4.4 with N € (1/p, 00)NN
and L = 0, we find that there exists an I € N such that M?(K’O)(f)(x) < TéV(K’O)(f)(x) forall K € Z,
f € S(R™) and z € R™. From this and Lemma 4.6, we further deduce that, for all K € Z, and
feS®RY),

K
17O (Dllmagary S IMEOF) magen)- (413)
Letting K — oo in (4.13), by [35, Proposition 1.4.5(8)] and the Fatou lemma, we know that

IMP () Levaqrny S NMp(F)IlLooaqny,

which, together with Proposition 2.4, shows that (4.11) implies (4.10).
Now we show that (4.12) implies (4.11). Suppose now that MJ(f) € LP4(R™). By Lemma 4.5, we find

that there exists L € (0,00) such that (4.1) holds true, which further implies that MéK’L)(f) € LP9(R")
for all K € Z4. Indeed, for ¢/p € (0, 1], by (2.1) and (4.1), we have

oo
[PASERIOH] /0 ATz e R™ - MUSE(f)(2) > AHYP dA

~

< / AT @ € Byt MEST) (£)(x) > A}9/P dA
0

- Z/ AT {2 € Bigy \ By : MU () (x) > A}9/P dA
j=1"0

p—iM

1 [eS)
5/ X By |/ d/\+2/ X Bja |97 dA
0 =Jo

o0
N bequb(jJrl)q/p ~1 as M >1/p.
=0

For another case when ¢/p € (1,00), by (2.1), the Minkowski integral inequality and (4.1), we find that

||Mc(pK7L)(f)||%pq(Rﬂ) S HMc(pK7L)(f)||%pq(Bl) + HMc(pK7L)(f)||%P,q(]Rn\Bl)

~ [T € By MEED (1) @) > A} i

0

" {Zqu(i {z € B \ Bj : M{EP f(a) > 2k}|> p] q.
1

kEZ j=

q
p

< / AT {x € By s MESD)(f)(x) > A}9/P dA

~
0
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" {Z <22kq|{x € Bj1\ Bj : M (f)(2) > 2k}|;) }
j=1 \kez
N / Nz € By : MUSP(f)(x) > A}/P dA
0 o) q {1) g
+ {Z </ A {x € Biga \ By : MU () (x) > A}|» dA) }
=1 M0
1 oo b=iM 0] v
f,/ )\q71|Bl|q/p dX\ + [Z (/ )\q71|Bj+1|q/p d)\) }
0 j=1 \70
< [Zb—jMpb(j-H)] : ~1 as M >1/p. (4.14)
j=0

Clearly, (4.14) also holds true for ¢ = oo, since

1 1
[ fllznee@ny = sup {A(N)} ~ sup2*(dp(2h)]>.
Ae(0 kEZ

,00)

On the other hand, by Lemmas 4.4 and 4.6, we know that, for any L € (0, 00), there exists some I € N
such that, for all K € Z, and f € 8'(R"),

0(K,L
1ML () oo qny < Call MEEE (F)| oy

where Cj5 is a positive constant independent of K. For any given K € Z, let

Qg :={zeR": M?(K’L)(f)(x) < C4MéK’L)(f)($)} (4.15)
with Cy := 2C3. Then
MU ()| oagny S NMED ()| Lraci), (4.16)

because
_ 0(K,L
IMED Dl sy < CTIMIEE ) gy < Co/CIMED D)l aginy-

To finish the proof that (4.12) implies (4.11), for any given L € [0, 00), it suffices to show that, for all
te(0,p), K €Z; and f € S'(R™),

MEED(F)(@) S M (M (A @), Ve Q. (4.17)

Indeed, if (4.17) holds true for the time being, then, by (4.16), (2.3), (4.17) and Remark 4.8, for all
K €Z4 and f € §'(R™), we have

IMEED (oo qny S IMEE N paarey ~ NSOV 2o @)
S |\MHL([M3(K’L)(f)]t)||LT;,z(QK)
SR (AL, v s &)~ IMEFE () o0 en)- (4.18)

Noticing that M;K’L)(f)(a:) and Mg(K’L)(f)(a:) converge pointwise and monotonically to M, (f)(z) and

Mg(f)(x) for all f € S'(R™) and = € R™, respectively, as K — oo, by [35, Proposition 1.4.5(8)], the
monotone convergence theorem and (4.18), we have

Mo (H)lLea@ny S MM Loo (),

which shows that (4.12) implies (4.11).
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Thus, to complete the proof of Theorem 4.9, we only need to prove (4.17). For this purpose, for all
feSR"), keZandyeR" let

F(y, k) := |(f * or) (y)l[max{1, p(A™Fy)}] ~F[1 + 07 * K] 5, (4.19)

Let * € Q. By the definitions of Fj¥ and MéK’L) and (4.19), it is easy to see that there exist
k € (—oo, K]NN and y € x + By, such that

F(y,k) > Fg¥()/2 = M{EP(f)(@)/2. (4.20)
For this y, consider = € (y + By—_¢) for some integer ¢ € Z to be specified later. We write
Froe(@) — frpr(z) = fxUr(z), VzeR", (4.21)
where U(z) := p(z + A7%(@ — y)) — p(z) for all z € R™. By (2.11), (2.10), the mean value theorem
and (2.5), we conclude that

Sr(R™) X . - IS (R™)
Il < sup [l +h) = ()|l
heB_y

= sup sup sup max{l, [p(2)]"}0%p(z + h) — %p(2)]
hE€B_¢ z€R™ |a|<T

< [ sup sup sup max{1,[p(z+ h)]T}0%(z + h)|} [hmax |h|}
h€B_y zER™ |a|<I+1 €B_¢

S CsAZS, (4.22)

where the positive constant C5 is independent of L. Notice that, by a proof similar to that of [9, p. 17,
Proposition 3.10], we find that, for all z € R™,

M () (@) <bTTMPED (1) (). (4.23)
Moreover, by (2.10), we know that, for all € y + Bj_g,
max{1, (A~ F)} < b” max{1, (A~ Fy)},
which, combined with (4.20)(4.23) and (4.15), implies that
EF(E k) = [|f * en ()] — |f * Uk (y) [ [max{1, p(A )} 7E (1 + b7 FF)~F
> F(y k) — M (£ @) ], 0y 2 MEED(£)(2)/2 = Cs 07T M) () (2)
=MD (£)(@)/2 — CaCAZ0 MYV () () 2 MUISD () () /4, (4.24)

where £ is chosen to be the smallest integer such that CyCsA~“b™" < 1/4. Therefore, by (4.24) and (2.7),
we conclude that, for all ¢ € (0,p) and = € Q,

b-rJrZ

|Bk+7' | T+ By

¢ < 4tb-rLt
~ |Bk—€| y+Br—¢
S AT My ([MOFB ()] ()

[F(2,k)]" dz < 4'571 (ML) (£)]H(2) dz

with the implicit positive constants independent of ¢, K and f, which implies (4.17). This finishes the
proof of Theorem 4.9.

5 Finite atomic decomposition characterizations of H}?(R™)

In this section, we obtain the finite atomic decomposition characterizations of H}?(R™). To be precise,
we prove that, for any given finite linear combination of (p,r, s)-atoms with r € (1,00) (or continuous
(p, 00, s)-atoms), its quasi-norm in H%¥(R™) can be achieved via all its finite atomic decompositions.
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Definition 5.1.  For an admissible anisotropic triplet (p,r,s), ¢ € (0,00] and a dilation A, denote by
HY'5 Y (R™) the set of all distributions f € S'(R") satisfying that there exist K, I € N, a finite sequence
of (p,r,s)-atoms, {a¥ }ze[l 1NN, ke[1,K]nz, Supported on {«¥ + BF }16 LI)AN, ke[1, K]z C B, respectively,
and a positive constant C, independent of I and K, such that Zz 1 Xab4Br(T) < C for all z € R™ and
ke [l,K|NZ, and

K I
F=Y Y Maf in S®RM,
k=1 1i=1

where A ~ 2F|BE[1/P for all k € [1, K]NZ and i € [1, []NN with the implicit equivalent positive constants
independent of k, K and i, I. Moreover, the quasi-norm of f in H%':*9(R"™) is defined by

K I a1 K I
sy = mf{[z <Z |A§|p> ] =S Mdb K Te N}
k=1 =1

k=1 1i=1

with the usual modification made when ¢ = co, where the infimum is taken over all decompositions of f
as above.

Obviously, by Theorem 3.6, we know that, for any admissible anisotropic triplet (p,r, s) and g € (0, c0),
the set HYy oY (R™) is dense in Hy(R™) with respect to the quasi-norm ||| yz.4(gn. From this, we deduce
the following density of HY(R™).

