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1 Introduction

The Chern-Ricci flow is an evolution equation for Hermitian metrics on complex manifolds, generalizing
the Kéhler-Ricci flow. Given an initial Hermitian metric

Wy = \/—1(go)ijdzi AdZ,

the Chern-Ricci flow is defined as

ow

o = —Ric(w), wlt=0 = wo, (1.1)

where Ric(w) := —v/—19d1ogdet g is the Chern-Ricci form of w. In the case when wq is Kéhler, namely
dwy = 0, (1.1) coincides with the Kéhler-Ricci flow. The Chern-Ricci flow was first introduced by Gill [4]
in the setting of manifolds with vanishing first Bott-Chern classes, and many fundamental properties
were established by Tosatti and Weinkove [16] on more general manifolds. A variety of further results on
Chern-Ricci flow are studied in [3,5,6,15-18] and some of them are analogues to classical results for the
Kéhler-Ricci flow (see [2,8,10-14]).

It is proved by Mok [9] (see [1] for Kéhler threefolds and also [7]) that the non-negativity of the
holomorphic bisectional curvature is preserved along the Kéhler-Ricci flow. However, we show that
on Hermitian manifolds, the non-negativity of the holomorphic bisectional curvature is not necessarily
preserved under the Chern-Ricci flow.
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Theorem 1.1. Let X = S?"~! x S! be a diagonal Hopf manifold. Fix Ty >0 and let
1 . A ,
wo = 12| Z((l + T0)6i;]2|? — Toz'27)v/—1dz" A d2d.

Then the Chern-Ricci flow (1.1) has mazimal existence time Tyax = Torjl.

(1) When t € [0, "], w(t) has the non-negative holomorphic bisectional curvature.

(2) However, when t € (*'9+" ToH1) “the holomorphic bisectional curvature of w(t) is no longer non-
negative.
Remark 1.2. It is worth pointing out that the same proof as in the Kéahler case (following Mok) fails
for the Chern-Ricci flow since the evolution of the Riemannian curvature tensor under the Chern-Ricci
flow involves also some terms with the torsion (and its covariant derivatives), which are not there in the
Kahler-Ricci flow, where the evolution of the curvature involves only the curvature tensor itself.

Remark 1.3. It is also interesting to investigate sufficient conditions on Hermitian manifolds such
that the non-negativity of the holomorphic bisectional curvature is preserved under the Chern-Ricci flow.

2 The proof of Theorem 1.1

For a = (a1,...,0p) € C*\ {0} with |oy| = -+ = |an| # 1, let M be the Hopf manifold M =
(C"\{0})/ ~, where

(2., 2") ~ (alzl,...,anz") .

It is easy to see that M is diffeomorphic to S?”~! x S!. Fix Tp > 0 and consider the Hermitian metric

1 o . .
wo ((1+T0)(5ij|z|2 — Toz'29 )/ —1dz" A d2?,

s
where |2]* = 377, [27|*. Tt is proved in [16] that
w(t) = wo — tRic(wop) (2.1)

gives an explicit solution of the Chern-Ricci flow on M with initial metric wy. Indeed, by elementary
linear algebra, we see

det(wp) = (1 +Tp)" 2|72
and so

i . 4
Ric(wo) = n\/—18810g|z|2 = |zn|2 (6ij — TZT2 )\/—16[2’ Adz? > 0.

For t < TOJI, we have the Hermitian metrics
i

J . .
“ )\/—1dzz Adz. (2.2)

. 1
w(t) = wo — tRic(wg) = Bt ((1 +To — nt)di; — (To — nt) BE

Hence,

det(w(t)) = (1+ Ty —nt)" ! |

|z|2n
from which it follows that
Ric(w(t)) = Ric(wo) = nv/—1001log |z|>.

It also implies that w(t) solves the Chern-Ricci flow on the maximal existence interval
To+1
[0, 0 + ) .
n
Next, we compute the curvature tensor of the metric (2.2). For simplicity, we define a rescaled metric

wy = \/—1hijdzi A dz?
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on M with )
_ 2 Qg
h;; = 2] (0i]2]F = Az*27), A <1 (2.3)
Note that when
- T() —nt
14Ty —nt’
we have (0
w
= . 2.4
T LT -t (24)

Lemma 2.1. Let R be the curvature components of wy. Then

kjiq
_ Oig(Gklel? = 2827) | A(bij|2l? — 2°27) (Okgl2]® — 272%)
= g 2l
(A2 = 2X)2%29(0k]2|? — 2F29)
|2° '

R

Proof. By using elementary linear algebra, one has
det(h;;) = (1= X)|z| 72"

and so
Ric(wy) = nv/—1901og|z|? > 0. (2.5)

On the other hand, one can verify that the matrix (h;;) has (transpose) inverse matrix

” A2tz
R = |z|?( by : 2.6
(5 0 ) 26
By a straightforward computation,
3hij B §ijzk Aéjkzi 2\zizk I B 2Nz 2k I )\éjkzi + (5@»2’“ 2.7)
azk —zt 2t 215 el |2]* '
and so
[P — ppi ahz‘j _ |Z|2 P 2P 27 I\ ok i B A(Sjkzi —I—(Sijzk
W g SRV E Y ANNIET ol
L 2X2T2RRP Nprat 4 0ipat | 2X22PRRP AZ2i2RaP 4 ARk
|2[* |22 (1=N[z* (1=N[z*
AR NGzt 4 02"
oz 2|2