Lemma 5.2. Ifp, g € (0,00), then
(i) for any r € [1,00], HY*(R™) N L"(R™) is dense in HYI(R™);
(i) HYY(R™) N C°(R™) is dense in HYY(R™).

Proof.  We first prove (i). If p € (1,00) and ¢ € (0,00), then H}Y(R™) = LP%(R™) (see Remark 6.6(ii)
below). By [35, Theorem 1.4.13], we know that the set of simple functions is dense in LP*?(R™). Thus,
LP9(R™) N L"(R™) is also dense in LP9(R™) for all r € [1,00]. If p € (0,1] and ¢ € (0, 00), by the density
of the set HY % *9(R™) in HYY(R™) and HY T *Y(R™) € L"(R™) for all r € [1,00], we easily find that
HBPY(R™) N L (R™) is dense in HY(R™). This finishes the proof of (i).

Now we prove (ii). To this end, we claim that, for any ¢ € S(R") with [, ¢(z)dz # 0 and f €
HE (),

[+epr— f in HYYR") as k— —oo. (5.1)

To show this, we first assume that f € HL?(R") N L*(R™). In this case, to prove (5.1), it suffices to
show that

Mn(f*¢r — f)(x) =0 for almost every z €R" as k— —oo, (5.2)

where N := N(;,) +2. Indeed, it is easy to see that f*pr—f € L?(R") for all k € Z, which, together with
Proposition 2.9 and Remark 2.10, implies that My (f * ¢ — f) € L?(R") for all k € Z. By this, [9, p. 39,
Lemma 6.6], (5.2), (2.1) and the Lebesgue dominated convergence theorem, we know that (5.1) holds
true for all f € HYY(R™) N L3(R™).

Now, we show (5.2). Notice that, if ¢ is continuous and has compact support, then g is uniformly
continuous on R™. Thus, for any § € (0,00), there exists € (0, 00) such that, for all y € R™ satisfying
ply) <nand z € R™,

)

lg(r —y) —g(x)| < :
2ol 1 (mmy

Without loss of generality, we may assume that f]R" o(x)dx = 1. Then I]R" vr(x)dx =1 for all k € Z.
From this, we deduce that, for all k € Z and x € R",

lg * pr(x) — g(z)] </( - Ig(x—y)—g(w)llcpk(y)lder/( . lg(z —y) — g(z)||¢x(y)| dy
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)
< o +2lgllzeomn) le(y)| dy. (5.3)
p(y)=b—kn

Qn the other hand, by the integrability of ¢, we know that there exists k € Z such that, for all k£ €
[k, 00) NZ,

)
2ol [ ey <y,
p(y)=b=Fn

which, combined with (5.3), implies that limg_, o |g * pr(z) — g(z)| = 0 holds true uniformly for all
x € R". Therefore, ||g * o — gl|pomn) — 0 as k — —oo, which, together with Proposition 2.9 and
Remark 2.10, further implies that

[Mn(g*or — g)llre®ny S 9% ok — gllLemn) =0 as k— —oo. (5.4)
For any given € € (0,00), there exists a continuous function g with compact support such that
If— g||2L2(R”) <e€
By (5.4) and [9, p. 39, Lemma 6.6], there exists a positive constant Cg such that, for all z € R™,

limsup My (f * pr — f)(2)

k——o0
< sup Mn((f = g) * o) (x) + lirilgup Mn (g * oK —g)(@) + Mn(9 — f)(x)

< CGMN(p) (g - f)(x)

Therefore, by Proposition 2.9 and Remark 2.10 again, we find that there exists a positive constant C7
such that, for any A € (0, 00),

Hm € R" : limsup My (f * i — f)(z) > )\H

k——oo

" A ||f—g|\%2(Rn) €
<|qzeR .MN(p)(g—f)(x)>C6 < O \2 <C7/\27

which implies that (5.2) holds true for all f € HYY(R") N L*(R™).
Assume now f € H}?(R™). By (i), we know that H%Y(R™) N L?(R™) is dense in HY/(R™). Thus, for
any given € € (0,00), there exists a function g € H}(R™) N L?(R™) such that

q
Hf - g”Hﬁ'q(R") <e

Moreover, by [9, p.39, Lemma 6.6] again and f € H}Y(R"), we find that {f * i }rez are uniformly
bounded in H{'?(R™) and

ilelgﬂ(f = 9) xprllarawny S If — gllapa@ny-
Therefore, by (5.1) being true for all f € HY*(R™) N L?(R™), we further conclude that
limsup ||+ @k = Sz azn)
< sup I(F = 9) * @l Frma gy + 1}11331;5 lg * e = gl 50 @ny + 119 = gm0 @
< llg = Aoy S <

This implies that the claim (5.1) holds true.
Notice that, if f € H5>*(R™) and ¢ € C°(R™) with [p, ¢(2) dx # 0, then, for all k € Z,

[ * i € CE(R™) NHYYR™)
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and, by (5.1),

f*pr— f in HYPYR") as k— —oo.
From this and the density of the set HY':>(R") in HY(R"), we further deduce that C2°(R™)NHYy*(R™)
is dense in H?(R™). This finishes the proof of (ii) and hence Lemma 5.2.

The following conclusion is from Theorem 3.6 and its proof. We state it here for the later application.

Lemma 5.3. Ifpe (0,1], ¢ € (0,00], r € (1,00] and s € N with s > |(1/p — 1)Inb/In A_]|, then, for
any f € HYT(R™) N L"(R"), there exist {\f}rez, ien C C, {F}trez, ien C R™, balls {By trez, ien and

(p, 00, s)-atoms {a¥}kez. ien such that
f=2_2 A,

k€Z ieN

where the series converges almost everywhere and also converges in §'(R™),
supp af C Byriyry Q= LJ(xi€ + Byriy,) for all k€ Z and i €N, (5.5)
’ i€N ’
where
Qp = {J) eR™: MN(f)(J)) > Qk},
(zF + Bye_.)N (a?f +Bype_,) =0 for all k € Z and i, j € N with i # j, (5.6)
8{j €N: (x] + By yyr) N (@ + Bpeyy,) #0y <L for all i €N, (5.7)

where L is a positive constant independent of Qi and f. Moreover, there exists a positive constant C,
independent of f, such that, for all k € Z and i € N,

INFak| < C2F  almost everywhere (5.8)

and

Z (Z|>‘k|p> CHfHHP a2 (Rn)” (5.9)

keZ ™ ieN

Remark 5.4. Foralli € N,k € Z and £ € [0,00), let ¢¥ and P¢(R") be the same as in the proof
of Theorem 3.6. For any f € HY?(R™) N L"(R"), by an argument similar to that used in the proof
of Theorem 3.6, we also find that there exists a unique polynomial P* € P,(R") such that, for all
Q € Pe(R™),

(1.Q¢h) = (PEQE) = | PH2)QG)C ) da, (5.10)
Moreover, for any ¢, j € N and k € Z, we let the polynomial Pk'|r1 be the orthogonal projection of
(f - PkH)Ck on Py(R™) with respect to the norm defined by (3.8), namely, P’“Jr1 is the unique element
of PZ(R") such that, for all Q € Py(R"),

| U@ = P @ @Q@ @) e = [ P @)QGCH @) de (1)
and, for all i € N and k € Z,
= (f = PAYCE = DI = PFFYCE = PG (5.12)
JEN

Lemmas 5.5 and 5.6 are just [13, Lemmas 4.4 and 5.2], respectively; see also [9, p. 25, Lemma 5.3 and
p. 36, Lemma 6.2].
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Lemma 5.5.  There exists a positive constant C, independent of f, such that, for alli € N and k € Z,

sup | PF(y)¢F (y)| < C sup My (f)(y) < O2",
yER™ yeUF
where UF = (zf + Byt y4741) N N ()8,

Lemma 5.6.  There exists a positive constant C, independent of f, such that, for all i, j € N and
keZ,

sup |PFH (y)¢H (y)] < C sup My (f)(y) < C2M,
yerr et

where UF := (azrf'Irl + B£5+1+4T+1) N (Qp1)C.

The following Theorem 5.7 extends [53, Theorem 3.1 and Remark 3.3] to the setting of anisotropic
Hardy-Lorentz spaces.

Theorem 5.7.  Let g € (0,00] and (p,r,s) be an admissible anisotropic triplet.

(i) If r € (1,00), then || - || grroamny and || - | gzony are equivalent quasi-norms on HY'g>(R™);
(i) |-z ey and || - | gmaqrny are equivalent quasi-norms on HP =2 9R™) N C(R™).

Proof.  Obviously, by Theorem 3.6, Hy':»*(R") C HY(R™) and, for all f € HY:09(R™),

£l ez @y SN Fllazmea@ny.

A fin

Thus, we only need to prove that, for all f € H:»*(R") when r € (1,00) and for all f € [H}:>(R™)
N C(R™)] when r = oo, ||| gzrea@ny S || fll 79 mny. We prove this by five steps.

A, f]n
Step 1. Let r € (1,00]. In this case, without loss of generality, we may assume that f € HY':>(R")
and || f]l mrarn) = 1. Notice that f has compact support. Then there exists some ko € Z such that
supp f C By,, where By, is as in Section 2. For any k € Z, let

= {z e R": Mn(f)(z) > 2°},

here and hereafter in this section, we let N = N,). Since f € HYY(R") N L"(R"), where 7 := r if
r € (1,00) and 7 := 2 if r = oo, by Lemma 5.3, we know that there exist {\F}rez ien C C and a sequence
of (p, 00, s)-atoms, {a¥}rez ien, such that f = > okez ZzeN ka¥ holds true almost everywhere and also
in 8'(R™) and, moreover, (5.5) through (5.9) of Lemma 5.3 also hold true.

Step 2. In this step, we prove that there exists a positive constant C such that, for all x € (Bk0+47)c,
My (f)(w) < C| By, | 7. (5.13)
To this end, for any fixed x € (Bk0+4T)C, by Proposition 2.4, we have

My (f)(x) S MX(f)(z) S sup sup | * ¢p(x)] + sup sup o=l 4+ Do
PESN(R™) k€[ko,00)NZ HESN(R™) ke (—o00,ko)NZ

For I, assume that 0 € S(R™) satisfyies that suppf C B;,0 < § < 1 and § = 1 on By. For
k € [ko,00) N Z, from supp f C By,, we deduce that

Pron@) = | oula=y)0(A™y (y)dy = f = oy (0n), (5.14)
where ¢(y ) = bro—kg(A~kz 4 ARo=ky)9(—y) for all y € R™. Noticing that, for any « € Z77 with |a| < N
by (2.5), A- € (1,00), k € [ko,00) NZ and ||¢]|s,®n) < 1, we find that, for all y € R™,

97 [p(A* W) £ A=) B¢l sy S 1,

which, combined with the product rule and supp @ C B, further implies that

lellsy @n) = S s 05 [p(A™ a + AR~ F)o(—y)]|[L + p(y)]Y S 1. (5.15)
a \ y
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Thus, noticing that [|[¢]|sy &) ¢ € Sy(R™) and, for all z € By,, 0, € 2+ By,, by the definition of My,
we know that, for all z € By,,

My(f)(z) = sup
u€z+ By,

1 N
( v )*f(U)‘> (on # (0 (5.16)
lllsn ®m) / 1y lollsx )

Combining (5.14)-(5.16), we further conclude that, for all # € (B, 4r)C,

£ x x| < @llsyen) inf My(P)) S inf Mn()(2)

and hence Iy < inf.ep, Mn(f)(2) =: Csinf.ep, Mn(f)(2). Let

T+ Cainteen,, My(/)(2)
D 2 :

Then, it is easy to see that I; < I < Cg inf.ep,, Mn(f)(2). Therefore, we have

1
[f e @ny 2 1 fllan=@n) 2 sup Al{z € Bi, : CsMn(f)(z) > A}[»
A€(0,00)

>TL{z € By, :1>L}r ~1i| By, |7,

which, together with || f||gz.a®n) = 1, further implies that I; |Bk0|_;.
For I, by supp f C By, and 6 = 1 on By, we find that, for all k € (—o0, ko) NZ, x € (Bk0+4T)C and
S Bkm
froe@) = | el —y)0(A7y)f(y) dy = f * x(2),
where 1(u) := ¢p(A7F(x — 2) + u)§(A"*0z — Ak=koy) for all u € R™. Notice that, if u € supp1, then
A~FRoy — AF~koy € B, and hence u € By, _jt2-. Therefore, by (2.7) and (2.8), we have

A Mz —2)+ue (Bko—k+47—)c + Bio—k + Bry—kt2r

- (Bko—k‘+47')c + Bry—k+3r C (Bko—k+37—)cv

which implies that p(A=F(x — 2) +u) = b*~*+37. From this, (2.5), A_ € (1,00), k € (—00,kp) NZ and
¢ € Sny(R™), we further deduce that

N

1
[V|lsymny S sup  sup ()_)(kfko)\al + p(u) <1

|| N w€ supp v L+ p(A~F (2 — 2) + u)
Thus, by an argument similar to that used for I;, we have
25 _inf My(f)() S 1Bl -
Combining the above estimates of I; and I, we show that (5.13) holds true.

Step 3. We now denote by k the largest integer k such that 2% < 6’|Bk0 |_;, where C is the same as
in (5.13). Then, by (5.13), we have

Q) C Biyyar forall ke (k oo NZ. (5.17)
Let
k 00
h = Z Z)\faf and /(:= Z Z)\faf,
k=—o00 i€N k—Ft1 €N

where the series converge almost everywhere and also in §'(R™). Clearly, f = h + £. In what follows
of this step, we show that h is a constant multiple of a (p, 0o, s)-atom with the constant independent
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of f. To this end, observe that supp /¢ C U;O:EH Q) C Bpy+ar, which, combined with supp f C Byy+ar,
further implies that supph C Bpy+ar-
Notice that, for any r € (1,00] and 1 € (1,7), by Holder’s inequality, we have

_n r
[ 18@0 do < 1B 15,y < .

Observing that supp f C By, and f has vanishing moments up to order s, we know that f is a constant
multiple of a (1,71, 0)-atom and therefore, by Lemma 3.4, My(f) € L*(R"™). Then, by (5.7), (5.5), (5.17)
and (5.8), we have

/,L S Y et de £ 302410 S IMa (Dl e < o

k=k-+1 €N kEZ

This, together with the vanishing moments of a¥, implies that ¢ has vapishigg moments up to s and hence
so does h by h = f — £. Moreover, by (5.7), (5.8) and the fact that 2% < C|By,|”», we find that, for all
xzeR”,

k

@) < D 25 < Bl e

k=—o0
Thus, there exists a positive constant Cy, independent of f, such that h/Cqy is a (p, 00, s)-atom and, by
Definition 3.1, it is also a (p,r, s)-atom for any admissible anisotropic triplet (p,r, s).

Step 4. In this step, we show (i). To this end, assume that r € (1,00). We first show that

i > Aaf e L(RM).

ko1 iEN

Forallz € R", since R" = (J;7(2;\2j41), it follows that there exists a jo € Z such that z € (€2, \Qj,+1).
Notice that suppal C By, . C Qp C Qjyqq for all k € (jo,00) NZ, using (5.7) and (5.8), we conclude
that, for all z € (5, \ Qjo+1),

SO T INal @) £ >0 28 £ 27 < Mu(f)(a).

k:=’];+1 €N k<jo
Since f € L™(R™), from Proposition 2.9 and Remark 2.10, it follows that MN(f) € L"(R™). Thus, by the
Lebesgue dominated convergence theorem, we further have Zszg 412 ieN Meak converges to £ in L"(R™)

asK}E—f—landK—)oo.
Now, for any positive integer K > k and k € [k + 1, K| N Z, let

K
Igwy ={i €N:|i| +[k| <K} and L= Y Y Mak
k=k+1 €1k k)

Since ¢ € L"(R™), it follows that, for any given € € (0,1), there exists K € [E + 1,00) N Z large enough,
depending on ¢, such that (¢ —{(x))/€is a (p,r, s)-atom. Therefore, f = h + £(x) + (£ — {(x) is a finite
linear combination of (p,r, s)-atoms. By Step 3 and (5.9), we further conclude that

1Ay S (Co)" s < 3 mp) Last,

k=k+1 €Ik k)

which completes the proof of (i).

Step 5.  In this step, we show (ii). To this end, assume that f is a continuous function in H% %9 (R"™).
Then a¥ is also continuous due to its construction (see also (3.15)). Since

MN(f)(il,’) < C(n,N)Hf”Lac(]Rn) forall z € Rn,
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where C,, ny is a positive constant only depending on n and N, it follows that the level set 2 is empty
for all k satisfying that

"> Clm 1 f Lo - (5.18)

Let & be the largest mteger for which (5.18) does not hold true. Then the index k in the sum defining ¢
runs only over k € {k+1,...,k}.

Let € € (0,00). Since f is uniformly continuous, it follows that there exists a ¢ € (0,00) such that
|f(z) = f(y)] < e whenever p(z —y) < §. Write £ = €5 + £5 with

z k
fe 3 Y M md e YYD

k=k+1icp("?® k=k+1ieF{"?
where, for k € {E—F 1,... ,7{2\},
FFED = (e N: b > 6} and F&Y = {i e N: b+ < 6}

Notice that, for any fixed k € {EJr 1,... ,E}, by (5.6) and (5.17), we know that Fl(k’é) is a finite set and
hence ¢ is continuous.