The Chern curvature tensor of w) is

RP — _8]‘—‘1121
kji 927
_ )\éijzkz” + A&kaizp VAT ) Adpi0ij + dipl; B )\épkzizj + 5ipzkzj
|2/ |2/° |22 |2/
 AOpGij + Oipbry | 2Az1ER P2 B N(0ij 2R 2P + 63202 4 Spp2t27) + 6ip2F 20
- |22 EI |2 '

Hence,

Ryjiq = hquzji
_ Opglz|2 [AOprbis + 6iplry 20227 2P29 N(8i;272P + 012 2P + Spr2t2?) + 8ip2k2d

|2]* |22 |2/° |2/*
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AzP 28 [ Noprdij + 0iplr; VAT ) A(éijzkz” + 5kaizp + 5pkzizj) + §ipzkzj

|2/ |22 |2/° |2/
C Ngr0ij + Giglin 2X2'2R202T N(8;28 29 + S22l + g2’ 2) 4 0iq2 2
|2 |2® |2°
N6, 2729 4+ Nop 2127 202202k 20 20
- |26 Il
N2(8;52829)2)2 + 0k 2129 2|2 + 272K 2929) 4+ Azi2k 20 24
|2®
 Agrdij + 0igir . (3N — A2) 22k 20 20 Aéqkzizj )\éijzkzq
B |2 |2® I E LN E
(A2 = 2X\)0j2°29  Gig2" 27
|26 |26
 6iq(Bjklz? = 2F27)  NGij(Okgl2|? — 2F29) (A2 = 2X)2 20k |2|* — 2 2T)
B |2° |2/° |2[®
N2t 29 (2R 29 — G1q|2)?)
s
 Gig(Sk]2P = 2F2T)  N(6i5]2|? — 2027) (Orgl2|? — 2F29) | (A2 = 2X)2129(6py] 2] — 22d)
- |26 |2[® |2® '

This completes the proof.
Lemma 2.2.  For any A € [0,1), wy has the non-negative holomorphic bisectional curvature.

Proof.  For any € = (¢1,...,€") and n = (n',...,n"), by Lemma 2.1 we have

(= PIER =12 -€7) | Al(isl=]* — 22 el 2

kel ig _
Rka‘q§ E 77177(1 - |Z|6 |Z|8
(N = 20)[2 - (|2PIE? — |2 - €1%)
+ .
|2[®

Since |z]2|n|? = |z - n|?, we obtain

i )\51“22—2"277’1{342 A2 2N+ 1 2'772 2252_2.52

Ry > MO e e nf2(=PIef |2 -€f)
& 2

The right-hand side is non-negative when A > 0.

Corollary 2.3.  The initial metric wg has the non-negative holomorphic bisectional curvature.

To wo
1+Th 1+T76 °
Lemma 2.2, wy has the non-negative holomorphic bisectional curvature.

Proof. When t = 0, or equivalently A = Since A = , . € [0,1), by

we know wy = 1+ To

Lemma 2.4. When X\ < —1, the holomorphic sectional curvature of the metric wy is no longer non-
negative. In particular, the holomorphic bisectional curvature of the metric wy is no longer non-negative.

Proof.  For any & = (&1,...,£™), we have
kedgiga _ [EPUZIPIER — [z €17) | A=PI€17 — |z - €*)?
Fiat € 618 = 217 ’ o
n (N =2X)[z - PP (|2PP[€ — |2 - €1%)
|2[®
(BA =Nz €[* + A+ D)([2P[E))? + (W —4X = D]z - €L - ¢
|2[® '
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Let a = |z - ¢|? and b = |2|?|¢|%. Then

(BA = A2)a? + (A2 —4X — Dab + (A + 1)b?
|2®
(b—a)aA—1)2+ (b—a)* (A + 1)
|2° '

Ry fre'eie’ =

It is easy to see that b > a > 0, so for any —1 < A < 1,
J i 4
Ry, e > 0.

However, when A\ < —1, Rkjiqfkfjfifq is no longer non-negative. Indeed, for any given z = (z1,...,2"),
we choose a nonzero vector & = (£%,...,&") such that z- & =0, i.e., > 2'- & = 0. In this case, we have
a=|z-£ =0, but b= |2]?[£]* > 0. Moreover,

» V(A +1
Ruggese =" 0 <o
since A < —1.
Proof of Theorem 1.1. By (2.4), we see when A\ = 11&}5:15“, wy = 1+“}((flm. Hence,

(1) by Lemma 2.2, when A € [0, 1) or equivalently,

T
o<t< ",
n

w(t) has the non-negative holomorphic bisectional curvature;
(2) by Lemma 2.4, when A < —1, or equivalently,

2T 1 T 1
otl o tot

on n '

the holomorphic bisectional curvature of w(t) is no longer non-negative.
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