On the other hand, for any k € {E—I— 1,...,7{3\}, i € N such that b%+7 < § and = € xf + B€§+T’
|f(z) — f(2F)| < e. By (5.10) and supp(F C o + By, ., we find that, for all @ € P¢(R"),

1

Lo Co(2)d Ja [f(z) — PF@)]Qx)Ck (z) dx = 0,
R™ St n

where, for all x € R”,
f@) = [f(@) = F@)Xparip,, y(@) and Pf(z) = Pf(z) - f(zf).
Since |f(a:)| < € for all z € R™ implies My (f) (x) Seforall z € R, from Lemma 5.5, it follows that

sup [P} ()¢ ()] S sup Ma()(y) S e (5.19)
yER™ yERn

Similar to Remark 5.4, for all & € {E +1,... ,/15}, i€ FQ(k’é) and j € N let ﬁlk;rl be the orthogonal
projection of (f — ]S;Hl)@f on P;(R™) with respect to the norm defined by (3.8), then, for all @ € Py(R"),

[ 1F@) = B et @@t @) de = [ P @)Q(@) o) de (5.20)

By supp¢F C 2} —|—ng+7, we have [f — Pk“]Ck [f— Pk“]gk From this, (5.11) and (5.20), we further
deduce that sz;rl = sz;rl Then, by Lemma 5.6, we find that

sup [P () (y)] < sup My (f)(y) S e. (5.21)
yeR” yeR®

Furthermore, by (5.12) and ZjeN (j’?“ = XQu4,, We have
Aaf = (f = PR)CE = Y _I(F = PPk = PEFNG!
JEN
=i fxap,, — PACEHCE D PTG Y OBEG,
JEN JEN

which, combined with (5.19), (5.21) and [9, p. 35, Lemma 6.1(ii)], further implies that [Nfak(2)| < e for
allke{k+1,....k},ic F") and z € 2 + By,
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Moreover, using (5.5) and (5.7), we conclude that there exists a positive constant Cig, independent
of f, such that

k
051 < Cro Y €= Cro(k — k)e. (5.22)
k=k+1

Since € is arbitrary, we hence split ¢ into a continuous part and a part which is uniformly arbitrarily
small. This fact implies that ¢ is continuous. Therefore, h = f — ¢ is a C9 multiple of a continuous
(p, 00, s)-atom by Step 3.

Now we give a finite decomposition of f. To this end, we use again the splitting ¢ := ¢ +/¢5. Obviously,
for any e € (0,00), £§ is a finite linear combination of continuous (p, oo, s)-atoms and, by (5.9), we have

q

k
Z ( Z |)\i€|p) <HfHHpq(Rﬂ (5.23)

k=k+1 ier®®

Observe that £ and ¢{ are continuous and have vanishing moments up to s and hence so does ¢5. Moreover,
supp 5 C B, tar and [[€5]| o mn)y < Cio(k — k)e by (5.22). Therefore, we choose € small enough such
that ¢5 becomes an arbitrarily small multiple of a continuous (p, 0o, s)-atom. Indeed, 5 = A°a, where

A= Cyo(k — k)e| Brg ar|/?
and af is a continuous (p, 0o, s)-atom. Thus, f = h+ £+ ¢5 gives the desired finite atomic decomposition
of f. Then, by (5.23) and the fact that h/Cy is a (p, 00, s)-atom, we have

Nl grmeoossamny <Rl gesoessa@ny + (€5 ]| gosoessamny + [|€5]| goooossagny S 1.

A fin A fin A, fin A, fin

This finishes the proof of (ii) and hence Theorem 5.7.

6 Some applications

In this section, we give some applications. In Subsection 6.1, we consider the interpolation properties of
the anisotropic Hardy-Lorentz space H'y(R™) via the real method. In Subsection 6.2, we first obtain the
boundedness of the §-type Calderén-Zygmund operators from H% (R™) to LP°°(R™) (or to Hy™(R™)) in
the critical case. Then we prove that some Calderén-Zygmund operators are bounded from HY?(R™) to
LP->°(R™). In addition, as an application of the finite atomic decomposition characterizations of Hf?(R™)
in Theorem 5.7, we establish a criterion for the boundedness of sublinear operators from H%?(R™) into
a quasi-Banach space, which is of independent interest. Moreover, using this criterion, we further obtain
the boundedness of the §-type Calderén-Zygmund operators from H'y(R™) to LP4(R™) (or to HYY(R™)).

6.1 Interpolation of H%'9(R™)

In this subsection, as an application of the atomic decomposition for the anisotropic Hardy-Lorentz
space H?(R™), we prove the real interpolation properties on H“(R™) (see Theorem 6.1 below), whose
isotropic version includes [1, Theorem 2.5] as a special case (see Remark 6.7(ii) below).

We first recall some basic notions about the theory of real interpolation. Assume that (X7, X3) is a
compatible couple of quasi-normed spaces, namely, X; and X5, are two quasi-normed linear spaces which
are continuously embedded in some larger topological vector space. Let

X1+ Xy = {fl +fo:fre Xy, fo € XQ}.
For t € (0, 00], the Peetre K-functional on Xy + X5 is defined as

K(t, f; X1, Xo) == inf{|| fillx, + t|follxz : f = f1+ fo, f1 € X1 and fo € X}
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Moreover, for § € (0,1) and ¢ € (0, 00|, the interpolation space (X1, X2)g,4 is defined as
>, a1
(Xl, Xg)qu = {f e X1+ Xy ||f||9’q = </ [t7 K(t,f;Xl,XQ)]q ' > < OO}
0
It is well known that
(L% (R™), L=(R"))g,q = LY(R") and (L7 (R"), L7%(R"))g,q = L"(R"),

where p € (0,00), 0 < ¢1 < g2 < 00, ¢ € [q1,¢2] and 0 € (0,1) satisfy that 1/¢ = (1—0)/q1+6/q2 (see [8]).

The main result of this subsection is the following real interpolation properties of H%4(R™).

Theorem 6.1.  Let p € (0,00) and q1, q, g2 € (0, 00].
(i) If p1, p2 € (0,00), p1 # p2, 8 € (0,1) and 1/p = (1 —0)/p1 + 0/p2, then

(HZ " (R™), HE ™ (R™))g,q = HT(R™). (6.1)
(i) 170 € (0,1) and 1/g = (1 — 6)/qy + 0/qs, then

(HZ™ (R™), HY™ (R™))g,g = HZ(R™). (6.2)
In order to prove Theorem 6.1, we need the following technical lemma on the decomposition of a

function into its “good” and “bad” parts, whose proof is similar to the proof of [9, Lemmas 5.7 and
5.10(ii)], the details being omitted.

Lemma 6.2. Letp € (0,1], N € [N(,),00)NZ, f € CZ(R"), A € (0,00) and
Q) = {J) eR": MN(f)(J?) > )\}
Then there exist two functions gx and by such that f = gx + by and

loallmeny < ik [y < Crz | (D)@ da,

A

where C11 and Cha are positive constants independent of f and A\, and Hﬁ(R”) is the anisotropic Hardy
space introduced in [9].

By Lemma 6.2 and an argument parallel to the proof of [29, Theorem 1], we obtain the following real
interpolation properties, the details being omitting.

Lemma 6.3.  Assume that g € (0,00], po € (0,1], 8 € (0,1) and 1/p = (1 —0)/po. Then
(HY (R™), L>(R™))p,g = HZ*(R"). (6.3)

Remark 6.4. If A := dI,y, for some d € R with |d| € (1,00), then HY’(R") and H}?(R") in
Lemma 6.3 become the classical isotropic Hardy and Hardy-Lorentz spaces, respectively. In this case, if
q € (0,00], po € (0,1], 6 € (0,1), and 1/p = (1 — 0)/po, then

(H? (R™), L= (R"™))g,q = H"*(R"),
which is just [29, Theorem 1].
Now we employ Lemma 6.3 to prove Theorem 6.1(i).

Proof of Theorem 6.1(i).  Indeed, if p1, p2 € (0,00) and py # p2, then there exist r € (0, min{p, p2,1})
and n1, n2 € (0,1) such that 1/p; = (1 —n;)/r, i € {1,2}. Let n:= (1 — 0)n1 + On2. Noticing that

1/p=Q0=0)/p1+6/p2=(1—n)/r,
by Lemma 6.3 and the reiteration theorem (see, for example, [55, Theorem 2]), we know that

(HZ " (R™), HE® (R™))g,q = (HA(R™), L= (R™))y, 15 (HA(R™), L= (R™)) s 45)0.9
= (HA(R™), L=(R™))y,q = HY(R™),

which is the desired conclusion (6.1). This finishes the proof of Theorem 6.1(i).
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As an immediate consequence of Theorem 6.1(i), we easily know that the anisotropic Hardy-Lorentz
space H}Y(R™) serves as a median space between two anisotropic Hardy spaces via the real method,
which is the following Corollary 6.5.

Corollary 6.5.  Assume that g € (0,00], p, p1, p2 € (0,00), p1 # p2, 0 € (0,1) and 1/p = (1 —0)/p1
+0/pa. Then

(HZ (R™), H*(R™))g,g = HR(R™).

Remark 6.6. (i) If A := dI,x, for some d € R with |d| € (1,00), then HY'(R™), H}*(R™) and
H%9(R™) in Corollary 6.5 become the classical isotropic Hardy and Hardy-Lorentz spaces, respectively.
In this case, if g € (0,00], p, p1, P2 € (0,00), p1 # p2, 6 € (0,1) and 1/p = (1 — 6)/p1 + 0/p2, then, by
Corollary 6.5, we have

(HP (R™), HP (R™))g,, = HP9(R™).

In particular,
(H" (R™), H”* (R™))o p = H"(R"),
provided that 6 € (0,1) and 1/p= (1 —0)/p1 + 0/p2.

(ii) If p € (1,00) and ¢ € (0,00], then HYY(R™) = LP%(R™). Indeed, for any p € (1, 00), there exist
p1, p2 € (1,00), p1 # p2 and 6 € (0,1) such that 1/p = (1 — 0)/p1 + 0/p2. From this, Corollary 6.5,
H(R") = L"(R") for all » € (1,00) (see [9, p.16, Remark]) and the corresponding interpolation result
of Lorentz spaces (see, for example, [55, Theorem 3]), we deduce that

HRI(R™) = (H' (R™), HE?(R™))g,q = (LP'(R™), LP*(R™))g 4 = L7 (R™).

Now we turn to prove Theorem 6.1(ii) via Remark 6.6(ii).

Proof of Theorem 6.1(ii).  To show Theorem 6.1(ii), we consider two cases. If p € (0,1], by a proof
similar to that of [1, Theorem 2.5], we easily obtain the desired conclusion (6.2). If p € (1,00), by
Remark 6.6(ii) and the interpolation properties of Lorentz spaces (see, for example, [8, Theorem 5.3.1]),
we find that (6.2) holds true. This finishes the proof of Theorem 6.1(ii) and hence Theorem 6.1.

Remark 6.7. (i) If A := dI,x, for some d € R with |[d| € (1,00), then HY""(R"™), HY"(R"),
i € {1,2}, and H}?(R") in Theorem 6.1 become the classical isotropic Hardy-Lorentz spaces. In this
case, by Theorem 6.1(i), we know that

(HP0 (RO, HP2 9 (R = HP9(RY),

provided that g1, ¢, g2 € (0,00], p1, p, p2 € (0,00), p1 # p2, 0 € (0,1) and 1/p = (1 —0)/p1 + 0/p2, which
is a well-known interpolation result for classical isotropic Hardy-Lorentz spaces (see [29, p. 75, (2)]). In
addition, by Theorem 6.1(ii), we have

(PO ("), HP(R"))g = HPI(RY),

provided that p € (0,00), 6 € (0,1) and q1, ¢, g2 € (0,00] satisfy that 1/g = (1 — 8)/q1 + 0/g2, which
generalizes [1, Theorem 2.5].

(ii) Lemma 6.3 also holds true for all pg € (1,00) and ¢ € (0, 00]. Indeed, notice that, if py € (1, 00),
then p € (1,00). Thus, by Remark 6.6(ii), we have

HP(R") = LP°(R") and HYYR") = LP9(R").
From this and the fact that, for all ¢ € (0, o],

(LPo(R™), L™ (R™))p.q = LPI(R™) with L1100 hd ve (0,1)
p Po

(see [8, Theorem 5.3.1]), we further deduce that (6.3) holds true for all py € (1,00) and ¢ € (0, o0].



Liu J et al. Sci China Math September 2016 Vol. 59 No.9 1709

6.2 Boundedness of Calderén-Zygmund operators

As another application of the atomic decomposition for H%?(R™), in this subsection, we first obtain the
boundedness of the d-type Calderén-Zygmund operators from H% (R™) to LP-°>°(R™) (or to H*(R™)) in
the critical case (see Theorem 6.8 and Remark 6.10 below). As the third application of Theorem 3.6, we
also prove that some Calderén-Zygmund operators are bounded from H%Y(R™) to LP>°°(R™) (see Theo-
rem 6.11 below). This application is a generalization of [1, Theorem 2.2] in the present setting. In addition,
as an application of the finite atomic decomposition characterizations for H?(R™) in Theorem 5.7, we
establish a criterion for the boundedness of sublinear operators from H%'?(R™) into a quasi-Banach space
(see Theorem 6.13 below), which is of independent interest. Moreover, using this criterion, we further
obtain the boundedness of the d-type Calderén-Zygmund operators from H%'?(R™) to LP9(R™) (or to
HY(R™) with § € (0, ], p e (144> 1] and g € (0,00] (see Theorem 6.16 below).

As the first main result of this subsection, the following Theorem 6.8 is the boundedness of the J-type

Calderén-Zygmund operators from HY (R™) to LP*>°(R™) (or to H}*°(R™)) in the critical case.
Theorem 6.8.  Let o € (0, ]Tn)‘g 1J1r5. Ifk € 8'(R™) coincides with a locally integrable function

on R™\ {Gn} and there exist two positive constants C1s and Cy, independent of f, x and y, such that

] and p =

& * fllo2@ny < Cisll fllz2@n

and, when p(x) = 6> p(y),

|k(x —y) — k(z)| < Cl4 [p[fa(:?)J])l]H ) (6.4)

then T(f) :=kx* f for all f € L*(R™)N HY(R™) has a unique extension on HY(R™) and, moreover, there
exist two positive constants Ch5 and Cig such that, for all f € HY(R™),

T ()l oo @ny < Cus || fll 7 rmy (6.5)

and

1T a5 @ny < Crsll fll g mm) (6.6)

To show Theorem 6.8, we need the following weak-type summable principle, which is from [31, p. 9]
(see also [47, p.114]).
Lemma 6.9. Let p € (0,1), (X,u) be any metric space and {f;}jen be a sequence of measurable
functions such that, for all j € N and X € (0,00),
u(fo € X 1 1f5()] > A} < OA7,

where C'is a positive constant independent of A and j. If {c;}jen C C satisfies that 3y |c;[P < oo,

then ZjeN ¢; fi(x) is absolutely convergent almost everywhere and there exists a positive constant C such
that, for all A € (0,00),
2
{frex ) <A S
JEN

Now we show Theorem 6.8.
Proof of Theorem 6.8.  We first prove (6.5). By Theorem 3.6, to show (6.5), it suffices to prove that,
for h being a constant multiple of a (p, oo, s)-atom associated with ball B := xy + By for some zy € R”
and { € Z,

ZCJfJ

JEN

Sup 2" [{z € R" : [T(h)(2)] > 2°}| S NPl o gy | BI- (6.7)
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Indeed, by Theorem 3.6 with p = ¢, we find that, for any f € H%(R™), there exists a sequence of
constant multiples of (p, oo, s)-atoms, {h;};cn, associated with balls {B;} ey, such that f = ZjEN hj in

S'(R™) and
Bj|]

1l ey ~ [Z 1512

JEN
From this, (6.7) and Lemma 6.9, we deduce that
sup 27| {z € R™ : [T(f)(2)| > 2"}

kez,
{xeR”~Z|T |>2k}

JEN

< sup 2~P

Rl s mny | B S P (RnY) 6.8
heZ ZH HL R )| | ”f”H (R™) ( )

JEN

which implies that [|T'(f)| 7o ®n) < [|fl 2 (rny- This is as desired.
It remains to prove (6.7). First, by the boundedness of T" and Hélder’s inequality, we know that

sup 2"P|{x € A B : |T(h)(z)| > 2¥}|
kEZ

LGOI lB"g)'{ Jun 'T(”)“)'Qd””}g

Py 2
s1e®{ [ e} < e

On the other hand, by [, h(z)dz =0 and (6.4), we find that, for all z € (A*B)C,

B|. (6.9)

/ww— k(o — 20)|h(y)] dy
—x 4 Bl+6
Sy [ VN g I s bl

which further implies that

sup 2FP|{z € (A‘”B)C T (R)(z)| > 2F}
kEZ
|B|1+6

N Sup2kp {{E € (A4TB)C : [p(z — )]1+5 Hh”LO"(R”) >2 }‘

kEZ

e [ 1Rl ey ]

< sup zp{ k | |~ ”h||p°°R"
2

keZN(—o0,||h|| Lo mny)

B|. (6.10)

Then (6.7) follows from (6.9) and (6.10), which completes the proof of (6.5).
Next we prove (6.6). To this end, similar to (6.8), it suffices to prove that

sup2*?|{z € B" : My(T(1)(x) > 2%} < A1} oy | Bl (6.11)

kEZ

First, similar to (6.9), by the boundedness of T and My on L?(R") (see Remark 2.10), we easily con-
clude that

iug 2" |{z € A B : Mn(T(h))(z) >2"}| S ”h”pac(]Rn)
€

Bl. (6.12)

By [z h(z)dz =0, we know that T(h)( n) = ( )h(0,,) = 0 and hence Jgn T(R)(z) dz = 0. By this,
we find that, for all ¢ € Sy(R™), k € Z and z € (A*"B)¢,

T(h)()e(A™" (z = y)) = (A" (z — 20))] dy

n

IT(h) * di(x)| = 07"
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<ot / IT(R)W)IP(A™" (x = y)) — $(A™" (x — x0))| dy

</ o o }
p(y—z0)<b?7|B| b27 | B|<p(y—20)<b—27 p(x—x0) p(y—x0)2b=27p(x—1x0)

x T(h)(y)l|p(A™"(z — y)) — H(A™"(z — 0))| dy
=1; + I +1Is. (613)

For 1y, by the mean value theorem, [9, p.11, Lemma 3.2], Holder’s inequality and the boundedness

of T on L?(R"), we conclude that there exists £(y) € A% B such that, for all ¢ € Sy(R"), k € Z and
z e (A4 B)L,

I = b‘k/ IT(R)(W)[|p(A™* (& = y)) — p(A* (& — x0))| dy
p(y—20)<b>7|B]

< /P(yﬂﬂo)<b27|B IT(h) (W)l Y (A" (@ = E))[|A" (y — o)l dy

[8]=1
pr(1+3) _ B
S b_k T(h _ —ké . 5 d
< / e TOEN T oty o)
’ 2 1 146
: [p(z |—B310)]1+3{/"[T(h)]2(y)} 1BI* % [P(x|?|xo)]1+§Hh”Lx(Rn), (6.14)

where

5. {(hu\_,.)/(lnb), when p(y —x9) > 1,
(InA_)/(Ind), when p(y —xo) < 1.

For 1o, by f]R" h(z)dx =0, (6.4) and the mean value theorem, we know that, for all ¢ € Sy(R"), k € Z
and z € (A*" B)C,

DA™ (@ —y)) — (A" (z — 20))| dy

/ h(2)k(y — z)d=
B

Ib=b"F /
b27 | B|<p(y—z0)<b=27 p(x—x0)

— ) — k(y — 2\ d [o(y — 20))°
= /b27|B§P(yzo)<b27P(xxo) {/B|h(z)||k(y )~y -zl d }[  — 20)]'+ dy

o(
Loo(Rn)
<zl |B|1+0
T (e — o)+ b BI<p(y—w0)<b27 p(a—ao) [p(y — w)] 1+
B+
< oo n .
S oo — a1 E (019
where 4 is as in (6.14).

For I3, by the fact that [, b(z)dz = 0, (6.4) and ¢ € Sy(R™), we find that, for all k& € Z and
x e (A7 B)E,

dy

|k (z — )| dy

/ hz)k(y — z)dz
B

Iy — /
p(y—x0)2b=27 p(x—x0)

<

</ [/ (=) Ik — 2) — k(y —$0)|d4 (el — o)l dy
ply—z0)2b=2"p(z—z0) L/ B

[p(z — z0)]°
S s [ {/ dz Y1éu(x — v)| dy
(&) p(y—xz0)=b—27 p(z—x0) B [p(y - xO)]l-Hs

|B|1+6 |B|1+6

S e oy Al [ toste—lans W

~

1+5||h||L°°(]R”)' (6.16)
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Combining (6.13)-(6.16) and Proposition 2.4, we know that, for all 2 € (447 B)C,

|B|1+6
My(T(h))(z) S sup  sup|T'(h)* ¢p(z)| S [172]] oo (e
$eSN (R") kEZ [p(z — )]1+5 s

From this, together with an argument parallel to (6.10), we further deduce that

ig?k”l{w € (AYB)®: My(T(h))(x) > 25} S 11} e i

Bl,

which, combined with (6.12), implies (6.11). This finishes the proof of (6.6) and hence Theorem 6.8.
Remark 6.10. (i) If A := d1,,, for some d € R with |d| € (1,00), then %~ = L and HY(R") and

Inb
H%*°(R™) become the classical isotropic Hardy and weak Hardy spaces, respectively. In this case, we
know, by Theorem 6.8, that, if § € (0,1], p = nié and T is the Calderén-Zygmund operator satisfying

all conditions of Theorem 6.8 with (6.4) replaced by
ke ) k@l Y 2
y ~ | |n+6 ) y )

where the implicit positive constant is independent of z and y, then T is bounded from H n+s (R™)
to Hn%5°°(R™), which is just [47, Theorem 1]. Here nis is called the critical inder. In this sense,
Theorem 6.8 also establishes the boundedness of Calderén-Zygmund operators from H% (R™) to LP*>°(R"™)
in the critical case under the anisotropic setting.

(ii) Let ¢ € (0, 1]. A non-convolutional §-type Calderén-Zygmund operator T is a linear operator which

is bounded on L?(R™) and satisfies that, for any f € L?(R") with compact support and = ¢ supp(f),
T(Ha) = [ Keg)fw)dy
supp(/f)

where K denotes a standard kernel on (R™ x R™)\ {(x,x) : @ € R"} in the following sense: There exists
a positive constant C' such that, for all z, y, z € R™,

Kawl< O i ety
and
T
Kieup) = K2 <€ U7 S0it plo =) > 87l - ). (6.17)

By an argument similar to that used in the proof of (6.6) in Theorem 6.8, we find that (6.6) also holds
true for non-convolutional §-type Calderén-Zygmund operators T with the additional assumption that
T*1 = 0 (namely, for any a € L'(R"™) with compact support, if [;, a(z)dz = 0, then [, T(a)(x)dz = 0),
the details being omitted.

(iii) Following the proof of (6.5) in Theorem 6.8, we know that (6.5) also holds true when T is a
non-convolutional d-type Calderén-Zygmund operator.

(iv) Let § € (0, hlln)\z; Jandp € (1}r s+ 1]. If T'is either a convolutional o-type Calderén-Zygmund operator
as in Theorem 6.8 or a non-convolutional §-type Calderén-Zygmund operator with the additional assump-
tion that 71 = 0, as in (ii) of this remark, then, by a similar proof to that of [9, p. 68, Theorem 9.8], we
conclude that 7' is bounded from H%(R™) to H%(R™). Moreover, by an argument parallel to the proof
of [9, p. 69, Theorem 9.9], we know that, if T" is either a convolutional §-type Calderén-Zygmund operator
as in Theorem 6.8 or a non-convolutional §-type Calderén-Zygmund operator 7', then T' is bounded from
HY (R™) to LP(R™). Comparing these with Theorem 6.8 and (ii) and (iii) of this remark, we know that
the latter further completes the boundedness of these operators in the critical case by establishing the
bounedness from H% (R™) to LP->°(R™) (or to Hy™(R™)).
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Another interesting application of the atomic decomposition for H%?(R™) is to obtain the following
boundedness of Calderén-Zygmund operators from H%?(R™) to LP:°°(R™) with p € (0,1] and ¢ € (p, c0].

Theorem 6.11.  Suppose that p € (0,1], g € (p,o0], r € (1,00) and T is a Calderdn-Zygmund operator
associated with the kernel k. Moreover, assume that T is bounded from L"(R™) to L™*(R") and wy,

satisfies a Dini-type condition of order q/(q — p), namely,

1 ds ) (a—p)/a
Apg) = {/O [wp(@)) /117 } < o0, (6.18)

where, for § € (0,1],

1
wp(0) = sup / [
8 1B ple—ys)>"3 |B| L/B

N = I_(l/p_ 1)1111n)\b_J7 /8 = (617"'7/8'0) S Zn;

k(x,y) - Z (y _yB)ﬁkﬁ(xayB)
[BISN

P
dy] dr,

1
ﬂ' DBIC(J,‘7 y)|y=y5

and the supremum is taken over all dilated balls B € B centered at yg. Then T is bounded from H*(R™)
to LP°°(R™) and, moreover, there exists a positive constant C' such that, for all f € H}Y(R™),

ks(z,yp) ==

IT ()l @ny < ClAG)1 1|50

Proof.  Let p € (0,1], ¢ € (p,00] and r € (1,00). For all f € H}(R"), by Theorem 3.6 and Defini-
tion 3.2, we know that there exists a sequence of (p, oo s) atoms, {a¥};en, ez, respectively supported
on {zF + BF}ien kez C B such that f =3, ., >,y Aal in S'(R™), AF ~ 2% BF|V/P for all k € Z and
i €N, > en Xt ypr (@) S 1forall k€ Zand x € R", and

[ fleza @y ~ {1k trezlles,

where pp 1= (3o |AF[P)Y/P. For all kg € Z, let f1 := M S wMak and fy == f — fi. Since

k=—o0 1€N Y
';’ € (1, 00], from Holder’s inequality, it follows that

ko r 1/r
e < 30 [ Soat] o~ 3 {f > statto)| e
k=—o0 Il ieN LrR")  g=—oo \ MUien(@i+B7) ey
ko /r ko ’ 1/r
<> 2k(2|Bf|) s> zkw(zw)
k=—o00 €N k=—o00 €N
N2k0(1 ")

)’
which, together with the boundedness from L"(R™) to L™ (R™) of T, implies that
2% {z € R™ « [T(f1)(2)| > 2%} < If 1m0 gy (6.19)
To complete the proof of Theorem 6.11, it suffices to prove that, for all kg € Z,
27| {z € R™ + [T(f2)(x)| > 2%} S Ay | F gm0 n)- (6.20)
Indeed, if (6.20) is true, then, by (6.19), we further conclude that

20| {z € R™ : [T(f)(a)] > 250}
<2PM|{x € R : [T(f1)(x)] > 2’%—1}| +2P’%|{x ER": [T (f)(@)| > 201
<y + At | oy S At | W gy (6.21)
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Taking the supremum over all kg € Z at the left-hand side of (6.21), we find that

1
IT () v @ny S [Awa)] 7 1| e @)

which is the desired conclusion of Theorem 6.11.
Finally, we give the proof of (6.20). To this end, for all i € N and k € Z, let By := ¥ + B
t% € Z. For every k € (ko,00] N Z, there exists an my, € N such that

3 p(k—ko)
bmk72‘r71 < <2> < bmk72‘r.

* where

Let

Bko = U U BlerkarT'

k=ko+1i€N
Notice that \F ~ 2F|BF|1/P ~ 2F| B, |'/P. Since q/p € (1,00], from Hélder’s inequality, we deduce that,
forall k € Z and i € N,

o] . oo 3 p(k—ko) 5
Bl 3 Sleadszm Y (7)) S
k=ko+1i€N k=ko+1 €N

<2 Y kezle ~ 27 1B (6.22)

Moreover, by the cancelation condition of a¥, we have

/ IT(f) (@) P de
R7\ By,

<> e/ T() (@) da

k=ko+1 i€N R”\Bszrmk+T
> P
- > swr{ [ s = X - Phaten,)|at) do| de .
k=ko+1 i€N RINByk y i |V Bk IBI<N ' !

Observe that, from x € (Bg;_c+mk+7)c and (2.9), we deduce that

3 p(k—ko)
plo—my) > 0B > () 1Bl

Hence, by Holder’s inequality, we find that

> p(k—ko)
Lo ()

k=ko+1

q

< {k_;i;ﬂ [wp((i)p(k_m)} } kel

1 qa—Pp
a dd 4
S L@l T U ey ~ Al Aoy
which further implies that
250}z € (B )P ¢ [T(£2)@)] > 2} S Al oy
By this and (6.22), we conclude that

2Pk [{z € R : |T(f2)(x)] > 2% }|  2°%[| By, | + [{z € (Bk,)" ¢ [T(f2)(x)] > 2} ]
S (1 + A(p,q))”f”i[zvqmn) S A(p,q)||f||z;1iLI(Rn);

which proves (6.20). This finishes the proof of Theorem 6.11.
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Remark 6.12. (i) If A is the same as in Remark 6.10(i), then N = |n(1/p—1)], )\ = nand H}(R")
and LP*°(R™) become the classical isotropic Hardy-Lorentz and weak Lebesgue spaces, respectively. In
this case, Theorem 6.11 is just [1, Theorem 2.2].

(ii) Tt is well known that the Hormander condition implies the boundedness of the Calderén-Zygmund
operator T' from H}(R") to L'(R™). Observe that H}(R") G HYY(R™) with ¢ € (1, 00]. Thus, to define T
on Hi"q(R") with ¢ € (1, 00], it is natural to require T to satisfy some conditions stronger than the usual
Hormander condition. This is accomplished by the variable dilations (the Dini-type condition (6.18))

of Fefferman and Soria [31] (see also [1]). Moreover, recall that we consider p = 1i6 orp € (1~1H§’ 1]
with ¢ € (0, lTn)‘g] in Theorem 6.8 and Remark 6.10, which implies N = [ " (1/p —1)] < 1. But, in

Theorem 6.11, we consider p € (0, 1]. If p becomes smaller, then N becomes larger. Thus, more regularity
of the kernel of T is needed. This justifies the definition of w,(d) in Theorem 6.11.

(iii) If & € (0, hlln)‘b‘], p E (1i5, 1] and T is a non-convolutional J-type Calderén-Zygmund operator

which satisfies all the conditions in Remark 6.10(ii) with (6.17) replaced by

K - K < C [ (y - Z)]é if _ b7 _
IK(z,y) — K(z, 2)]| s AE plz—y) >07ply — 2),
[p(z —y)]
where C'is a positive constant independent of z, y and z, then N = | |\" (1/p—1)] = 0 and p(1+4) > 1

Thus, for p = ¢, we have

1 p
Ay = swp {wp@) =suwp o [ [/ﬁnmww—nwwmmﬂ da
5€(0,1] B |B| z—yp)>b>T|B|

1 [P(ZJ—ZJB)](S !
< sup / [/ dy| dx
1B| Joo—ymysiri1 s [ —y))1+0
1« oy —ys)® 1"
< sup / [/ dy| dz
B |B|k20 brb27| Bl <p(z—yp) <b*1527| B] [p(x —yB)]1+°
|B|1+5 P .
Sup|B|Z[bk|B| 146 b"|B| ~ 1

where the supremum is taken over all dilated balls B € B centered at yp and B is as in (2.6). This shows
that Remark 6.10(iv) is the endpoint (critical) case of Theorem 6.11 in the sense of p = q.

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm || - ||z, which is non-
negative and non-degenerate (namely, ||f||g = 6 if and only if f = ) and satisfyies the quasi-triangle
inequality; namely, there exists a positive constant K € [1, c0) such that, for all f, g € B,

1f +9ls < K[| fll5+ llglls)-

Clearly, a quasi-Banach space B is called a Banach space if K = 1.
Let B be a quasi-Banach space and ) a linear space. An operator T from ) to B is said to be
B-sublinear if there exists a positive constant C' such that, for any A\, p € C and f, g € ),

IT(f + ng)lls < CINNT (N5 + 11lIT(9)l5]

and |[T(f) —T(g9)lls < C|T(f — g)|l5- Obviously, if T' is linear, then T' is B-sublinear.
As an application of the finite atomic decomposition characterizations obtained in Section 5 (see
Theorem 5.7), as well as Theorem 6.13, we establish the following criterion for the boundedness of

sublinear operators from H'Y(R™) into a quasi-Banach space B, which is a variant of [37, Theorem 5.9];
see also [40, Theorem 3.5] and [78, Theorem 1.1].

Theorem 6.13.  Let (p,r,s) be an admissible anisotropic triplet, g € (0,00) and B be a quasi-Banach
space. If one of the following statements holds true:
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(i) r € (1,00) and T : HY';>(R™) — B is a B-sublinear operator satisfying that there exists a positive
constant Ci7 such that, for all f € HY':>9(R™),

IT(H)lls < Crrll Fll o (6.23)

A fin
(i) T : HYS29(R™) N C(R™) — B is a B-sublinear operator satisfying that there exists a positive
constant Cig such that, for all f € HYT4(R™) N C(R™),
IT(Hlls < Casll fllmnsa@n),

A, fin

then T uniquely extends to a bounded sublinear operator from HYW(R™) into B. Moreover, there exists a
positive constant Chg such that, for all f € HY*(R™),

IT(Hlls < Croll fllmzpemn)-

Proof. ~ We first prove (i). For any given r € (1, 00), assume that (6.23) holds true. Let f € HY(R™).
By Theorem 3.6 and the density of Hz>4(R™) in H">9(R"™), we know that H;>9(R™) is dense in
HY(R™). Thus, there exists a Cauchy sequence {f;}jen C HY'52*(R™) such that

Jim 15 = fllmza@ny =0,
which, together with (6.23) and Theorem 5.7(i), further implies that

IT(f) = T(Ds SNT(fi = s S fi = fillazmsagny ~ 1 fi = fillapa@ny — 0

A fin

as i, j — 0o, where the implicit positive constants are independent of ¢ and j. Therefore, {T'(f;)} en is
a Cauchy sequence in B, which, combined with the completeness of 55, implies that there exists F' € B
such that F' = lim;_, T'(f;) in B. Let T(f) := F. From (6.23) and Theorem 5.7(i) again, we further
deduce that T(f) is well defined and

TNl S limsup[[[T(f) = T(fi)lls + 1T (f;)]ls] < limsup [ T(f;)]5

J—00 J—0oQ

S H]]FILSCEP Ifill zpea reny ~ ]15130 | fill e mny ~ 11| o mny
where the implicit positive constants are independent of f. This finishes the proof of (i).

Now we prove (ii). For ¢ € (0,00), we first claim that H}3*(R") N C(R") is dense in HY(R").
Indeed, by Lemma 5.2(ii), we know that H/(R™) N C(R™) is dense in H?(R™). Thus, we only need to
show that Hy 5" (R")NC(R") is dense in H}?(R™)NC(R™) with respect to the quasi-norm ||« || gz.a(gn).
For any f € HYY(R™) N C(R™), by an argument similar to that used in the proof of Theorem 3.6 (or
Lemma 5.3), we find that there exist a sequence of (p, 0o, s)-atoms, {a¥};en kez, and {\f}ien kez € C
such that f =3, ., >, .y AFal in 8'(R™). Moreover, from definitions of these (p, oo, s)-atoms (see (5.12))
and the continuity of f, we further deduce that all these (p, oo, s)-atoms are continuous. Thus, for any
K e N, if we let fx := Zﬁ‘zo Zfil ek then it is easy to see that

{fx}tken C HY g (R™) N C(R™)
and
Klgnoo If = frllgza@n) =0,

which implies that H'7*7(R™) N C(R™) is dense in HY?(R™) N C(R™) with respect to the quasi-norm

- 1l zrpe ey -
By the density of Hly% >*(R") N C(R™) in HY(R") and a proof similar to (i), we conclude that (ii)
holds true. This finishes the proof of Theorem 6.13.

By Theorem 6.13, we easily obtain the following conclusion, the details being omitted.
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Corollary 6.14.  Let (p,r,s) be an admissible anisotropic triplet, ¢ € (0,00) and B be a quasi-Banach
space. If one of the following statements holds true:
(i) 7 € (1,00) and T is a B-sublinear operator from HY'2>*(R™) to B satisfying that

G :=sup{||T(a)||5 : a is any (p,r,s)-atom} < oo;
(ii) T is a B-sublinear operator defined on continuous (p, 00, s)-atoms satisfying that
S :=sup{||T(a)||5 : a is any continuous (p, oo, s)-atom} < 0o,

then T has a unique bounded B-sublinear extension T from HY9(R™) to B.

Remark 6.15. (i) Obviously, if T is a bounded B-sublinear operator from H%?(R™) to B, then, for
any admissible anisotropic triplet (p,r, s), T is uniformly bounded on all (p, r, s)-atoms. Corollary 6.14(i)
shows that the converse holds true for » € (1,00). However, such converse conclusion is not true in
general for » = co due to the example in [10, Theorem 2|. Namely, there exists an operator 7 which is
uniformly bounded on all (1,00,0)-atoms, but does not have a bounded extension on H!(R").

(ii) Corollary 6.14(ii) shows that the uniform boundedness of T' on a smaller class of continuous
(p, 00, s)-atoms implies the existence of a bounded extension on the whole space H}?(R™). In particular,
if we restrict the operator T, in (i) of this remark, to the subspace Hi”%oﬁo’l(R”) N C(R™), then such

restriction has a bounded extension, denoted by 7~', to the whole space H}(R™). However, T itself does
not have such property. Precisely, 7 and T coincide on all continuous (1,00,0) atoms, while not on all
(1,00, 0) atoms; see also [53]. This shows that it is necessary to restrict the operator 7" only on continuous
atoms for 7 = oo in Corollary 6.14(ii).

Now we use Corollary 6.14 and Theorem 6.1 to show the boundedness of the §-type Calderén-Zygmund
operators from HY?(R™) to L»4(R™) (or to HI(R™)).

Theorem 6.16.  Let 6 € (0, l?n)‘l;], pE (1}r5, 1] and ¢ € (0, c<].
(i) If T is either a convolutional d-type Calderdn-Zygmund operator as in Theorem 6.8 or a non-
convolutional 0-type Calderén-Zygmund operator as in Remark 6.10(ii), then there exists a positive con-

stant Co such that, for all f € HY*(R™),

IT()Lea@ny < Cooll fll 7o gny-

(ii) If T is either a convolutional §-type Calderdn-Zygmund operator as in Theorem 6.8 or a non-
convolutional d-type Calderdn-Zygmund operator satisfying the additional assumption that T*1 =0 as in
Remark 6.10(i1), then there exists a positive constant Cay such that, for all f € HY*(R™),

1T () aza@ny < Coll fllazea@n)-

Proof. ~ We first prove (i). When § € (0, h]ln)‘l;], pE (1J1r5, 1) and ¢ € (0, 00], by the proof of [9, p. 69,
Theorem 9.9], we have ||T'(a)| Lrrny < 1 for any (p,2,0)-atom a. From this and Corollary 6.14(i), we

further deduce that, for all f € H}Y(R™),

1T () ee@ny S 1l aza@ny.- (6.24)

Notice that T is a linear operator. By (6.24), the corresponding interpolation result of Lebesgue spaces
(see, for example, [55, Theorem 3]) and Theorem 6.1(i), we easily conclude that (i) holds true when
pE (1i5,1) and ¢ € (0, c0].

When p =1 and ¢ € (0, 00|, combining the linearity of 7', (6.24) with p = ¢, the boundedness of T' on
L™ (R™) with r € (1,00) (see, for example, [28, Theorems 5.1 and 5.10]) and Corollary 6.5, we find that (i)
also holds true in this case.

Now we turn to show (ii). Notice that, by [9, p.64, Lemma 9.5] and Theorem 3.6, we know that
T (a)ll % mny < 1 for any (p,2,0)-atom a. From this, Corollary 6.5 and an argument similar to the proof
of (i), we deduce that (ii) holds true. This finishes the proof of Theorem 6.16.
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Remark 6.17. (i) Notice that the d-type Calderén-Zygmund operators are linear operators. By
Remark 6.10(iv), [28, Theorems 5.1 and 5.10], Corollary 6.5 and the corresponding interpolation result
of Lorentz spaces (see, for example, [55, Theorem 3]), we also conclude that, as in Theorem 6.16, the
boundedness of the d-type Calderén-Zygmund operators from HYY(R™) to LP4(R™) (or to HYY(R™))
with ¢ € (0, hlln)‘b’], pE (Hl_é, 1] and ¢ € (0, 00], the details being omitted.

(ii) We should point out that, in (i) of this remark, the boundedness of the §-type Calderén-Zygmund
operators from HY(R™) to LP(R™) (or to H4(R™)) is a key tool, namely, [9, p.68, Theorem 9.8; p. 69,
Theorem 9.9] (see Remark 6.10(iv)). Notice that the proofs of [9, p. 68, Theorem 9.8; p. 69, Theorem 9.9]

also need to prove that
1T ()l mny 1 and [ T(a)l|rrn) S 1

for any (p,2,0)-atom a, respectively, and are more complicated than the proof of Theorem 6.16. Thus,
in this sense, the criterion established in Theorem 6.13 is a useful tool.

(iii) If A is the same as in Remark 6.10(i), then lTnAb‘ = !, HYY(R") and LP4(R") become the clas-
sical isotropic Hardy-Lorentz, respectively, Lorentz spaces and T' becomes the classical J-type Calderon-
Zygmund operator correspondingly. In this case, we know that, if § € (0,1], p € <n16’ 1] and ¢ € (0, 0],
then Theorem 6.16(i) implies that 7" is bounded from H?-7(R™) to H?9(R™) and Theorem 6.16(ii) implies
that T is bounded from H?-7(R™) to LP9(R™). Moreover, when p = ¢, (i) and (ii) of Theorem 6.16 imply
the boundedness of the classical §-type Calderén-Zygmund operator from HP(R™) to HP(R™), respec-
tively, from HP(R"™) to LP(R™) for § € (0,1] and p € (
example, [5,52,69]).

s 1], which is a well-known result (see, for
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